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Abstract
Hypertope is a generalization of the concept of polytope, which in turn generalizes
the concept of a map and hypermap, to higher rank objects. Regular hypertopes with
spherical residues, which we call regular locally spherical hypertopes, must be either
of spherical, euclidean, or hyperbolic type. That is, the type-preserving automorphism
groupof a locally spherical regular hypertope is a quotient of afinite irreducible, infinite
irreducible, or compact hyperbolic Coxeter group. We classify the locally spherical
regular hypertopes of spherical and euclidean type and investigate finite hypertopes
of hyperbolic type, giving new examples and summarizing some known results.
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1 Introduction

Much of the recent work in the area of polytopes and hypertopes was inspired by
the influential paper [17] by Branko Grünbaum, in which he defines the concept of
a polystroma (coming from a Greek word for a layer or stratum) which generalizes
the concept of a polytope by stripping it of its geometric properties while retaining its
combinatorial structure.

This concept, further developed and formalized in [13,27,28], evolved through a
number of publications by various authors in the eighties and nineties to that what was
eventually named an abstract polytope. The comprehensive text [25] on the subject by
McMullen and Schulte was published in 2002.

Of particular interest are highly symmetric such objects, known as regular abstract
polytopes, which can be built from quotients of Coxeter groups with linear diagrams
satisfying a certain condition known as the intersection property. In [16], Fernandes,
Leemans and Weiss showed that it is natural to generalize this further, using the
concept of a thin residually connected incidence geometry, by allowing objects that
can be constructed from quotients of any Coxeter group. When the groups have non-
linear Coxeter diagrams additional conditions (specified in Sect. 2) must be satisfied
in order for such objects to have natural properties which generalize the concepts of
both polytope and hypermap. While regular hypermaps had been thoroughly studied
(startingwith the seminal paper [10] byCorn and Singerman) andmuch data, including
the determination of all regular and chiral hypermaps of small genus, is available in
the literature (see for example [8]), very little is known about their higher dimensional
analogues, the hypertopes. With this paper we hope to show how fundamental and
how rich the theory of regular hypertopes is.

The structure of the paper is as follows. In Sect. 2 we give a brief overview of the
basic theory (more details can be found in recent paper [16] by the same authors)
and state some essential theorems that we will make use of in subsequent sections.
We introduce the concept of a locally spherical hypertope but will only be interested
in regular such objects in this paper. In Sect. 3 we give some general results on
quotients of Coxeter groups and show how they can be used to construct regular
locally spherical hypertopes. These hypertopes must be of either spherical, euclidean,
or hyperbolic type and are respectively covered in Sects. 4, 5, and 6. In Sect. 4 we list
all finite hypertopes of spherical type. In Sect. 5, we show that finite locally spherical
hypertopes of euclidean type are toroids and review the relevant literature for the types
of toroidal hypertopes that have already been classified, as well as for general results
about normal subgroups of euclideanCoxeter groups. In Sect. 6we survey the literature
on locally spherical polytopes of hyperbolic type and provide some new examples of
locally spherical hypertopes which are proper in the sense that their Coxeter diagrams
are not linear.

2 Preliminaries

The concept of a hypertope, introduced recently in [16], is a generalization of an
abstract polytope. There are different but equivalent ways to define (abstract) poly-
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topes, one of which being that its faces form a partially ordered set that is a thin,
residually connected geometry. This had been generalized in [16] to include struc-
tures built from a set of (what we still call) faces that do not form a partially ordered
set.

We start with the definition of an incidence system � := (X , ∗, t, I ) as a 4-tuple
having

• X as a set whose elements are called the elements, or faces, of �;
• I as a set whose elements are called the types of �;
• t : X → I as a type function, associating to each element x ∈ X of � a type

t(x) ∈ I ;
• ∗ as a binary relation on X called incidence, that is reflexive, symmetric and such
that for all x, y ∈ X , if x ∗ y and t(x) = t(y) then x = y.

The incidence graph of � is the graph whose vertex set is X and where two vertices
are joined provided the corresponding elements of � are incident, omitting loops. A
flag is a set of pairwise incident elements of �. The type of a flag F is {t(x) : x ∈ F}
and the rank of F is |F |. An i -face is an element of type i and a chamber is a
flag of type I . An element x is incident to a flag F , and we write x ∗ F for that,
provided x is incident to all elements of F . An incidence system � is a geometry or
incidence geometry if every flag of � is contained in a chamber. The rank of � is
the cardinality of I . If � = (X , ∗, t, I ) is an incidence geometry and F is a flag of
�, the residue of F in � is the incidence geometry �F := (X F , ∗F , tF , IF ) where
X F := {x ∈ X : x ∗ F, x /∈ F}; IF := I\t(F); tF and ∗F are the restrictions of t and
∗ to X F and IF .

An incidence system � is connected if its incidence graph is connected. It is resid-
ually connected when each residue of rank at least two of � (including � itself) has
a connected incidence graph. It is called thin when every residue of rank one of �

contains exactly two elements. A hypertope is a thin, residually connected geometry.
Residues of hypertopes are hypertopes.

We are particularly interested in the study of hypertopes having the highest possible
level of symmetry. We will need to consider a notion of automorphism that allows
permutation of types. Let � = (X , ∗, t, I ) be an incidence system. An automorphism
of � is a permutation α of X such that

• for each x , y ∈ X , x ∗ y if and only if α(x) ∗ α(y);
• for each x , y ∈ X , t(x) = t(y) if and only if t(α(x)) = t(α(y)).

An automorphism α induces a bijection on I . An automorphism α of � is called
type-preserving when for each x ∈ X , t(α(x)) = t(x). The set of type-preserving
automorphism of � is a group denoted by Aut I �. The set of automorphisms of � is
a group denoted by Aut �. A hypertope � is regular if Aut I � acts regularly on the
chambers (i.e., the action is semi-regular and transitive).

The Coxeter diagram of a regular hypertope � = (X , ∗, t, I ) is a graph whose
vertices are the elements of I and a pair of elements {i, j} are joined by an edge with
label k whenever the residue of type {i, j} is a k-gon with k > 2. Observe that flag-
transitive hypertopes with linear diagrams are precisely the regular abstract polytopes
as the linearity of diagram induces a partial order on the set of its faces. We say that
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a flag-transitive hypertope is proper if it has a non-linear Coxeter diagram. For the
class of hypertopes, the Coxeter diagram coincides with the Buekenhout diagram [4]
for the diagram geometry defined by the hypertope.

A regular hypertope is irreducible if its Coxeter diagram is connected. Otherwise
it is called reducible.

Let I := {0, . . . , n − 1}. When C is a chamber of a thin geometry, we let Ci

denote the chamber i-adjacent to C , that is, the chamber that differs from C only in
its i-face. Given a regular hypertope � and a chamber C of �, for each i ∈ I let
ρi denote the automorphism mapping C to Ci . Then {ρ0, . . . , ρn−1} is a generating
set for Aut I � and Gi = 〈ρ j : j �= i〉 is the stabilizer of the i-face of C . Moreover
(Aut I �, {ρ0, . . . , ρn−1}) is a C-group [16, Thm. 4.1], that is, {ρ0, . . . , ρn−1} is a set
of involutions generating Aut I � and satisfying the following condition, called the
intersection property:

∀ I , J ⊆ {0, . . . , n−1} 〈ρi : i ∈ I 〉 ∩ 〈ρ j : j ∈ J 〉 = 〈ρk : k ∈ I ∩ J 〉.

This property establishes that the group of type-preserving automorphisms of a
regular hypertope is a smooth quotient of a Coxeter group. The Coxeter diagram of a
C-group (G, {ρ0, . . . , ρn−1}) is a graphwith n vertices corresponding to the generators
of G and with a k-edge between the vertices i and j whenever the order of ρiρ j is k
and k > 2 (usually the label is omitted when k = 3).

From now on, we will omit the generators from the notation of a C-group and
simply denote it by G whenever from the context it is clear what the generating set is.

The subgroups Gi , i ∈ {0, . . . , n − 1}, of the group 〈ρ0, . . . , ρn−1〉 generated
by involutions, are called the maximal parabolic subgroups of 〈ρ0, . . . , ρn−1〉. We
denote by Gi, j the subgroup of G generated by all the generators of G except ρi and
ρ j . When all maximal parabolic subgroups, together with their respective generators,
are C-groups the following proposition gives the conditions on their intersections for
the group generated by all involutions be a C-group.

Proposition 2.1 [15, Prop. 6.1] Let G be a group generated by n involutions
ρ0, . . . , ρn−1. Suppose that Gi is a C-group for every i ∈ {0, . . . , n−1}. Then G
is a C-group if and only if Gi ∩ G j = Gi, j for all 0 ≤ i, j ≤ n−1.

The following proposition shows how, starting from a group G, and particularly
from a C-group, we can construct an incidence system whose type-preserving auto-
morphism group is G.

Proposition 2.2 (Tits 1956 [30]) Let n be a positive integer and I := {0, . . . , n−1}.
Let G be a group together with a family of subgroups (Gi )i∈I , X the set consisting of
all cosets Gi g with g ∈ G and i ∈ I , and t : X → I defined by t(Gi g) = i . Define
an incidence relation ∗ on X × X by

Gi g1 ∗ G j g2 if and only if Gi g1 ∩ G j g2 �= ∅.

Then the 4-tuple � := (X , ∗, t, I ) is an incidence system having a chamber. More-
over, the group G acts by right multiplication on � as a group of type-preserving
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automorphisms. Finally, the group G is transitive on the flags of type J with J ⊆ I
and |J | ≤ 2.

The incidence system constructed by the proposition above will be denoted by
�(G; (Gi )i∈I ) and might not be a geometry, but if it is a geometry we call it a coset
geometry. An incidence system constructed from a C-group using Proposition 2.2
does not give, in general, a regular hypertope (some examples can be found in [16]). It
might not give a geometry at all (see Example 3.3). Nevertheless we have the following
result which proves that from a C-group we can get a hypertope when the incidence
system arising from Proposition 2.2 is flag-transitive.

Theorem 2.3 [16, Thm. 4.6] Let G = 〈ρ0, . . . , ρn−1〉 be a C-group of rank n and let
� := �(G; (Gi )i∈I ) with Gi := 〈ρ j : j ∈ I\{i}〉 for all i ∈ I := {0, . . . , n−1}. If G
is flag-transitive on �, then � is a regular hypertope.

An incidence system constructed from a C-group G = 〈ρ0, . . . , ρn−1〉 of maximal
parabolic subgroups Gi = 〈ρ j : j �= i〉 will be denoted by �(G; {ρ0, . . . , ρn−1}).

If we apply the construction of Proposition 2.2 to string C-groups, that is, groups
with linear Coxeter diagram, then we necessarily get a polytope (as shown in the
following theorem). For this reason there is a one to one correspondence between
string C-groups and regular abstract polytopes.

Theorem 2.4 [1,27,28] Let G = 〈ρ0, . . . , ρn−1〉 be a string C-group of rank r and
let � := �(G; {ρ0, . . . , ρn−1}). Then � is thin, residually connected and regular.
Moreover, � has a linear Coxeter diagram.

Note that constructing polytopes from a set of generators of a string C-group and
from the same set of generators taken in reverse order, in general results in two differ-
ent polytopes; the two polytopes are said to be dual. As hypertopes, we will consider
them “the same”. Indeed, as incidence geometries, they have the same set X of ele-
ments. Only the type function changes. A re-ordering of the types does not change
the combinatorial structure of the hypertope. Hence, we classify the hypertopes up to
isomorphism and re-ordering of the types. Consequently, in what follows the classi-
fication of hypertopes is given up to a graph isomorphism of their Coxeter diagrams.

Example 2.5 As an example of a proper (infinite) hypertopeH we give that of a semi-
regular tessellation of E

3 by cubes of two colors. The hypertope is constructed from
the Coxeter group with the following diagram (the generators ρi are represented by
dots labeled by i):

•
•3

4
•1

0

2•

Bi-coloring the cubes of the cubic tessellation of E
3 alternately with red and yellow,

we define elements of type 0 as the red cubes, elements of type 2 as the yellow cubes,
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elements of type 3 as the points of the lattice Z
3 ⊂ E

3, and elements of type 1 as the
edges joining vertices at distance 1 of each other. Incidence is defined as follows: A
3-element is incident to an i-element (i = 0, 1, 2) if it is contained in that element. A
1-element is incident to an i-element (i = 0, 2) if it is an edge of the corresponding
cube. A 0-element is incident to a 2-element if they have a square in common.

Every Coxeter group is a type-preserving automorphism group of a regular hyper-
tope [30, Sect. 3] which we will call the universal hypertope associated with the
Coxeter group. The type-preserving automorphism group of every regular hypertope
H, as explained above, is a quotient of a Coxeter group C. The universal hypertope
associated with the Coxeter group C is then called the universal cover of the hypertope
H and the Coxeter diagram of H is the diagram of its universal cover. The hypertope
H is said to be of type C. We note that there is basically no difference between Coxeter
diagrams and the diagrams of regular hypertopes.

An irreducible regular hypertope (resp. polytope) is of euclidean type if its Cox-
eter diagram is the same as the Coxeter diagram of an infinite irreducible Coxeter
group of euclidean type (resp. with linear diagram). Similarly, an irreducible regular
hypertope (resp. polytope) is of spherical type if its Coxeter diagram is the same as
the Coxeter diagram of a finite irreducible Coxeter group (resp. with linear diagram).
Therefore, a hypertope is of euclidean type (resp. spherical type) if and only if the
type-preserving automorphism group of its universal cover is an irreducible affine
(resp. finite) Coxeter group. A regular hypertope is spherical if its Coxeter diagram is
a union of diagrams of finite irreducible Coxeter groups. A locally spherical regular
hypertope is a hypertope whose proper residues are spherical hypertopes. These defi-
nitions are in agreement with definitions of spherical and locally spherical polytopes in
[25, Sect. 6B]. A projective hypertope (resp. polytope) is a regular hypertope obtained
by factoring a spherical hypertope (resp. polytope) by a central symmetry (provided it
exists). In Sect. 6 we will define a hypertope to be of hyperbolic type only for locally
spherical hypertopes and see that locally spherical hypertopes are one of the spherical,
euclidean, or hyperbolic type.

In the remainder of the paper we will restrict the discussion to irreducible locally
spherical hypertopes.

3 Quotients of Regular Locally Spherical Hypertopes

In the classification of regular hypertopes with a given diagram, quotient relations
play an important role. In what follows, we extend to regular hypertopes some results
known for abstract regular polytopes. The following theorem is a generalization of
[25, Thm. 2E17], called the quotient criterion.

Theorem 3.1 Let G := 〈ρ0, . . . , ρn−1〉 be a group generated by involutions and H :=
〈δ0, . . . , δn−1〉 be a C-group. If the mapping σ : G → H with σ(ρi ) = δi for each i =
0, . . . , n−1 is a homomorphism which is one-to-one on Gi for each i = 0, . . . , n−1,
then G is also a C-group.

Proof By Proposition 2.1 we need to prove that Gi ∩ G j = Gi, j for every i, j ∈
{0, . . . , n−1}. Let x ∈ Gi ∩ G j . Then σ(x) ∈ Hi ∩ Hj . Since by hypothesis H is a
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C-group, Hi ∩ Hj = Hi, j (by Proposition 2.1). Therefore σ(x) ∈ Hi, j and σ(x) has
a pre-image in Gi, j . Then, σ induces one-to-one homomorphism on Gi and one-to-
one homomorphism on G j so that x is the only pre-image of σ(x) in Gi and in G j .
Therefore x ∈ Gi, j . ��

Let � := (X , ∗, t, I ) be an incidence system and N a normal subgroup of Aut I �.
The quotient of � with respect to N is an incidence system �/N := (X̄ , ∗N , tN , I )
where

• X̄ is the set {F · N : F ∈ X} of orbits of N in X ;
• for F1, F2 ∈ X , (F1 · N ) ∗N (F2 · N ) if and only if there exist a face F in F1 · N
and a face G in F2 · N such that F ∗ G; and

• tN (F · N ) = t(F).

Theorem 3.2 Let U be a regular hypertope and U := 〈δ0, . . . , δn−1〉 be its type-
preserving automorphism group. Let N�U be such that N ∩ Ui = {1} for all
i = 0, . . . , n−1. Let Hi = 〈δ j N : j ∈ {0, . . . , n−1}\{i}〉 for all i = 0, . . . , n−1.
If �(U/N ; {H0, . . . , Hn−1}) is a flag-transitive coset geometry then it is a regular
hypertope and it is isomorphic to U/N.

Proof The group U/N with the generators {δ0N , . . . , δn−1N } is a group generated by
involutions and since N∩Ui = {1} for all i = 0, . . . , n−1, themappingσ : U/N → U
with σ(δi N ) = δi satisfies the hypotheses of Theorem 3.1. Therefore U/N is a C-
group. Theorem 2.3 then implies that U/N is a hypertope. ��

The following example shows that in the previous theorem flag-transitivity is
required for the quotient to be a geometry.

Example 3.3 Starting from the hypercube, a spherical polytope of type B4 =
〈ρ0, ρ1, ρ2, ρ3〉 (see Table 1 for notation), we can construct the universal spherical
hypertope of type D4 = 〈ρ̃0, ρ1, ρ2, ρ3〉, where ρ̃0 = ρ

ρ0
1 , in the following way.

The 1-skeleton of the hypercube is a bipartite graph whose vertex-set can therefore
be colored using two colors, say black and white. Elements of type 0 (respectively
1) are the black (respectively white) vertices. Elements of type 3 are the cubes1 of
the hypercube. Elements of type 2 are the square faces of the hypercube. Factoring
D4 by its normal subgroup N = 〈(ρ̃0ρ1ρ2ρ3)3〉 = {±1} (the group generated by a
longest element in D4 represented in the following figure by a red path) has the effect
of identifying pairs of opposite vertices, and pairs of disjoint cubes (Fig. 1).

Now, given a cubeC and a cube disjoint from it, there are four pairs of oppositewhite
vertices and four pairs of black vertices incident to them. Take a pair of white vertices
W and a pair of black vertices B such that their incidence in the whole geometry is via
the edge joining the two disjoint cubes. The set {C, W , B} is a flag of D4/N that is not
contained in any chamber of D4/N . Hence this quotient does not give a hypertope.

Theorem 3.4 Let H := H(G; {ρ0, . . . , ρn−1}) be a regular locally spherical hyperto-
pe and U = (U ; {δ0, . . . , δn−1}) be its universal cover. Then there exists a subgroup
N�U such that N ∩ Ui = {1} for each i = 0, . . . , n−1 and G ∼= U/N. Finally,
H ∼= U/N.

1 Note that not all symmetries of the cubes appear in that geometry, only half of them as they have to
preserve the colors of the vertices.
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Fig. 1 Longest element representation for the hypertope of type D4

Proof The mapping δi �→ ρi , for i = 0, . . . , n−1, induces an epimorphism σ : U →
G and N := Ker σ has the required properties. ��

4 Regular Hypertopes of Spherical Type

A regular hypertope of spherical type is a quotient of a universal hypertope of spherical
type by a normal subgroup (by Theorem 3.4). As in the case of Coxeter groups, it is
sufficient to classify irreducible regular hypertopes, the reducible ones being direct
sums of irreducible hypertopes, corresponding to the connected components of the
Coxeter diagram. Coxeter diagrams of irreducible regular hypertopes of spherical type
are those of thefinite irreducibleCoxeter groups, the list ofwhich canbe seen inTable 1.
In [22] all normal subgroups of finite and affine Coxeter groups are characterized using
graph homomorphisms. A homomorphism ϕ : G → H is a graph homomorphism
betweenCoxeter groupsG = 〈ρ0, . . . , ρr−1〉 and H = 〈δ0, . . . , δn−1〉, if the following
conditions are satisfied:

• for each i ∈ {0, . . . , r−1} either ϕ(ρi ) = δ j for some j ∈ {0, . . . , n−1} or
ϕ(ρi ) = 1H ; and

• for each i ∈ {0, . . . , n−1}, δi = ϕ(ρ j ) for some j ∈ {0, . . . , r−1}.
The following theoremcharacterizes thenormal subgroupsof thefiniteCoxeter groups.
Recall that in a Coxeter group, a product of all the generating reflections gives a so-
called Coxeter element. Taking a different order of generators in a product produces
conjugate Coxeter elements. Thus, they have same order h and if h is even, anyCoxeter
element to the power h/2 is an involution. The normal subgroup N = {±1} in the
theorem below is the group generated by the longest element of the Coxeter group,
that is any Coxeter element to the power h/2.

Theorem 4.1 [22, Thm. 0.1] If G is an irreducible finite Coxeter group and N is a
normal subgroup of G, then either N = {±1} or N = Ker ϕ where ϕ is a graph
homomorphism between G and a finite Coxeter group.

The rotation subgroup of G denoted by G+ is always a normal subgroup of G.
The other normal subgroups of Coxeter groups arising from graph automorphisms are
listed in Tables 2 and 3 of [22].
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Table 1 Locally spherical hypertopes of spherical type

Diagram Group Order Universal Projective

hypertope hypertope

A n (n ≥ 1) • • • • • • • • [
3n −1

]
(n + 1)!

{
3n −1

}
–

•
Dn (n ≥ 4) • • • • • • •

•
[
3n −3 ,1 ,1

]
2n −1n !

{
3n −3 , 33

}
–

B n (n ≥ 3) • • • • • • • 4 • [
3n −2 , 4

]
2n n !

{
3n −2 , 4

} {
3n −2 , 4

}
n

I p
2 (p ≥ 3) • p • [p] 2p {p} –

E 6 • • • • •

•
[
32 ,2 ,1

]
12 · 6! {22 ,1} –

E 7 • • • • • •

•
[
33 ,2 ,1

]
8 · 9! {32 ,1} {32 ,1}9

E 8 • • • • • • •

•
[
34 ,2 ,1

]
192 · 10! {42 ,1} {42 ,1}15

F4 • • 4 • • [3, 4, 3] 1152 {3, 4, 3} {3, 4, 3}56

H 3 • • 5 • [3, 5] 120 {3, 5} {3, 5}5

H 4 • • • 5 • [3, 3, 5] 14400 {3, 3, 5} {3, 3, 5}15

Theorem 4.2 There exists a unique regular hypertope for each of the diagrams An,
Dn, E6, and I2. There are exactly two regular hypertopes for each of the diagrams
Bn, E7, E8, F4, H3, and H4.

Proof Let H be a regular hypertope of rank n having one of the diagrams of the irre-
ducible finite Coxeter groups listed in Table 1 (and [25, Table 3B1]). By Theorem 3.4,
H is a quotient of its universal cover U = (U ; (U0, . . . , Un−1)) by a normal subgroup
N such that N ∩ Ui = {1} for each i = 0, . . . , n−1. Tables 2 and 3 of [22] list all
non-trivial normal subgroups of finite irreducible Coxeter groups different from their
rotation subgroups. All normal subgroups listed in [22, Table 3] have a non-trivial
intersection with at least one maximal parabolic subgroup Ui of the universal cover.
Thus N must be one of the groups of [22, Table 2]. We now deal with each of the
diagrams in Table 1 separately.

First suppose that U is of one of the types An , Dn (n odd), and E6. [22, Table 2]
shows that there are no normal subgroups besides the rotation subgroups. ThusH ∼= U .

Now suppose that U is the universal regular hypertope of type Dn (n ≥ 4, n even).
Let us prove that the number of chambers of H must be 2n−1n! and therefore that
H ∼= U . We proceed by induction. Assume that n = 4. By [9, Lem. 2.3] the smallest
hypertope with diagram isomorphic to a star-shaped diagram with three unlabeled
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edges has at least 120 chambers. On the other hand the number of chambers of the
4-hypertope of type D4 must be a divisor of 23 · 4! = 192 and hence the number of
chambers must be exactly 192. Now let n > 4. Let 0, 1, and 2 be the three types
corresponding to the nodes of the Coxeter diagram, as follows.

•
•0 • • • •

2

1•

Let xi be an i-face with i ∈ {0, 1, 2}. The residue of xi is an (n−1)-simplex when
i ∈ {1, 2}. By induction assume that the residue of x0 is a regular hypertope with
2n−2(n−1)! chambers. Let i ∈ {1, 2}. The residue of xi is an (n−1)-simplex and
therefore has n 0-faces. Suppose that the hypertope has exactly n 0-faces. Then x1
and x2 are both incident to all 0-faces, which is not possible as this would imply that
the residue of type {0} would have n elements, and therefore the geometry would
not be thin. Thus the hypertope has at least n+1 0-faces and therefore the number
of chambers must be at least 2n−2(n−1)!(n+1). Hence its group of type-preserving
automorphisms must have the largest possible size, that is, 2n−1n!

Let U be the Coxeter group with diagram Bn . We now prove that the number of
chambers ofH is either 2nn!or 2n−1n! corresponding to the universal and the projective
regular polytopes of this type, respectively. This is equivalent to saying that there are
exactly two regular hypertopes with diagram Bn , namely U and U/{±1}. This is well
known for B4 and we now assume it is true for rank less than n. We may assume
that a vertex-figure has type Bn−1 and hence has either 2n−2(n−1)! or 2n−1(n−1)!
chambers, while a facet has at least n+1 vertices. Therefore the number of chambers
of a regular hypertope of type Bn is greater than 2n−2n! as wanted.

The remaining cases can be dealt with Magma [2]. If U has a linear diagram F4,
H3, or H4 then using Table 1 we see that in each case there is only one possibility for
N , that is {±1}. Thus for each diagram there are exacly two possibilities forH, either
the universal or the projective hypertope isomorphic to U/{±1}. If U has one of the
diagrams E7 or E8, using Table 1 we see that either H ∼= U or H ∼= U/{±1}. Using
Magma, we can easily check that all these cases give hypertopes. ��

Theorem 4.3 All proper residues of regular hypertopes of spherical type are spherical
hypertopes.

Proof Only projective hypertopes can have projective residues, but for that to happen
a Coxeter element needs to be in a proper residue which is impossible. ��

Hence all locally spherical regular hypertopes of spherical type are either spheri-
cal or projective hypertopes. Table 1 gives the complete list. Observe that there are
hypertopes (in fact polytopes) of euclidean type that have proper sections which are
projective, such as, e.g., the polytope {{4, 3}6, {3, 4}3} (see [29]). Other examples can
be found in [18].
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5 Locally Spherical Regular Hypertopes of Euclidean Type

In this section we consider regular hypertopes whose Coxeter diagrams correspond to
infinite irreducibleCoxeter groups of euclidean type listed in the left columnofTable 2.
Theorem 4.2 implies that all proper residues of regular hypertopes of euclidean type
are either spherical or projective. Here we only consider those with spherical residues.
Let us start with a simple but important observation following from Theorem 3.2.

Corollary 5.1 Every locally spherical regular hypertope of euclidean type is a quotient
of its universal cover by a normal subgroup that lies in the translation subgroup of
the automorphism group of its universal cover.

Proof LetH be a hypertope of euclidean type and U its universal cover. Then, by [22,
Thm. 0.2] and Theorem 3.2, the only possibility for the normal subgroup N of the
Coxeter group of euclidean type to avoid the maximal parabolic subgroups (in order
to keep the same Coxeter diagram) is that N lies in the translation subgroup of the
Coxeter group. ��

In analogy with regular toroidal polytopes (toroids), we say that a regular toroidal
hypertope of rank n+1 or (n+1)-toroid is a quotient of a regular universal hypertope
of rank n+1 of euclidean type by a normal subgroup of its translational symmetries
(in E

n). It follows from Corollary 5.1 that any finite regular hypertope of euclidean
type is a toroidal hypertope which we will briefly call a toroid.

Rank 3 toroids have been classified. They must have the following linear or trian-
gular Coxeter diagrams.

• 4 • 4 • • • 6 •
•

•
•

Thefirst two diagrams are those of regular tessellations on a torus and the last one is that
of a regular hypermap on a torus. The regular (and also chiral) toroidal maps have been
classified by Coxeter [11] and hypermaps by Cacciari [7]. Up to duality, they belong
to the following families: {4, 4}(s,0) with s ≥ 2; {4, 4}(s,s) with s ≥ 1; {3, 6}(s,0) with
s ≥ 2; {3, 6}(s,s) with s ≥ 1; (3, 3, 3)(s,0) with s ≥ 2, and (3, 3, 3)(s,s) with s ≥ 2.
The vectors in the subscripts determine in each case the translation subgroup used,
and the restriction on s guaranties that the hypertopes are large enough so that they do
not degenerate.

Finite toroidal polytopes (hypertopes with linear diagram) for higher ranks had
been classified by McMullen and Schulte [24] (see also [25, 6D and 6E]). We denote
by �n the group of all translations of E

n with integral translation vectors, and think
of it as the lattice Z

n , and by �n
s the sublattice generated by s := (sk, 0n−k).

• Polytopes of type C̃n , also known as cubic (n+1)-toroids (corresponding to regular
tessellations of n-torus by n-cubes) belong to one of the following three infinite
families {C̃n}s = {4, 3n−2, 4}s where

s = (sk, 0n−k) with s ≥ 2 and k = 1, 2, n,
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and where the quotient, by �n
s , of the standard cubical lattice {4, 3n−2, 4} with

vertex-set Z
n is denoted simply by {4, 3n−2, 4}s.

• Polytopes of type F̃4, belong to one of the following two infinite families of 5-
toroids {F̃4}s = {3, 3, 4, 3}s where

s = (sk, 04−k) with s ≥ 2 and k = 1, 2,

and where similarly the quotient, by�4
s , of the regular tessellation {3, 3, 4, 3}with

vertex-set Z
4 ∪ ((1/2, 1/2, 1/2, 1/2) + Z

4) is denoted by {3, 3, 4, 3}s.
Using the methods of McMullen and Schulte and the notation as above, in [14] Ens

classified finite rank 4 toroidal hypertopes with non-linear diagrams as follows.

• Finite toroidal hypertopes of rank 4 and type B̃3, belong to one of the following
three infinite families of type {B̃3}s where

s = (2s, 0, 0) or (s, s, 0) with s ≥ 2, or s = (2s, 2s, 2s) with s ≥ 1.

• Finite toroidal hypertopes of rank 4 and type Ã3, belong to one of the following
three infinite families of type { Ã3}s = (3, 3, 3, 3)s where

s = (2s, 0, 0) or (s, s, 0) with s ≥ 2, or s = (2s, 2s, 2s) with s ≥ 1.

To complete the classification of finite locally spherical euclidean hypertopes it is
necessary, as proven in Sect. 3, to enumerate normal subgroups of the corresponding
Coxeter groups which have trivial intersection with the maximal parabolic subgroups
of the Coxeter group. In fact the enumeration of all normal subgroups of Coxeter
groups of euclidean type can be found in [22, Sect. 7] and the lattice subgroups in
Table 5. Corollary 5.1 together with Maxwell’s results can be used to construct finite
toroids of each hypertope of euclidean type.

In the forthcoming paper [21] we extend the results of McMullen and Schulte on
toroidal polytopes to that on hypertopes, thus completing the geometric classification
of toroidal hypertopes in each rank.

6 Locally Spherical Hypertopes of Hyperbolic Type

A locally spherical regular hypertope is of hyperbolic type if the irreducible residues of
the type-preserving automorphism group of its universal cover are compact hyperbolic
Coxeter groups (that is, groups generated by hyperbolic reflections with compact
fundamental domain). Compact hyperbolic Coxeter groups exist only in ranks 3, 4,
and 5. The complete list of their diagrams is given in Table 2 (see, for example [20,
Sect. 6.9] or [25, 3C]). Examining all possible Schläfli symbols for locally spherical
regular hypertopes we easily see that universal locally spherical hypertopes are either
of spherical, euclidean, or of hyperbolic type.
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Table 2 Diagrams of locally spherical hypertopes of euclidean and hyperbolic types

Euclidean Hyperbolic

Ã n − 1 (n ≥ 3) [p, q] • p • q •
3 ≤ p, q < ∞, 1

p + 1
q < 1

2

D̃ n − 1 (n ≥ 5)

[(k, l,m )]
3 ≤ k, l, m < ∞
1
k + 1

l + 1
m < 1

C̃n − 1 (n ≥ 3) [(3, 3, 3, p)]
p = 4 , 5

B̃ n − 1 (n ≥ 4)
[(3, 4, 3, 4)]

Ẽ

[(3, 5, 3, p)]
p = 4 , 5

[(3, 3, 3, 3, 4)]

Ẽ 7

[p, 3, 5]
p = 4 , 5

• p • • 5 •

[3, 5, 3] • • 5 • •

[p, 3, 3, 5]
p = 3, 4 , 5

• p • • • 5 •

Ẽ 8 [
5, 33

]

F̃4 [
5, 3, 33

]

G̃2

Ã 1

The rank 3 hypertopes have the following Coxeter diagrams:

• p • q •

where p, q are integers with 3 ≤ p, q < ∞ and 1/p + 1/q < 1/2, or
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•
l•

k

m •
where k, l, m are integers with 3 ≤ k, l, m < ∞ and 1/k + 1/l + 1/m < 1. There
are infinitely many finite rank 3 polytopes (non-degenerate maps) arising from the
tessellations of the hyperbolic plane (having the rank 3 linear diagrams above), and
infinitely many finite (non-degenerate, proper) hypermaps arising from the rank 3
triangular diagrams above. These had been extensively studied and written about in
literature. In the seminal paper [10], Corn and Singerman showed that every regular
(which they call reflexive) hypermapof that kind is a quotient of the universal hypermap
obtained from the group 〈x, y : xk = ym = (xy)l = 1〉 and that the universal
hypermap is regular.

Corollary 4C5 in [25] implies that in ranks 4 and 5 there are infinitely many finite
locally spherical polytopes of hyperbolic type. Unfortunately, examples of these are
not easy to find as the proof is non-constructive. However, a number of polytopes for
certain types can be found in literature.

Usingmodular reduction of theCoxeter group [3, 5, 3], withmoduli given byprimes
in Z[τ ] (where τ is the golden ratio), Monson and Schulte constructed infinitely many
finite regular locally spherical polytopes of type {3, 5, 3} (see [26, Prop. 5.1]).

There is an infinite family of locally spherical polytopes of hyperbolic type {4, 3, 5}
(described in [3, 7.1])with automorphismgroups D6

s �[3, 5], s ≥ 2,where Ds = I2(s)
denotes the dihedral group of order 2s.

There are also two locally spherical polytopes of hyperbolic type {5, 3, 5} with
respective type-preserving automorphism groups J1 × J1 and J1 × J1 × L2(19).
They were constructed by Hartley and Leemans in [19]. Another example of the same
type is the classical regular star-polytope {5/2, 3, 5} in euclidean 4-space obtained
by a sequence of several stellations of {5, 3, 3} (see [12, 14.2]). As an abstract
polytope it is a finite locally spherical polytope of hyperbolic type {5, 3, 5}. It has
120 dodecahedral facets (which in euclidean 4-space are realized as great stellated
dodecahedra whose 2-faces are pentagrams {5/2}), 120 icosahedral vertex-figures,
and the group of order 14400. The automorphism group of the polytope, which is
H4 = [5, 3, 3] = [5, 3, 5 | 3] (here we used the extended Schläfli symbol where the
number 3 following | indicates that the polytope has triangular holes), can be obtained
from [5, 3, 5] (the symmetry group of the regular tessellation {5, 3, 5} of the hyperbolic
3-space) by imposing the extra relation

(ρ0ρ1ρ2ρ3ρ2ρ1)
3 = id

(see [23, p. 435]). Similarly {5/2, 3, 3, 5}, obtained from {3, 3, 3, 5} (see [23, Sect.
6]), can be seen as a locally spherical rank 5 polytope of hyperbolic type {5, 3, 3, 5}
arising from regular tessellation of hyperbolic 4-space by 120-cells) and imposing the
extra relation

(ρ0ρ1ρ2ρ3ρ4ρ3ρ2ρ1)
3 = id

(see [23, pp. 441–442]).
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Table 3 Small regular locally spherical 4-hypertopes of hyperbolic type

Type Group Order

(3 , 3, 3, 4) 24 : A 5 : 2 1920
23 � L 2 (7) × 2 2688
25 � A 5 � 2 3840

4 · (24
� A 5 ) � 2 7680

26 � A 5 : 2 7680

(3 , 3, 3, 5) A 5 × A 5 � 2 7200

(3 , 4, 3, 4) L 2 (7) × 2 336
21+4� S 3 � S 3 1152

S 6 × 2 1440
S 6 × S 3 4320

23 � L 2 (7) × 2 × 2 5376
L 2 (7) × S 3 × S 3 6048
28 � S 3 � S 3 9216

(3 , 5, 3, 4) 3 · A 6 × 2 2160

(3 , 5, 3, 5) 25 � A 5 × 2 3840
34 � A 5 × 2 9720

Type Group Order

{3, 5, 3} L 2 (16) � 2 8160

{4, 3, 5} 25 � A 5 � 2 3840
24 � A 5 � 2 × 2 3840
25 � A 5 � 2 × 2 7680
25 � A 5 � 2 � 2 7680

{5, 3, 5} A 5 × A 5 � 2 7200
L 2 (16) � 2 8160

{
5, 33

}
25 � A 5 × 2 3840
26 � A 5 3840

26 � A 5 × 2 7680

In Table 3 we give a list of small regular finite locally spherical hypertopes of rank
4 of hyperbolic type. Here, by extension of the notation for hypermaps, we denote by
(p, q, r , s) the hypertope with a square diagram whose successive edges have labels
p, q, r , and s. Furthermore, the hypertope of type

{
5, 33

}
is the hypertope with diagram[

5, 33
]
in Table 2. In particular, we computed the smallest example of each type using

Magma. For each hypertope we specify the type-preserving automorphism group in
the second column (here we note that · stands for a non-split extension).

Our computations searching for small rank 5 hyperbolic proper hypertopes were
inconclusive as the groups involved seem to be too large for a successful application
of the LowIndexNormalSubgroups function of Magma.
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