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Abstract
Let X be a nonempty finite subset of R

d and X = ⋃m
i=1 Xi a coloring with m < d.

In this paper we study the number of monochromatic lines generated by X . More
specifically we give three results which establish that, under nontrivial assumptions,
the number of monochromatic lines generated by X is Θ(|X |2).

Keywords Monochromatic lines · Coloring · Szemerédi–Trotter theorem · Generated
hyperplanes

Mathematics Subject Classification 52C45 · 52C35

1 Introduction

In this paper N, Z and R denote the set of natural numbers, integers and real numbers,
respectively; we consider 0 /∈ N. From now on, d ∈ N and R

d is equipped with
its usual euclidean structure. Let X be a nonempty subset of R

d and m ∈ N. A
coloring of X is a family of pairwise disjoint subsets {X1, X2, . . . , Xm} of X such
that X = ⋃m

i=1 Xi and we will denote the coloring by X = ⋃m
i=1 Xi . For each

i ∈ {1, 2, . . . ,m}, Xi will be called a chromatic class. A translation F of a vector
subspace V of R

d will be called a flat. We write dim F := dim V , and also if V is a
d ′-dimensional subspace, we say that F is a d ′-flat; in particular 1-flats will be called
lines and (d−1)-flats will be called hyperplanes. For technical reasons, we will also
consider the empty set a flat with dim ∅ := −1 and we will say that ∅ is a (−1)-flat.
We denote by Fl(X) the smallest flat (with respect to ⊆) which contains X and we
write dim X := dim Fl(X). Given a coloring X = ⋃m

i=1 Xi , we say that a line L of
R
d is monochromatic if X ∩ L is contained in a chromatic class and |X ∩ L| ≥ 2;
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the family of monochromatic lines with respect to the coloring X = ⋃m
i=1 Xi will be

denoted by M(⋃m
i=1 Xi

)
. We write

∣
∣M(⋃m

i=1 Xi
)∣
∣ = Θ(|X |2) if there are c, c′ > 0

such that |X |2/c ≤ ∣
∣M(⋃m

i=1 Xi
)∣
∣ ≤ c|X |2 whenever |X | ≥ c′; if c and c′ depend

on the parameters c1, c2, . . ., we write
∣
∣M(⋃m

i=1 Xi
)∣
∣ = Θc1,c2,...(|X |2).

One of the most famous and fruitful theorems in discrete geometry is the Sylvester–
Gallai Theorem, see [3]. The colorful version of Sylvester–Gallai Theoremwas proven
independently by Motzkin and Rabin.

Theorem 1.1 Let X be a nonempty finite subset of R
2 and a coloring X = X1 ∪ X2.

If dim X = 2, then M(X1 ∪ X2) 
= ∅.
Proof See [3,7]. ��
For higher dimensions, Theorem 1.1 was generalized by Shannon.

Theorem 1.2 Let X be a nonempty finite subset of R
d with dim X = d and a coloring

X = ⋃m
i=1 Xi . If m ≤ d, then M(⋃m

i=1 Xi
) 
= ∅.

Proof See [2,8]. ��
There aremore results related to the existence ofmonochromatic lines, see for instance
[2,3,7,8]. However, in this paper we will be interested in quantitative results. One
important quantitative result in this area was obtained by Dvir and Tessier-Lavigne in
[5]. Here we will be more interested in the number of monochromatic lines that can be
generated rather than the dimension of the Motzkin–Rabin configurations. The main
motivation of this paper is the following. Let X be a nonempty finite subset ofR

d such
that dim X = d and a coloring X = ⋃m

i=1 Xi . It is not difficult to see that if most of
the points of X are in a line, it is possible to have

∣
∣M(⋃m

i=1 Xi
)∣
∣ 
 |X |2. Moreover,

if almost all the points of X are in a hyperplane H of R
d , then X ∩ H (and therefore

X ) may not have a lot of monochromatic lines (for instance, if X = X1 ∪ X2 is a
finite subset of R

2 with X1 a singleton and X2 contained in a line, there is only one
monochromatic line). Thus we want to study under which conditions, if there are no
hyperplanes in R

d with a lot of points of X , we have that
∣
∣M(⋃m

i=1 Xi
)∣
∣ = Θ(|X |2).

The first result of this paper is the following.

Theorem 1.3 Let X be a nonempty finite subset of R
d with dim X = d, a coloring

X = ⋃m
i=1 Xi with m < d, 0 < c′ ≤ 1 and 0 < c < 1. If there is a chromatic class

Xi such that |Xi | ≥ c′|X | and |Xi ∩ H | ≤ c|Xi | for any hyperplane H of R
d , then

∣
∣
∣
∣M

( m⋃

i=1

Xi

)∣
∣
∣
∣ = Θc,c′,m,d(|X |2).

The assumptionm < d is necessary. Theorem 1.3 can be extended readily toRP
d , and

here we give an example which shows that m < d is fundamental. Take m = d = 2,
n > 3 and the Böröczky example X = X2n with the coloring X = X1 ∪ X2 where
the chromatic classes are
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X1 :=
{[

cos
2π j

n
: sin 2π j

n
: 1

]

: j ∈ {0, 1, . . . , n − 1}
}

,

X2 :=
{[

− sin
2π j

n
: cos 2π j

n
: 0

]

: j ∈ {0, 1, . . . , n − 1}
}

.

X and the chromatic class X1 satisfy all the conditions ofTheorem1.3 for c = c′ = 1/2
except for m < d. Nevertheless, the unique monochromatic line is L∞ = {[x : y :
0] : x, y ∈ R}.

Theorem 1.3 needs the existence of a chromatic class which satisfies certain prop-
erties. However, even if we do not have information about a specific chromatic class,
we are able to obtain an interesting result.

Theorem 1.4 Let X be a nonempty finite subset of R
d with dim X = d, a coloring

X = ⋃m
i=1 Xi with 2m ≤ d and 0 < c < 1. If |X ∩ H | ≤ c|X | for any hyperplane H

of R
d , then

∣
∣
∣
∣M

( m⋃

i=1

Xi

)∣
∣
∣
∣ = Θc,m,d(|X |2).

The condition 2m ≤ d in Theorem 1.4 is necessary. Indeed, take 2m − 1 = d,
L1, L2, . . . , Lm lines inR

d such that dim
⋃i

j=1 L j = 2i −1 for all i ∈ {1, 2, . . . ,m},
X a subset of

⋃m
i=1 Li such that |X ∩ L1| = |X ∩ L2| = · · · = |X ∩ Lm | > 2m

and c = (2m−1)/(2m). Define the coloring X = ⋃m
i=1 Xi with Xi := X ∩ Li

for all i ∈ {1, 2, . . . ,m}. Since |Xi | > 2m for all i ∈ {1, 2, . . . ,m}, we have that
|H ∩ X | ≤ (m−1)|X |/m + 1 ≤ c|X | for any hyperplane H of R

d . However, the
monochromatic lines are just L1, L2, . . . , Lm .

Another fundamental result in discrete geometry is Beck’s Theorem, see Theo-
rem 2.2. Here we state a weak colorful version of it.

Theorem 1.5 Let X be a nonempty finite subset of R
d with dim X = d and a coloring

X = ⋃m
i=1 Xi with m < d. If |X ∩ H | ≤ |X |/(2d) for any hyperplane H of R

d , then

∣
∣
∣
∣M

( m⋃

i=1

Xi

)∣
∣
∣
∣ = Θm,d(|X |2). (1)

As it was kindly remarked by the reviewers, a number of questions arise in connection
with the above results. We have chosen three of them.

• In Theorem 1.3, if we assume that all the chromatic classes Xi satisfy that |Xi | ≥
c′|X | and |Xi ∩ H | ≤ c|Xi | for any hyperplane H of R

d , can we weaken the
assumption m < d?

• In Theorem 1.3, can we weaken the assumption m < d for d � 0? The exam-
ple given immediately after Theorem 1.3 shows that the assumption cannot be
weakened for d = 2.
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• Let X be a nonempty finite subset of R
d with dim X = d and a coloring X =⋃m

i=1 Xi such that m < d and |X ∩ L| ≤ |X |/(2d) for any line L of R
d . Is it true

that (1) holds?

Wewant tomake two remarks. The first one is that the constants of themain results can
be found explicitly although we think that they are far of being optimal. The second
point is that if X is a finite subset of R

d , then it generates at most
(|X |
2

)
lines. Thus, in

the proofs of the theorems, it suffices to show that there are c′′, c′′′ > 0 such that if
|X | ≥ c′′, then M(⋃m

i=1 Xi
) ≥ c′′′|X |2.

We describe briefly the organization of this paper. In Sect. 2 we state some results
that will be needed in the forthcoming sections. The key ingredient in the proof of
the main results is Proposition 3.2 and it is proven in Sect. 3. The proofs of the main
theorems are completed in Sect. 4. The proof of Theorem 1.3 depends on the number
of hyperplanes generated by Xi . If Xi generates a lot of hyperplanes, the statement
is a consequence of Proposition 3.2. If Xi does not generate a lot of hyperplanes,
Corollary 2.6 implies that Xi (and therefore X ) has a special structure; with this
information about the structure of Xi , we can find a number of monochromatic lines
as well. The proof of Theorem 1.4 is done by induction on the number of chromatic
classes. In the induction step we follow similar ideas to the ones of the proof of
Theorem 1.3, however we have to be very careful with the parameters to be able
to use the induction hypothesis. The proof of Theorem 1.5 is the easiest one due to
Corollary 2.4 and Proposition 3.2.

2 Preliminaries

In this section we state some auxiliary results that will be needed later. For a subset X
of R

d and F ,G families of subsets of R
d , set

I (X ,F) := {(x, F) ∈ X × F : x ∈ F},
I (G,F) := {(G, F) ∈ G × F : G ⊆ F}.

The first result that we will need is the Szemerédi–Trotter Theorem.

Theorem 2.1 Let X be a finite subset of R
d and L a finite family of lines in R

d . Then

|I (X ,L)| ≤ 4|X |2/3|L|2/3 + 4|X | + |L|.

Proof See [9, Thm. 8.3]. ��
Let F be a flat ofRd . For a subset X ofRd , we say that X generates F if there is a subset
X ′ of X such that Fl(X ′) = F . More generally, for a familyF of subsets ofR

d , we say
that F generates F if there is a subfamily F ′ of F such that Fl

(⋃
F ′∈F ′ F ′) = F . We

state nowBeck’s Theoremwhich is a consequence of the Szemerédi–Trotter Theorem.

Theorem 2.2 There are two absolute constants c, c′ > 0 such that for any finite subset
X of R

d one of the following statements holds:
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(i) There is a line L in R
d such that |X ∩ L| ≥ c|X |.

(ii) X generates at least c′|X |2 lines.
Proof See [1, Thm. 3.1]. ��
Using Beck-type results and other tools, Do and Lund obtained independently the
following result.

Theorem 2.3 For any 0 < c < 1, there is 0 < c′ < 1 such that for any finite subset X
of R

d one of the following statements holds:

(i) There is a finite family of nonzero dimensional flats {F1, F2, . . . , Fk} of R
d such

that
∑k

i=1 dim Fi < d and
∣
∣X ∩ ⋃k

i=1 Fi
∣
∣ ≥ c|X |.

(ii) X generates at least c′|X |d hyperplanes.

Proof See [4, Thm. 1.6], [6, Thm. 2]. ��
We shall consider two corollaries of Theorem 2.3.

Corollary 2.4 For any d ≥ 2 and 0 < c < 1/(d−1), there is 0 < c′ < 1 such that for
any finite subset X of R

d one of the following statements holds.

(i) There is a hyperplane H of R
d such that |X ∩ H | ≥ c|X |.

(ii) X generates at least c′|X |d hyperplanes.

Proof See [4, Corr. 1.9]. ��
Wesay that twoflats F1 and F2 ofRd are skew if dim (F1 ∪ F2) = dim F1+dim F2+1;
in particular skew flats do not intersect. We will need two trivial facts.

Remark 2.5 Let F1 and F2 be flats of R
d .

(i) The dimension of F1 ∪ F2 is bounded above as follows:

dim (F1 ∪ F2) ≤ min {dim F1 + dim F2 + 1, d}.

Moreover, if F1 and F2 are not skew, then

dim (F1 ∪ F2) ≤ min {dim F1 + dim F2, d}.

(ii) Let F ′
1 and F ′

2 be flats such that F ′
1 ⊆ F1 and F ′

2 ⊆ F2. If F1 and F2 are skew,
then F ′

1 and F ′
2 are skew.

Under the assumptions and notation ofCorollary 2.4, we have that there is a hyperplane
H ofRd such that |X∩H | ≥ c|X | or X generates at least c′|X |d hyperplanes.However,
c′ may be very small for our purposes (i.e., the assumption of Proposition 3.2). Thus,
when X generates a lot of hyperplanes but not enough, we need to know a little bit
about the structure of X . The next corollary provides this information.
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Corollary 2.6 For any 0 < c < 1, there is 0 < c′ < 1 such that for any finite subset X
of R

d with

|X | ≥ 2d

(1 − c1/(d+1))c(d+2)/(d+1)
, (2)

one of the following statements holds:

(i) There is a hyperplane H of R
d such that |X ∩ H | ≥ c|X |.

(ii) There is afinite family of nonzerodimensional pairwise skewflats {F1, F2, . . . , Fk}
of R

d with di := dim Fi for all i ∈ {1, 2, . . . , k} such that

–
∑k

i=1 di < d,
–

∣
∣X ∩ ⋃k

i=1 Fi
∣
∣ ≥ c|X |,

– for all i ∈ {1, 2, . . . , k}, |X ∩ F | ≤ c1/(d+1)|X ∩ Fi | for each (di−1)-flat F
contained in Fi .

(iii) X generates at least c′|X |d hyperplanes.

Proof Theorem 2.3 implies that for c1/(d+1) there is 0 < c′ < 1 such that one of the
following occurs:

(I) There is a finite family of nonzero dimensional flats {F1,1, F1,2, . . . , F1,n} of R
d

such that
∑n

i=1 dim F1,i < d and
∣
∣X ∩ ⋃n

i=1 F1,i
∣
∣ ≥ c1/(d+1)|X |.

(II) X generates at least c′|X |d hyperplanes.

If (II) holds, then we are in (iii). From now on we assume that (I) occurs. Since∑n
i=1 dim F1,i < d and the flats are nonzero dimensional,

n < d. (3)

Starting with the family of flats {F1,1, F1,2 . . . , F1,n}, we construct recursively fam-
ilies of nonzero dimensional flats {Fm,1, Fm,2, . . . , Fm,n−m+1} of R

d such that
∑n−m+1

i=1 dim Fm,i < d and
∣
∣X ∩ ⋃n−m+1

i=1 Fm,i
∣
∣ ≥ c1/(d+1)|X | as follows. Given

a family of nonzero dimensional pairwise nonskew flats {Fm,1, Fm,2, . . . , Fm,n−m+1}
of R

d such that
∑n−m+1

i=1 dim Fm,i < d and
∣
∣X ∩ ⋃n−m+1

i=1 Fm,i
∣
∣ ≥ c1/(d+1)|X |, we

construct {Fm+1,1, Fm+1,2, . . . , Fm+1,n−m} in the followingway.Assumewithout loss
of generality that Fm,n−m and Fm,n−m+1 are not skew. For each i ∈ {1, 2, . . . , n−m}
set

Fm+1,i :=
{
Fm,i if i 
= n − m,

Fl (Fm,n−m ∪ Fm,n−m+1) if i = n − m.

From Remark 2.5(i), we have that
∑n−m

i=1 dim Fm+1,i < d and
∣
∣X ∩ ⋃n−m

i=1 Fm+1,i
∣
∣ ≥

c1/(d+1)|X |. The construction of these families of flats proceeds until one of the fol-
lowing two cases occurs.
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Case 1. Assume that we can construct the families until m = n. Then we get a flat
Fn,1 such that dim Fn,1 < d and |X ∩ Fn,1| ≥ c1/(d+1)|X | ≥ c|X |. Thus we are in (i)
and are done.

Case 2. Assume that there is m < n and a family of nonzero dimensional pairwise
skew flats {Fm,1, Fm,2, . . . , Fm,n−m+1} of R

d such that
∑n−m+1

i=1 dim Fm,i < d and
∣
∣X ∩ ⋃n−m+1

i=1 Fm,i
∣
∣≥ c1/(d+1)|X |. Assume without loss of generality that

|X ∩ Fm,1| ≥ |X ∩ Fm,2| ≥ · · · ≥ |X ∩ Fm,n−m+1|,

and let k ∈ {1, 2, . . . , n−m+1} be such that

|X ∩ Fm,1| ≥ · · · ≥ |X ∩ Fm,k | ≥ 2

c
> |X ∩ Fm,k+1| ≥ · · · ≥ |X ∩ Fm,n−m+1|.(4)

Set F ′
1,i := Fm,i with d ′

i := dim F ′
l,i for each i ∈ {1, 2, . . . , k}. For i ∈ {1, 2, . . . , k},

we construct recursively a family of flats F ′
1,i � F ′

2,i � · · · � F ′
l,i as follows. Given

a (d ′
i−l+1)-flat F ′

l,i , if there exists a (d ′
i−l)-flat F ⊆ F ′

l,i such that |X ∩ F | >

c1/(d+1)|X ∩ F ′
l,i |, then we choose one of those flats F and we call it F ′

l+1,i . Let ni
be the greatest number l ∈ {1, 2, . . . , d ′

i+1} such that F ′
l,i can be constructed and

write Fi := F ′
ni ,i

and di := dim Fi = d ′
i − ni + 1. We shall show that F1, F2, . . . , Fk

satisfy (ii). First, since Fi ⊆ F ′
1,i = Fm,i for each i ∈ {1, 2, . . . , k}, we have that

F1, F2, . . . , Fk are pairwise skew by Remark 2.5(ii); in particular F1, F2, . . . , Fk are
pairwise disjoint and Fm,1, Fm,2, . . . , Fm,n−m+1 are pairwise disjoint, so

∣
∣
∣
∣X ∩

k⋃

i=1

Fi

∣
∣
∣
∣ =

k∑

i=1

|X ∩ Fi |,
∣
∣
∣
∣X ∩

n−m+1⋃

i=1

Fm,i

∣
∣
∣
∣ =

n−m+1∑

i=1

|X ∩ Fm,i |.
(5)

Second, from (4), |X ∩ F ′
1,i | ≥ 2/c for all i ≤ k. Then we have that for all i ∈

{1, 2, . . . , k},

|X ∩ Fi | ≥ c(ni−1)/(d+1)|X ∩ F ′
1,i | ≥ 2c(ni−d−2)/(d+1) ≥ 2.

Thus F1, F2, . . . , Fk are nonzero dimensional. Third,

k∑

i=1

di ≤
k∑

i=1

d ′
i ≤

n−m+1∑

i=1

dim Fm,i < d.
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Moreover, for all i ∈ {1, 2, . . . , k}, we already know that Fi is nonzero dimensional
so ni ≤ d ′

i ; this leads to

ni ≤ d ′
i ≤

k∑

i=1

d ′
i ≤

n−m+1∑

i=1

dim Fm,i < d,

and hence

|X ∩ Fi | ≥ c(ni−1)/(d+1)|X ∩ F ′
1,i | ≥ c(d−1)/(d+1)|X ∩ F ′

1,i |. (6)

Fourth,

k∑

i=1

|X ∩ Fm,i | ≥
n−m+1∑

i=1

|X ∩ Fm,i | − (n − m + 1 − k)
2

c
(by (4))

=
∣
∣
∣
∣X ∩

n−m+1⋃

i=1

Fm,i

∣
∣
∣
∣ − (n − m + 1 − k)

2

c
(by (5))

≥ c1/(d+1)|X | − (n − m + 1 − k)
2

c

≥ c1/(d+1)|X | − 2d

c
, (by (3))

and then, from (2), we get that

c(d−1)/(d+1)
k∑

i=1

|X ∩ Fm,i | ≥ c|X |. (7)

Hence

∣
∣
∣
∣X ∩

k⋃

i=1

Fi

∣
∣
∣
∣ =

k∑

i=1

|X ∩ Fi | (by (5))

≥ c(d−1)/(d+1)
k∑

i=1

|X ∩ F ′
1,i | (by (6))

= c(d−1)/(d+1)
k∑

i=1

|X ∩ Fm,i | ≥ c|X |. (by (7))

Finally, for each i ∈ {1, 2, . . . , k}, the maximality of ni implies that |X ∩ F | ≤
c1/(d+1)|X ∩ Fi | for any (di−1)-flat F contained in Fi . Then all the conditions of (ii)
are satisfied. ��
The reason why we are interested in skew flats is the following.
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Lemma 2.7 Let X and Y be disjoint finite subsets of R
d . For any skew flats F1 and

F2, the number of lines generated by X ∩ (F1 ∪ F2) that do not intersect Y is at least
|X ∩ F1| · |X ∩ F2| − |Y |.
Proof Set di := dim Fi for i ∈ {1, 2} and the family of lines

L := {Fl ({x1, x2}) : x1 ∈ X ∩ F1, x2 ∈ X ∩ F2}.

Translating if necessary, assume that the origin is contained in F1. Let {y1, y2, . . . , yd1}
be a basis of F1. Fix yd1+1 ∈ F2 and let {yd1+2, yd1+3, . . . , yd1+d2+1} be a basis of
F2 − {yd1+1}. Take x1, x′

1 ∈ X ∩ F1 and x2, x′
2 ∈ X ∩ F2. Then

x1 =
d1∑

j=1

λ jy j , x2 = yd1+1 +
d1+d2+1∑

j=d1+2

λ jy j ,

x′
1 =

d1∑

j=1

λ′
jy j , x′

2 = yd1+1 +
d1+d2+1∑

j=d1+2

λ′
jy j ,

and hence

Fl ({x1, x2}) =
{ d1∑

j=1

μλ jy j + (1 − μ)yd1+1 +
d1+d2+1∑

j=d1+2

(1 − μ)λ jy j : μ ∈ R

}

,

Fl ({x′
1, x

′
2}) =

{ d1∑

j=1

μλ′
jy j + (1 − μ)yd1+1 +

d1+d2+1∑

j=d1+2

(1 − μ)λ′
jy j : μ ∈ R

}

.

(8)

Since F1 and F2 are skew, {y1, y2, . . . , yd1+d2+1} is a basis of Fl (F1 ∪ F2). Thereby
if x1 
= x′

1 and x2 
= x′
2, we get from the explicit formulas of the lines in (8) that

Fl ({x1, x2}) and Fl ({x′
1, x

′
2}) are distinct, so |L| ≥ |X ∩ F1| · |X ∩ F2|. Moreover,

since X and Y are disjoint, the previous claim implies that each point of Y can be in
at most one line of L; therefore the number of lines in L that do not intersect Y is at
least |X ∩ F1| · |X ∩ F2| − |Y |, and this implies statement of the lemma. ��
Let F be a d ′-flat of R

d . For any (d−d ′−1)-flat G of R
d disjoint from F , define the

projection

πF,G : R
d \ F → G, {πF,G(x)} = G ∩ Fl (F ∪ {x}).

The projection gives a bijective correspondence between the (d ′+1)-flats that contain
F and the points of F ′ � R

d−d ′−1.

Lemma 2.8 Let F, G, and H be flats of R
d such that F ⊆ G ⊆ H and set d ′ :=

dim H − dimG. Take F a family of (dim F+1)-flats in R
d such that G and H are

generated byF , and K contains F for all K ∈ F . Then there are F1, F2, . . . , Fd ′ ∈ F
such that H = Fl

(
G ∪ ⋃d ′

i=1 Fi
)
.
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Proof First assume that F = ∅. In this case the proof is by induction on d ′. If d ′ = 0,
G = H . Assume that the claim holds for all 0 ≤ d ′′ < d ′. Since d ′ > 0 and
G, H are generated by F , there is x ∈ R

d such that {x} ∈ F and x ∈ H \ G. Set
F0 := {x} and K := Fl (G ∪ F0). Note that dim K = dimG + 1. Clearly F ⊆ K ⊆
H and K is generated by F . Thus we can apply the induction, and therefore there
exist F1, F2, . . . , Fd ′−1 ∈ F such that H = Fl

(
K ∪ ⋃d ′−1

i=1 Fi
)
. This completes the

induction since

H = Fl

(

K ∪
d ′−1⋃

i=1

Fi

)

= Fl

(

G ∪
d ′−1⋃

i=0

Fi

)

.

Now we show the general case. If dim F ≥ d − 1, the statement is trivial. Thus, from
now on, we assume that dim F < d − 1. Let F̂ be a (d− dim F−1)-flat disjoint from
F and the projection π := πF,F̂ . We have that ∅ ⊆ π(G) ⊆ π(H). Set π(F) :=
{π(K ) : K ∈ F} and note that it is a family of 0-flats in F̂ � R

d−dim F−1 such that
π(G) and π(H) are generated by π(F). Applying the case we solved in the previous
paragraph, there are F1, F2, . . . , Fd ′ ∈ F such that

π(H) = Fl

(

π(G) ∪
d ′
⋃

i=1

π(Fi )

)

. (9)

Since F1, F2, . . . , Fd ′ ,G, H contain F , we get from (9) that

H = Fl

(

G ∪
d ′
⋃

i=1

Fi

)

,

and this concludes the proof. ��
Lemma 2.9 Let X be a nonempty subset, 0 < c < 1 and k ∈ {0, 1, . . . , d−1}. If X
generates at least c|X |d hyperplanes, then it generates at least c|X |k+1 k-flats.

Proof The proof is done by a double induction first on d and then on d − k. If d = 1,
then k = d − 1 = 0 and there is nothing to prove. We assume that the claim is true
for all 1 ≤ d ′ < d from now on. If k = d − 1, we are done. We assume that the
claim holds for all k < k′ ≤ d − 1. Let F be the family of k-flats generated by
X and F ′ be the family of (k+1)-flats generated by X . For any F ′ ∈ F ′, there are
x1, x2, . . . , xm ∈ X such that F ′ = Fl ({x1, x2, . . . , xm}). Let n ∈ {1, 2, . . . ,m} be
the minimum number satisfying F ′ = Fl ({x1, x2, . . . , xn+1}). On the one hand, the
minimality of n leads to Fl ({x1, x2, . . . , xn}) � F ′. On the other hand, if we drop one
point xi from F ′ = Fl ({x1, x2, . . . , xn+1}), we lose at most one dimension; thereby
dim Fl ({x1, x2, . . . , xn}) = k − 1. We have proven that for any F ′ ∈ F ′, there is
F ∈ F such that F ⊆ F ′. Therefore |I (F ,F ′)| ≥ |F ′|, and the induction hypothesis
applied to F ′ leads to

|I (F ,F ′)| ≥ |F ′| ≥ c|X |k+2. (10)
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Let F ∈ F and take F ′ ∈ F ′ such that F ⊆ F ′. Lemma 2.8 (applied to the flats
∅ ⊆ F ⊆ F ′ and the family F := {{x} : x ∈ X}) implies the existence of x ∈ X such
that F ′ = Fl (F ∪ {x}). Then

|I ({F},F ′)| ≤ |X |. (11)

This yields that

c|X |k+2 ≤ |I (F ,F ′)| (by (10))

=
∑

F∈F
|I ({F},F ′)| ≤ |F | · |X |, (by (11))

and hence |F | ≥ c|X |k+1 completing the induction. ��

3 A Key Ingredient

The purpose of this section is to prove Proposition 3.2. In order to do it, we need a
technical lemma.

Lemma 3.1 Let 0 < c ≤ 1/4, k ∈ {−1, 0, . . . , d−3} and n ∈ N with n ≥ 53/c5. Take

– a k-flat X of R
d;

– a family F of (k+1)-flats of R
d such that |F | ≤ n and all its elements contain X;

– a familyH of hyperplanes of Rd such that |H| ≥ cnd−k−1 and all its elements are
generated by F;

– a family M of (k+2)-flats of R
d such that each element of M is generated by F

and contained in some element ofH.

If |M| ≤ c5n2/53, then there exists X ′ ∈ F with the following two properties.

(i) IfF ′ is the family of (k+2)-flats F of Rd such that F contains X ′, F is generated
by F and F /∈ M, then |F ′| ≤ n.

(ii) If M′ := {M ∈ M : M ⊇ X ′} and H′ is the family of elements H ∈ H which
contain X ′ and such that M � H for all M ∈ M′, then |H′| ≥ cnd−k−2/4.

Proof SetF1 := {F ∈ F : I ({F},H) ≥ cnd−k−2/2}. For any H ∈ H, H is generated
by F so it contains at least one element of F . Hence

|I (F ,H)| ≥ |H|. (12)

Let F ∈ F and H ∈ H be such that F ⊆ H . Since the elements of F and H
are generated by F and the elements of F contain X , we can apply Lemma 2.8 to
X ⊆ F ⊆ H and F . Hence there are F1, F2, . . . , Fd−k−2 ∈ F such that H =
Fl

(
F ∪ ⋃d−k−2

i=1 Fi
)
. Therefore

|I ({F},H)| ≤
( |F |
d − k − 2

)

≤ nd−k−2. (13)
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Then we have that

cnd−k−1 ≤ |H| ≤ |I (F ,H)| (by (12))

=
∑

F∈F1

|I ({F},H)| +
∑

F∈F\F1

|I ({F},H)|

≤ |F1|nd−k−2 +
∑

F∈F\F1

|I ({F},H)| (by (13))

≤ |F1|nd−k−2 + |F \ F1|cn
d−k−2

2

≤
(
|F1| + c

2
(n − |F1|)

)
nd−k−2, (since |F | ≤ n)

and thereby

|F1| ≥ cn

2
. (14)

Let F0 be a (d−k−1)-flat disjoint from X andwriteπ := πX ,F0 (recall thatπX ,F0(x) is
the intersection of F0 and Fl (X ∪ {x}) for any x ∈ R

d \X ). SetY := {π(F) : F ∈ F},
Y1 := {π(F) : F ∈ F1} and the family of lines

L := {L line in F0 : π−1(L) ∈ M}.

The projection π has the property that

|F | = |Y|, |F1| = |Y1|, |M| = |L|. (15)

Theorem 2.1 implies that

|I (Y1,L)| ≤ 4
(|L|2/3|Y1|2/3 + |L| + |Y1|

)
. (16)

Since n ≥ 53/c5, |F1| ≤ |F | ≤ n, and |M| ≤ c5n2/53, we get that

c3n2

2
≥ 4

(|M|2/3|F1|2/3 + |M| + |F1|
)
. (17)

Thus

c3n2

2
≥ 4

(|M|2/3|F1|2/3 + |M| + |F1|
)

(by (17))

= 4
(|L|2/3|Y1|2/3 + |L| + |Y1|

)
(by (15))

≥ |I (Y1,L)| (by (16))

=
∑

y∈Y1

|I ({y},L)| ≥ |Y1| min
y∈Y1

|I ({y},L)|

123



Discrete & Computational Geometry (2021) 65:1061–1086 1073

= |F1| min
y∈Y1

|I ({y},L)| (by (15))

≥ cn

2
min
y∈Y1

|I ({y},L)|, (by (14))

and therefore there is x ∈ Y1 such that |I ({x},L)| ≤ c2n; fix such x ∈ Y1. Set
X ′ := π−1({x}). Since |I ({x},L)| ≤ c2n, we get that

|I (X ′,M)| ≤ c2n. (18)

X ′ is a (k+1)-flat and X ′ ∈ F since x ∈ Y . For any F ′ ∈ F ′, F ′ is generated by
F . Thus, applying Lemma 2.8 to X ⊆ X ′ ⊆ F ′ and F , there is F ∈ F such that
F ′ = Fl (F ∪ X ′). This implies that |F ′| ≤ |F | ≤ n, and hence (i) holds.

The definition ofH′ yields thatH′ ⊆ H and M � H for all H ∈ H′ and M ∈ M′.
For all H ∈ H, there are F1, F2, . . . , Fk ∈ F such that H = Fl

(⋃k
i=1 Fi

)
since

H′ ⊆ H and the elements of H are generated by F . Set F ′
i := Fl (X ′ ∪ Fi ) for all

i ∈ {1, 2, . . . , k}. Since H contains X ′, we get that H = Fl
(⋃k

i=1 F
′
i

)
. Moreover,

since M � H for all M ∈ M′ and F ′
i ⊆ H for all i ∈ {1, 2, . . . , k}, F ′

i /∈ M;
thereby Fi ∈ F ′ for all i ∈ {1, 2, . . . , k} and thus H is generated by F ′. Finally, let
M ∈ M′ and H ∈ H be such that X ′ ⊆ M ⊆ H . Since the elements ofM andH are
generated by F and they contain X ′, we can apply Lemma 2.8 to conclude there are
F1, F2, . . . , Fd−k−3 ∈ F such that H = Fl

(
M ∪ ⋃d−k−3

i=1 Fi
)
. Therefore

|I ({M},H)| ≤
( |F |
d − k − 3

)

≤ nd−k−3. (19)

On the one hand, (19) implies each element of M′ is contained in at most nd−k−3

elements of H. On the other hand, (18) yields that |M′| ≤ c2n. Therefore there are
at most c2nd−k−2 elements of H that contain an element of M′. Because x ∈ Y1, we
have that X ′ ∈ F1 and thereby it is contained in at least cnd−k−2/2 elements of H.
These claims lead to

|H′| ≥ cnd−k−2

2
− c2nd−k−2,

and then |H′| ≥ cnd−k−2/4 as c ≤ 1/4; we have shown that (ii) is satisfied. ��
Proposition 3.2 Let X be a nonempty finite subset of R

d with dim X = d, a coloring
X = ⋃m

i=1 Xi withm < d and 0 < c ≤ 1/4. If X generates at least c|X |d hyperplanes
and |X | ≥ 53 · 45(m−1)/c5, then

∣
∣
∣
∣M

( m⋃

i=1

Xi

)∣
∣
∣
∣ ≥ c5

53 · 45(m−1)
|X |2.

Proof First we deal with the case m = d−1. In the first part of the proof, for k ∈
{−1, 0, . . . , d−3}, we construct recursively a k-flat Xk , a family Fk of (k+1)-flats,
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a family Hk of hyperplanes, and a family Mk of (k+2)-flats, using Lemma 3.1.
We start setting n := |X |, X−1 = ∅, F−1 := {{x} : x ∈ X}, H−1 the family of
hyperplanes generated by X and M−1 := M(⋃m

i=1 Xi
)
. If |M−1| ≤ c5n2/53, then

Lemma3.1 implies the existence of X0,F0, andH0 satisfying (i) and (ii) of Lemma3.1,
respectively. For k ∈ {0, 1, . . . , d−3}, assume that we have

(i) a k-flat Xk of R
d such that Xk ∈ Fk−1;

(ii) the family Fk of (k+1)-flats F of R
d such that F contains Xk , F is generated by

Fk−1 and F /∈ Mk−1; in particular |Fk | ≤ n;
(iii) a familyHk of hyperplanes of R

d such thatHk ⊆ Hk−1, |Hk | ≥ cnd−k−1/4k+1,
all its elements are generated by Fk , and also M � H for all H ∈ Hk and
M ∈ Mk−1 satisfying M ⊇ Xk ;

(iv) the familyMk of (k+2)-flats M of R
d generated byFk such that M is contained

in an element of Hk and M contains an element of M(⋃m
i=1 Xi

)
.

If |Mk | ≤ c5n2/(53 · 45(k+1)), then Lemma 3.1 implies the existence of Xk+1, Fk+1,
Hk+1, andMk+1 satisfying (i), (ii), (iii), and (iv), respectively (with k + 1 instead of
k in each case). The next step in the proof is to show that this recursion has to stop
before k = m − 1; in other words, we shall show that

|Mk | >
c5n2

53 · 45(k+1)
for some k ≤ m − 2. (20)

If there is k < m − 2 such that |Mk | > c5n2(53 · 45(k+1)), we are done. Hence we
assume that |Mk | ≤ c5n2/(53 · 45(k+1)) for all k < m − 2. Therefore there exist
Xm−2, Fm−2, Hm−2, and Mm−2 satisfying (i), (ii), (iii), and (iv), respectively. We
shall show that

Mm−2 = Hm−2. (21)

For all M ∈ Mm−2, M is contained in H for some H ∈ Hm−2. However,

dim H = d − 1 = m = dim M

so M = H ; thereby Mm−2 ⊆ Hm−2. For all H ∈ Hm−2, H is generated by Fm−2.
Recall that for all i ∈ {0, . . . ,m−2} and F ∈ Fi , F is generated by Fi−1; iterating
this fact, we conclude that H is generated by F−1, and thus H is generated by X ; in
particular,

dim (X ∩ H) = d − 1 = m. (22)

Notice that
⋃m

i=1(Xi ∩ H) is a coloring of X ∩ H . Then, from (22), we can apply
Theorem 1.2 to the coloring X ∩ H = ⋃m

i=1(Xi ∩ H) in H � R
d−1 to conclude

that there is L ∈ M(⋃m
i=1(Xi ∩ H)

)
. Since X ∩ H ⊆ X and Xi ∩ H ⊆ Xi for

all i ∈ {1, 2, . . . ,m}, L contains at least two points of X and it is contained in a
chromatic class Xi ; in other words, L ∈ M(⋃m

i=1 Xi
)
. Since L ⊆ H , we conclude
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that H ∈ Mm−2. This proves Hm−2 ⊆ Mm−2 and it completes the proof of (21).
Because |Hm−2| ≥ cn2/4m−1, (21) implies (20).

Let k ∈ {−1, 0, . . . ,m−2} be the minimum value satisfying (20). If k = −1, we
are done by the definition of M−1; hence we assume that k > −1 from now on. The
next step in the proof is to show that for all l ∈ {−1, 0, . . . , k}, M ∈ Mk and F
an (l+1)-flat generated by X such that Xl ⊆ F ⊆ M , we have F ∈ Fl . We prove
this claim by induction on l. For l = −1, the claim is trivial since F−1 = {{x} :
x ∈ X}. Assume that the claim holds for all −1 ≤ l ′ < l. Since F is generated
by X , Xl ⊆ F and dim F − dim Xl = 1, we get the existence of x ∈ X such that
F = Fl (Xl ∪ {x}). On the one hand, Fl (Xl−1 ∪ {x}) is an l-flat generated by X such
that Xl−1 ⊆ Fl (Xl−1 ∪ {x}) ⊆ M so, by induction, Fl (Xl−1 ∪ {x}) ∈ Fl−1. On the
other hand, Xl ∈ Fl−1. Then F is generated by Fl−1 since

F = Fl (Xl ∪ {x}) = Fl (Xl ∪ (Xl−1 ∪ {x})).

SinceM ∈ Mk , there is H ∈ Hk containingM . Now H ∈ Hk ⊆ Hl and F ⊆ M ⊆ H
so F cannot be inMl−1 by the definition ofHl . Therefore F ∈ Fl and the induction
is complete.

For each M ∈ Mk , fix LM ∈ M(⋃m
i=1 Xi

)
contained in M and HM ∈ Hk that

contains M . To complete the proof of the proposition when m = d − 1, the last step
is to show the injectivity of the correspondence

Mk → M
( m⋃

i=1

Xi

)

, M �→ LM .

Suppose that there are M, M ′ ∈ Mk such that LM = LM ′ . Set M ′′ := Fl (Xk ∪ LM ).
We claim that

dim M ′′ = k + 2. (23)

If dim M ′′ ≤ k + 1, we get a contradiction as follows. Set l := dim M ′′ − 1. Recall
that the elements of Fk−1 are generated by Fk−2, the elements of Fk−2 are generated
by Fk−3, etc.; hence Xk ∈ Fk−1 is generated by X . On the one hand, M ′′ is generated
by X since Xk and LM are generated by X . Also note that Xl ⊆ Xk ⊆ M ′′ ⊆ M .
Thus the previous paragraph implies that M ′′ ∈ Fl . On the other hand, the following
three claims prove that M ′′ ∈ Ml−1:

� M ′′ is generated by elements of Fl−1 (since M ′′ ∈ Fl ).
� M ′′ ⊆ M ⊆ HM with HM ∈ Hk ⊆ Hl−1.
� LM ⊆ M ′′.

However, this is impossible since Fl and Ml−1 are disjoint; thereby (23) is true.
Since M ∩ M ′ contains Xk and LM , M ∩ M ′ contains M ′′. However, (23) implies

123



1076 Discrete & Computational Geometry (2021) 65:1061–1086

that dim M ′′ = k + 2 = dim M = dim M ′ so M = M ′. Thus the correspondence
M �→ LM is injective and, as a consequence,

∣
∣
∣
∣M

( m⋃

i=1

Xi

)∣
∣
∣
∣ ≥ |Mk | ≥ c5n2

53 · 45(k+1)
≥ c5n2

53 · 45(m−1)
.

Finally we show the general case using the case m = d − 1. Because X is finite,
we can find an (m+1)-flat F0 and π : R

d → F0 its orthogonal projection such that
dim π(F) = dim F for any flat F generated by X such that dim F ≤ m; in particular
|π(X)| = |X |. Set X ′ := π(X) and X ′

i := π(Xi ) for all i ∈ {1, 2, . . . ,m}. Because π

is the orthogonal projection and dim X = d, notice that dim X ′ = m+1. Since X gen-
erates at least c|X |d hyperplanes, X generates at least c|X |m+1 m-flats by Lemma 2.9.
Therefore X ′ generates at least c|X ′|m+1 hyperplanes in F0. Then X ′ with its coloring
X ′ = ⋃m

i=1 X
′
i satisfies all the assumptions of the case m = d − 1, so

∣
∣
∣
∣M

( m⋃

i=1

X ′
i

)∣
∣
∣
∣ ≥ c5

53 · 45(m−1)
|X ′|2 = c5

53 · 45(m−1)
|X |2. (24)

For any L ′ ∈ M(⋃m
i=1 X

′
i

)
, fix x′

1, x
′
2 ∈ L ′ ∩ X ′ with x′

1 
= x′
2 and x1, x2 ∈ X such

that π(x j ) = x′
j for j ∈ {1, 2}. Set L := Fl ({x1, x2}). Since L ′ ∈ M(⋃m

i=1 X
′
i

)
,

notice that L ∈ M(⋃m
i=1 Xi

)
. Also note that π(L) = L ′. Clearly the correspondence

M
( m⋃

i=1

X ′
i

)

→ M
( m⋃

i=1

Xi

)

, L ′ �→ L,

is injective, so

∣
∣
∣
∣M

( m⋃

i=1

Xi

)∣
∣
∣
∣ ≥

∣
∣
∣
∣M

( m⋃

i=1

X ′
i

)∣
∣
∣
∣,

and the result follows from (24). ��

4 Proofs of theMain Results

In this section we complete the proofs of the main results.

Proof of Theorem 1.3 Assume that

|X | ≥ 2d

c′(1 − c1/(d+1)2)c(d+2)/(d+1)2
,

so the conditions of Corollary 2.6 are satisfied by Xi for the value c1/(d+1). Let c′′ > 0
be the number corresponding to c1/(d+1) as in Corollary 2.6; assume without loss
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of generality that c′′ ≤ 1/4. The proof will depend on which case of Corollary 2.6
is satisfied by Xi . Since no hyperplane H of R

d contains more than c|Xi | points of
Xi , Corollary 2.6(i) is impossible. If Corollary 2.6(iii) holds, then Xi generates at
least c′′|Xi |d hyperplanes in R

d . Because Xi is contained in X and c′|X | ≤ |Xi |,
we have that X generates at least c′′c′d |X |d hyperplanes. Then the assumptions of
Proposition 3.2 are satisfied by X , so

∣
∣
∣
∣M

( m⋃

j=1

X j

)∣
∣
∣
∣ = Θc′′c′d ,m(|X |2) = Θc,c′,m,d(|X |2).

It remains to prove the claim when Xi is as in Corollary 2.6(ii). Let F1, F2, . . . , Fk be
nonzero dimensional pairwise skew flats of R

d such that

k∑

j=1

dim Fj < d (25)

and
∣
∣Xi ∩ ⋃k

j=1 Fj
∣
∣ ≥ c1/(d+1)|Xi |. For all j ∈ {1, 2, . . . , k}, we have

dim Fj ≤
k∑

l=1

dim Fl < d.

For any hyperplane H of R
d , we have that |Xi ∩ H | ≤ c|Xi |; in particular this is true

for any hyperplane containing Fj so

|Xi ∩ Fj | ≤ c|Xi |. (26)

Rearranging if necessary, assume that

|Xi ∩ F1| ≤ |Xi ∩ F2| ≤ . . . ≤ |Xi ∩ Fk |.

From (26) applied to j = k, we conclude that

∣
∣
∣
∣Xi ∩

k−1⋃

l=1

Fl

∣
∣
∣
∣ ≥

∣
∣
∣
∣Xi ∩

k⋃

l=1

Fl

∣
∣
∣
∣ − |Xi ∩ Fk | ≥ (c1/(d+1) − c)|Xi |,

and thereby

|Xi ∩ Fk−1| ≥ 1

k − 1

∣
∣
∣
∣Xi ∩

k−1⋃

l=1

Fl

∣
∣
∣
∣ ≥ c1/(d+1) − c

k − 1
|Xi |.
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Thus

|Xi ∩ Fk | ≥ |Xi ∩ Fk−1| ≥ c1/(d+1) − c

k − 1
|Xi |. (27)

LetL be the family of lines generated by Xi ∩(Fk−1∪Fk)without elements in X \ Xi .
Applying Lemma 2.7 to the sets Xi and X \ Xi and the skew flats Fk−1 and Fk , we
get that

|L| ≥ |Xi ∩ Fk−1| · |Xi ∩ Fk | − |X \ Xi |. (28)

Hence

∣
∣
∣
∣M

( m⋃

j=1

X j

)∣
∣
∣
∣ ≥ |L| ≥ |Xi ∩ Fk−1| · |Xi ∩ Fk | − |X \ Xi | (by (28))

≥
(
c1/(d+1) − c

k − 1

)2
|Xi |2 − |X \ Xi | (by (27))

≥
(
c1/(d+1) − c

d

)2
|Xi |2 − |X \ Xi | (by (25))

≥
(
c′(c1/(d+1) − c)

d

)2
|X |2 − |X |,

and then also in this case

∣
∣
∣
∣M

( m⋃

j=1

X j

)∣
∣
∣
∣ = Θc,c′,m,d(|X |2). ��

Remark 4.1 With the notation as in Theorem 1.3, it can be obtained explicitly from
the proof that if |X | is at least

max

{
2d

c′(1 − c1/(d+1)2)c(d+2)/(d+1)2
,
53 · 45(m−1)

(c′′c′d)5
,

4d2

c′2(c1/(d+1) − c)2

}

≥ 2d

c′(1 − c1/(d+1)2)c(d+2)/(d+1)2
· 5

3 · 45(m−1)

(c′′c′d)5
· 4d2

c′2(c1/(d+1) − c)2
,

then

∣
∣
∣
∣M

( m⋃

j=1

X j

)∣
∣
∣
∣ ≥ min

{
(c′′c′d)5

53 · 45(m−1)
,
c′2(c1/(d+1) − c)2

2d2

}

· |X |2

≥ (c′′c′d)5

53 · 45(m−1)
· c

′2(c1/(d+1) − c)2

2d2
· |X |2.

We prove Theorem 1.4.
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Proof of Theorem 1.4 First we establish some notation and parameters that will be used
in the proof. Corollary 2.6 states that for any 0 < b < 1 and Y nonempty finite subset
of R

e with

|Y | ≥ 2e

(1 − b1/(e+1))b(e+2)/(e+1)
,

there is 0 < b′ < 1 such that at least one of the three statements there holds. For any b
and e as above, we will fix one of those 0 < b′ < 1 and we will denote it by φ(b, e).
For each 0 < b < 1 and n, e ∈ N ∪ {0}, set τn,e(b) := b1/(e+1)n ; more generally, for
n = (n1, n2, . . . , nk), e = (e1, e2, . . . , ek) ∈ (N ∪ {0})k , write

τn,e(b) := τnk ,ek (. . . (τn2,e2(τn1,e1(b))).

Set In := {
n = (n1, n2, . . . , nk) ∈ (N ∪ {0})k : k ∈ N,

∑k
i=1 nk ≤ n

}
. Define the

parameters

φn,e(b) :=min {φ(τn,e(b), e
′) : n ∈ In, e ∈ Ie, e

′ ≤ e},

ρn,e(b) :=min

{

min

{
τ4,e(τn,e(b))

τ3,e(τn,e(b))
− 1, 1

}2
: n ∈ In, e ∈ Ie

}

,

θn,e(b) :=min

{(
τ2,e(τn,e(b)) − τn,e(b)

2e

)2
: n ∈ In, e ∈ Ie

}

,


n,e(b) :=min
{
(1 − τ1,e′(τn,e(b)))τ1,e′

(
τn,e(b)

(e′+2)/(e′+1)) :
: n ∈ In, e ∈ Ie, e

′ ≤ e
}
,

ϕn,e(b) :=
(
1

2

)(16n−1)/(16−1)(
φ4n,e(b) · ρ4n,e(b) · θ4n,e(b)

n4 · 53 · 45(4n−1)

)16n

,

ψn,e(b) := 2e

ϕn,e(b) · 
4n,e(b)
.

Notice that for all n′ > n, e′ > e, and 0 < b < 1, we have that b < τn,e(b) <

τn′,e(b) < 1 and b < τn,e(b) < τn,e′(b) < 1. Then 0 < ϕn,e(b) < 1 and ψn,e(b) > 0.
Also

ϕn,e(b) ≥ ϕn′,e(b) if n ≤ n′,
ϕn,e(b) ≥ ϕn,e′(b) if e ≤ e′,
ψn,e(b) ≤ ψn′,e(b) if n ≤ n′,
ψn,e(b) ≤ ψn,e′(b) if e ≤ e′.

(29)

Since

φ4n−4,e(τ4,e(b)) ≥ φ4n,e(b), ρ4n−4,e(τ4,e(b)) ≥ ρ4n,e(b),

θ4n−4,e(τ4,e(b)) ≥ θ4n,e(b), 
4n−4,e(τ4,e(b)) ≥ 
4n,e(b),
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we have that

ϕn−1,e(τ4,e(b)) ≥ 2ϕn,e(b)
1/16,

ψn−1,e(τ4,e(b)) ≤ ϕn,e(b)
1/16 · ψn,e(b).

(30)

We will show by induction on m that if

|X | ≥ ψm,d(c), (31)

then

∣
∣
∣
∣M

( m⋃

j=1

X j

)∣
∣
∣
∣ ≥ ϕm,d(c)|X |2, (32)

and this will imply the proof of the theorem. First assume thatm = 1. Then X has one
chromatic class which is precisely X . Since m < 2m ≤ d, we can apply Theorem 1.3
to X . Notice that

ϕ1,d(c) ≤ 1

2
· φ1,d(c)5

53
·
(

τ1,d(c) − c

2d

)2
,

ψ1,d(c) ≥ 2d

(1 − τ1,d(c))τ1,d(c(d+2)/(d+1))
· 53

φ1,d(c)5
·
(

2d

τ1,d(c) − c

)2
.

Then Remark 4.1 yields that (31) implies (32) in this case.
From now on assume that (31) implies (32) for all 1 ≤ m′ < m. Assume that

X satisfies (31); then we can apply Corollary 2.6 to X with the value τ2,d(c). The
completion of the induction will depend on which case of Corollary 2.6 applies to
X . First, since no hyperplane of R

d contains more than c|X | points of X , X is not in
Corollary 2.6(i). If X is in Corollary 2.6(iii), then Proposition 3.2 implies (32). Thus it
remains to complete the induction when X is in Corollary 2.6(ii). Let F1, F2, . . . , Fk
be nonzero dimensional pairwise skew flats of R

d . Set di := dim Fi for all i ∈
{1, 2, . . . , k}. Then:
(I)

∑k
i=1 di < d.

(II)
∣
∣X ∩ ⋃k

i=1 Fi
∣
∣ ≥ τ2,d(c)|X |.

(III) For all i ∈ {1, 2, . . . , k}, |X ∩ F | ≤ τ3,d(c)|X ∩ Fi | for each (di−1)-flat F
contained in Fi .

To abbreviate the notation, we write

c′ := ϕm,d(c)1/16

min {τ4,d(c)/τ3,d(c) − 1, 1} + ϕm,d(c)
1/4, c′′ := ϕm,d(c)1/4

m
.

Assume without loss of generality that

|X ∩ F1| ≥ |X ∩ F2| ≥ · · · ≥ |X ∩ Fk |.
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Hence

|X ∩ F1| ≥ 1

k

k∑

i=1

|X ∩ Fi | ≥ 1

k

∣
∣
∣
∣X ∩

k⋃

i=1

Fi

∣
∣
∣
∣ ≥ τ2,d(c)

k
|X | (by (II))

≥ τ2,d(c)

d
|X |. (by (I))

Because

ϕm,d(c) ≤
(
1

2
· τ2,d(c)

d
· min

{
τ4,d(c)

τ3,d(c)
− 1, 1

})16
,

we have τ2,d(c)/d ≥ c′. Then there is k′ ∈ {1, 2, . . . , k} such that

|X ∩ F1| ≥ · · · ≥ |X ∩ Fk′ | ≥ c′|X | > |X ∩ Fk′+1| ≥ · · · ≥ |X ∩ Fk |. (33)

For each i ∈ {1, 2, . . . ,m}, set

Fi := {Fj ∈ {F1, . . . , Fk′ } : |Xi ∩ Fj | ≥ c′′|X |};

since
∑m

j=1 |X j∩F1| ≥ |X∩F1|, (33) yields that there is at least one i ∈ {1, 2, . . . ,m}
such that Fi 
= ∅. The conclusion of the induction is divided into two cases.

Case 1. Assume that |Fi | ≤ 1 for all i ∈ {1, 2, . . . ,m}. We already know that there
is an Fi that is nonempty. Therefore, rearranging if necessary, we assume that there
is m′ ∈ {1, 2, . . . ,m} such that |F1| = |F2| = · · · = |Fm′ | = 1 and |Fm′+1| =
|Fm′+2| = · · · = |Fm | = 0. For each i ∈ {1, 2, . . . ,m′}, let σ(i) be the element of
{1, 2, . . . , k′} such that Fi = {Fσ(i)}; also set

I := {σ( j) : j ∈ {1, 2, . . . ,m′}}.

Notice that

|Xi ∩ Fj | < c′′|X | for all i ∈ {1, 2, . . . ,m} such that Fj /∈ Fi . (34)

Thus

∣
∣
∣
∣X ∩

⋃

j∈{1,...,k′}\I
Fj

∣
∣
∣
∣ ≤

m∑

i=1

∣
∣
∣
∣Xi ∩

⋃

j∈{1,...,k′}\I
Fj

∣
∣
∣
∣ < mk′c′′|X |. (35)
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From (II), (33), and (35), we are able to bound
∣
∣X \ ⋃

i∈I Fi
∣
∣ from above as follows:

∣
∣
∣
∣X \

⋃

i∈I
Fi

∣
∣
∣
∣ ≤

∣
∣
∣
∣X \

k⋃

i=1

Fi

∣
∣
∣
∣ +

∣
∣
∣
∣X ∩

k⋃

i=k′+1

Fi

∣
∣
∣
∣ +

∣
∣
∣
∣X ∩

⋃

j∈{1,...,k′}\I
Fj

∣
∣
∣
∣

< (1 − τ2,d(c))|X | + (k − k′)c′|X | + mk′c′′|X |
= (

1 − τ2,d(c) + (k − k′)c′ + mk′c′′)|X |.

(36)

Note that

c′,mc′′ ≤ 2ϕm,d(c)
1/4 ≤ τ2,d(c) − c

4d
. (37)

Therefore

∣
∣
∣
∣X ∩

⋃

i∈I
Fi

∣
∣
∣
∣ = |X | −

∣
∣
∣
∣X \

⋃

i∈I
Fi

∣
∣
∣
∣

>
(
τ2,d(c) − (k − k′)c′ − mk′c′′)|X | (by (36))

≥ (τ2,d(c) − dc′ − mdc′′)|X | (by (I))

≥ c|X |. (by (37))

This means that
⋃

i∈I Fi cannot be contained in a hyperplane, and we conclude that

dim
⋃

i∈I
Fi = d. (38)

For all i ∈ I , set Ji := { j ∈ {1, 2, . . . , k′} : σ( j) = i} and mi := |Ji |; then∑
i∈I mi = m′ and mi ≥ 1 for all i ∈ I . From (I), we have that for all i ∈ I

di ≤
k∑

j=1

d j < d

so (38) implies that |I | > 1; this fact yields

mi = m′ −
∑

j∈I\{i}
m j ≤ m −

∑

j∈I\{i}
m j < m for all i ∈ I . (39)

We claim that there is i ∈ I such that 2mi ≤ di and we prove it by contradiction.
Assume that

2mi > di for all i ∈ I . (40)
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From Remark 2.5(i) and (38),

dim
⋃

i∈I
Fi ≤

∑

i∈I
di + |I | − 1. (41)

Then

d ≥ 2m ≥ 2m′ =
∑

i∈I
2mi ≥

∑

i∈I
di + |I | (by (40))

≥ dim
⋃

i∈I
Fi + 1 (by (41))

= d + 1, (by (38))

and this is the contradiction we were looking for. Fix i ∈ I such that

2mi ≤ di . (42)

Set X ′
j := X j ∩ Fi for all j ∈ Ji and X ′ := ⋃

j∈Ji X
′
j = (⋃

j∈Ji X j
) ∩ Fi . From

(34),

|(X ∩ Fi ) \ X ′| ≤
∑

j∈{1,2,...,m}\Ji
|X j ∩ Fi | < (m − mi )c

′′|X | ≤ mc′′|X |. (43)

Thus (33) and (43) lead to

|X ′| = |X ∩ Fi | − |(X ∩ Fi ) \ X ′| ≥ (c′ − mc′′)|X |. (44)

Then

|X ∩ Fi | = |X ′| + |(X ∩ Fi ) \ X ′|
= |X ′| + mc′′|X | (by (43))

≤
(

1 + mc′′

c′ − mc′′

)

|X ′|. (by (44)) (45)

Since ϕm,d(c) < 1, we have ϕm,d(c)1/16 ≥ ϕm,d(c)1/4 and thus

1 + mc′′

c′ − mc′′ ≤ τ4,d(c)

τ3,d(c)
. (46)
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For any (di−1)-flat F contained in Fi , we get that

|X ′ ∩ F | ≤ |X ∩ F | ≤ τ3,d(c)|X ∩ Fi | (by (III))

≤ τ3,d(c)

(

1 + mc′′

c′ − mc′′

)

|X ′| (by (45)) (47)

≤ τ4,d(c)|X ′|. (by (46))

From (30),

(c′ − mc′′)ψm,d(c) = ϕm,d(c)1/16ψm,d(c)

min {τ4,d(c)/τ3,d(c) − 1, 1} ≥ ψm−1,d(τ4,d(c)). (48)

Thus

|X ′| ≥ (c′ − mc′′)|X | (by (44))

≥ (c′ − mc′′)ψm,d(c) (by (31))

≥ ψm−1,d(τ4,d(c)) (by (48))

≥ ψmi ,di (τ4,d(c)). (by (29), (39))

(49)

From (39), (42), (47), and (49), we have that X ′ with the coloring X ′ = ⋃
j∈Ji X

′
j

and the value τ4,d(c) satisfy the conditions and we can apply the induction hypothesis.
Therefore

∣
∣
∣
∣M

(⋃

j∈Ji

X ′
j

)∣
∣
∣
∣ ≥ ϕmi ,di (τ4,d(c))|X ′|2 (by (32))

≥ (c′ − mc′′)2ϕmi ,di (τ4,d(c))|X |2. (by (44)) (50)

Let L be the family of lines L such that L is contained in Fi , generated by X and it
intersects (X ∩ Fi ) \ X ′. Then |L| ≤ |(X ∩ Fi ) \ X ′| · |X ∩ Fi |, and hence (43) implies
that

|L| ≤ mc′′|X |2. (51)

Note that M(⋃
j∈Ji X

′
j

) \ L ⊆ M(⋃m
j=1 X j

)
. Thus (50) and (51) yield

∣
∣
∣
∣M

( m⋃

j=1

X j

)∣
∣
∣
∣ ≥ (

(c′ − mc′′)2ϕmi ,di (τ4,d(c)) − mc′′)|X |2. (52)
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Notice that

ϕmi ,di (τ4,d(c)) ≥ ϕm−1,d(τ4,d(c)) (by (29), (39))

≥ 2ϕm,d(c)
1/16 (by (30)) (53)

≥ 2min

{(
τ4,d(c)

τ3,d(c)
− 1

)2
, 1

}

· ϕm,d(c)
1/16.

Then

∣
∣
∣
∣M

( m⋃

j=1

X j

)∣
∣
∣
∣ ≥ (

(c′ − mc′′)2ϕmi ,di (τ4,d(c)) − mc′′)|X |2 (by (52))

=
((

ϕm,d(c)1/16

min {τ4,d(c)/τ3,d(c) − 1, 1}
)2

ϕmi ,di (τ4,d(c)) − ϕm,d(c)
1/4

)

|X |2

= (
2ϕm,d(c)

3/16 − ϕm,d(c)
1/4)|X |2 (by (53))

≥ ϕm,d(c)
3/16|X |2 ≥ ϕm,d(c)|X |2,

and it completes the induction in this case.

Case 2. Assume that there exists j ∈ {1, 2, . . . ,m} such that |F j | > 1. Assume
without loss of generality that |F1| > 1, and take Fi1 and Fi2 , elements of F1, such
that Fi1 
= Fi2 . Let M be the family of lines L generated by Xi ∩ (Fi1 ∩ Fi2) such
that L ∩ (X \ X1) = ∅. Then

M ⊆ M
( m⋃

j=1

X j

)

. (54)

Since Fi1 and Fi2 are skew, Lemma 2.7 yields that

|M| ≥ |X1 ∩ Fi1 | · |X1 ∩ Fi2 | − |X \ X1|. (55)

Hence

∣
∣
∣
∣M

( m⋃

j=1

X j

)∣
∣
∣
∣ ≥ |M| (by (54))

≥ |X1 ∩ Fi1 | · |X1 ∩ Fi2 | − |X \ X1| (by (55)) (56)

≥ (c′′)2|X |2 − |X \ X1| ≥ (c′′)2|X |2 − |X |.
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On the one hand, |X | ≥ ψm,d(c) ≥ 2/c′′. On the other hand, ϕm,d(c) ≤ 1/(2m4).
Hence (56) leads to

∣
∣
∣
∣M

( m⋃

j=1

X j

)∣
∣
∣
∣ ≥ (c′′)2

2
|X |2 ≥ ϕm,d(c)|X |2,

and it completes the induction in this case. ��
We conclude this paper proving Theorem 1.5.

Proof of Theorem 1.5 Assume that |X | > 6d. Let 0 < c < 1 be a value that satisfies
Corollary 2.4(ii) for 0 < 2/(3d) < 1/(d−1); assume without loss of generality that
c ≤ 1/4. Notice that X is not in Corollary 2.4(i) since all the hyperplanes ofR

d contain
at most |X |/(2d) elements, but |X |/(2d) < 2|X |/(3d). Therefore X generates at least
c|X |d hyperplanes by Corollary 2.4(ii). Thus, from Proposition 3.2 applied to X and
c, if |X | ≥ 53 · 45(m−1)/c5, then

∣
∣
∣
∣M

( m⋃

i=1

Xi

)∣
∣
∣
∣ ≥ c5

53 · 45(m−1)
|X |2.

This proves the theorem because c depends only on d. ��
Acknowledgements We would like to thank the referees for their positive and insightful comments and
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