
Discrete & Computational Geometry (2020) 64:37–62
https://doi.org/10.1007/s00454-020-00202-2

Rounding Meshes in 3D

Olivier Devillers1 · Sylvain Lazard1 ·William J. Lenhart2

Received: 23 March 2018 / Revised: 18 February 2020 / Accepted: 20 March 2020 /
Published online: 20 April 2020
© Springer Science+Business Media, LLC, part of Springer Nature 2020

Abstract
Let P be a set of n polygons in R

3, each of constant complexity and with pairwise
disjoint interiors.Wepropose a rounding algorithm thatmapsP to a simplicial complex
Qwhose vertices have integer coordinates. Every face ofP is mapped to a set of faces
(or edges or vertices) of Q and the mapping from P to Q can be done through a
continuous motion of the faces such that: (i) the L∞ Hausdorff distance between a
face and its image during the motion is at most 3/2, and (ii) if two points become
equal during the motion, they remain equal through the rest of the motion. In the worst
case the size of Q is O(n13) and the time complexity of the algorithm is O(n15) but,
under reasonable assumptions, these complexities decrease to O(n4

√
n) and O(n5).

Furthermore, these complexities are likely not tight and we expect, in practice on
non-pathological data, O(n

√
n) space and time complexities.

Keywords 3D snap rounding · Geometric algorithms · Robustness · Fixed-precision
arithmetic · Constructive solid geometry · Boolean operations

1 Introduction

Rounding 3D polygonal structures is a fundamental problem in computational geom-
etry. Indeed, many implementations dealing with 3D polygonal objects, in academia
and industry, require as input pairwise-disjoint polygons whose vertices have coordi-

Editor in Charge: Kenneth Clarkson

Olivier Devillers
olivier.devillers@inria.fr

Sylvain Lazard
Sylvain.Lazard@inria.fr

William J. Lenhart
wlenhart@williams.edu

1 Université de Lorraine, CNRS, Inria, LORIA, 54000 Nancy, France

2 Williams College, Williamstown, MA, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00454-020-00202-2&domain=pdf

38 Discrete & Computational Geometry (2020) 64:37–62

nates given with fixed-precision representations (usually with 32 or 64 bits). On the
other hand, many algorithms and implementations dealing with 3D polygonal objects
in computational geometry output polygons whose vertices have coordinates that have
arbitrary-precision representations. For instance, when computing boolean operations
on polyhedra, some new vertices are defined as the intersection of three faces and
their exact coordinates are rational numbers whose numerators and denominators are
defined with roughly seven times the number of bits used for representing each input
coordinate. When applying a rotation to a polyhedron, the new vertices have coor-
dinates that involve trigonometric functions. When sampling algebraic surfaces, the
vertices are obtained as solutions of algebraic systems and they may require arbitrary-
precision representations since the distance between two solutions may be arbitrarily
small (depending on the degree of the surface).

This discrepancy between the precision of the input and output of many geometric
algorithms is an issue, especially in industry, because it often prevents the output of
one algorithm from being directly used as the input to a subsequent algorithm.

In this context, there exists no solution for rounding the coordinates of 3D poly-
gons with the constraint that their rounded images do not properly intersect and that
every input polygon and its rounded image remain close to each other (in Hausdorff
distance). In practice, coordinates are often rounded without guarding against changes
in topology and there is no guarantee that the rounded faces do not properly intersect
one another.

The same problem in 2D for segments, referred to as snap rounding, has been
widely studied and admits practical and efficient solutions [1,5–11,14]. Given a set of
possibly intersecting segments in 2D, the problem is to subdivide their arrangement
and round the vertices so that no two disjoint segments map to segments that properly
intersect. For clarity, all schemes consider that vertices are rounded on the integer grid.
It is well known that rounding the endpoints of the edges of the arrangement to their
closest integer point is not a good solution because it may map disjoint segments to
properly intersecting segments. Snap rounding schemes propose to further split the
edges when they share a pixel (a unit square centered on the integer grid). In such
schemes, disjoint edges may collapse but this is inevitable if the rounding precision
is fixed and if we bound the Hausdorff distance between the edges and their rounded
images. Furthermore, it is NP-hard to determine whether it is possible to round simple
polygons with fixed precision and bounded Hausdorff distance, and without changing
the topological structure [13].

In dimension three, results are extremely scarse, despite the significance of the
problem. Goodrich et al. [5] proposed a scheme for rounding segments in 3D, and
Milenkovic [12] sketched a scheme for polyhedral subdivisions but, as pointed out by
Fortune [4], both schemes have the property that rounded edges can cross. Fortune [3]
suggested a high-level rounding scheme for polyhedra but in a specific setting which
does not generalize to polyhedral subdivisions [4]. Finally, Fortune [4] proposed a
rounding algorithm that maps a set P of n disjoint triangles in R

3 to a set Q of
triangles with O(n4) vertices on a discrete grid such that: (i) every triangle of P is
mapped to a set of triangles in Q at L∞ Hausdorff distance at most 3/2 from the
original face, and (ii) the mapping preserves or collapses the vertical ordering of the
faces. Unfortunately, this rounding scheme is very intricate and, moreover, it uses a

123

Discrete & Computational Geometry (2020) 64:37–62 39

grid precision that depends on the number n of triangles: the vertices coordinates are
rounded to integer multiples of about 1/n.

The difficulty of snap rounding faces in 3D is described by Fortune [4]: First, it is
reasonable to round every vertex to the center of the voxel containing it (a voxel is a
unit cube centered on the integer grid). But, by doing so, a vertex may traverse a face
and to avoid that, it might be necessary to add beforehand a vertex on the face, which
requires triangulating it. Newly formed edgesmay cross older edgeswhen snapping; to
avoid this, new vertices are added to these edges, in turn requiring further triangulating
of faces. It is not known whether such schemes terminate.

To better understand the difficulty of the problem, consider the following simple but
flawed algorithm. First project all the input faces onto the horizontal plane, subdivide
the projected edges as in 2D snap rounding, triangulate the resulting arrangement, lift
this triangulation vertically on all faces, and then round all vertices to the centers of
their voxels. For an input of size n, this yields an output of size �(n4) in the worst
case and an L∞ Hausdorff distance of at most 1/2 between the input faces and their
rounded images. Unfortunately, this algorithm does not work in the sense that edges
may cross: indeed, consider two almost vertical close triangles whose projections on
the horizontal plane are triangles that are rounded in 2D to the same segment; such
triangles in 3D may be rounded into properly overlapping vertical triangles. Fortune
[4] solved this problem by using a finer grid to round the vertices and to avoid vertical
rounding of the faces.

Contributions
We present in this paper the first algorithm for rounding a set of interior-disjoint

polygons into a simplicial complex whose vertices have integer coordinates and such
that the geometry does not change too much: namely, (i) the Hausdorff distance
between every input face and its rounded image is bounded by a constant (3/2 for
the L∞ metric), and (ii) the relative positions of the faces are preserved in the sense
that there is a continuous motion that deforms all input faces into their rounded images
such that if two points collapse at some time, they remain identical up to the end of
the motion (see Theorem 3.1). This ensures, in particular, that if a line stabs two input
faces far enough from their boundaries, the line will stab their rounded images in the
same order or in the same point.

The worst-case complexity of our algorithm is polynomial but unsatisfying as our
upper bound on the output simplicial complex is O(n13) for an input of size n (see
Proposition 5.2). However, this upper bound decreases to O(n4

√
n) under the assump-

tion that, roughly speaking, the input is a nice discretization of a constant number of
surfaces that satisfy some reasonable assumptions on their curvature (see Proposi-
tion 5.8 for details). The corresponding time complexity reduces from O(n15) to
O(n5). It is also very likely that these bounds are not tight and, in practice on realistic
non-pathological data, we anticipate time and space complexities of O(n

√
n) (see

Remark 5.9).
We present the algorithm in Sect. 3, its proof of correctness in Sect. 4, and its

complexity analysis in Sect. 5.

123

40 Discrete & Computational Geometry (2020) 64:37–62

2 Preliminaries

Notation
The coordinates in the Euclidean space R3 are referred to as x , y, and z and �ı, �j, �k

is the canonical basis. We use several planes parallel to the axes to project or intersect
some faces: the xy-plane is called the floor, the xz-plane is called the back wall and a
plane parallel to the yz-plane is called a side wall. Projections on the floor and on the
back wall are always considered orthogonal to the plane of projection. Two polygons,
edges, or vertices are said to properly intersect if their intersection is non-empty and
not a common face of both. Two polygons (resp. segments) intersect transversally if
their relative interiors intersect and if they are not coplanar (resp. colinear).

General Position Assumption
For the sake of simplicity, we assume, without loss of generality, some general

position on our input set of polygons P . Precisely, we assume:

(α) No faces are parallel to the axes of coordinates and no vertices project along the
y-axis on an edge (except the endpoints of that edge).

(β) No supporting plane of a face translated by vector �j or −�j contains a vertex.

Let I denote the intersection, if not empty, of the supporting plane of a face with the
translation by ±�j of the supporting plane of another face. By assumption (β), I is a
line.

(γ) No vertices project along the y-axis onto such a line I.
(δ) For any point A on a face and with half-integer x- and y-coordinates, A± �j does

not belong to another face. More generally, no line I crosses any vertical line
defined by half-integer x- and y-coordinates.

This general position assumption is done with no loss of generality because it can
be achieved by a sequence of four symbolic perturbations of decreasing importance:
(i) the input faces are translated in the x-direction by ε1, (ii) translated in the y-direction
by ε2, (iii) the vector �j is scaled by a factor 1 + ε3, and (iv) the faces are rotated by
an angle ε4 around a line that is not parallel to the coordinate axes. As shown below,
enforcing ε1 � ε2 � ε3 � ε4 yields that our perturbation scheme removes all
degeneracies.

Consider an intersection I as defined above; I can be a line or a plane. If I is a line
L that induces a degeneracy of type (δ), this degeneracy is avoided by a translation (i)
in the x-direction if L is not parallel to the xz-plane, and by a translation (ii) in
the y-direction, otherwise. Then, perturbations (iii) and (iv) of smaller scales do not
reintroduce this degeneracy [2]. If the intersection I is a plane, this remains the case
after perturbations (i) and (ii), but the intersection becomes empty after a small enough
perturbation (iii) and it remains empty after perturbation (iv). Hence, degeneracies of
type (δ) are avoided by our scheme of perturbations. Degeneracies of type (β) and (γ)
are not affected by perturbations (i) and (ii), but they are avoided by the scaling of
type (iii). Indeed, if I is a line then, viewed in projection on the back wall, the scaling
of type (iii) translates the line. Finally, degeneracies of type (α) are not affected by
perturbations (i)–(iii), but they are avoided by a rotation of type (iv).

123

Discrete & Computational Geometry (2020) 64:37–62 41

Floor

x

y

z Fi

Fj

Any plane x =cst

Fj Fi

R ij

X ij 2

(c)

X ij 1

Fj Fi

(b)

z

y

R ijR ij

z

y

(a)

z

y

Fj Fi

R ij

(d)

X ij 1

Fj

Fi

R ij

(e)

j

Fk

R ik

X ik 2

X ij 1

X ik 1

R ik

z

y

R ijR ij R ijR ij R ijR ij

RR ik

Fi

R ij
Fk

R ki

(f)

Fj

X ij 1

X ki 1

z

y

R kiRR kki

Fig. 1 Projection of Step 1. a Two 3D faces. b Their intersection with a side wall x = cst. c After the
projection of Step 1, face Fi is partially projected onto Fj , j < i , i.e., Ri j is replaced by the faces R′

i j ,

Xi j1 and Xi j2. d–f Other scenarios: d Ri j is replaced by R′
i j and only Xi j1; e Fi is also partially projected

onto Fk , j < k < i ; f if instead j < i < k, it is Fk that is partially projected onto Fi

3 Algorithm

We first describe the main algorithm in Sects. 3.1 and 3.2 and then two algorithmic
refinements in Sect. 3.3 which we present separately for clarity. Our algorithm has the
following property.

Theorem 3.1 Given a set P of polygonal faces in 3D in general position that do not
properly intersect, the algorithm outputs a simplicial complexQ whose vertices have
integer coordinates and a mapping σ that maps every face F of P onto a set of faces
(or edges or vertices) ofQ such that there exists a continuous motion that moves every
face F into σ(F) such that: (i) the L∞ Hausdorff distance between F and its image
during the motion never exceeds 3/2, and (ii) if two points on two faces become equal
during the motion, they remain equal through the rest of the motion.

3.1 Sketch

We first give a high-level description of our algorithm and the intuition of its design.
The algorithm is organized in four steps. In Step 1, we locally deform the input faces
by partially projecting some of them on some others, so that no two resulting faces

123

42 Discrete & Computational Geometry (2020) 64:37–62

Floor Floor

Back wall 1 11

side walls
x c 1

2
c

Floor(a) (b) (c) (d)

x

y

z

Floor
Narrow
slabs

Wide
slabs

Fig. 2 Partition of Step 2. a Projection of the faces on the floor. b Lift of the floor arrangement onto the
3D faces followed by the subdivision of the faces. c Projection on the back wall and arrangement (here no
new intersections occur for clarity). d Partition of the space into slabs and subdivision of the faces by their
side-wall boundaries

have two distinct points aligned in the y-direction at distance less than 1 (see Fig. 1).
In Step 2 (see Fig. 2), we project all the edges vertically onto all faces and subdivide
the faces accordingly. We then project all the resulting edges on the back wall. For
every vertex of their arrangement, we round its x-coordinate to the nearest integer, say
c ∈ Z, and consider the so-called narrow slab bounded by the two side-wall planes
x = c±1/2. The wide slabs are the regions bounded by two consecutive narrow slabs
and we partition all the faces by the narrow and wide slabs.

Eventually, in every narrow slab bounded by the planes x = c±1/2, we will round
the x-coordinates of all vertices to c (which amounts to projecting all the faces on
the plane x = c) and then round the y- and z-coordinates with a 2D snap rounding
scheme; this process may turn some edges into polylines and for those edges that were
(before rounding) in the boundary planes (x = c ± 1/2), their incident faces in the
adjacent wide slabs need to be subdivided accordingly. Thus, in Step 3 (see Fig. 3),
in every narrow slab, we project all the faces on its center side-wall plane, split the
edges as if we were 2D snap rounding them, and lift these vertices back on the original
edges.

On the other hand, in every wide slab (see Fig. 4), due to the subdivision of Step 2,
the faces are trapezoids whose projections on the floor are pairwise identical or interior
disjoint. We triangulate them from the bottom-left vertex to the top-right vertex (with
respect to the x- and y-coordinates) and further triangulate with the vertices that come
from the simulation of 2D snap rounding in the adjacent narrow slabs. In Step 4, we
simply round all vertices to their closest integer grid points.

During the snapping motion of Step 4, no vertex traverses a face, no two edges
properly intersect and, in particular, no two triangles get rounded to properly inter-
secting (possibly overlapping and vertical) triangles. Indeed, roughly speaking, in
narrow slabs, we inherit the good properties of the 2D snap rounding scheme, and in
wide slabs, there is no vertex strictly inside the slab and edges do not properly inter-
sect during the snapping motion because: (i) no two boundary edges of the trapezoids
properly intersect by the definition of the slabs in Step 2, (ii) the edges of triangles
that are rounded vertically do not intersect other edges by the distance property of
Step 1, and (iii) the triangulation edges incident to two triangles that are not rounded
vertically do not intersect other edges by the property of the triangulation in Step 3;
these key properties of our algorithm are proven in Lemma 4.5.

123

Discrete & Computational Geometry (2020) 64:37–62 43

3.2 Detailed Algorithm

We now precisely describe the algorithm. In every step of the algorithm, faces are
subdivided and/or modified. We denote by Pi the set of faces at the end of Step i
and by σi the mapping from the faces of Pi−1 to those of Pi (with P0 = P and
P4 = Q). These mappings are trivial and not explicitly described, except in Step 1.
Let σ = σ4 ◦ · · · ◦ σ1 be the global mapping from the faces of P to those of the output
simplicial complex Q.

1. Project the Faces That Are Close to One Another. Refer to Fig. 1. Order all the
input faces arbitrarily from F̄1 to F̄n : P = {F̄i : 1 ≤ i ≤ n}. During the process, we
modify the faces iteratively. For clarity, we denote by F1, . . . , Fn the faces that are
iteratively modified, which we initially set to Fi = F̄i for all i . Roughly speaking, for
i from 2 to n, we project Fi along y onto F1, . . . , Fi−1, in order, but only the points
that project at distance at most 1. Furthermore, we create, if needed, new faces that
connect the boundary of the projected points to their pre-image.More precisely, Step 1
consists of the following three substeps (a)–(c).

(a) For i from 2 to n and for j from 1 to i − 1, do

• Let Ri j be the polygonal region that consists of the points pi ∈ Fi whose
projection onto Fj along the y-direction lies within distance less than 1 from
pi , i.e., Ri j = {pi ∈ Fi : ∃ α ∈ (−1, 1), ∃ p j ∈ Fj , pi = p j + α �j}.

• Modify Fi by removing Ri j from it.

Let F̃1, . . . , F̃n be the resulting faces at the end of the two nested loops and let R′
i j

be the projection of Ri j on F̃j along the y-direction.
(b) For i from 2 to n, consider on F̄i the set of Ri j , i > j , and consider their edges, in

turn. We define new faces that connect some edges of Ri j and R′
i j , which we refer

to as connecting faces (see faces Xi jξ in Fig. 1). If an edge e is a common edge
of Ri j and F̃i , we define a new face as the convex hull of e and its projection on
Fj along y (as faces Xi j1 and Xi j2 in Fig. 1c). If e is a common edge of Ri j and
Rik and if e projects (along y) on F̃j and on F̃k into two distinct segments e j and
ek , respectively, we define a new face as the convex hull of e j and ek (as face X
in Fig. 7); however, if e belongs to that face, we split it in two at e (as faces Xi j1
and Xik1 in Fig. 1e). Structural properties of the connecting faces are discussed in
Sect. 3.4.

(c) For j from 1 to n − 1, subdivide F̃j by the arrangement of edges of the R′
i j ,

i = j + 1, . . . , n.

To summarize, we have removed from every input face F̄i the regions Ri j , j =
1, . . . , i − 1, we subdivided the resulting faces F̃j by the edges of all R′

i j , i = j +
1, . . . , n, and we created new connecting faces. Finally, we defined σ1 to map every
input face F̄i to the union of the resulting subdivided face F̃i , all the regions R′

i j ,

j = 1, . . . , i − 1 (subdivided as in F̃j), and all the connecting faces that are defined
by the Ri j , j = 1, . . . , i − 1.

123

44 Discrete & Computational Geometry (2020) 64:37–62

(b)

Plane x = c

1

(c)

1

(d)

x

y

z
1

Floor (a)Narrow
slab

Fig. 3 Step 3a: triangulation in a narrow slab. a Faces in a narrow slab. b Their projections onto the side
wall x = c. c In that plane, the edges are split as in 2D snap rounding and the faces are triangulated. d The
triangulation is lifted back on the 3D faces; in red are the dummy vertices, i.e., the new vertices that lie on
the side-wall boundaries of the narrow slab

2. Partition the Space into Slabs. Refer to Fig. 2. Project all the faces of P1 on the
floor, compute their arrangement, lift all the resulting edges onto all faces of P1, and
subdivide the faces accordingly; let P ′

1 be the resulting subdivision. Then, project
all edges of P ′

1 on the back wall and compute their arrangement (but do not lift the
resulting edges back on P ′

1).
The closed region bounded by the two side walls x = c ± 1/2, c ∈ Z, is called a

narrow slab Sc, if it contains (at least) a vertex of the back wall arrangement. A wide
slab is a closed region bounded by two consecutive narrow slabs.

We subdivide all faces of P ′
1 by intersecting them with the side-wall boundaries of

all slabs, resulting in P2. Note that if two narrow slabs share a side-wall plane, this
plane is a wide slab in between these two narrow slabs. However, we treat such wide
slabs as if they had infinitesimal width; their two side-wall boundaries are considered
combinatorially distinct although they coincide geometrically. Thus, for instance, an
edge ofP ′

1 intersects such a wide slab boundary in two combinatorially distinct points
that geometrically coincide.

3. Triangulate the Faces. We triangulate all the faces of P2 in every slab in turn.
We first consider narrow slabs and then wide slabs. This order matters because, when
triangulating faces in narrow slabs, we split some edges at some new vertices; when
such edges and new vertices lie in the side-wall boundaries of the narrow slabs, they
also belong to the adjacent wide slabs and these new vertices are to be considered in
these wide slabs.

(a) Narrow slabs. Refer to Fig. 3. Project along the x-axis all the faces in a narrow
slab Sc on the side wall x = c that bisects the slab, and compute the arrangement
of the projected edges. In that side wall, denote as hot all the pixels that contain
a vertex of that arrangement and split every edge that intersects a hot pixel at

123

Discrete & Computational Geometry (2020) 64:37–62 45

its intersections with the pixel boundary.1 Triangulate the resulting arrangement2

and lift it back (still along the x-axis) onto all the faces in the slab and subdivide
them accordingly. The subdivision vertices that lie on the side-wall boundaries of
Sc are referred to as dummy vertices to distinguish them from the other
vertices.

(b) Wide slabs. Refer to Fig. 4. Not considering the dummy vertices of Step 3a, all
faces are trapezoids such that the parallel edges lie on the two side-wall boundaries
of the wide slab; any two trapezoids are either identical, disjoint, or share exactly
one edge or vertex, and the same holds for their projections on the floor. The
dummy vertices lie on the trapezoid edges that lie on the side-wall boundaries of
the wide slab.
Not considering the dummy vertices, all trapezoids that project on the floor onto
one and the same trapezoid are triangulated so that all the diagonals project on
the floor onto one and the same diagonal, say from the bottom-left vertex to the
top-right vertex in the xy-plane. Trapezoids can have dummy vertices only on
the edges on the side walls; thus, after splitting a trapezoid in two triangles, each
triangle can have dummy vertices on at most one of its edges. For every such
triangle, we further triangulate it by adding an edge connecting every dummy
vertex to the opposite vertex of the triangle.
As mentioned above, if a wide slab has zero width, we treat it as if it had infinitesi-
mal width, with two combinatorially distinct side walls, one defined by each of its
adjacent narrow slabs. Note that a non-dummy vertex defined as the intersection
of a 3D edge with these side walls, is thus combinatorially duplicated, one on
each side wall, but a dummy vertex is not duplicated on both side walls, since it
is defined by one or the other adjacent narrow slab.

4. Snap All Vertices to the centers of their voxels. Vertices that are on the boundary
of a narrow slab Sc are snapped onto the side wall x = c that bisects the slab; this is
well defined even when two narrow slabs share a side-wall boundary because we have
considered (in Step 2) two combinatorial instances of such sidewalls, one associated to
each of the narrow slabs. Vertices that lie on the common boundary of two voxels inside
a narrow slab Sc are associated to voxels according to the vertex-pixel associations
when snap rounding in 2D the projections of the edges in Sc onto its bisecting side
wall x = c.

3.3 Algorithm Refinements

We present here two algorithmic refinements that we did not describe above for
clarity.

1 As in [7], these vertices are associated with the hot pixel so that the center of the pixel they will be snapped
to is well defined. This ensures that no intersection is created during the snapping motion, but simply adding
one vertex on the edges and strictly inside every hot pixel yields the same result.
2 Before triangulating, add the hot pixel boundaries to the arrangement so that the triangulating edges do
not cross hot pixels. Although triangulating the faces at this stage is useful for the proof of correctness of
the algorithm, it improves the complexity without changing the output to triangulate these faces at the end
of the algorithm instead; see Sect. 3.3.

123

46 Discrete & Computational Geometry (2020) 64:37–62

x

y

z

Floor (a) (b) (c)Wide
slab

Fig. 4 Step 3b: triangulation in a wide slab of four trapezoids (produced by the Step 2 subdivision of
two triangles). a Trapezoids, without dummy vertices, have identical or interior-disjoint floor projections
(the top trapezoid and the middle-bottom one have identical floor projections). b Trapezoid triangulations,
without dummy vertices, with diagonals from “bottom-left” to “top-right”. c Further triangulations with
the dummy vertices

3.3.1 Faces in Narrow Slabs (Steps 2 and 3a)

When snapping all vertices to their voxel centers in Step 4, any planar polygon in a
narrow slab Sc is transformed into a planar polygon in the side wall x = c. Depending
on how the vertices move toward their voxel centers, the polygon may not remain
planar during the motion, but it is planar at the end of the motion. Hence, the output
will be unchanged if, in Step 3a, we avoid triangulating the faces, that is, we avoid
triangulating the arrangement in the side wall x = c and only lift the new vertices of
the arrangement onto the edges in Sc. Still, after snapping the vertices in Step 4, the
resulting polygons in the side wall x = c should be triangulated so that the algorithm
returns a simplicial complex. Doing so improves the complexity of the algorithm but
it is nonetheless convenient for the proof of correctness to consider the triangulations
of the faces in Step 3a.

Furthermore, in narrow slabs, we can avoid subdividing the faces (including the
connecting faces) by the vertical projections of edges in Step 2; however, the edges
in the narrow slab boundary planes should be subdivided as in their adjacent wide
slabs. Unlike before, this can change the output, but we do not need these faces to be
subdivided in Step 2. However, since slabs are defined by the lifted edges, this means
in Step 2 to vertically lift the edges on all the faces, without subdividing them, to define
the slabs, and to subdivide the faces by the lifted edges only in the wide slabs.

3.3.2 Connecting Faces (Steps 2 and 3)

We argue that, (i) we do not need to project on the floor the edges (of the connecting
faces) that are parallel to the y-axis (Step 2), (ii) we do not need to subdivide these
edges in any way (Steps 2 and 3), nor to subdivide the other edges of the connecting
faces by the vertical projections of the edges of P1 (Step 2), and (iii) we do not need
to triangulate the connecting faces (Step 3).

First observe that all the points on an edge (of a connecting face) that is parallel to
the y-axis or on any one of its lifted copies (along z) have the same x-coordinate as the
edge endpoints, which are also the endpoints of other edges (not parallel to the y-axis)

123

Discrete & Computational Geometry (2020) 64:37–62 47

of the connecting face. Thus, considering these edges in Step 2 would not create any
additional slab.

As mentioned in Sect. 3.3.1, we do not need to subdivide, in narrow slabs, the
connecting faces by the vertical projections of the edges ofP1, in Step 2. The resulting
faces are trapezoids with two edges of length at most 1 that are parallel to the y-axis.
In Step 3a, the connecting faces in narrow slabs are subdivided according to their
projection on a side wall (and the hot pixels in that plane). Similarly as in Sect. 3.3.1,
triangulating these faces will not change the rounding of these polygons. Furthermore,
not subdividing their edges that are parallel to the y-axis does not change the resulting
trapezoids either (since any subdivision vertex lies in the same voxel as one of its
endpoints).

In wide slabs, the edges (of a connecting face) that traverse the slab cannot be sub-
divided (by construction) by the vertical projections of the edges of P1 and, similarly
as above, subdividing the edges that are parallel to the y-axis and triangulating the
face do not change the rounding of these polygons.

Note that we should however triangulate the connecting faces at the end of the
algorithm in order to obtain a simplicial complex. These triangulations can trivially be
donewithout creating proper intersections in between the edges because the connecting
faces that need to be triangulated are parallelograms with two edges of length 1 and
parallel to the y-axis; edges are not properly intersecting at the end of Step 4, thus
the edges that lie in such a parallelogram are all equal to one diagonal and we can
triangulate the parallelogram accordingly.

3.4 Properties of the Faces ofP1

Observe first that, in Step 1a, Ri j , i > j , is polygonal since its boundary consists of
(i) segments of the boundary of Fi , (ii) segments of the boundary of Fj projected onto
Fi along the y-direction, and (iii) segments of the intersection of Fi and the translated
copies of Fj by vectors ±�j . This also implies that, in projection on the back wall, an
edge e of Ri j lies in an edge e′ of the boundary of an input face F̄u or of F̄u ∩ (F̄v ± �j)

for some u and v. Furthermore, u and v are less than or equal to i because Fi and Fj

do not depend on F̄u for u > i . However, the distance between e and e′ is not bounded
from above by a constant, as depicted in Fig. 5.

In Step 1b, connecting faces are defined as trapezoids that intersect any side wall
in segments of length at most 1 that are parallel to the y-axis. However, it should be
noted that connecting faces may overlap, as depicted in Fig. 6, and that a connecting
face may not contain the edge of Ri j that defines it, as depicted in Fig. 7.

4 Proof of Correctness

We prove here Theorem 3.1. We focus on Step 1 of the algorithm in Sect. 4.1, on
Step 4 in Sect. 4.2, and we wrap up in Sect. 4.3.

123

48 Discrete & Computational Geometry (2020) 64:37–62

F1

F2 F4 F6 F8

F3 F5 F7

e e

R 87

z

y

Fig. 5 View in a side wall: the boundary edge e of R87 can be far away from the edge e′ = F̄1 ∩ (F̄2 − �j)

that coincides with e on the back wall

F3

(b)

R 32

X 32

R 32

(a)

F1

F2

F4

F1

F2

F3

F4

z

y

X 31

R 31
R 31

F3

(c)

R 32

X 32

R 32

F1

F2

F4

X 31

R 31
R 31

R 41

X 41

Fig. 6 Example of overlapping connecting faces X31 and X41, viewed inside a side wall: a Four input
faces; b F2 is not projected onto F1 because they are far from each other, then F3 is first projected onto F1
and then onto F2; c F4 is projected onto F1 and it is not further projected onto F2 (which is too far) nor F3
(which is now empty)

(c)

F1

F2

F3

R 31

R 32

R 31

R 32

(b)

F1

F2

F3

R 21

(a)

F1

F2

F3

R 21

X
e

z

y

Fig. 7 A connecting face X induced by the common edge e of R31 and R32, such that it does not contain
e. View inside a side wall: a The three input faces; b F2 is projected onto F1, then c F3 is projected onto
F1 and F2

4.1 Step 1

We first state the main properties of Step 1 and then a technical lemma, which will be
used in Lemma 4.5. The intuition of the proof of Lemma 4.1 is quite straightforward
but the proof is surprisingly long and technical, thus we first give a sketch and postpone
the actual proof to Sect. 4.1.1.

123

Discrete & Computational Geometry (2020) 64:37–62 49

F

F

F

p

Fj

¯
i

˜
j

F

F

F

x

z

y

p

p

L

p

(a) (b) (c)

p
p

Fig. 8 For the proof of Lemma 4.2

Lemma 4.1 Every point of the faces ofP can be continuously moved so that every face
F of P is continuously deformed into σ1(F) so that (i) the L∞ Hausdorff distance
between F and its image during the motion never exceeds 1 and (ii) if two points on
two faces become equal during the motion, they remain equal through the rest of the
motion.

Proof (sketch) The motion is decomposed into n successive phases, considering the
projection of each Fi in turn. For a particular Fi , the naive way of moving Ri j to
σ1(Ri j) is to move Ri j to R′

i j , by moving each point of Ri j along the y-direction and
at constant speed, and to transform edge eζ into face Xζ for every edge eζ of the
boundary of R ji that defines a connecting face Xζ . However, this does not define a
function since segments are mapped to faces. The definition of a continuous motion
requires a bit of technicality but the straightforward underlying idea is to subdivide Ri j

by considering, for each edge eζ , a tiny quadrilateral inside Ri j and bounded by eζ . We
then transform continuously each tiny quadrilateral bounded by eζ into the connecting
face Xζ and move the complement of these quadrilaterals, which is a slightly shrunk
version of Ri j , into R′

i j . This can be done so that when two distinct points become
equal during the motion, they remain equal through the rest of the motion. The formal
proof is detailed in Sect. 4.1.1. �
Lemma 4.2 If a line L parallel to the y-axis intersects the relative interior of a face
of P1 in a single point p then the distance along L from p to any other face of P1 is
at least 1.

Proof If a line L parallel to the y-axis intersects the relative interior of a face F of P1
in a single point p, this face is not a connecting face. Assume for a contradiction that
L intersects another face F ′ of P1 at some point p′ that is at distance less than 1 from
p (see Fig. 8a).

Consider first the case where F ′ is not a connecting face. Since non-connecting
faces are not parallel to the y-axis, there exists a line L ′ parallel to the y-axis (and
close to L) that intersects the relative interiors of both F and F ′ in two points at
distance less than 1. However, this is impossible after Step 1.

123

50 Discrete & Computational Geometry (2020) 64:37–62

Consider now the case where F ′ is a connecting face (see Fig. 8, b and c). It follows
from Step 1b of the algorithm that any point p′ ∈ F ′ lies on a segment (not necessarily
entirely in F ′) of length at most 2, parallel to the y-axis and with its endpoints on two
non-connecting faces of P1. Consider the shortest such segment. Unless this segment
has length 2 and p is its midpoint, p is at distance less than 1 from one of the segment
endpoints, say p′′ (see Fig. 8b); considering instead of F ′ the non-connecting face F ′′
supporting this endpoint yields a contradiction as shown above. By definition, if the
segment has length 2 (see Fig. 8c), its midpoint p must lie on a common edge e of
some Ri j and Ri j ′ such that p projects on F̃j and on F̃j ′ into two points at distance
1 from p in the directions �j and −�j , respectively. During Step 1, Ri j and Ri j ′ are
removed from the input face F̄i , thus the resulting face F̃i does not contain p in its
interior (and not at all if p is in the interior of edge e). If the input face that contains F
is distinct from F̄i , then the fact that p belongs to Ri j ∩ Ri j ′ ⊂ F̄i and to the interior of
F contradicts the assumption that the input faces do not properly intersect. Otherwise,
F ⊆ F̄i and thus F ⊆ F̃i , which contradicts the fact that p belongs to the interior of
F but not to the interior of F̃i , and concludes the proof. �

4.1.1 Proof of Lemma 4.1

Recall that F̄1, . . . , F̄n denote the input faces of P and that we initially set Fi = F̄i .
In Step 1, for i from 2 to n and for j from 1 to i − 1, we modify Fi by projecting its
subset Ri j onto R′

i j ⊂ Fj , and by adding the corresponding connecting faces. When
we start these projections of Fi onto Fj for j from 1 to i − 1, the faces Fj are no
longer modified and we have Fj = F̃j until the end of Step 1. Thus Ri j only depends
on F̄i and F̃1, . . . , F̃j , j < i .

Subdivision of Ri j . For all i and all j < i , we project parallelly to y the Ri j on the
back wall, triangulate the resulting arrangement, lift the triangulation back onto the
Ri j , and subdivide the Ri j accordingly. Let T1, . . . , Tg denote the resulting triangles.
An edge of Tu ⊂ Ri j is called blue if it is part of a boundary edge of Ri j that defines a
connecting face; it is called red otherwise. A vertex of Tu is called blue if it is incident
to a blue edge, otherwise, it is red.

Ordering Property. Consider two triangles Tb ⊂ Rbj ⊂ F̄b, b > j , and Tr ⊂ Rr j ⊂
F̄r , r > j and r �= b, that are on the same side of F̃j (with respect to y) and that
project onto the same triangle on the back wall (or equivalently on F̃j). We prove the
following ordering property: if a blue edge eb of Tb and a red edge er of Tr coincide
in that projection, then Tb is farther away than Tr from F̃j with respect to y (i.e., any
line parallel to the y-axis, that intersects these triangles, intersects F̃j , Tr and Tb in
that order). Roughly speaking, this property holds because the two triangles incident
to the red edge project on F̃j and thus, if the blue edge was in between the red edge
and F̃j , as in Fig. 9, the two triangles incident to the blue edge would also project on
F̃j , implying that the edge should be red and not blue.

More formally, since Rbj only depends on F̄b and F̃1, . . . , F̃j , the face F̄r , r > j ,
plays no role in the definition of Rbj . Thus the boundary edges of F̄r do not over-

123

Discrete & Computational Geometry (2020) 64:37–62 51

Tr
TbTj

TrTb
TjTb

pb pj pb pr

ereberj erj

¯
r

¯
b

Fj

Fj

y

Fig. 9 Counterexample for the proof of the ordering property

lap the edges of Rbi in projection on the back wall, by items (α) and (γ) of the
general position assumption. In particular, er cannot be a boundary edge of F̄r .
Thus, since er is a red edge, either (a) er lies on a common edge of Rr j and
some Rr j ′ (on F̄r) such that er projects (along y) on F̃j and on F̃j ′ onto the same
segment er j = er j ′ , or (b) er is induced by the subdivision of the Rrk into trian-
gles.

Refer to Fig. 9. In case (a), since input faces are interior disjoint, the segment
er j = er j ′ is on the common boundary of the input faces F̄j and F̄j ′ . Hence, er is a
common edge of some triangles Tr ⊂ Rr j and T ′

r ⊂ Rr j ′ that respectively project in
Step 1 onto two triangles Tj ⊂ F̃j and Tj ′ ⊂ F̃j ′ that share edge er j = er j ′ . Assume
for contradiction that edge eb is in between er and er j (i.e., in their convex hull).
Since eb is a blue edge, the triangle T ′

b ⊂ F̄b that shares edge eb with Tb exists and
projects in Step 1 onto a triangle Tb′ �= Tj ′ . Consider any line parallel to the y-axis
that intersects the interior of the four triangles Tb′ , Tj ′ , T ′

b and T
′
r in points pb′ , p j ′ , p′

b
and p′

r , respectively. By definition, segment p′
r p j ′ has length less than 1 and contains

p′
b. Thus ‖p′

b p j ′ ‖ < 1 and since T ′
b projects in Step 1 onto Tb′ �= Tj ′ , we have b′ < j ′.

Furthermore, j ′ < r by definition of Rr j ′ . Thus b′ < j ′ < r and since T ′
r projects

on Tj ′ instead of Tb′ , ‖p′
r pb′ ‖ > 1 while ‖p′

b pb′ ‖ < 1. Hence, pb′ , p j ′ , p′
b and p′

r
appear in that order on their supporting line. It follows that ‖p j ′ pb′ ‖ < 1 and thus Tj ′
should have been projected on Tb′ in Step 1, which contradicts the definition of Rr j ′ ,
and thus eb is not in between er and er j . Since er and eb are on the same side of F̃j , eb
is farther away than er from F̃j . Case (b) is similar: the only difference is that Tj ′ lies
in F̃j instead of F̃j ′ but Tj and Tj ′ are still incident. The ordering property follows.

Motions of the Ti . In Step 1, each of the triangles T1, . . . , Tg is projected onto some
face. We consider all the vertices of the T1, . . . , Tg in the order of all the red vertices
ordered by their increasing distances (along y) to the faces they are projected to,
followedbyall the bluevertices ordered similarly. (Byour general position assumption,
these distances are well defined.) In turn, we move each red vertex to its image on the
face it projects to, andwemove all the points of its incident triangles among T1, . . . , Tg
according to their barycentric coordinates (see Fig. 10a).

We now consider each blue vertex in turn and all its incident triangles among
T1, . . . , Tg . For each such blue vertex b and incident triangle T , we consider the two
edges of T incident to b. If they are both blue (see Fig. 10b), we choose arbitrarily any
point p strictly inside T . Otherwise, for each red edge incident to b, we consider the
point p on this edge at distance ε from b (see Fig. 10c), for some sufficiently small

123

52 Discrete & Computational Geometry (2020) 64:37–62

(a) (b)

(c)

F̃j

y

T1

T2

p

F̃j F̃j

F̃j

y

T1

T3
T4

T5 T2

F̃j

T2

T4

T1

T3

T5

F̃jF̃j

y

T1

p

F̃j

b

b

Fig. 10 Motions of the Ti

global parameter ε > 0. Then, we move all these particular points (simultaneously
for all triangles T1, . . . , Tg incident to b) to the point to which b projects to; all the
points of the triangles T1, . . . , Tg incident to b move accordingly to their barycentric
coordinates (after re-triangulating these triangles with respect to the new points p we
considered).

Because of the ordering property and the considered ordering of the red and blue
vertices, any two distinct points remain distinct during any one of thesemotions, except
possibly at the end.

Finally, consider, as in Fig. 7, a common edge e of Ri j and Ri j ′ (on F̄i) such that e
projects (along y) on F̃j and on F̃j ′ into two distinct segments e j and e j ′ , respectively,
that are on the same side of F̄i with respect to y (i.e., e does not belong to the convex
hull of e j and e j ′). In Step 1b, we define a connecting face as the convex hull of e j and
e j ′ . However, since e is a blue edge and has thus not yet been moved at this stage, Ri j

and Ri j ′ have currently been deformed into a set of faces that contain the convex hull
of e and e j , and the convex hull of e and e j ′ . These two faces overlap in between e and,
say, e j . In this final phase, we simply retract these overlapping parts into segment e j
and move all the points in the other faces incident to e accordingly to their barycentric
coordinates.

Hausdorff Distance. The property that the Hausdorff distance between a face and its
image during the motion never exceeds 1 (for the L∞ metric) is straightforward since,
(i) any line parallel to y that intersects a triangle Ti also intersects its image during the
motion, (ii) the image of Ti during the motion remains in the convex hull of Ti and its
projection (parallel to y) on F̃j , and (iii) all the points of Ti are at distance at most 1
along y from F̃j (by definition of Ri j).

123

Discrete & Computational Geometry (2020) 64:37–62 53

4.2 Step 4

In the following, we consider in the snapping phase of Step 4 a continuous motion
of the vertices such that every vertex moves on a straight line toward the center of
its voxel at a speed that is constant for each vertex and so that all vertices start and
end their motions simultaneously. The other points in a face move accordingly to their
barycentric coordinates in the face. Note that, in every voxel that contains a vertex,
the motion is a homothetic transformation whose factor goes from one to zero. During
that motion, we consider that narrow and wide slabs respectively shrink and expand
accordingly.We prove in Lemmas 4.4 and 4.5 that no proper intersections occur during
that motion in between faces, edges and vertices. We refer to Sect. 3.1 for the intuition
behind these proofs. We first recall the standard snap-rounding result for segments
in two dimensions. A pixel is called hot if it contains a vertex of the arrangement of
segments.

Theorem 4.3 [7, Thm. 1] Consider a set of segments in 2D split in fragments at the
hot pixel boundaries and a deformation that (i) contracts homothetically all hot pixels
at the same speed 3 and (ii) moves the fragments outside the hot pixels according to
the motions of their endpoints. During the deformation, no fragment endpoint ever
crosses over another fragment.

Lemma 4.4 When moving all vertices to the center of their voxels in Step 4, no two
faces, edges, or vertices of P3 properly intersect in narrow slabs.

Proof Consider all the faces of P3 in a narrow slab Sc and the arrangement of their
projections (along the x-axis) onto the side wall x = c. In that side wall, a pixel that
contains a vertex of the arrangement is hot and every edge (in that side wall) that
intersects a hot pixel is split at the pixel boundary (Step 3a). By Theorem 4.3, when
moving in that side wall all the projected vertices to the centers of their pixels, the
topology of the arrangement does not change except possibly at the end of the motion,
where edges and vertices may become identical.

It follows that the property that every face of P3 in Sc projects onto a single face of
the arrangement in the side wall x = c, which holds by construction at the beginning
of the motion (Step 3a), holds during the whole motion of the vertices in 3D and of
their projections in the side wall x = c.

Furthermore, the motion preserves the ordering of the x-coordinates of the vertices
in Sc, until the end when they all become equal to c. Together with the previous
property, this implies that, in a narrow slab, during the snapping motion, (i) no vertices
and edges intersect the relative interior of a face and (ii) if two edges intersect in their
relative interior, it is at the end of the motion and they become identical. Furthermore,
(iii) no vertices intersect the relative interior of an edge because, in Step 3a, we have
split every edge that intersects a hot pixel in projection in the side wall x = c. This
concludes the proof. �
Lemma 4.5 When moving all vertices to the center of their voxels in Step 4, no two
faces, edges, or vertices of P3 properly intersect in wide slabs.

3 The proof in [7] considers separatelymotions in x and in y but the same argument applies for simultaneous
homothetic contractions in x and y.

123

54 Discrete & Computational Geometry (2020) 64:37–62

Proof By construction (Step 2), all the vertices in a wide slab are on its side-wall
boundaries and, in these side walls, no two edges or vertices properly intersect during
the motion, by Lemma 4.4. Thus, we only have to consider edges that connect the two
side-wall boundaries of a wide slab and show that such edges do not properly intersect
during the snapping motion. Note that input faces are not vertical (i.e., not parallel to
the z-axis) by assumption and connecting faces are not vertical in wide slabs since
they are parallel to the y-axis and they intersect both side-wall boundaries of the wide
slab.

Initially, these edges project on the floor onto edges that do not properly intersect
pairwise (by definition of the slabs in Step 2). Thus, by Theorem 4.3, the projections
on the floor of two edges either (i) coincide throughout the whole motion, or (ii) they
do not properly intersect and do not coincide throughout the whole motion except
possibly at the end when they may coincide. In the first case, throughout the whole
motion, the edges belong to the same moving vertical plane and they do not properly
intersect since they do not initially; indeed, since faces are initially not vertical, edges
may intersect in a vertical plane only if they are boundary edges of trapezoids of P2,
and such edges do not properly intersect on the back wall by definition of wide slabs.
Hence, only in the latter case (ii), two edges may properly intersect during the motion;
furthermore, the first time this may happen is at the end of the motion and then, the
two edges belong to the same vertical plane.

Applying again Theorem 4.3 to the back-wall projection of the boundary edges of
the trapezoids (but not their triangulating edges), we get that if two boundary edges
of trapezoids properly intersect in 3D during the motion, it is at the end and they must
coincide in the back-wall projection. Since two edges that coincide in two projections
are equal, we get that boundary edges of trapezoids cannot properly intersect through-
out the motion. It remains to prove that there are no proper intersections that involve
the edges triangulating the trapezoids.

Consider for a contradiction two edges e and e′ that properly intersect in a vertical
plane V at time t1, the end of the motion. Since boundary edges of the trapezoids do
not properly intersect, we can assume without loss of generality that one of the two
edges, say e, is a triangulation edge. Consider the trapezoid that initially contains e
and its image F , at time t1, which is a set of triangles. We prove below that, at time
t1, the edge e′ properly intersects (at least) one of the two boundary edges of F .

Assume for a contradiction that e′ properly intersects none of the two boundary
edges of F and refer to Fig. 11a. Consider all the edges of the triangulation of F
that are properly intersected by e′ and the sequence of triangles (of that triangulation)
that are incident to these edges; let T and T ′ denote the first and last triangles of that
sequence. All these triangles except possibly one, T or T ′, must be in the vertical
plane V ; this is trivial for all triangles but T and T ′ and, if neither T nor T ′ lies in V ,
then edge e′ properly intersects the surface formed by these triangles, contradicting
the property that t1 is the first time a proper intersection may occur.

As in Fig. 11a, assume without loss of generality that T , the bottommost triangle of
the sequence, lies in the vertical plane V at time t1. Let M ′ be the endpoint of e′ that
lies in T and let M1M2 be the edge of T that supports M ′. At time t1, M1 and M2 are
vertically aligned and M ′ is in between them. Thus, before the snapping motion starts,
at time t = t0, M1, M2 and M ′ must lie in the same vertical column of pixels (in the

123

Discrete & Computational Geometry (2020) 64:37–62 55

e
e

(a) Back wall view

M 2

M 1

T

M 1

M

M 2

Triangulated trapezoid at time t = t1 when edge
e (in blue) intersects edge e and three others (the
top edge of T is intersected by e in projection
on the back wall but not in 3D).

Respective potential positions of M 1, M 2

and M , (b) and (b’) inside a column of
pixel before snapping the vertices and (c)
after snapping the vertices.

T

M 2

M M

M 1

F

In the left side wall:

z

y

M 2

M 1
M

z

y

(c) t = t1(b) t = t0 (b’) t = t0

1

z

y

z

x

Fig. 11 For the proof of Lemma 4.5: for a contradiction, two edges e and e′ that properly intersect in a
vertical plane V at time t1, the end of the motion

side wall—see Fig. 11b) and M ′ must be vertically in between M1 and M2 (otherwise
M ′ would never get vertically in between M1 and M2 during the motion).4 Moreover,
the distance along the y-axis in between M ′ and segment M1M2 is initially at least
1 by Lemma 4.2. Thus, M ′ and the point on M1M2 that realizes this distance are at
distance 1 and lie initially on opposite sides of the column of pixels, as in Fig. 11b’.5

They thus have half-integer x- and y-coordinates, which contradicts item (δ) of our
general position assumption.

Hence, at time t = t1, edge e′ properly intersects one of the boundary edges,
say r , of trapezoid F . Since boundary edges do not properly intersect, e′ must be a
triangulation edge of its trapezoid F ′ and we can apply the same argument as above
on edges e′ and r , instead of e and e′. We get that r properly intersects a boundary
edge r ′ of F ′, which is a contradiction. �

4.3 Wrap Up, Proof of Theorem 3.1

First, by construction, the algorithm outputs faces that have integer coordinates.
Second, there is a continuous motion of every input face F into σ(F) so that the

Hausdorff distance between F and its image during the motion never exceeds 3/2
for the L∞ metric. Indeed, by Lemma 4.1, the Hausdorff distance never exceeds 1
between F and its image during the motion in Step 1; in Steps 2 and 3 the faces are
only subdivided; and the Hausdorff distance between any face of P3 and its image
during the motion of Step 4 clearly never exceeds 1/2 since vertices are moved to the
centers of their respective voxels.

Third, if two points on two faces become equal during the motion, they remain
equal through the rest of the motion. This is proven in Lemma 4.1 for the motion of

4 Note that Steps 2 and 3 do not imply that the vertical projection of edge e′ onto F , it it exists, should be
subdividing F because if M ′ is a dummy vertex created in Step 3a in the adjacent narrow slab, the segment
e′ may be above F without having its vertical projection subdividing F .
5 Note that M ′ could be at the same height as M1 and then the segment M1M2 is not necessarily vertical.

123

56 Discrete & Computational Geometry (2020) 64:37–62

Step 1 and this also holds for the motion of Step 4 since, by Lemmas 4.4 and 4.5, if
two faces, edges or vertices intersect during this motion, they share a common face of
both, whose motion is uniquely defined by its vertices (actually, we show in the proofs
of Lemmas 4.4 and 4.5 that no two distinct points become equal except possibly at
the end of the motion).

Finally, the algorithm outputs a simplicial complex by Lemmas 4.4 and 4.5.

5 Complexity

We first analyze in Sect. 5.1 the complexity of our algorithm in the worst case (Propo-
sition 5.2) and then, in Sect. 5.2, its complexity under some reasonable assumptions
on the input (Proposition 5.8). We finally argue in Remark 5.9 that we can anticipate
time and space complexities of O(n

√
n) in practice on realistic non-pathological data.

5.1 Worst-Case Complexity

We start by proving the complexity of the algorithm in terms of n, as a warm up. We
then refine the analysis in Proposition 5.2 in terms of other parameters.

Lemma 5.1 Given a set of polygons of total complexity O(n), the algorithm outputs
a simplicial complex of complexity O(n13) in time O(n15).

Proof Let n be the number of input edges. Consider in the backwall the arrangementA
of the O(n2) lines that support the projections of the n input edges and the intersections
F̄k ∩ (F̄� ± �j). At the end of Step 1, each of the O(n) input faces is subdivided by the
projection (on the face) of these O(n2) lines, which define N3 = O(n3) lines in total.
In addition, the connecting faces are also bounded by the N4 = O(n4) lines that are
parallel to the y-axis and incident in the back wall to the O(n4) vertices of A.

In Step 2, we project and lift the above N3 = O(n3) lines onto the O(n) planes
supporting the input faces, and project these O(n4) lines onto the back wall. Indeed,
as mentioned in Sect. 3.3.2, we do not need to project and lift the N4 = O(n4) lines
parallel to the y-axis that support the edges of the connecting faces, and we do not
need to lift the edges onto the connecting faces. This induces an arrangement of O(n4)
lines, which has O(n8) vertices. There are thus O(n8) slabs.

Faces in narrow slabs are not subdivided in Step 2 (see Sect. 3.3.1). Thus, there are
bounded by (i) the N3 = O(n3) above lines, altogether for all narrow slabs, (ii) for each
narrow slab, the O(n) intersections between the input faces and the slab boundaries,
and (iii) the edges parallel to the y-axis of the connecting edges.

We prove that these edges define O(n12) hot pixels in total over all narrow slabs,
in Step 3a. According to Sect. 3.3.2, the edges of type (iii) need not to be subdivided
and thus play no role in the complexity analysis.6 The edges of type (i) define O(n6)
hot pixels in total over all narrow slabs because their arrangement after projection on
a side wall has size O(n6) and each vertex (counted with multiplicity if more than

6 There are O(n4) lines supporting these edges, so it would increase the worst-case complexity to subdivide
them.

123

Discrete & Computational Geometry (2020) 64:37–62 57

two edges intersect in a same point) defines a unique hot pixel in the O(n8) narrow
slabs; indeed, if the restrictions to a narrow slab of two lines intersect in projection
on a side wall, their parts outside that narrow slab do not intersect in projection. All
other pairs of edges (between types (i) and (ii), and among type (ii)) define O(n4) hot
pixels for each narrow slab, hence O(n12) hot pixels in total. As we will see below,
the total number of trapezoids in wide slabs is O(n12), thus the total number of hot
pixels defined by vertices on the walls in between slabs is also O(n12). Hence, there
are O(n12) hot pixels in total and the complexity of the subdivision after snapping is
thus O(n12) in total over all narrow slabs. Moreover, these O(n12) hot pixels define
O(n13) dummy vertices in total, since only the edges of type (ii) are subdivided by
dummy vertices (see Sect. 3.3.2).

In every wide slab, there are O(n4) trapezoids defined by the lifting in Step 2 of
the N3 = O(n3) lines on O(n) faces and O(n3) connecting faces defined in Step 1.
Indeed, connecting faces are not subdivided (see Sect. 3.3.2) and a wide slab intersects
the backwall arrangementA in O(n2) edges (since there are no vertices in the slab) and
each edge may induce O(n) connecting faces (one for each input face). This defines
O(n12) trapezoids in total over all wide slabs, to which should be added the O(n13)
edges induced by the dummy vertices. Hence, the complexity of the subdivision after
snapping is O(n13) in total over all narrow and wide slabs.

All the arrangements and triangulations performed by the algorithm can be done
in time complexities that match their worst sizes. However, this does not match the
complexity of the output because the complexity of the arrangements in narrow slabs
may be larger before than after snapping. Before snapping, there are O(n12) hot pixels
that subdivide O(n3) lines in total over all narrow slabs (since edges of type (iii) are
not subdivided). The total complexity before snapping and the running time are thus
in O(n15). �

We now refine the previous complexity analysis in terms of the following parame-
ters. We define the z-cylinder of a face F as the volume defined by all the lines parallel
to the z-axis that intersect F ; similarly for x- and y-cylinders. Over all input faces
F , let fd be the maximum number of input faces that are (i) intersected by one such
cylinder of F and (ii) at distance at most d from F . Denote by f = f∞ the maximum
number of faces intersected by one such cylinder. Let g1 be maximum number of input
faces that are intersected by the boundary of a voxel. Finally, let wx be the maximum
number of input faces that are intersected by any side wall x = c. Typically, we can
hope that “nice” input will be such that wx = O(

√
n) and that g1 and f1 < f are in

O(1) (see Remark 5.9). However, under some reasonable assumptions, we only prove
that wx and g1 are in O(

√
n) and that f1 < f = O(4

√
n) (see Lemma 5.7).

Proposition 5.2 Given a set of polygons of total complexity O(n), the algorithm
outputs a simplicial complex of complexity O(nwx f 7 f 31 g1) ⊂ O(n13) in time
O(nwx f 8 f 41 g1) ⊂ O(n15).

Proof The proof is similar to the proof of Lemma 5.1. For each face, we first count
the number of subdivision edges created by the algorithm without considering any
intersection; to avoid confusion, we refer to these edges as unsplit edges.

123

58 Discrete & Computational Geometry (2020) 64:37–62

Number of Slabs. After projection on the back wall, the edges of Ri j and R′
i j , in

Step 1, are pieces of the boundary edges of the input faces F̄k and of the segments of
intersection F̄k ∩ (F̄� ± �j). In a y-cylinder of a face F , only f faces project on the
back wall and thus there are O(f f1) such edges. Thus, at the end of Step 1, every input
face ends up supporting O(f f1) unsplit edges. In Step 2, we thus lift O(f 2 f1) unsplit
edges onto every face. Every unsplit edge on a given face F may only intersect, after
projection on the back wall, edges that lie on the faces that intersect the y-cylinder of
F ; there are O(f) such faces and O(f 2 f1) unsplit edges on each of them, thus every
unsplit edge may intersect O(f 3 f1) edges on the back wall. There are O(n f 2 f1)
unsplit edges in total, hence, in Step 2, the back wall arrangement has complexity
O(n f 5 f 21). The number of narrow and wide slabs is thus O(n f 5 f 21).

Complexity in Narrow Slabs.At the end of Step 2, since faces in narrow slabs are not
subdivided in Step 2 (see Sect. 3.3.1), the faces in narrow slabs are bounded by (i) the
O(f f1) above unsplit edges for each of the O(n) input faces, (ii) for each narrow slab
Sc, the O(wx) intersections in between the input faces and the slab boundaries, and
(iii) the edges parallel to the y-axis of the connecting edges.

We prove that these edges define O(nwx f 6 f 31) hot pixels in total over all narrow
slabs, in Step 3a. As before, edges of type (iii) play no role. Every edge on a given
input face F may only intersect, after projection on a side wall, edges that lie on faces
that intersect the x-cylinder of F . There are O(f) such faces and, on each of them,
there are O(f f1) edges of type (i). Thus every edge of type (i) may intersect O(f 2 f1)
edges of type (i) after projection on a side wall. There are O(n f f1) edges of type (i),
thus pairs of edges of type (i) define O(n f 3 f 21) hot pixels in total over all narrow slabs
(similarly as in Lemma 5.1).

For counting the hot pixels induced by other pairs of edges, we consider the O(wx)

edges of type (ii) in a given slab Sc. Such an edge in a face F may intersect, after
projection on a side wall, the edges that lie on faces that intersect Sc and the x-cylinder
of F . There are f1 such faces and each contains O(f f1) edges of type (i) and at most
two edges of type (ii) in Sc. The number of hot pixels in Sc induced by an edge of
type (ii) and an edge of types (i)–(ii) is thus O(wx f f 21). Summing over all O(n f 5 f 21)

narrow slabs gives O(nwx f 6 f 41) hot pixels induced by the edges of types (i)–(iii),
over all narrow slabs.

As we will see below, the total number of trapezoids in wide slabs is O(nwx f 7 f 31),
which induces up to the same number of hot pixels defined by vertices on the walls in
between slabs.

Since f1 ≤ f , the total number of hot pixels and the complexity of the subdivision
after snapping is thus O(nwx f 7 f 31). Furthermore, the number of hot pixels times
O(g1) bounds the total number of dummy vertices since g1 bounds the number of
input faces that intersect the boundary of a voxel, and an input face in a narrow slab
has at most two edges of type (ii) (those subdivided by dummy vertices). Hence, there
are O(nwx f 7 f 31 g1) dummy vertices in total.

Complexity in Wide Slabs. At most wx input faces are intersected by any wide slab
andwe lift, in Step 2, O(f 2 f1) unsplit edges on each of these faces. These edges do not
intersect since we consider a wide slab. In every wide slab, at the end of Step 2, there

123

Discrete & Computational Geometry (2020) 64:37–62 59

are thus O(wx f 2 f1) trapezoids plus the connecting faces. Similarly as in Lemma 5.1,
there are O(wx f f1) connecting faces: the number O(f f1) of unsplit edges on an input
face at the end of Step 1 times the number O(wx) of input faces that intersect the slab.
Summing over the O(n f 5 f 21) wide slabs, there are thus O(nwx f 7 f 31) trapezoids, to
which should be added the O(nwx f 7 f 31 g1) edges induced by the dummy vertices.
The complexity of the subdivision after snapping is thus O(nwx f 7 f 31 g1) in total over
all wide slabs.

Time Complexity. Before snapping, there are O(nwx f 7 f 31) hot pixels. The bound-
ary of each hot pixel intersects O(g1) input faces and thus subdivides O(g1 f f1)
unsplit edges of types (i)–(ii) in total over all narrow slabs. Similarly as in the proof
of Lemma 5.1, the total complexity before snapping and the running time are thus
in O(nwx f 8 f 41 g1). �

5.2 Complexity Under Some Assumptions

We consider, in Proposition 5.8, the complexity of our algorithm for approximations
of “nice” surfaces, defined as follows.

Definition 5.3 An (ε, κ)-sampling of a surface S is a set of vertices on S such that
there is at least 1 and at most κ vertices strictly inside any ball of radius ε centered on
S. It is straightforward that an (ε, κ)-sampling of a fixed compact surface has �(n)

vertices with n = ε−2 (the constant hidden in the � complexity depends on κ and on
the area of the surface).

Definition 5.4 The Delaunay triangulation of a set of points P restricted to a surface
S is the set of simplices of the Delaunay triangulation of P whose dual Voronoi faces
intersect S. If P ⊂ S, we simply refer to the restricted Delaunay triangulation of P
on S.

Definition 5.5 (nice surfaces) A surface S is k-monotone (with respect to z) if every
line parallel to the z-axis intersects S in at most k points. Let � and k be any two
positive constants. A surface S is nice if it is a compact smooth k-monotone surface
such that the Gaussian curvature of S is larger than a positive constant in a ball of
radius � centered at any point p ∈ S where the tangent plane to S is vertical.

For instance, a compact smooth algebraic surface whose silhouette (with respect to
the vertical direction) is a single convex curve is nice for suitable choices of � and k.

Remark 5.6 The following complexities are asymptotic when n goes to infinity (or ε

to zero) with hidden constants depending on the surface areas,�, and k. It is important
to notice that these complexities are independent from the voxel size, which can go
to zero with no changes in the complexities. Of course if the grid size and the surface
are fixed, the total number of voxels intersecting the surface is constant and so is the
size of a rounding.

The following lemma is a technical though rather straightforward result.

123

60 Discrete & Computational Geometry (2020) 64:37–62

x = c x = c + ε

α

d < 2ε/α

ε

(a) (b)

c

c

α

q

p

Normal to
(x = c) at p

x

x

y
z

Fig. 12 For the proof of Lemma 5.7

Lemma 5.7 The restricted Delaunay triangulation T of an (ε, κ)-sampling of a nice
surface has complexity O(n) = O(ε−2). Any plane x = c intersects at most O(

√
n) =

O(ε−1) faces of T . Furthermore, for any face f of T , the set of vertical lines through
f intersects at most O(n1/4) = O(ε−1/2) faces of T .

Proof Since S is k-monotone, we can assume without loss of generality that any plane
x = c, for some constant c ∈ R, intersects S in at most one component. Indeed, this
assumption will affect the actual overall complexity by a factor at most k/2.

Observe first that the edges of T have length less than 2ε. Indeed, if there is
a Delaunay edge of length at least 2ε, there is a ball centered on S that con-
tains this edge and that contains no vertices strictly inside it (by definition of
restricted Delaunay triangulations). This ball has radius at least ε, contradicting the
(ε, κ)-sampling assumption. The (ε, κ)-sampling of S ensures that there are O(1) ver-
tices at distance at most 2ε from every vertex, hence the triangulation has complexity
O(n) = O(ε−2).

Intersection with a plane x = c. Since the edges of T have length less than 2ε, any
edge that intersects a plane x = c has a vertex in between the two planes x = c ± ε.
We prove in the following that the area of S in that region is of order O(ε) and thus
that the number of sampling points in that region is O(ε−1) = O(

√
n).

Observe first that if S intersects a plane x = c in a curve of perimeter � and if, at
any point p on that curve, the plane tangent to S makes an angle at least α with the
plane x = c, then the area of S in between x = c and x = c+ ε is in O(�ε/α) when ε

tends to zero (see Fig. 12a). Consider a point q ∈ S where the tangent plane is parallel
to the side-wall plane x = c and assume without loss of generality that q is located
at the origin. Refer to Fig. 12b. It follows from the assumptions that there exists a
constant δ > 0 such that, for any 0 < c < δ, (i) the intersection of S with the plane
x = c has perimeter at most

√
c up to some constant and (ii) the plane tangent to S at

any point on that curve and the plane x = c make an angle at least α > c/
√
c = √

c
up to some constant. Hence the area of S in between x = c and x = c − ε is in
O(

√
c ε/

√
c) = O(ε).

On the other hand, for any c > δ, the intersection of S with the plane x = c has
perimeter � = O(1) and the plane tangent to S at any point on that curve and the
plane x = c make an angle at least α = δ/

√
δ = √

δ = �(1). Hence the area of S in

123

Discrete & Computational Geometry (2020) 64:37–62 61

between x = c and x = c + ε is in O(�ε/
√

δ) = O(ε), which concludes the proof
that any plane x = c intersects at most O(

√
n) = O(ε−1) faces of T .

Intersection with the z-cylinder of a face. Consider a face f of T and its z-cylinder
defined as the set of vertical lines through f . Similarly as above, the z-cylinder of f
intersects a face f ′ only if a vertex of f ′ lies in the z-cylinder enlarged by ε. Since the
edges of f have length atmost 2ε, this enlarged z-cylinder is contained in the z-cylinder
defined by a square of edge length 3ε in the xy-plane. In that z-cylinder, the height
span of S is O(

√
ε) (see Fig. 12b), hence the area of S in the cylinder is O(ε

√
ε). The

number of sampling points in the cylinder is thusO(ε
√

ε/ε2) = O(ε−1/2) = O(n1/4).
�

Proposition 5.8 Given the arrangement of the restricted Delaunay triangulations of
the (ε, κ)-samplings of a constant number of nice surfaces, the algorithm outputs a
simplicial complex of complexity O(n4

√
n) in time O(n5).

Proof Consider the restricted Delaunay triangulations of the (ε, κ)-samplings of two
surfaces. By definition of (ε, κ)-samplings, it is straightforward that any triangle of one
triangulation intersects a constant number of triangles of the other triangulation.Hence,
the complexities of Lemma 5.7 hold for the arrangement of the two triangulations,
and similarly for a constant number of triangulations. Thus, for the arrangement of
triangulations, Lemma 5.7 yieldswx = O(

√
n), and similarly g1 = O(

√
n), and f1 <

f = O(4
√
n) (as defined in Sect. 5.1) and plugging these values in the complexities of

Proposition 5.2 yields the result. �

Remark 5.9 In practice on realistic non-pathological data, one can anticipate a better
complexity of O(n

√
n) for the size of the output and for the time complexity. Indeed,

if the size of the voxels is small compared to the input model (say the edge lengths),
we can expect that there are O(1) faces at distance at most

√
3 (the diagonal of a

voxel) from any given face, thus f1 and g1 are in O(1). Furthermore, we can expect
that the x-, y- or z-cylinders of most faces will intersect a constant number of other
faces and that the few that intersect a non-constant number of faces will not impact the
final complexities, hence we anticipate that f will behave as O(1). Finally, assuming
that wx = O(

√
n) as in the proof of Lemma 5.7, Proposition 5.2 yields space and

time complexities of O(n
√
n).

6 Conclusion

The algorithm we presented is reasonably simple, however, its worst-case complexity,
even under reasonable assumptions (Propositions 5.2 and 5.8), is prohibitive in prac-
tice. Hence, the question of whether our estimated practical complexity of O(n

√
n)

(Remark 5.9) is correct on real data is crucial for applications. Furthermore, it would be
interesting to design heuristics for improving the practical efficiency of the algorithm.
Another issue is that faces can drift arbitrarily far when the snap rounding scheme
is applied repeatedly. Several approaches were presented to address this issue in 2D
[8,10,14] but the problem in 3D is naturally entirely open.

123

62 Discrete & Computational Geometry (2020) 64:37–62

Acknowledgements The authors would like to thank André Lieutier for having initially pointed out the
problem and its significance for industry, and for many discussions on the problems, Hazel Everett, Mark
de Berg, Danny Halperin, Raimund Seidel, and Dave Bremner.

References

1. de Berg, M., Halperin, D., Overmars, M.: An intersection-sensitive algorithm for snap rounding.
Comput. Geom. 36(3), 159–165 (2007)

2. Devillers, O., Karavelas, M.I., Teillaud, M.: Qualitative symbolic perturbation: two applications of a
new geometry-based perturbation framework. J. Comput. Geom. 8(1), 282–315 (2017)

3. Fortune, S.: Polyhedral modelling with multiprecision integer arithmetic. Comput. Aided Des. 29(2),
123–133 (1997)

4. Fortune, S.: Vertex-rounding a three-dimensional polyhedral subdivision. Discrete Comput. Geom.
22(4), 593–618 (1999)

5. Goodrich,M.T., Guibas, L.J., Hershberger, J., Tanenbaum, P.J.: Snap rounding line segments efficiently
in two and three dimensions. In: Proceedings of the 13th Annual Symposium on Computational Geom-
etry, pp. 284–293. Association for Computing Machinery, New York (1997)

6. Greene, D.H., Yao, F.F.: Finite-resolution computational geometry. In: 27th Annual Symposium on
Foundations of Computer Science (Toronto 1986), pp. 143–152. IEEE (1986)

7. Guibas, L.J., Marimont, D.H.: Rounding arrangements dynamically. Int. J. Comput. Geom. Appl. 8(2),
157–178 (1998)

8. Halperin, D., Packer, E.: Iterated snap rounding. Comput. Geom. 23(2), 209–225 (2002)
9. Hershberger, J.: Improved output-sensitive snap rounding. Discrete Comput. Geom. 39(1-3), 298–318

(2008)
10. Hershberger, J.: Stable snap rounding. Comput. Geom. 46(4), 403–416 (2013)
11. Hobby, J.D.: Practical segment intersection with finite precision output. Comput. Geom. 13(4), 199–

214 (1999)
12. Milenkovic, V.: Rounding face lattices in d dimensions. In: Proceedings of the 2nd Canadian Confer-

ence on Computational Geometry, pp. 40–45 (1990)
13. Milenkovic, V.J., Nackman, L.R.: Finding compact coordinate representations for polygons and poly-

hedra. IBM J. Res. Dev. 34(5), 753–769 (1990)
14. Packer, E.: Iterated snap rounding with bounded drift. Comput. Geom. 40(3), 231–251 (2008)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

123

	Rounding Meshes in 3D
	Abstract
	1 Introduction
	2 Preliminaries
	3 Algorithm
	3.1 Sketch
	3.2 Detailed Algorithm
	3.3 Algorithm Refinements
	3.3.1 Faces in Narrow Slabs (Steps 2 and 3a)
	3.3.2 Connecting Faces (Steps 2 and 3)

	3.4 Properties of the Faces of mathcalP1

	4 Proof of Correctness
	4.1 Step 1
	4.1.1 Proof of Lemma 4.1

	4.2 Step 4
	4.3 Wrap Up, Proof of Theorem 3.1

	5 Complexity
	5.1 Worst-Case Complexity
	5.2 Complexity Under Some Assumptions

	6 Conclusion
	Acknowledgements
	References

