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Abstract
A well-known result by Lagarias and Ziegler states that there are finitely many equiv-
alence classes of d-dimensional lattice polytopes having volume at most K , for fixed
constants d and K . We describe an algorithm for the complete enumeration of such
equivalence classes for arbitrary constantsd and K . The algorithm,whichgives another
proof of the finiteness result, is implemented for small values of K , up to dimension six.
The resulting database contains and extends several existing ones, and has been used
to correct mistakes in other classifications. When specialized to three-dimensional
smooth polytopes, it extends previous classifications by Bogart et al., Lorenz, and
Lundman. Moreover, we give a structure theorem for smooth polytopes with few lat-
tice points that proves that they have a quadratic triangulation and which we use,
together with the classification, to describe smooth polytopes having small volume in
arbitrary dimension. In dimension three we enumerate all the simplices having up to
11 interior lattice points and we use them to conjecture a set of sharp inequalities for
the coefficients of the Ehrhart h∗-polynomials, unifying several existing conjectures.
Finally, we extract and discuss some interesting minimal examples from the classi-
fication, and study the frequency of properties such as being spanning, very ample,
IDP, and having a unimodular cover or triangulation. In particular, we find the smallest
polytopes that are very ample but not IDP, and with a unimodular cover but without a
unimodular triangulation.
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1 Introduction

Finiteness results are not uncommon in the study of lattice polytopes. Most of these
are proven by fixing the dimension, showing an upper bound for the volume and then
using the following result by Lagarias and Ziegler.

Theorem 1.1 ([44, Thm. 2]) Up to unimodular equivalence, there are finitely many
d-dimensional lattice polytopes having volume lower than a constant K .

Note that working up to unimodular equivalence, i.e., up to affine lattice-preserving
maps inGLd(Z)×Z

d is an obvious requirement whichwewill often avoid tomention.
Once it is known that a family of lattice polytopes is finite, it is tempting to give

a complete description of it. Most of the times this seems not to be possible in full
generality, and it is instead done explicitly only fixing “small enough” parameters,
first and foremost the dimension. A well-known example of such a finiteness result
is the finiteness of d-dimensional lattice polytopes having a fixed positive number of
interior lattice points, which follows from a volume bound proven by Hensley [35].
This result paved the way to explicit classifications of families of lattice polytopes
having a fixed number of interior lattice points. The best example is probably the
massive classification of reflexive polytopes (which have one interior lattice point)
up to dimension four performed by Kreuzer and Skarke to study mirror symmetric
Calabi–Yau manifolds [42,43]. Another example of polytopes having exactly one
interior point are the smooth Fano polytopes, fully enumerated up to dimension nine
[9,10,41,46,48,51,59]. Without additional restrictions, lattice polytopes having one
and two interior lattice points are classified in dimension three [6,40].

In the last years, many other examples of these kind of results were provided. In
[2,4] is proven that in each dimension there are finitely many hollow lattice polytopes
that are maximal up to inclusion, and they are classified in dimension three. In [18] the
finiteness of smooth polytopes having fixed number of lattice points is shown in each
dimension. Such polytopes are enumerated in dimension three, up to 16 lattice points
[45,47]. A finiteness result in dimension three for polytopes of width larger than one
and fixed number of interior points is proven in [14], and an explicit enumeration has
been performed up to 11 lattice points [15,16].

All the aforementioned results are proven via bounding the volumeof the considered
family of polytopes and applying Theorem 1.1. In this paper we take a natural step,
and use Lagarias and Ziegler’s Theorem to perform a systematic enumeration of all
lattice polytopes of fixed dimension and volume that are within computational reach.
This is done by giving an alternative proof of Theorem 1.1 which has the advantage
of being efficiently implementable. The key is to build the polytopes “from below”,
starting with a simplex and progressively adding vertices, instead of “from above”
as the original proof of Theorem 1.1 suggests, carving out all the possible lattice
polytopes from a big cube.

A result with a similar taste, but only in dimension two, has been achieved by
Castryck [26].With a “moving out” technique, he gives a different proof of a finiteness
result and classifies all lattice polygons having up to 30 interior lattice points.

The paper has the following structure. In Sect. 2 we give an introduction to point
configurations, building the necessary tools for the rest of the paper. In Sect. 3 we
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give an independent proof of Theorem 1.1, which leads to an algorithm, whose imple-
mentation is discussed in Sect. 4. In Sect. 5 we discuss the results of the classification
and compare them with existing ones. In Sect. 6 we specialize the classification to
smooth polytopes. In this setting our classification extends other ones performed in
dimension three, and creates a database of small smooth polytopes. We give a struc-
ture theorem for d-dimensional smooth polytopes having at most 3d −4 lattice points
(Theorem 6.10), which we immediately apply to fully categorize smooth polytopes
having normalized volume at most 10 (Proposition 6.14). In Sect. 7 we use the clas-
sification together with existing volume bounds for simplices with a fixed number of
interior lattice points to classify all the three-dimensional lattice simplices having up
to 11 interior lattice points (Corollary 7.5). In Sect. 8, we use the classification of the
preceding section to give conjectural Ehrhart inequalities for three-dimensional lat-
tice polytopes (Conjecture 8.7). In the final Sect. 9, we look for interesting examples
contained in the database, and we observe the commonness of polytopes which are
spanning, very ample, IDP, have a unimodular cover/triangulation (see Appendix C).

2 Invitation to Point Configurations and Volume Vectors

In this section we sketch some basic concepts and results regarding point configu-
rations, triangulations and volume vectors of lattice polytopes. This material will be
used in Sect. 3 for proving Theorem 1.1. We use [27, Chap. 4] as a reference, but we
also refer to [44, Chap. 6] for details.

A point configuration is a finite set of pointsA in an affine space R
d . We say that a

point configuration A is independent if none of its points is an affine combination of
the rest, otherwise we say that A is dependent. A point configuration has corank one
if it has a unique (up to scalar multiplication) dependence relation

∑
p∈A λpp = 0.

Such dependence relation defines a partition of A into the sets

J+ := {p ∈ A : λp > 0}, J0 := {p ∈ A : λp = 0}, J− := {p ∈ A : λp < 0}.

Such partition is unique, up to switching J+ with J−. Given any point configuration
A one can consider the polytope P defined as the convex hull of the points of A, i.e.,
PA := conv(A). IfA has corank one then PA has exactly two different triangulations
in simplices having vertices on A.

Lemma 2.1 ([27, Lem.2.4.2]) If a point configuration A has corank one, then the
following are the only two triangulations of PA in simplices having vertices in A:

T+ := {C ⊂ A : J+ � C} and T− := {C ⊂ A : J− � C}.

Note that, assuming PA full-dimensional, the full-dimensional simplices in T+ and
T− are |J+| and |J−| respectively, i.e., the signature of A is the pair of numbers of
simplices of the twoways to triangulate PA discussed above. If the unique dependence
relation of a corank one point configuration A is entirely supported on A, i.e., if J0
is empty, then we say that A is a circuit. In particular every proper subset of a circuit
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is an independent point configuration. If A is a circuit the pair (J+, J−) is classically
called the Radon partition or the oriented circuit of A.

Being interested in lattice polytopes, we move our focus to point configurations
contained in the lattice Z

d . Given a full-dimensional lattice polytope P in R
d , we

denote by Vol(P) its normalized volume Vol(P) := d! vol(P), where vol(P) is the
standard Euclidean volume. In other words, we set the normalized volume of any
lattice simplex S with vertices v1, . . . , vd+1 to be

Vol(S) :=
∣
∣
∣
∣det

[
1 . . . 1
v1 . . . vd+1

]∣
∣
∣
∣ .

Then the notion of volume can be extended to arbitrary polytopes via triangulations.
The notion of volume can be extended in a finer way to polytopes, via volume vectors.
For this we adopt the notation used in [14].

Definition 2.2 Let A = {p1, . . . ,pn} in Z
d , with n ≥ d + 1. Then the volume vector

of A is defined as

(
wi1,...,id+1

)
1≤i1<...<id+1≤n ∈ Z

( n
d+1), (1)

where

(
wi1,...,id+1

) := det

[
1 . . . 1
pi1 . . . pid+1

]

.

Note that we are assuming thatA has an intrinsic order on the elements. The volume
vector is a powerful invariant, which encodes most of the data of a point configuration.

Proposition 2.3 ([14, Prop. 5]) Let A and A′ be the point configurations A =
{p1, . . . ,pn} and A′ = {p′

1, . . . ,p
′
n} in Z

d , and suppose that (with respect to a given
ordering) they have the same volume vector (1). Then:

(1) There is a unique unimodular affinemap t : R
d → R

d with t(A) = A′ (respecting
the order of points).

(2) If, moreover, gcd1≤i1<···<id+1≤n(wi1,...,id+1) = 1, then t is additionally lattice-
preserving. In particular, PA and PA′ are unimodularly equivalent lattice
polytopes.

We now restrict our interest to point configurations inZ
d having d+2 elements.We

always assume that the point configuration is full-dimensional, i.e., it affinely spans
R
d . Note that this is equivalent to assume the configuration to have corank one. In this

case, we can simplify, and modify slightly, the notation for the entries of the volume
vector. If A = {p1, . . . ,pd+2}, then we denote the volume vector of A as

wA = (w1, . . . , wd+2), where wi := (−1)i+1w1,...,î,...,d+2. (2)

The change of sign allows us to simplify the statement in the following lemma.
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Lemma 2.4 ([14, Eq. (2)]) Let A = {p1, . . . ,pd+2} be a corank one point configura-
tion. Then its volume vector wA = (w1, . . . , wd+2) sums up to zero and encodes the
unique linear relation in A:

d+2∑

i=1

wipi = 0 and
d+2∑

i=1

wi = 0.

Onemay think the equality of
∑d+2

i=1 wi = 0 in the followingway. The positivewi ’s
are the normalized volumes of the full dimensional simplices in T+, while the negative
wi ’s equal to (minus) the normalized volumes of the full-dimensional simplices in T−.
The equality follows by noting that T+ and T− are both triangulations of the same
polytope. This is clarified by the following example.

Example 2.5 Let A be the point configuration given by the columns of the matrix
below.

⎡

⎣
0 1 1 0 1
0 1 0 1 1
0 0 1 1 1

⎤

⎦ .

Then, A is the vertex set of the polytope PA depicted below.

p1 p4

p2

p3

p5

The volume vector of A is wA = (1,−1,−1,−1, 2). Note that the positive entries
(1, 2) inwA correspond exactly to the normalized volumes of the two tetrahedra in T+,
while the negative entries (−1,−1,−1) correspond exactly to (minus) the volumes
of the three tetrahedra in T−.
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In particular the entries of wA sum up to zero. We can furthermore check that they
encode the unique affine linear relation in A, indeed:

p1 − p2 − p3 − p4 + 2p5 = 0.

3 An Implementable Proof for the Lagarias–Ziegler Theorem

In this section we give an alternative algorithmic proof of Theorem 1.1. This algorithm
will be then implemented for a complete enumeration of lattice polytopes with “rea-
sonably small” volume and dimension, which is described in the following sections.

The original proof given in [44] is divided in two parts, one proving the result for
simplices, another extending it to polytopes. The “simplicial” part of the result is easily
deduced by putting the matrix of the vertices of a simplex in a normal form. This part
of the proof, as given in [44], can be easily implemented, so we can use it as the first
step of the algorithm, adding only some small improvements (see Algorithm 1). For
the convenience of the reader we quickly sketch the theoretical argument used.

Lemma 3.1 There are finitely many equivalence classes of d-dimensional lattice sim-
plices having volume lower than a constant K .

Proof Let S be the d-dimensional lattice simplex with vertices v0, v1, . . . , vd+1. We
can suppose v0 to be the origin of the lattice. In this way vol(S) = |det(M)|, where
M is the d × d matrix whose columns are the vertices v1, . . . , vd+1. We now take M
to the upper-triangular form (Hermite normal form)

M ′ :=

⎡

⎢
⎢
⎢
⎣

a1,1 a1,2 · · · a1,d
a2,2 · · · a2,d

. . .
...

ad,d

⎤

⎥
⎥
⎥
⎦

,

where on the j th column 0 ≤ ai, j < a j, j for i = 1, . . . , j , and ai, j = 0 for
i = j + 1, . . . , d. Since the simplex S′, whose vertices are the origin and the columns
of M ′, is affinely equivalent to S, Vol(S) = ∏d

i=1 ai,i . Since all the entries of M
′ are

positive, there arefinitelymanypossible values for all the entriesai,i , and consequently,
for all the entries of M ′. 	


From now on, our proof diverges from the original one. In particular, we now focus
our attention on the case of d-dimensional polytopes having d + 2 vertices. We prove
the result for this special case using the theory developed in the previous section and
then we deduce the general case as a corollary.

Proposition 3.2 There are finitely many equivalence classes of d-dimensional lattice
polytopes having d + 2 vertices and volume lower than a constant K .

Proof Let P be a lattice polytope with d + 2 vertices such that Vol(P) < K . We call
A the point configuration given by the vertices of P = PA, it has corank one. Let wA
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be the volume vector of A. Since the volume of P is bounded by K , the sum of the
positive entries of wA is at most K . Similarly, the sum of the negative entries in wA is
at least −K . In particular there are finitely many possible volume vectors that can be
the volume vector ofA. By Lemma 2.4 the previous statement means there are finitely
many possible dependence relations which can be (up to multiplication by a scalar
factor) the only dependence relation onA. This proves that, if S is any d-dimensional
lattice simplex with Vol(S) < K , then the set

{p ∈ Z
d : Vol(conv(S ∪ {p})) ≤ K }

is finite. Finally, we note that P is completely determined by the choice of d+1 affinely
independent and ordered vertices, plus the unique linear relation among its d + 2
vertices. The convex hull of d+1 affinely independent vertices of P is a d-dimensional
simplex having normalized volume strictly smaller than K . By Lemma 3.1, there are
finitely many such simplices. 	


From this we are able to deduce the Lagarias–Ziegler theorem.

Proof of Theorem 1.1 A d-dimensional lattice polytope P of volume Vol(P) ≤ K has
at most K + d vertices. One can verify this by constructing P starting with a full-
dimensional lattice simplex in P , and progressively “grow” it by adding the vertices
of P , taking the convex hull each time. At each step the volume is a positive integer
and will increase by another positive integer. Suppose the vertices of P are ordered so
that v0, . . . , vd are affinely independent. Then

P = conv

(
n⋃

i=d+2

Pi

)

,

where Pi := conv(v0, . . . , vd , vi )withd+2 ≤ i ≤ n. For each i , Pi is ad-dimensional
polytope with d + 2 vertices, while S := conv(v0, . . . , vd) is a d-dimensional
simplex. Since Vol(S) ≤ Vol(Pi ) ≤ Vol(P) ≤ K , we conclude by Lemma 3.1
and Proposition 3.2. 	


4 Implementation

In this section we describe the implementation of the results described in the previous
section. Note that both the proofs of Theorem 1.1 for simplices and for polytopes admit
a straightforward algorithmic implementation. In order to have feasible running times,
we are going to optimize the algorithms with some careful tweaking. The results of
such implementation will be described in Sect. 5.

We denote byPd
V and Sd

V the sets of d-dimensional polytopes and simplices having
normalized volume V . Note that, as usual, these sets are considered up to unimodular
equivalence. Computationally speaking, this is not a problem: each polytope can be
indeed put in a normal form, and Pd

V can be thought of as the set of these forms.
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Algorithm 1: The algorithm for the enumeration of all the elements of Sd
V

input : Sd−1
V

output: Sd
V

Sd
V ←− ∅;

for v such that v|V do
pd ←− V

v ;

for F ∈ Sd−1
V do

for p1, . . . , pd−1 ∈ [0, pd − 1]d−1 do
p ←− (p1, . . . , pd−1, pd );
S ←− conv((F × 0) ∪ p);

Sd
V ←− Sd

V ∪ {S};
end

end
end

Algorithm 1 fully enumerates all the elements of Sd
V . To speed things up, we can

“recycle” the enumeration of Sd−1
V , the case S1

V being trivial.
We now discuss the implementation for the complete enumeration of the elements

ofPd
V . We denote byPd

≤K the set of all d-dimensional lattice polytopes of normalized

volume at most K , i.e., Pd
≤K := ⋃K

V=1 Pd
V . Similarly, we set Sd

≤K := ⋃K
V=1 Sd

V .

The algorithm works as follows. The simplices of Sd
≤K are used as starting objects for

the enumeration. The possible volume vectors of point configurations of cardinality
d + 2 are then calculated and used to iteratively add new vertices to the simplex.
This is possible because the volume vector of a point configuration with d + 2 points
encodes the unique affine dependence among them (Lemma 2.4). In order to optimize
the implementation, the volume vectors have to be chosen carefully. We use the sign-
changed definition of the volume vector given in (2). We denote by Wd

K the set

Wd
K :=

⎧
⎨

⎩
(w1, . . . , wd+2) ∈ [−K , K ]d+2 :

∑

wi>0

wi = −
∑

wi<0

wi < K

⎫
⎬

⎭
∩ Z

d+2.

It contains all the possible volume vectors of point configurations of d + 2 points
whose convex hull has normalized volume at most K . Once a simplex S is fixed, we
can add new vertices to it using only the volume vectors having Vol(S) as the first
entry. To make the computation even faster one can assume that Vol(S) is, in absolute
value, the highest entry in the volume vector. This means that each polytope would be
built starting only with the biggest simplex it contains. Using the volume vectors to
determine the growing step of the classification algorithm also provides a handyway to
dealwith symmetries.Algorithm2 requiresSd

≤K andWd
K as inputs, and returnsPd

≤K as

output. Sd
≤K is obtained by iterating Algorithm 1 for values of V ranging from 1 to K ,

while Wd
K can be trivially computed. Given a simplex S = conv(v0, . . . , vd) ∈ Sd

≤K

and a volume vectorw = (w1, . . . , wd+2) ∈ Wd
K such thatwd+2 = Vol(S), we define
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pS,w to be the point of R
d such that w is the volume vector of the point configuration

{v0, . . . , vd ,pS,w}. Thanks to Lemma 2.4, pS,w is uniquely determined, indeed

pS,w = −∑d
i=0 wi+1vi
Vol(S)

.

Note that, in general, pS,w is not a lattice point. At every iteration of Algorithm 2, all
the points pS,w that are lattice points are stored in a temporary variableXS . After that,
the elements of XS are used to “grow” S in all the possible ways. This is done in the
second part of the main loop. A variable called s is used to count how many iterations
the growing process needs. One can think of s as the variable counting the size of the
lattice polytopes, i.e., their number of lattice points. In particular, at every iteration
over s, only the lattice polytopes of size s will be processed and “grown” by adding one
lattice point. Consider that this process ramifies and becomes slower, indeed starting
with a single simplex, adding different points obviously generates different polytopes.
In order to minimize the number of iterations we use some Ehrhart theory, which
guarantees a simple structure for the polytopes for which the number of lattice points
is maximal with respect to the volume. This is done via Lemma 4.1. In order to state
it correctly, we need some definitions.

Given a d-dimensional lattice polytope P ⊂ R
d , we define the lattice pyramid

Pyr(P) as the (d + 1)-dimensional polytope

Pyr(P) := conv
(
P × {0} ∪ {(0, . . . , 0, 1)}) ⊂ R

d+1.

Moreover, we say that a d-dimensional lattice polytope P is an exceptional simplex if
P can be obtained via the (d − 2)-fold iterations of the lattice pyramid construction
over the second dilation of a unimodular simplex, that is,

P ∼= Pyr
(
. . . (Pyr(conv((0, 0), (2, 0), (0, 2)))) . . .

)
.

We say that a d-dimensional lattice polytope P ⊆ R
d is a Lawrence prismwith heights

a0, . . . , ad−1 if there exist nonnegative integers a0, . . . , ad−1 such that

P ∼= conv({0, a0ed , e1, e1 + a1ed , . . . , ed−1, ed−1 + ad−1ed}),

where e1, . . . , ed denote the standard basis of R
d .

Lemma 4.1 Let P be a d-dimensional lattice polytope. Then |P ∩ Z
d | ≤ d +Vol(P),

with equality if and only if P is either an exceptional simplex or a Lawrence prism.

Proof The first part of the lemma is also known as Blichfeldt’s Theorem [17] (but
it can be easily deduced also with some basic Ehrhart theory, see Proposition 8.1).
A polytope for which the equality |P ∩ Z

d | = d + Vol(P) is attained, must have
h∗-polynomial h∗

P (t) = 1 + (Vol(P) − 1)t , which has degree one. The rest of the
statement is exactly the characterization of lattice polytopes having h∗-polynomial of
degree one by Batyrev–Nill [11]. 	
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Thanks to this lemma, we know that the variable s can range between |S ∩ Z
d | and

K+d−1. At every iteration over s the algorithm selects all the lattice polytopes of size
s, grows them into larger ones, which are then stored into a set QS . The union of all
theQS for all the simplices S ∈ Sd

≤K will be the complete list of d-dimensional lattice
polytopes having volume at most K , except possibly some Lawrence prisms. Those
are easy to classify and can be added “manually” as the last step of the algorithm.

Algorithm 2: The algorithm for the complete enumeration of the elements of
Pd

≤K

input : Sd≤K , Wd
K

output: Pd≤K

Pd≤K ←− Sd≤K ;

for S ∈ Sd≤K do
XS ←− ∅;
QS ←− {S};
for w = (w1, . . . , wd+2) ∈ Wd

K such that wd+2 = Vol(S) do
if pS,w ∈ Z

d then
XS ←− XS ∪ {pS,w};

end
end
for s ∈ [|S ∩ Z

d |, K + d − 1] do
for P ∈ QS such that |P ∩ Z

d | = s do
for p ∈ XS do

Q ←− conv(P ∪ {p});
if Vol(Q) ≤ K then

QS ←− QS ∪ {Q};
end

end
end

end
Pd≤K ←− Pd≤K ∪ QS ;

end
Pd≤K ←− Pd≤K ∪ {P : Vol(P) ≤ K and P is Lawrence prism};

Beside the optimizations discussed in this section, other small improvements above
have been added to the actual implementations of Algorithms 1 and 2. Such expedients
are obvious verifications, such as not trying to add points to lattice polytopes of volume
K or not trying to add the same point twice, and are not reported in the pseudocode,
in order to keep it essential.

5 Results and Comparison with Existing Classifications

In this section we discuss the results of the classification, and compare it with other
existing ones. Algorithms 1 and 2 have been implemented in Magma [20] on Intel
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Core i7-2600 CPU 3.40GHz. The total running time for all the classifications was
roughly one year in total.

Note that the implementation can be easily parallelized and run on large clusters,
but this was beyond the resources of the author and the aims of the paper. The imple-
mentation has therefore been performed in low dimensions (up to six) and finding
a compromise between a large enough volume and a fast enough running time. The
classifications are therefore far from any kind of computational limit, and, on request,
they can easily be pushed forward.

The two-dimensional case of the classification is not of particular interest, as lattice
polygons up to 30 interior lattice points have been classified in [26] and thehollow ones,
i.e., the ones without interior lattice points, can be easily described. Indeed, a hollow
lattice polygon can either be the convex hull of two lattice segments in two consecutive
lines, or the exceptional simplex. For completeness, and for making comparisons, this
case has been computed anyway, but the computation has been stopped after a few
hours.

Specifically, we fully enumerate the elements of S≤K and Pd
≤K for the following

couples d and K :

• d = 2 and K = 50,
• d = 3 and K = 36,
• d = 4 and K = 24,
• d = 5 and K = 20,
• d = 6 and K = 16.

Having in mind applications to Ehrhart theory, the enumeration of S3≤K has been
performed for K = 1000 and discussed in Sect. 7.

We report here the outcome of the implementation of Algorithm 2, while applica-
tions and implications are discussed in the following sections.

Theorem 5.1 Up to unimodular equivalence there are

• 408 788 two-dimensional lattice polytopes having volume at most 50;
• 6 064 034 three-dimensional lattice polytopes having volume at most 36;
• 989 694 four-dimensional lattice polytopes having volume at most 24;
• 433 273 five-dimensional lattice polytopes having volume at most 20;
• 117 084 six-dimensional lattice polytopes having volume at most 16.

Their distribution according to their volume, can be read from the tables inAppendixC.

The resulting database is available at https://github.com/gabrieleballetti/small-
lattice-polytopes. An immediate application of a classification result such as this one,
is to double check existing classifications. For example, Theorem 5.1 has already
been used to correct mistakes in a recent classification result by Hibi and Tsuchiya. In
[38] they give a characterization for all the lattice polytopes of any dimension, hav-
ing normalized volume lower than or equal to four. By comparing their results with
the classification above it turned out that some polytopes in dimension four and five
were missing from their lists. The current version has been corrected with the missing
polytopes.

In dimension three our classification has large intersections with several existing
ones. In particular we checked that it agrees with:
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(1) the classification of three-dimensional lattice polytopes with one interior lattice
point [40];

(2) the classification of three-dimensional lattice polytopes with two interior lattice
points [6];

(3) the classification of three-dimensional lattice polytopes with width larger than
one and having up to eleven lattice points [16].

Additionally, our classification fully contains:

(4) the 12 hollow three-dimensional lattice polytopes which are maximal up to inclu-
sion classified in [2,4];

(5) the classification of three-dimensional smooth polytopes (see Sect. 6 for a defi-
nition), having up to 16 lattice points, which have been classified in several steps
[18,45,47].

The fact that our classification contains the 12 hollow three-dimensional lattice poly-
topes of [2,4] which are maximal up to inclusion is not surprising. On the contrary, the
classification of three-dimensional polytopes was pushed up to normalized volume
36 in order to compare the two classifications. Indeed the largest hollow maximal
three-dimensional polytope has volume 36 (this is interesting on its own, as it seems
to suggest a “hollow case” of Conjecture 7.2). We remark that our classification does
not give an independent proof of this fact. On the other hand, it is remarkable that
Algorithm 2 seems to be faster than the algorithms used to classify smooth polytopes
in [18,45,47].

6 Smooth Polytopes

A natural property in the study of lattice polytopes (especially when it is motivated
by toric geometry) is the smoothness property. A lattice polytope P in R

d is called
smooth if it is simple and if its primitive edge directions at every vertex form a basis of
Z
d . Sometimes, smooth polytopes are also calledDelzant. The word “smooth” comes

in fact from the toric varieties realm: a lattice polytope is smooth if and only if the
associated projective toric variety is smooth (see [31, Sect. 2.1]).

The most important open problem regarding smooth polytopes is the so called
Oda’s conjecture, for which we need to introduce the notion of Integer Decomposition
Property. We say that a d-dimensional lattice polytope P is IDP, or has the Integer
Decomposition Property, if for every integer n ≥ 1 and every lattice point p ∈ nP∩Z

d

there are lattice points p1, . . . ,pn ∈ P ∩ Z
d such that p = p1 + · · · + pn . Polytopes

having this property are often referred to as integrally closed, but one should not
confuse themwith normal polytopes, which are those which are IDP when considered
as lattice polytopes with respect to the lattice affinely spanned by their lattice points.
Being IDP is also a very natural property (one can think of it as a discrete counterpart
of convexity), which is of interest in algebraic geometry, combinatorics, commutative
algebra and optimization.

In the nineties Oda [49] formulated several problems onMinkowski sums of lattice
polytopes. One of them is nowadays known in the following form asOda’s Conjecture.
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Conjecture 6.1 (Oda’s conjecture) Every smooth lattice polytope is IDP.

This seemingly innocuous statement is actually open even in low dimensions, and
in many stronger forms.

In [18] Bogart et al. prove that for every nonnegative integers d and n there are,
modulo unimodular equivalence, only finitely many d-dimensional smooth polytopes
with n lattice points. This can be seen as evidence for the validity of Conjecture 6.1, as
it would follow from it as a corollary (it is indeed easy to verify that there are finitely
many IDP polytopes once dimension and number of lattice points are fixed). As an
application of their result they classify smooth three-dimensional polytopes having
up to 12 lattice points (see also [45]). This was later extended by Lundman [47] who
classified all the lattice polytopes having up to 16 lattice points.

Theorem 6.2 ([47, Thm. 1]) Up to unimodular equivalence there exist exactly 103
smooth three-dimensional lattice polytopes P ⊆ R

3 such that |P ∩ Z
3| ≤ 16.

The largest polytope in Lundman’s classification has normalized volume 23. As
a consequence, the following result enlarges the current census of “small” three-
dimensional polytopes.

Theorem 6.3 Up to unimodular equivalence there exist exactly 1 588 smooth three-
dimensional lattice polytopes P ⊆ R

3 such that Vol(P) ≤ 36. The 103 polytopes
having at most 16 lattice points are a subset of them. The distribution of smooth
three-dimensional polytopes by their volume is summarized in Table 3.

This highlights why Algorithm 2 may seem more efficient than the ones used
to classify smooth polytopes in [18,45,47], although it is not shaped to deal with
smooth polytopes. Moreover, Algorithm 2 can be freely used in higher dimensions.
In particular, we can easily obtain results analogous to Theorem 6.3 up to dimension
six.

Theorem 6.4 Up to unimodular equivalence there are

• 1 530 two-dimensional smooth polytopes having normalized volume at most 50;
• 1 588 three-dimensional smooth polytopes having normalized volume at most 36;
• 738 four-dimensional smooth polytopes having normalized volume at most 24;
• 412 five-dimensional smooth polytopes having normalized volume at most 20;
• 127 six-dimensional smooth polytopes having normalized volume at most 16.

The distribution of the classified smooth polytopes by their volume is summarized in
Appendix A.

Note that, in dimension two, volume and number of lattice points are strictly cor-
related. It is easy to prove that, for a two-dimensional polytope P ,

|P ∩ Z
2| − 2 ≤ Vol(P) ≤ 2|P ∩ Z

2| − 5.

One can see it as a consequence of some basic results of Ehrhart theory, developed in
the following section. As a consequence, the classification of two-dimensional smooth
polytopes contains all those having up to 27 lattice points. This extends [18, Thm. 32].

123



1100 Discrete & Computational Geometry (2021) 65:1087–1122

Corollary 6.5 Up to unimodular equivalence there are exactly 458 two-dimensional
smooth polytopes having up to 27 lattice points.

Conjecture 6.1 can now be easily verified on the classified polytopes.

Theorem 6.6 Conjecture 6.1 holds for all the smooth polytopes of Theorem 6.4.

By observing Tables 2, 3, 4, 5 and 6 in Appendix A, one can notice that, in each
dimension d ≤ 6, there are only two smooth polytopes of normalized volume lower
than or equal to d. They are the unimodular simplex �d , defined as the convex hull of
the origin and the standard basis, which has volume one, and the prism �d−1 × �1,
which has volume d. We now verify that this is always the case, for all d. This is
indeed a consequence of the combinatorics of simple polytopes.

We are going to use two classical results for simple polytopes. The first is Barnette’s
Lower Bound Theorem for simple polytopes.

Theorem 6.7 ([8, Thms. 1–2]) Let P be a d-dimensional simple polytope. Denote by
f0 and fd−1 the number of vertices and facets of P, respectively. Then,

f0 ≥ (d − 1) fd−1 − (d + 1)(d − 2).

If d ≥ 4, the equality can hold only if P has been obtained from a simplex via
successive truncations of vertices.

After that we are going to use a description of simple polytopes with d + 2 facets,
which can be found (in a dual version for simplicial polytopes) in Grünbaum’s text-
book.

Theorem 6.8 ([32, Thm. 6.1.1]) There exist �d/2� combinatorial types of d-
dimensional simple polytopes with d + 2 facets. These are exactly �d−i × �i for
i = 1, . . . , �d/2�.

As a corollary of this result, we describe the combinatorics of simple lattice poly-
topes having few lattice points.

Lemma 6.9 Let P be a simple d-dimensional lattice polytope having at most 3d − 4
lattice points. Then P is either combinatorially equivalent to the simplex �d , or to
the prism �1 × �d−1.

Proof P has at most 3d − 4 vertices. By plugging this number into the inequality of
Theorem 6.7, we get an upper bound for the number of facets fd−1 that P can have:

fd−1 ≤ d + 2.

Since fd−1 = d+1 if and only if P is a simplex,we can focus on the case fd−1 = d+2.
By Theorem 6.8, P is combinatorially equivalent to the product �i × �d−i , for some
1 ≤ i ≤ �d/2�. In particular, P has f0 = (i + 1)(d − i + 1) vertices. Fixing d, this
quantity is growing in i (for i ≤ d/2), so the inequality

f0 = (i + 1)(d − i + 1) ≤ 3d − 4

is satisfied if and only if i = 1. 	
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Now, by adding the constraint of being a smooth polytope, we can get a simple
description of smooth polytopes having few lattice points.

Theorem 6.10 Let P be a smooth d-dimensional lattice polytope having at most 3d−4
lattice points. Then P is either the unimodular simplex �d or a Lawrence prism with
heights a0, . . . , ad−1 with ai ≥ 1 for all i , and

∑d−1
i=0 ai = 2d − 4.

Proof If P is a simplex, the statement is trivial. By Lemma 6.9, P is combinatorially
equivalent to �1 × �d−1, in particular P has two facets F and F ′ which are (d − 1)-
dimensional simplices. Since faces of smooth polytopes are smooth, F and F ′ are
dilations of �d−1. The t th dilation of a (d − 1)-dimensional simplex has

(d+t−1
d−1

)

lattice points (see e.g. [13, Thm. 2.2]), which is lower than or equal to 3d − 4 only for
t = 1. This proves that both F and F ′ are unimodularly equivalent to �d−1. Since P
is smooth we can assume that

F = �d−1 = conv(0, e1, . . . , ed−1),

and that ed is a lattice point of P . Let E0, . . . , Ed−1 be the edges of P that are neither
in F nor in F ′, labeled so that ei is a vertex of Ei for i = 1, . . . , d − 1, while 0 and
ed are in E0 (ed might be not a vertex). Let moreover pi be the first lattice point met
while traveling from ei along Ei , for i = 0, . . . , d −1, so that p0 = ed . The statement
follows by proving that

conv(0, e1, . . . , ed−1,p0, . . . ,pd−1) = F × �1.

By the smoothness assumption, the simplex conv(F ∪pi ) is unimodular for all i . This
proves that all the pi ’s are at height one, i.e.,

F̃ := conv(p0, . . . ,pd−1) = P ∩ {xd = 1}.

The combinatorics of P implies that F̃ equals t F × 1 for a dilation factor t , but by the
same argument as above, t = 1. 	


Having a Lawrence prism structure is very restricting. Lattice points and volume of
a Lawrence prism P are linked by the formula |P∩Z

d | = d+Vol(P) (see Lemma4.1).

Corollary 6.11 In dimension d the only smooth polytopes having normalized volume
at most d are the unimodular simplex �d and the prism �d−1 × [0, 1]. They have
normalized volume 1 and d, respectively.

Lawrence prisms have a very restrictive geometry. It is easy to show (for example
using pushing or pulling triangulations) that they have a quadratic triangulation, i.e.,
a triangulation which is regular unimodular and flag. We refer to [33] for definitions
and terminology about triangulations. The existence of quadratic triangulations for a
smooth polytope is a central question in toric geometry as it implies that the associated
projective toric variety has a defining ideal generated by quadrics (see [57]). This
problem and several of its variations are sometimes known as Bögvad Conjecture.
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Corollary 6.12 Let P be a d-dimensional smooth polytope satisfying one of the fol-
lowing equivalent conditions:

• |P ∩ Z
d | ≤ 3d − 4,

• Vol(P) ≤ 2d − 4.

Then P has a quadratic triangulation. In particular it is IDP.

Another consequence is the following finiteness result, independent of the dimen-
sion.

Corollary 6.13 There are finitely many smooth polytopes of normalized volume V , for
any fixed integer V > 1.

By putting together this and our classification, we can easily classify all smooth
polytopes having normalized volume up to 10.

Proposition 6.14 Let P be a smooth polytope having normalized volume at most 10.
Then P is either a Lawrence prism, or one of the following 14 polytopes:

(2.a) conv(0, 2e1, 2e2),
(2.b) conv(0, 3e1, 3e2),
(2.c) conv(0, 2e1, 2e2, 2e1 + 2e2),
(2.d) conv(0, e1, e2,−2e1 + e2,−4e1 + e2),
(2.e) conv(0, e1, e2, 3e1 + 2e2, 2e1 + 3e2, 3e1 + 3e2),
(2.f) conv(0, e1, e2, 2e1 + e2, e1 + 2e2, 2e1 + 2e2),
(2.g) conv(0, e1, e2, 3e1 + e2, e1 + 2e2, 4e1 + 2e2),
(2.h) conv(0, e1, e1 + 2e2,−2e1 + 2e2),
(3.a) conv(0, 3e1, 3e2, 3e3),
(3.b) conv(0, e1, e2, e1 + e2, e3, e1 + e3,−2e2 + e3, e1 − 2e2 + e3),
(3.c) conv(0, e1, e2, e3,−2e2 + e3, 2e1 − 2e2 + e3),
(3.d) conv(0, e1, e2, e1 + e2, e3, e1 + e3, e2 + e3, e1 + e2 + e3),
(4.a) conv(0, e1, e2, e3, e4, e1 + e3, e1 + e4, e2 + e3, e2 + e4),
(5.a) conv(0, e1, e2, e3, e4, e5, e1+e4, e1+e5, e2+e4, e2+e5, e3+e4, e3+e5).

7 Classifications of 3-Simplices with Few Interior Lattice Points

In this section we show how the classification of polytopes (in particular simplices)
with small volume can be used to enumerate all those having a fixed small number of
interior lattice points.

It is natural to wonder how large the volume of a d-dimensional polytope P can be
when we fix the number of its interior lattice points to be a nonnegative integer k. In
case k = 0, i.e., when P is hollow, the answer is clear. One can indeed fit an arbitrarily
large d-dimensional hollow polytope in the “slab” [0, 1] × R

d−1. But in case k �= 0
the answer is different: Hensley [35] proved that if P is not hollow, then its volume is
bounded by a constant depending only on the dimension d and the number of interior
lattice points k. In dimension two this was already known, thanks to a sharp bound
proven by Scott in 1976 (see Theorem 8.3 in the next section). Hensley’s bound has
been improved first by Lagarias–Ziegler [44], later by Pikhurko [50], who gave the
best currently known bound.
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Theorem 7.1 Let P be ad-dimensional lattice polytope having k interior lattice points,
k ≥ 1. Then

Vol(P) ≤ d! · (8d)d · 15d·22d+1 · k.

Although it grows linearly with k (which is the conjectured behavior, see Conjec-
ture 7.2), the bound is expected to be very rough. The current largest known volume
of a d-dimensional lattice polytope having k interior points, k ≥ 1, is given by the
ZPW simplex defined as

Sdk := conv
(
0, s1e1, . . . , sd−1ed−1, (k + 1)(sd − 1)ed

)
(3)

first described by Zaks–Perles–Wills [60] (hence the name1). Here (si )i∈Z≥1 is the
Sylvester sequence, defined by the following recursion:

s1 = 2, si = s1 · · · si−1 + 1.

It has been conjectured that, once d and k are fixed, the ZPW simplex Sdk maximizes
the volume among all k-point d-dimensional polytopes. This conjecture has been
explicitly stated in [6], but has been already hinted at some of the previously cited
works [35,44,60].

Conjecture 7.2 ([6, Conj. 1.5]) Fix d ≥ 3 and k ≥ 1. A d-dimensional lattice polytope
P having k interior lattice points satisfies

Vol(P) ≤ (k + 1)(sd − 1)2. (4)

With the exception of the case when d = 3, k = 1, this inequality is an equality if and
only if P = Sdk .

The case when d = 3, k = 1 has been addressed in [40]: in addition to the ZPW
simplex S31 , the maximum normalized volume of 72 is also attained by the simplex

conv((0, 0, 0), (2, 0, 0), (0, 6, 0), (0, 0, 6)).

In recent years, Conjecture 7.2 has been proven for several families of lattice polytopes.
The explicit classifications [6,40] settle the cases d = 3 and k ∈ {1, 2}. Averkov–
Krümpelmann–Nill [3] proved it for simplices with one interior point, while Balletti–
Kasprzyk–Nill [7] for reflexive polytopes. RecentlyAverkov [1] proved it for simplices
having a facet with one lattice point in its relative interior. For all these families the
bound for the volume is sharp as they include the ZPW simplices.

We now use our classification to enumerate all the three-dimensional simplices
having few interior lattice points, in this way we will be able to verify Conjecture 7.2

1 In a personal communication, J.M.Wills explained that the unusual order of the authors of a two page
long paper was agreed by the three in order to allow J.Zaks to be the first author of a coauthored paper, at
least once.
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Table 1 Numbers of three-dimensional polytopes and simplices having few interior lattice points

Number of interior points Number of simplices Number of polytopes

1 225 674 688

2 471 22 673 449

3 741

4 1 206

5 1 338

6 2 063

7 2 191

8 3 007

9 3 257

10 4 216

11 4 087

The numbers of polytopes are from [6,40]

in these additional cases. The idea is to use volume bounds to make sure that our
classification contains all lattice polytopes having small number of interior points.
Note that using the general bounds, even the best known ones (Theorem 7.1) would
be futile: one would have to classify all the simplices having up to normalized volume
3.4×10456, in order to be sure that the classification contains all the three-dimensional
polytopes with one interior lattice point. Luckily some better bounds are known in
special cases.

Theorem 7.3 ([50]) Let S be a three-dimensional lattice simplex having k interior
lattice points, with k ≥ 1. Then

Vol(S) ≤ 29791

352
k ≤ 85k.

We now use Algorithm 1 to classify all the elements in S3≤1000.

Proposition 7.4 There are 28 015 923 three-dimensional simplices having normalized
volume at most 1 000.

As an immediate corollary, we are able to fully enumerate the three-dimensional
simplices having up to 11 interior lattice points.

Corollary 7.5 All the 3-simplices having up to 11 interior lattice points are in S3≤1000.
Their distribution by number of interior lattice points is summarized in Table 1.

Note that Corollary 7.5 can be seen as an extension of existing classifications of
three-dimensional simplices performed up to two interior lattice points. The 225 three-
dimensional simplices with one interior lattice point have been enumerated by Borisov
and Borisov [19, p. 278], while the 471 with two interior lattice points are classified
in [6, Thm. 3.4].

Conjecture 7.2 can be now verified on the classified objects. In a similar way, we
are going to verify that these satisfy a conjecture known as the Duong Conjecture [29,
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Conj. 1–2]. It concerns a special class of three-dimensional lattice simplices. We call
a lattice polytope clean, if the only lattice points on its boundary are the vertices.

Conjecture 7.6 (Duong conjecture) Let S be a three-dimensional clean simplex having
k interior lattice points, with k ≥ 1. Then

Vol(S) ≤ 12k + 8,

where the equality is attained if and only if S is the Duong simplex, defined as

D3
k := conv((0, 0, 0), (1, 0, 0), (0, 1, 0), (3, 6k + 1, 12k + 8)).

Theorem 7.7 Conjectures 7.2 and 7.6 hold for three-dimensional simplices having up
to 11 interior lattice points.

8 Conjectural Ehrhart Inequalities in Dimension Three

In this section we use the classification of three-dimensional polytopes to estimate
the behavior of their h∗-polynomials. We begin with a quick introduction to Ehrhart
theory and refer the more interested reader to Beck and Robins’ book [13].

Given a d-dimensional lattice polytope P in R
d , one can associate a function

t �→ |t P ∩ Z
d |, which counts the number of lattice points in t P , the t th dilation

of P , where t is a positive integer. Ehrhart [30] proved that this function behaves
polynomially, i.e., that there exists a polynomial ehrP , which we call the Ehrhart
polynomial of P , satisfying ehrP (t) = |t P ∩ Z

d | for t ≥ 1.
Its generating function is the rational function

1 +
∑

t≥1

ehrP (t)zt =
∑

i≥0 h
∗
i z

i

(1 − z)d+1 ,

where h∗
i = 0 for any i ≥ d+1.We call the polynomial h∗

P (z) = h∗
0+h∗

1z+· · ·+h∗
s z

s

the h∗-polynomial of P (sometimes also the δ-polynomial), and we set the degree of
P to be s, the degree of its h∗-polynomial. In the following we will often identify the
h∗-polynomial with the vector of its coefficients (h∗

0, h
∗
1, . . . , h

∗
d), which is called the

h∗-vector (or δ-vector) of P . Some properties of the h∗-polynomial are well known,
and listed in the following proposition.

Proposition 8.1 The coefficients h∗
0, h

∗
1, . . . , h

∗
d of the h∗-polynomial of P are non-

negative integers satisfying the following conditions:

(1) h∗
0 = 1;

(2) h∗
1 = |P ∩ Z

d | − d − 1;
(3) h∗

d = |P◦ ∩ Z
d |;

(4)
∑d

i=0 h
∗
i = Vol(P).
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The nonnegativity part of the statement above is a result of Stanley [53], while the
rest can be derived from Ehrhart’s original approach. Combinatorial interpretations
for the other coefficients are possible, but they are not as natural as the ones above.
One of the biggest challenges in Ehrhart theory is to characterize the h∗-vectors of
lattice polytopes.

Question 8.2 For each d, which vectors (h∗
0, h

∗
1, . . . , h

∗
d) are h∗-vectors of some d-

dimensional lattice polytope?

This question is broadly open even in dimension three. In two dimensions the
answer to Question 8.2 was first given by Scott [52].

Theorem 8.3 The vector with integer entries (1, h∗
1, h

∗
2) is the h∗-vector of a two-

dimensional lattice polytope if and only if one of the following conditions holds:

(1) h∗
2 = 0;

(2) 0 < h∗
2 ≤ h∗

1 ≤ 3h∗
2 + 3;

(3) (1, h∗
1, h

∗
2) = (1, 7, 1).

The last condition is fulfilled only by the exceptional triangle

2�2 = conv(0, 2e1, 2e2).

A generalized version of Theorem 8.3 has been proven in each dimension and for
degree two polytopes in [58]. This has been generalized further to every degree in [5],
showing that there are inequalities for the h∗-coefficients that are universal, i.e., not
depending on dimension and degree.

Some relations among the coefficients of an h∗-polynomial are known, and sum-
marized in the following proposition. The first one can be deduced directly from
Proposition 8.1, the others come from works by Stanley [54] and Hibi [36].

Proposition 8.4 Let P be a d-dimensional lattice polytope of degree s with its h∗-
vector h∗(P) = (h∗

0, . . . , h
∗
d). Then:

(1) h∗
d ≤ h∗

1;
(2) h∗

d−1 + · · · + h∗
d−i ≤ h∗

2 + · · · + h∗
i+1, for i = 1, . . . , d − 1;

(3) h∗
0 + · · · + hi ≤ hs + · · · + hs−i , for i = 0, 1, . . . , s;

(4) if h∗
d > 0, then h∗

1 ≤ h∗
i , for i = 1, 2, . . . , d − 1.

Recently Stapledon [55,56] proved existence of infinite new classes of inequalities,
giving explicit formulas in small dimensions.

In dimension three, the known inequalities are far from giving a complete picture of
all possible h∗-vectors. Nevertheless this case has been proven provided h∗

3 = 0, i.e.,
for hollow lattice polytopes. In this case a polytope has degree two, and Treutlein’s
result [58] gives a necessary condition, while Henk–Tagami [34] prove the sufficiency
part.

Theorem 8.5 ([58, Thm. 2], [34, Prop. 2.10]) A vector (1, h∗
1, h

∗
2, 0) with integer

entries is the h∗-vector of a three-dimensional lattice polytope if and only if one
of the following conditions holds:
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(1) h∗
2 = 0;

(2) 0 ≤ h∗
1 ≤ 3h∗

2 + 3;
(3) (1, h∗

1, h
∗
2, 0) = (1, 7, 1, 0).

The last condition is satisfied only by the exceptional simplex

conv(0, 2e1, 2e2, e3).

In the following we use the classification of three-dimensional lattice polytopes to
conjecture a set of sharp inequalities describing the behavior of three-dimensional
polytopes with interior points, i.e., the polytopes whose Ehrhart coefficient h∗

3 is
nonzero. An immediate way to do this is by plotting the h∗-vectors of classified
polytopes (see Appendix B), and try to understand which inequalities seem to be
satisfied.

In what follows, we frequently need to calculate the h∗-vector of families of lattice
simplices depending on a parameter. The following lemma is an example. Its proof
outlines how these kind of results can be proven, and similar results will be given
without proof in the rest of the section.

Lemma 8.6 The ZPW simplex

S3k := conv((0, 0, 0), (2, 0, 0), (0, 3, 0), (0, 0, 6k + 6)),

has the h∗-vector (1, 16k + 19, 19k + 16, k).

Proof From Proposition 8.1, we can write the h∗-vector of any three-dimensional
lattice polytope P in terms of number of lattice points, number of interior lattice
points and volume as

(
1, |P ∩ Z

d | − 4,Vol(P) − |P ∩ Z
d | − |P◦ ∩ Z

3| + 3, |P◦ ∩ Z
3|).

The normalized volume Vol(S3k ) of S
3
k can be calculated trivially and equals 36(k+1).

For the number of interior lattice point we project S3k along e3, and we deduce that they
have to be all of the form (1, 1, a) for a ≥ 1. Note that (1, 1, k+1) can be written as a
convex combination of the vertices (2, 0, 0), (0, 3, 0) and (0, 0, 6k + 6) with weights
1
2 ,

1
3 ,

1
6 , respectively, in particular it is on the boundary of S3k . Therefore the interior

points are all those of the form (1, 1, a), with 1 ≤ a ≤ k, and there are exactly k
of them. With a similar (and easier) argument, one can count the lattice points in the
relative interior of lower-dimensional faces of S3k . By summing everything up, we get
|P ∩ Z

d | = 16k + 23, and hence the claim follows. 	

Conjecture 8.7 Let P be a three-dimensional lattice polytope having at least one inte-
rior lattice point. Then its h∗-vector (1, h∗

1, h
∗
2, h

∗
3) satisfies the following inequalities.

(1) h∗
3 ≤ h∗

1,
(2) h∗

1 ≤ h∗
2,

(3) h∗
2 ≤ 19h∗

3 + 16,
(4) h∗

2 − h∗
1 ≤ 9h∗

3 + 9,
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(5) 5h∗
3h

∗
1 + 4h∗

1 + 4 ≤ 4h∗
3
2 + 4h∗

3h
∗
2 + 5h∗

2.

Moreover, the fourth inequality holds in the stronger form 2

(4*) h∗
2 − h∗

1 ≤ 9h∗
3 + 7,

unless P is one of the following exceptional cases (listed together with their
h∗-vectors):
(i) conv((0, 0, 0), (1, 0, 0), (0, 1, 0), (2, 19, 25)), (1, 3, 20, 1)
(ii) conv((0, 0, 0), (1, 0, 0), (0, 1, 0), (3, 19, 28)), (1, 4, 22, 1)
(iii) conv((0, 0, 0), (1, 0, 0), (0, 1, 0), (3, 13, 19), (1,−2,−3)), (1, 5, 22, 1)
(iv) conv((0, 0, 0), (1, 0, 0), (0, 1, 0), (4, 7, 11), (−5,−7,−15)), (1, 7, 24, 1)
(v) conv((0, 0, 0), (1, 0, 0), (0, 1, 0), (2, 2, 3), (−21,−8,−25)), (1, 11, 28, 1)
(vi) conv((0, 0, 0), (1, 0, 0), (0, 1, 0), (5, 17, 42)), (1, 11, 29, 1)
(vii) conv((0, 0, 0), (1, 0, 0), (0, 1, 0), (5, 7, 17), (1,−2,−5)), (1, 12, 29, 1)
(viii) conv((0, 0, 0), (1, 0, 0), (0, 1, 0), (7, 2, 9), (−7,−3,−15)), (1, 13, 30, 1)
(ix) conv((0, 0, 0), (1, 0, 0), (0, 1, 0), (0, 0, 1), (5, 42,−25)), (1, 14, 31, 1)
(x) conv((0, 0, 0), (1, 0, 0), (0, 1, 0), (5, 23, 45)), (1, 8, 34, 2)
(xi) conv((0, 0, 0), (1, 0, 0), (0, 1, 0), (3k + 3, 9k + 8, 18k + 15)),

(1, 4k+3, 13k+11, k)
(xii) conv((0, 0, 0), (1, 0, 0), (0, 1, 0), (3, 12k+8, 18k+15)), (1, 4k+3, 13k+11, k)

where, in the last two cases, k ∈ Z≥1. Inequalities (3) and (5) both become equalities
if and only if, for some k ≥ 1, P is one of the ZPW simplices

S3k := conv((0, 0, 0), (2, 0, 0), (0, 3, 0), (0, 0, 6k + 6)),

having the h∗-vector (1, 16k+19, 19k+16, k), or the special “almost-ZPW” simplex

S̃31 := conv((0, 0, 0), (2, 0, 0), (0, 6, 0), (0, 0, 6)),

having the h∗-vector (1, 35, 35, 1).
Inequalities (1) and (4*) become equalities if and only if, for some k ≥ 1, P is one

of the Duong simplices

D3
k := conv((0, 0, 0), (1, 0, 0), (0, 1, 0), (3, 6k + 1, 12k + 8))

having the h∗-vector (1, k, 10k + 7, k).

Inequalities (1) and (2) of Conjecture 8.7 are already known to be true, as they
are a consequence of Proposition 8.4. Note that Conjecture 8.7 generalizes the three-
dimensional case of Conjecture 7.2, for the maximal volume of polytopes having
interior lattice points, andConjecture 7.6 (DuongConjecture).Moreover, it generalizes
[6, Conj. 6.1], on the maximal h∗-coefficients of lattice polytopes with interior lattice
points.

2 This inequality was also conjectured by Mónica Blanco and Lukas Katthän (private communication).
They expressed it in an equivalent Pick-like form Vol(P) ≤ 2b + 12i where b and i are the number of
lattice points of P on its boundary and in its interior respectively.
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Note that inequality (5) of Conjecture 8.7 is non-linear. However, fixing h∗
3 to be

larger than one, the inequalities are linear and define a pentagon (see Fig. 1). In the
special case when h∗

3 = 1 equalities (2) and (5) coincide. We now give a vertex
representation of such a pentagon.

Proposition 8.8 For each h∗
3 ∈ Z>1, inequalities (1), (2), (3), (4*), (5) define a pen-

tagon in R
4 with vertices

v1 := (1, h∗
3, h

∗
3, h

∗
3),

v2 := (1, 4h∗
3 + 4, 4h∗

3 + 4, h∗
3),

v3 := (1, 16h∗
3 + 19, 19h∗

3 + 16, h∗
3),

v4 := (1, 10h∗
3 + 9, 19h∗

3 + 16, h∗
3),

v5 := (1, h∗
3, 10h

∗
3 + 7, h∗

3).

Moreover,

• v1 is realized as the h∗-vector of the polytope

conv((0, 0, 0), (1, 0, 0), (0, 1, 0), (3, 3h∗
3, 3h

∗
3 + 1)),

• v2 is realized as the h∗-vector of the polytope

conv((0, 0, 0), (1, 0, 0), (2, 3, 0), (2, 3, 3 + 3h∗
3)),

• v3 is realized as the h∗-vector of the ZPW simplex S3h∗
3
,

• v5 realized as the h∗-vector of the Duong simplex D3
h∗
3
.

Note that we do not have a candidate polytope realizing the vertex v4, for each
value of h∗

3. From the data available, it seems like such an h∗-vector is never attained
for any number of interior points. In order to show that inequalities (3) and (4*) are
actually sharp, we give examples of polytopes having, for each h∗

3, the h∗-vector
“close enough” to v4. We remark that, in this way, there should be an additional
inequality in Conjecture 8.7 cutting out the vertex v4, and creating two additional
ones. The distance of the two new vertices from v4 is fixed and does not depend on
the value of h∗

3, so we decided not to include it.

Proposition 8.9 For each positive integer value of h∗
3, the h

∗-vectors

(1, 10h∗
3 + 11, 19h∗

3 + 16, h∗
3), (1, 10h∗

3 + 9, 19h∗
3 + 15, h∗

3),

(1, 10h∗
3 + 7, 19h∗

3 + 14, h∗
3)

are attained, respectively, by the polytopes

conv
(
(1, 0, 0), (2, 0, 0), (0, 1, 0), (0, 3, 0), (0, 0, 6h∗

3 + 5), (1, 0, 3h∗
3 + 3)

)
,

conv
(
(0, 0, 0), (1, 0, 0), (0, 1, 0), (9h∗

3 + 8, 6h∗
3 + 5, 18h∗

3 + 15),
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v 1

v 2

v 3

v 4

v 5

h1

h2

Fig. 1 The pentagon defined by Conjecture 8.7, for a fixed h∗
3. The dashed lines represent inequalities (3),

(4*) and (5), which are conjectural. Note that the vertex v4 seems not to be realized as the h∗-vector of any
lattice polytope, anyway there are other realizable h∗-vectors which are very close to it (see Proposition 8.9
and the previous discussion)

(12h∗
3 + 10, 8h∗

3 + 7, 24h∗
3 + 20)

)
,

conv
(
(0, 0, 0), (1, 0, 0), (0, 1, 0), (6h∗

3 + 5, 3h∗
3 + 3, 18h∗

3 + 15),

(8h∗
3 + 5, 4h∗

3 + 3, 24h∗
3 + 14)

)
.

Proof Using the same technique as in Lemma 8.6, one can prove that the simplices

• S3h∗
3
,

• conv
(
(0, 0, 0), (1, 0, 0), (0, 1, 0), (12h∗

3 + 10, 6h∗
3 + 6, 36h∗

3 + 30)
)
,

• conv
(
(0, 0, 0), (1, 0, 0), (0, 1, 0), (12h∗

3 + 8, 6h∗
3 + 5, 36h∗

3 + 24)
)
,

have h∗-vectors respectively equal to

• (1, 16h∗
3 + 19, 19h∗

3 + 16, h∗
3),• (1, 16h∗

3 + 14, 19h∗
3 + 15, h∗

3),• (1, 16h∗
3 + 9, 19h∗

3 + 14, h∗
3).

From this, one can obtain the three polytopes starting with the simplices, and succes-
sively cutting out unimodular simplices. At each cut, h∗

1 drops by one, while h
∗
2 stays

the same. 	

As a final observation for this section, we plot heat diagrams of the distribution of

h∗-vectors of three-dimensional lattice polytopes having one and two interior lattice
points. From Fig. 2 one can note that Conjecture 8.7 seems to describe accurately the
behavior of h∗-vectors in dimension three, and that most of the h∗-vectors seem to be
in the center of the pentagon.
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Fig. 2 Heat diagrams for h∗-vector of three-dimensional polytopes with one and two interior lattice points
(from [6,40]). Each h∗-vector is colored according to the number of lattice polytopes attaining it

9 Final Examples

In this final section we use the classification to check explicitly how common are some
of the most studied properties of lattice polytopes.

In the literature it is possible to find a vast multitude of hierarchies ordering lattice
polytopes with a chain of progressively more restricting properties. Having the Integer
Decomposition Property (defined in Sect. 6), plays usually a central role in such
a hierarchy, due to its importance in algebraic and optimization contexts. Here we
additionally focus on the following properties.

Definition 9.1 Let P ⊂ R
d be a d-dimensional lattice polytope. We say that P is

spanning if its lattice points affinely span Z
d , i.e., if

Z((P − p) ∩ Z
d) = Z

d ,

for any p ∈ P ∩ Z
d . We say that P is very ample if for each vertex v of P the lattice

points in the tangent cone R≥0(P − v) are sums of lattice points of P − v, i.e., if

R≥0(P − v) ∩ Z
d = Z≥0((P − v) ∩ Z

d).

We say that P has a unimodular cover if there exist unimodular lattice simplices
S1, . . . , Sn ⊂ R

d such that P = S1∪ . . .∪ Sn . Finally, we say that P has a unimodular
triangulation if P admits a triangulation in unimodular lattice simplices.

It is easy to verify that such properties are given in ascending order of restrictiveness,
with the IDP property being in the middle, i.e.,

unimodular
triangulation

⇒ unimodular
cover

⇒ IDP ⇒ very ample ⇒ spanning.
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Notice that in dimension two all these properties are always satisfied by all polytopes.
On the other hand, in higher dimensions the reverse implications are known to be false.
While counterexamples to the last implication (very ampleness implies spanning) are
easy to produce, the first example of a very ample but not IDP lattice polytope was
given in dimension five by Bruns and Gubeladze [23], who later gave an example
in dimension three [24, Exercise 2.24]. Examples of IDP polytopes not having a
unimodular cover have also been given by Bruns and Gubeladze in dimension five
[22]. The first example of a three-dimensional polytope which has a unimodular but
does not have a unimodular triangulation has been given by Kantor and Sarkaria [39],
although the first example, in dimension four, appears in [25].

By looking at the database of three-dimensional polytopes classified in this paper,
we can easily find examples of lattice polytopes which are spanning but not very
ample, examples of lattice polytopes which are very ample but not IDP, and examples
of IDP lattice polytopes not admitting a unimodular triangulation. Additionally we
can be sure that the following examples are the smallest possible, i.e., having smallest
possible dimension and volume.

Theorem 9.2 The polytope

conv({0, e1, e2, e3, e1 + e2 + 3e3})

is spanning but not very ample. The polytope

conv({0, e1, e2, e1 + e2 + 2e3, e1 + e2 + 3e3, e1 − e3, e2 − e3, e3})

is very ample but not IDP. The polytope

conv({0, e1, e2, e1 + e2, e3, e1 + 2e2 − e3, 3e1 + e2 − e3,−2e1 − e2 + e3})

has a unimodular cover but does not have a unimodular triangulation. Such examples
are of minimal volume in dimension three.

The last example also appears in [28]. No IDP polytope without a unimodular cover
has been found in dimension three, but not all the enumerated three polytopes could
be checked, as the algorithm implemented for checking the existence of a unimodular
cover is computationally expensive. The presence of such polytopes in higher dimen-
sion has already been mentioned, but it makes sense to wonder whether being IDP
and having a unimodular cover are equivalent properties in dimension three.

Question 9.3 Is there a three-dimensional IDP polytope that does not have a unimod-
ular cover?

In this last part of the paper we discuss properties of the h∗-vectors of very ample
lattice polytopes. We call a sequence a0, a1, . . . , an of real numbers unimodal if, for
some 0 ≤ k ≤ n,

a0 ≤ · · · ≤ ak−1 ≤ ak ≥ ak+1 ≥ · · · ≥ an .
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We call a0, a1, . . . , an log-concave if, for all 1 ≤ i ≤ n − 1,

ai−1ai+1 ≤ a2i .

If all the ai are nonnegative, then log-concavity implies unimodality. It is a long
standing open problem (originally posed by Stanley) to understand whether all IDP
polytopes have unimodal, or even log-concave, h∗-vector (see Braun’s survey [21]).
In [37, p. 39] it is shown that, by relaxing the IDP property to very ampleness, it is
possible to lose log-concavity. This is done by giving an example of nine-dimensional
very ample (but non-IDP) lattice polytope.

By looking at our database it turns out that this kind of examples can be small and
exist already in dimension three, as the polytope

conv(0, e1, e2, e3, e1 + e3, e2 + e3, e1 + e2 + 16e3, e1 + e2 + 17e3)

is very ample and has h∗-vector (1, 4, 17, 0), which is not log-concave. This example
can be easily generalized by considering the three-dimensional lattice polytope

Q := conv(0, e1, e2, e3, e1 + e3, e2 + e3, e1 + e2 + ke3, e1 + e2 + (k + 1)e3),

where k is a nonnegative integer. It is easy to verify that Q is a very ample lattice
polytope with h∗-vector (1, 4, k + 1, 0), which, for k ≥ 16, is not log-concave. Note
that Q fails to be IDP for k ≥ 4. This kind of construction is called segmental fibration
and has been used in [12] to generate non-IDP but very ample polytopes.
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the participants of the “Workshop on Convex Polytopes for Graduate Students” in Osaka (January 2017),
to stimulate interest towards IDP lattice polytopes. “How many 6-dimensional lattice polytopes of volume
5 are IDP?” (From the tables in Appendix C we can read that the answer to Christian Haase’s question
is 27.) I would like to thank my PhD advisor Benjamin Nill for all the inspiring and patient discussions.
The idea of Algorithm 2 came out during one of those. I am also grateful to Al Kasprzyk for teaching me
how to use Magma, Paco Santos for helpful remarks and an anonymous referee for many patient and useful
comments. The author is partially supported by the Vetenskapsrådet grant NT:2014-3991.

Appendix A: Smooth Polytopes

See Tables 2, 3, 4, 5 and 6.
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Table 2 Distribution of two-dimensional smooth polytopes by their normalized volume

Volume Smooth polytopes Volume Smooth polytopes Volume Smooth polytopes

1 1 18 15 35 42

2 1 19 16 36 41

3 1 20 18 37 35

4 3 21 13 38 60

5 2 22 23 39 53

6 4 23 21 40 56

7 4 24 24 41 41

8 6 25 19 42 63

9 5 26 26 43 61

10 7 27 25 44 62

11 7 28 30 45 61

12 9 29 22 46 91

13 7 30 39 47 66

14 12 31 34 48 72

15 12 32 34 49 78

16 15 33 27 50 111

17 9 34 46

Table 3 Distribution of three-dimensional smooth polytopes by their normalized volume

Volume Smooth polytopes Volume Smooth polytopes Volume Smooth polytopes

1 1 13 16 25 56

2 0 14 17 26 63

3 1 15 22 27 79

4 1 16 22 28 72

5 2 17 25 29 74

6 4 18 36 30 103

7 5 19 33 31 89

8 6 20 35 32 92

9 8 21 47 33 115

10 8 22 43 34 109

11 10 23 48 35 113

12 16 24 66 36 151
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Table 4 Distribution of four-dimensional smooth polytopes by their normalized volume

Volume Smooth polytopes Volume Smooth polytopes Volume Smooth polytopes

1 1 9 6 17 40

2 0 10 9 18 49

3 0 11 12 19 54

4 1 12 16 20 66

5 1 13 18 21 73

6 3 14 23 22 86

7 3 15 28 23 94

8 5 16 36 24 114

Table 5 Distribution of five-dimensional smooth polytopes by their normalized volume

Volume Smooth polytopes Volume Smooth polytopes Volume Smooth polytopes

1 1 8 3 15 30

2 0 9 5 16 38

3 0 10 8 17 47

4 0 11 10 18 57

5 1 12 13 19 70

6 1 13 18 20 85

7 2 14 23

Table 6 Distribution of six-dimensional smooth polytopes by their normalized volume

Volume Smooth polytopes Volume Smooth polytopes Volume Smooth polytopes

1 1 7 1 13 14

2 0 8 2 14 20

3 0 9 3 15 27

4 0 10 5 16 35

5 0 11 7

6 1 12 11

Appendix B: Plots of h∗-Vectors of Three-Dimensional Simplices

See Fig. 3.
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Fig. 3 Plots of the distribution of the h∗-vectors of three-dimensional simplices having up to eleven interior
lattice points. The area defined by the inequalities of Conjecture 8.7 is marked in blue
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Appendix C: Frequency of Basic Properties of Lattice Polytopes

See Tables7, 8, 9 and 10.

Table 7 Numbers of three-dimensional polytopes (total, spanning, very ample, IDP, having a unimodular
cover, having a unimodular triangulation), ordered by their normalized volume

Volume TOT SP VA IDP UC UT

1 1 1 1 1 1 1

2 3 2 2 2 2 2

3 6 5 5 5 5 5

4 17 15 14 14 14 14

5 19 17 15 15 15 15

6 54 51 43 43 43 43

7 59 57 47 47 47 47

8 154 147 125 125 125 125

9 181 177 135 135 135 135

10 368 363 291 290 290 290

11 414 411 324 323 323 323

12 961 951 748 746 746 745

13 1 029 1 025 781 779 779 778

14 1 929 1 922 1 512 1 506 1 506 1 506

15 2 409 2 403 1 843 1 837 1 837 1 835

16 4 254 4 237 3 302 3 292 3 292 3 288

17 4 983 4 978 3 801 3 787

18 8 586 8 574 6 656 6 635

19 10 186 10 181 7 809 7 782

20 16 708 16 692 13 016 12 971

21 20 487 20 479 15 630 15 579

22 31 163 31 154 24 167 24 085

23 37 779 37 773 29 271 29 171

24 58 906 58 876 45 802 45 663

25 70 057 70 049 53 907 53 726

26 103 117 103 106 80 479 80 225

27 126 507 126 495 97 652 97 349

28 181 732 181 711 141 923 141 488

29 219 325 219 317 170 327 169 816

30 311 917 311 898 243 699 242 984

31 376 303 376 295 292 843 291 956

32 522 559 522 524 409 150 408 010

33 636 394 636 382 495 472 494 067

34 860 937 860 923 675 187 673 321

35 1 043 226 1 043 214 816 386 814 161

36 1 411 304 1 411 272 1 106 938 1 104 038
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Table 8 Numbers of four-dimensional polytopes (total, spanning, very ample, IDP, having a unimodular
cover, having a unimodular triangulation), ordered by their normalized volume

Volume TOT SP VA IDP UC UT

1 1 1 1 1 1 1

2 3 2 2 2 2 2

3 8 6 6 6 6 6

4 28 21 19 19 19 19

5 31 27 21 21 21 21

6 109 91 71 71 71 71

7 113 107 74 74 74 74

8 391 333 242 242 242 242

9 438 409 255 255 255 255

10 1 019 956 618 618 618 618

11 1 109 1 094 664 664 664 664

12 3 251 2 993 1 851 1 850 1 850 1 849

13 3 123 3 103 1 762 1 761 1 761 1 760

14 6 863 6 680 3 921 3 918

15 8 506 8 327 4 563 4 560

16 17 309 16 681 9 509 9 500

17 18 861 18 826 10 074 10 066

18 38 061 37 224 20 146 20 125

19 42 067 42 023 22 016 21 997

20 80 578 79 132 42 297 42 253

21 94 373 93 832 47 260 47 214

22 158 030 156 975 81 594 81 501

23 184 646 184 580 92 530 92 429

24 330 776 326 283 165 810 165 631
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Table 9 Numbers of five-dimensional polytopes (total, spanning, very ample, IDP, having a unimodular
cover, having a unimodular triangulation), ordered by their normalized volume

Volume TOT SP VA IDP UC UT

1 1 1 1 1 1 1

2 4 2 2 2 2 2

3 10 6 6 6 6 6

4 38 23 21 21 21 21

5 42 33 25 25 25 25

6 169 115 86 86 86 86

7 163 144 90 90 90 90

8 659 475 322 322 322 322

9 707 600 344 344 344 344

10 1 737 1 465 841 841 841 841

11 1 743 1 685 869 869 869 869

12 6 294 5 022 2 791 2 791 2 791 2 790

13 5 101 5 007 2 392 2 392

14 12 640 11 533 5 757 5 756

15 15 373 14 315 6 656 6 655

16 34 637 30 638 14 873 14 870

17 32 858 32 650 14 317 14 314

18 77 727 70 953 32 169 32 160

19 75 401 75 103 32 282 32 272

20 167 969 155 336 68 509 68 488
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Table 10 Numbers of six-dimensional polytopes (total, spanning, very ample, IDP, having a unimodular
cover, having a unimodular triangulation), ordered by their normalized volume

Volume TOT SP VA IDP UC UT

1 1 1 1 1 1 1

2 4 2 2 2 2 2

3 11 6 6 6 6 6

4 48 24 22 22 22 22

5 51 36 27 27 27 27

6 228 129 94 94 94 94

7 204 167 97 97 97 97

8 961 560 362 362 362 362

9 970 728 392 392 392 392

10 2 444 1 801 959 959 959 959

11 2 249 2 092 964 964 964 964

12 9 872 6 461 3 362 3 362

13 6 622 6 334 2 676 2 676

14 18 069 14 972 6 684 6 684

15 21 837 18 704 7 828 7 828

16 53 513 41 025 18 006 18 005
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