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Abstract
We provide a constructive, variational proof of Rivin’s realization theorem for ideal
hyperbolic polyhedra with prescribed intrinsic metric, which is equivalent to a dis-
crete uniformization theorem for spheres. The same variational method is also used to
prove a discrete uniformization theorem of Gu et al. and a corresponding polyhedral
realization result of Fillastre. The variational principles involve twice continuously
differentiable functions on the decorated Teichmüller spaces ˜Tg,n of punctured sur-
faces, which are analytic in each Penner cell, convex on each fiber over Tg,n , and
invariant under the action of the mapping class group.

Keywords Decorated Teichmüller space · Penner coordinates · Horocycle · Discrete
conformal equivalence · Triangulated surface
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1 Introduction

This article is concerned with two types of problems that are in fact equivalent: real-
ization problems for ideal hyperbolic polyhedra with prescribed intrinsic metric, and
discrete uniformizationproblems.Wedevelop avariationalmethod to prove the respec-
tive existence and uniqueness theorems. Special attention is paid to the case of genus
zero, because it turns out to be the most difficult one. In particular, we provide a con-
structive variational proof of Rivin’s realization theorem for convex ideal polyhedra
with prescribed intrinsic metric:
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Theorem 1.1 (Rivin [31]) Every complete hyperbolic surface S of finite area that is
homeomorphic to a punctured sphere can be realized as a convex ideal polyhedron
in three-dimensional hyperbolic space H3. The realization is unique up to isometries
of H3.

The realizing polyhedron is allowed to degenerate to a two-sided ideal polygon.
The uniqueness statement of Theorem 1.1 implies that this is the case if and only if S
admits an orientation reversing isometry mapping each cusp to itself.

An analogous realization result for convex Euclidean polyhedra was proved by
Alexandrov [2, pp. 99–100], and Rivin’s original proof of Theorem 1.1 follows the
general approach introduced by Alexandrov: First, show that the realization is unique
if it exists. Then use this rigidity result to show that the space of realizable metrics is
open and closed in the connected space of all metrics. This topological argument does
not provide a method of actually constructing a polyhedron with prescribed intrinsic
metric, and to find such a method was posed as a problem for further research [31].

The proof of Theorem 1.1 presented here is variational in nature. It proceeds by
transforming the realization problem into a finite dimensional nonlinear convex opti-
mization problem with bounds constraints (see Theorem 7.18). This optimization
problem is then shown to have an adequately unique solution (see Sect. 9). The
number of variables is n − 1 for a sphere with n cusps. The target function Ē v∞

�,λ

(see Definition 7.16) is twice continuously differentiable and piecewise analytic (see
Proposition 7.17). The main work of proving the differentiability statement is done in
Sect. 8.

Calculating a value of the target function involves Epstein and Penner’s convex hull
construction [13,26,27] for surfaces. For the purposes of this article, it is necessary
to translate this construction into the language of ideal Delaunay decompositions (see
Sects. 4 and 5). An ideal Delaunay triangulation can be found using Weeks’s edge flip
algorithm [38]. Once the Delaunay triangulation is known, the target function and its
first and second derivatives are given by explicit equations (see Proposition 7.17).

A variational proof of Alexandrov’s realization theorem for Euclidean polyhedra
was given by Bobenko and Izmestiev [5]. Their proof also provides a constructive
method to produce polyhedral realizations, and there are some similarities between
their approach and ours. The variational principles are analogous, and Delaunay tri-
angulations play an important role, too. But there is one important difference: The
variational principle of Bobenko and Izmestiev involves a non-convex target func-
tion, while the target function considered here is convex. This makes the case of ideal
polyhedra actually simpler than the case of Euclidean polyhedra, for which no convex
variational principle is known.

In Sect. 10 we turn to the other side of the theory, discrete conformal maps. The
realization Theorem 1.1 is equivalent to a discrete uniformization theorem for spheres,
Theorem 10.5. The equivalence of discrete conformal mapping problems and realiza-
tion problems for ideal hyperbolic polyhedra was established in a previous article [7].
Previously, we treated conformal mapping problems and polyhedral realization prob-
lems with fixed triangulations. In this article, we require the variable triangulations to
be Delaunay. The previously established variational principle extends to the setting of
variable triangulations. For discrete conformal maps, this extension can be described
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roughly as follows: Minimize the same function as in [7], but flip to a Delaunay trian-
gulation before evaluating it. However, instead of using standard Euclidean edge flips
that do not change the piecewise Euclidean metric of the triangulation, use Ptolemy
flips: Update the length of the flipped edge using Ptolemy’s relation (9). This does
change the piecewise Euclidean metric, except if the adjacent triangles are inscribed
in the same circle. Nevertheless, Ptolemy flips are the right thing to do because they do
not change the induced hyperbolic metric (see Proposition 10.2 and Definition 10.3).

In Sect. 11 we use the variational approach to prove the uniformization theorem
of Gu et al. [18] (see Theorem 11.1) and a polyhedral realization result for tori (see
Theorem 11.2) that was proved by Fillastre [14, Thm. B] using Alexandrov’s method.
Note that Rivin’s Theorems 1.1 and 10.5 on the uniformization spheres are not covered
by the work of Gu et al. [17,18].

A few other cases are known in which a variational principle reduces a polyhedral
realization problem to convex optimization. In the Euclidean setting, Izmestiev [20]
observed that the variational approach to Alexandrov’s theorem [5] leads to a convex
optimization problem if one considers the realization of convex caps instead of convex
polyhedra.

In the hyperbolic setting, a very general realization result for polyhedral surfaces
of arbitrary genus and with finite, ideal or hyperideal vertices is due to Fillastre [14],
who appliedAlexandrov’smethod, building on Schlenker’s work [33] on an evenmore
general result. In principle, it is possible to derive variational principles in this general
setting from Schläfli’s differential volume formula for hyperbolic tetrahedra (see, e.g.,
[7, Sect. 5.5]). But only in some special cases will this lead to convex optimization
problems. This is due to the fact that the volume of a hyperbolic tetrahedron is a
concave function of its dihedral angles only in some special cases.

A few of the cases allowing polyhedral realization by convex optimization have
already been treated. Izmestiev and Fillastre [15] consider the case of hyperbolic
polyhedral surfaces of genus onewith finite vertices. (The volumeof a hyperbolic tetra-
hedronwith one ideal and three finite vertices is concave.)Most recently, Prosanov [29]
has treated hyperbolic polyhedral surfaces of genus≥ 2with ideal vertices. (The build-
ing blocks are ideal tetrahedra with one hyperideal and three ideal vertices, truncated
at the polar plane of the hyperideal vertex.) Prosanov’s work also provides a variational
proof of the uniformization theorem involving piecewise hyperbolic surfaces by Gu et
al. [17]. While Prosanov does not provide explicit formulas for his Hilbert–Einstein
functional in terms of triangulations and lengths, it is straightforward to adapt the
known variational principle for a fixed triangulation [7, Sect. 6] to obtain such expres-
sions (see also Remark 2.4). Such explicit formulas are useful if one wants to use the
variational principle to solve the realization/uniformization problems numerically.

An interesting sub-case of Fillastre’s realization theorem [14] that has not yet been
treated by the variational method is the realization problem for hyperideal polyhedra
with prescribed metric. Since the volume of a hyperideal tetrahedron is concave [34],
this leads to a convex variational principle. Simultaneously, this would provide a
constructive proof of an existence and uniqueness statement for hyperideal circle pat-
terns [10], but with variable triangulation. Inversive distance circle patterns in the
Euclidean plane correspond to polyhedra with hyperideal vertices except for one ideal
vertex. Note that the related realization result for hyperideal polyhedra with given
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combinatorial type and prescribed dihedral angles [4] has already been treated varia-
tionally [6,35].

Note that even if the variational method is applied to realize three-dimensional
polyhedra, the problems are all essentially two-dimensional. Whether any truly three-
dimensional problem can be treated in a similar fashion seems to be one of the most
interesting questions raised by this approach. In particular, “deformations” of two-
dimensional problems, like problems involving quasi-Fuchsian manifolds [25], might
have a chance to be tractable.

2 Overview: Polyhedral Realizations from Realizable Coordinates

We want to show that the following problem has a unique solution up to isometries
of H3:

Problem 2.1 Given a complete finite area hyperbolic surface S homeomorphic to a
sphere with n ≥ 3 punctures, find a realization as convex ideal polyhedron.

We assume the hyperbolic surface S is specified in Penner coordinates (�, λ),
consisting of a triangulation � of the sphere with n marked points and a function
λ : E� → R on the set E� of edges (see Sect. 3). These coordinates determine the
hyperbolic surface S together with an ideal triangulation � and a choice of horocycle
at each cusp. For each edge e ∈ E�, the coordinate λe is the signed distance of the
horocycles at the ends of e (see Fig. 2, Remark 3.1).

Remark 2.2 (Shear coordinates) Rivin [31] assumes that the surface S is specified by
shear coordinates. This is not an issue because it is straightforward to convert between
shear coordinates and Penner coordinates (see Proposition 3.5).

The basic idea of our approach is the following: For any polyhedral realization
of S and any choice of a distinguished vertex v∞, there are special adapted coordi-
nates (˜�, λ̃)with certain characteristic properties.We call them realizable coordinates
with distinguished vertex v∞ (see Definition 6.1). The realizable coordinates (˜�, λ̃)

describe the same hyperbolic surface S as the given coordinates (�, λ), but the ideal
triangulation and the choice of horocycles are in general different. Conversely, if real-
izable coordinates for S are known, it is straightforward to reconstruct the polyhedral
realization. Thus, solving Problem 2.1 turns out to be equivalent to the problem of
finding realizable coordinates:

Problem 2.3 Given Penner coordinates (�, λ) of a complete finite area hyperbolic
surface S homeomorphic to a sphere with n ≥ 3 punctures and a chosen distinguished
cusp v∞, find realizable coordinates (˜�, λ̃)with distinguished vertex v∞ for the same
surface.

Definition 6.1 characterizes realizable coordinates in terms of the intrinsic geometry
of the surface S. This characterization relies on Epstein and Penner’s convex hull
construction [13,26,27] for cusped hyperbolic surfaces decorated with horocycles,
and Akiyoshi’s [1] generalization, allowing partially decorated surfaces: Horocycles

123



Discrete & Computational Geometry (2020) 64:63–108 67

Fig. 1 Ideal polyhedron (bounded by the transparent hyperbolic planes) decorated with horospheres (white)
at ideal vertices

Fig. 2 Signed distance λ of disjoint and intersecting horocycles

may bemissing at some (but not all) cusps. The necessary backgroundwill be reviewed
in Sects. 4 and 5 in the language of ideal Delaunay decompositions.

While the intrinsic characterization of realizable coordinates requires some prepa-
ration, it is more straightforward to explain how a polyhedral realization gives rise to
adapted Penner coordinates from which the realization can easily be reconstructed.
Consider a convex ideal polyhedron P realizing the hyperbolic surface S in the half-
space model of hyperbolic space (see Fig. 1). Assume that one ideal vertex, v∞, is the
point at infinity in the half-space model. The faces of P are ideal polygons. Should
any face have more than three sides, triangulate it by adding diagonal ideal arcs. The
diagonals may be chosen arbitrarily, except in vertical faces incident with v∞, which
should be triangulated by adding the vertical diagonals incident with v∞.

For every ideal vertex v of P , choose a horosphere sv centered at v as follows:
Choose an arbitrary horosphere sv∞ at v∞ (not shown in Fig. 1). For all other ver-
tices v �= v∞ let sv be the horosphere centered at v that touches sv∞ (white spheres in
Fig. 1). For each edge e not incident with v∞ let λ̃e be the signed distance (see Fig. 2)
of the horospheres at the ends of e. For each edge e incident with v∞, let λ̃e = ∞.
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Fig. 3 Ideal tetrahedron decorated with horospheres at the vertices. The horosphere at v∞ is the horizontal
plane at height 1. The horospheres at v1, v2, v3 touch the horosphere at v∞. The horosphere at v∞ intersects
the tetrahedron in a Euclidean triangle with sides �i = eλi /2, where λi are the signed distances between
horospheres (see Fig. 4)

Intrinsically, the ideal polyhedron P is the hyperbolic surface S. The triangulated
faces of P form an ideal triangulation ˜� of S. The horospheres sv at the vertices
of P intersect the surface S in horocycles hv = sv ∩ P . The signed distance λ̃e of
horospheres in H3 is also the intrinsic signed distance of the corresponding horocycles
in S along the ideal arc e. By Proposition 6.2, (˜�, λ̃) are realizable coordinates with
distinguished vertex v∞ as defined in Definition 6.1.

To reconstruct the realization P from (˜�, λ̃), proceed as follows: For each triangle
t ∈ T

˜� that is not incident with v∞, construct an ideal tetrahedron as shown in Fig. 3.
These tetrahedra fit together to form the ideal polyhedron P . This construction of
a realizing polyhedron works for any coordinates that are realizable in the sense of
Definition 6.1 (see Proposition 6.3).

123



Discrete & Computational Geometry (2020) 64:63–108 69

Fig. 4 Signed distance λ and horocyclic arc length � in a configuration of two horocycles that are tangent
to a third horocycle

The intrinsic Problem 2.3 of finding realizable coordinates turns out to be equiv-
alent to a convex optimization problem (see Theorem 7.18). This leads to a proof of
Theorem 1.1 (see Sect. 9).

Remark 2.4 (Hilbert–Einstein functional) Consider the tetrahedral building block
shown in Fig. 3. In this paper, the truncated lengths of the base triangles are vari-
able, while the truncated lengths of the vertical edges are fixed at zero. Alternatively,
we could fix the truncated edge lengths of the base triangles and consider the trun-
cated lengths of the vertical edges as the variables of the optimization problem. This
apporach, which was taken in [7, Sect. 5.4], may at first seem more intuitive. It also
leads to an interpretation of the variational principle in terms of a discrete Hilbert–
Einstein functional as in [5,15,20,29]. Nevertheless, we avoid this point of view in
this article because it makes it harder to understand the role of horocyclic Delaunay
triangulations (see, e.g., Theorem 4.14), which is difficult to explain and understand
in any case. Moreover, the point of view taken here—fixing the vertical lengths at zero
and varying the base lengths—reduces the three-dimensional realization problem to
an intrinsic, two-dimensional problem.

3 Penner Coordinates

In Sects. 3–5, we review known results from Teichmüller theory. The aim is to fix
notation, to collect required background material and equations for reference, and to
translate the convex hull construction into the language of Delaunay decompositions.
For the reader’s convenience, we indicate proofs whenever we see a way to do so
by a short comment or a suggestive picture. For a more thorough treatment, we refer
to the literature. In this section, we review Penner’s coordinates for the decorated
Teichmüller spaces of punctured surfaces [26,27].

Let Sg be the oriented surface of genus g, let V ⊆ Sg be a finite nonempty subset of
n = |V | points and let Sg,n = Sg\V be the oriented surface of genus g with n punc-
tures. The pair (Sg, V ) is the surface of genus g with n marked points. A triangulation
of (Sg, V ) is a triangulation with vertex set V . We will denote the set of edges by E�

and the set of triangles by T�. We write e1(t), e2(t), e3(t) for the edges of a triangle t
in cyclic order, e1(v), . . . , edeg(v)(v) for the edges emanating from a vertex v in cyclic
order, and v1(e), v2(e) for the vertices of an edge e (in arbitrary order).
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The Teichmüller space Tg,n is the space of equivalence classes of complete finite
area hyperbolic metrics on Sg,n , where two such metrics are considered equivalent if
they are related by an automorphism of Sg,n that is isotopic to the identity. Loosely
speaking,Tg,n is the space of hyperbolic surfaces of genus gwith n cusps. A decorated
hyperbolic surface with cusps is a hyperbolic surface with cusps together with a horo-
cycle at each cusp. The decorated Teichmüller space ˜Tg,n is the space of decorated
hyperbolic surfaces of genus g with n cusps. The decorated Teichmüller space ˜Tg,n

is a trivial Rn-bundle over the ordinary Teichmüller space Tg,n .
Penner coordinates (�, λ) on the decorated Teichmüller space ˜Tg,n consist of a

triangulation � of (Sg, V ) and a function λ ∈ R
E� . The Penner coordinates describe

a complete hyperbolic surface with finite area of genus g with n cusps, marked by
Sg,n , and decorated with a horocycle at each cusp, together with an ideal triangulation.
The cusps correspond to the vertices v ∈ V and the ideal triangulation corresponds to
a triangulation in the isotopy class of �. For simplicity, we will identify cusps with
vertices and the ideal triangulation with �. The value λe = λ(e) for an edge e ∈ E�

is the signed distance (see Fig. 2) of the horocycles at its ideal vertices v1(e), v2(e) as
measured in a lift to the universal cover H2.

For two triangulations �, ˜�, we denote the chart transition function by

τ�,˜� : RE� → R
E
˜�. (1)

That is, the Penner coordinates (�, λ) and (˜�, λ̃) describe the same surface if and
only if λ̃ = τ�,˜�(λ).

Remark 3.1 (Notation warning) Our λs denote hyperbolic lengths, not Penner’s
lambda-lengths [27]. The lambda-lengths are eλ/2, and we denote them by � in this
paper. In earlier articles [26], the lambda-lengths were defined as

√
2 eλ/2.

The decorated Teichmüller space ˜Tg,n is a fiber bundle over the ordinary Teich-
müller space Tg,n . The projection map π : ˜Tg,n → Tg,n simply forgets about the
decoration. The fibers, whose points correspond to choices of decorating horocycles,
are naturally affine spaces. If a decorated surface with Penner coordinates (�, λ) is
chosen as the origin in its fiber, then there is a natural parametrization of the fiber by
R
V :

Proposition 3.2 (Parametrizing a fiber of ˜Tg,n) Let �(�,λ) be the function

�(�,λ) : RV −→ R
E�, u 
−→ �(�,λ)(u),

where the value of �(�,λ)(u) for e ∈ E� is

�(�,λ)
e (u) = λe + uv1(e) + uv2(e). (2)

Then the decorated surfaces in the fiber of the surface with coordinates (�, λ) are
precisely the surfaces with Penner coordinates (�,��,λ(u)) for some u ∈ R

V , and u
is uniquely determined by (�, λ) and the decorating horocycles. The horocycle of the

123



Discrete & Computational Geometry (2020) 64:63–108 71

Fig. 5 Decorated ideal triangle in the Poincaré disk model (left) and in the half-plane model (right)

decorated surface (�,��,λ(u)) at a vertex v is a distance uv away from the horocycle
of (�, λ) at v, measured in the direction of the cusp.

The following two propositions provide relations between λs and the lengths of
horocyclic arcs.

Proposition 3.3 (Horocyclic arcs in a decorated triangle) Consider a decorated ideal
triangle with signed horocycle distances λ1, λ2, λ3 as shown in Fig. 5. Each horo-
cycle intersects the triangle in an arc of length αk . The signed horocycle distances λ

determine the horocyclic arc lengths α, and vice versa, via the relations

αi = e(λi−λ j−λk )/2, (3)

λi = − logα j − logαk, (4)

where (i, j, k) is a permutation of (1, 2, 3).

Summing the horocyclic arc lengths around one vertex, one obtains the total horo-
cycle length at a cusp:

Proposition 3.4 (Horocycle length at a cusp) The total length of the horocycle at a
cusp v ∈ V of the decorated hyperbolic surface with Penner coordinates (�, λ) is

cv(�, λ) =
d−1
∑

i=0

e(λêi (v)−λei (v)−λei+1(v))/2, (5)

where e1(v), . . . , ed(v) = e0(v) are the edges emanating from v in cyclic order and
ê1(v), . . . , êd(v) = ê0(v) are the edges opposite v in cyclic order, so that the i-th
triangle around v looks like this:

v êi

ei+1

ei
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Fig. 6 Penner coordinates and shear coordinates

Shear coordinates (�, σ) on the Teichmüller space Tg,n also consist of a triangu-
lation � of (Sg, V ) and a function σ ∈ R

E� . Shear coordinates describe a marked
surface together with an ideal triangulation but without decorating horocycles. For
each edge e ∈ E�, σe = σ(e) is the shear with which the ideal triangles are glued
together along e (see Fig. 6). The shear coordinates of a complete hyperbolic surface
sum to zero around every cusp:

deg(v)
∑

i=1

σei (v) = 0. (6)

Proposition 3.5 (Penner coordinates and shear coordinates) (i) The shear coordinates
(�, σ) of a decorated surface with Penner coordinates (�, λ) are

σe = 1

2
(λa − λb + λc − λd) = logβ − logα, (7)

where a, b, c, d are the edges adjacent to edge e, and α, β are the horocycle arc
lengths, as shown in Fig. 6.

(ii) Conversely, if (�, σ) are the shear coordinates of a complete finite area hyper-
bolic surface S, then one obtains Penner coordinates (�, λ) for S, decoratedwith some
choice of horocycles, as follows. First, note that the shear coordinates determine the
length ratios of adjacent horocycle arcsα,β as shown in Fig. 6 by equation (7). Use the
relations (7) to determine compatible arc lengths around each vertex. (Equations (7)
are compatible by (6), but under-determined: At each vertex, exactly one arc length
may be chosen arbitrarily, and this choice fixes the decorating horocycle.) Then use
equations (4) to determine λ.

The Penner coordinates of a decorated surface with respect to triangulations � and
�′ that differ by a single edge flip are related by Ptolemy’s relation (9):

Proposition 3.6 (Ptolemy relation) Consider a decorated ideal quadrilateral with
edges a, b, c, d and diagonals e, f as shown in Fig. 7. Let λa, . . . , λ f be the respective
signed horocycle distances. Then �a, . . . , � f defined by
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Fig. 7 Ptolemy relation

� = eλ/2 (8)

satisfy Ptolemy’s relation
�e� f = �a�c + �b�d . (9)

Proof This follows with (3) from

e(λa−λd−λ f )/2 + e(λb−λc−λ f )/2 = α1 + α2 = e(λe−λc−λd )/2

by multiplying both sides with e(λc+λd+λ f )/2. �

4 Ideal Delaunay Triangulations

Epstein and Penner’s convex hull construction [13,26,27] is a fundamental tool for
the polyhedral realization method presented here. The construction works for cusped
hyperbolic manifolds of arbitrary dimension, but some aspects are simpler for surfaces
(compare, e.g., the local condition (10) with the generalized tilt formula [32]), and
other aspects (like the edge flip algorithm [38]) have no adequate counterpart in higher
dimensions. In this section, we will review the relevant results focusing on the two-
dimensional case.

Given a finite area hyperbolic surface with cusps, decorated with a horocycle at
each cusp, the construction of Epstein and Penner returns an ideal cell decomposi-
tion of the given surface, called the canonical cell decomposition of the decorated
surface. Roughly, the construction works as follows: Consider the universal cover of
the given decorated surface in the hyperboloid model of the hyperbolic plane. Each
decorated cusp is represented by an orbit of points in the positive light cone in a
(2 + 1)-dimensional Lorentz space. The convex hull of these points projects to an
ideal cell decomposition of the surface. We refer to the original articles for a detailed
exposition [13,26,27].

In order to apply the convex hull construction to the polyhedral realization problems
at hand, we need to translate it into the language of Delaunay decompositions. Accord-
ingly we will use the term “ideal Delaunay decomposition” (Definition 4.2) instead
of “canonical cell decomposition”, but these terms are synonymous. The situation is
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analogous to the classical case of power diagrams and weighted Delaunay decompo-
sitions in Euclidean n-space, which can be obtained by a convex hull construction in
(n + 1)-dimensional space [3].

For Epstein and Penner’s convex hull construction, the translation into the language
of Delaunay decompositions is a straightforward application of the pole-polar rela-
tionship of projective geometry and Proposition 4.1 below. It works as follows. In the
hyperboloid model of the hyperbolic plane, circles are intersections of the hyperboloid
with affine planes. Planes intersecting the hyperboloid correspond, via the pole-polar
relationship, to points outside the hyperboloid. Two circles intersect orthogonally
if the pole of one circle’s plane lies in the other circle’s plane. The vertices of the
Epstein–Penner convex hull correspond to horocycles, while the faces correspond to
orthogonally intersecting circles. (It may be necessary to scale the convex hull up to
make all faces intersect the hyperboloid.) Convexity translates to the condition that a
face-circle intersects all horocycles corresponding to non-incident vertices less than
orthogonally. So far, everything is analogous to the standard theory of power diagrams
and weighted Delaunay triangulations in Euclidean space. Proposition 4.1 allows us to
express the Delaunay condition in terms of oriented contact instead of orthogonality.
This only works for Delaunay triangulations in hyperbolic space and with horospheres
as sites.

Proposition 4.1 (Orthogonality and contact) Let h1, . . . , hn be horocycles with differ-
ent centers in the hyperbolic plane. Of the following statements, any two labeled with
the same letter are equivalent. If n ≥ 3, statements labeled with different letters are
mutually exclusive.

(a1) There is a circle that intersects every horocycle h1, . . . , hn orthogonally.
(a2) There is a circle that touches every horocycle h1, . . . , hn externally.
(b1) There is a horocycle that intersects every horocycle h1, . . . , hn orthogonally.
(b2) There is a horocycle that touches every horocycle h1, . . . , hn.
(c1) There is a hypercycle that intersects every horocycle h1, . . . , hn orthogonally.
(c2) There is a hypercycle or geodesic that touches every horocycle h1, . . . , hn on

the same side.

(A hypercycle is a complete curve at a constant nonzero distance from a geodesic.)

The following definitions and theorems summarize Epstein and Penner’s results in
the language of Delaunay decompositions.

Definition 4.2 (Ideal Delaunay decomposition) Let S be a complete finite area hyper-
bolic surface with at least one cusp, decorated with a horocycle at each cusp. First,
assume that the horocycles are small enough so that they bound disjoint cusp neigh-
borhoods. An ideal cell decomposition D of S is an ideal Delaunay decomposition, if
its lift D̂ to H2 and the lifted horocycles satisfy the global Delaunay condition:

(gD) For every face f̂ of D̂ there is a circle that touches all lifted horocycles centered
at the vertices of f̂ externally and does not meet any other lifted horocycles.

If the horocycles are not small enough to bound disjoint cusp neighborhoods, the
cell decomposition D is an ideal Delaunay decomposition if condition (gD) holds
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for smaller horocycles at equal distance to the original horocycles. The distance is
arbitrary as long as it is large enough for the new horocycles to bound disjoint cusp
neighborhoods.

Theorem 4.3 (Existence and uniqueness) For each decorated complete finite area
hyperbolic surface with at least one cusp there exists a unique ideal Delaunay decom-
position.

The faces of the ideal Delaunay decomposition are ideal polygons. An ideal Delau-
nay triangulation is obtained by adding ideal arcs to triangulate the non-triangular
faces:

Definition 4.4 (Ideal Delaunay triangulation) An ideal triangulation� of a decorated
complete finite area hyperbolic surface is called an ideal Delaunay triangulation if it
is a refinement of the ideal Delaunay decomposition D, that is, if ED ⊆ E�. An edge
e ∈ E� is an essential edge of the Delaunay triangulation if e ∈ ED . The edges in
E� \ ED are nonessential.

The decorated Teichmüller spaces ˜Tg,n decompose into cells consisting of all dec-
orated surfaces with the same ideal Delaunay decomposition:

Definition 4.5 (Penner cell) For a triangulation � of (Sg, V ), |V | = n, let the Penner
cell C (�) be the set of decorated surfaces in ˜Tg,n for which � is an ideal Delaunay
triangulation.

Theorem 4.6 (Canonical cell decomposition of ˜Tg,n) The Penner cells C (�) ⊆ ˜Tg,n

are the top-dimensional closed cells of a cell decomposition of ˜Tg,n.

Like in the standard Euclidean theory, the global Delaunay condition (gD) is equiv-
alent to edge-local conditions:

Theorem 4.7 (Local Delaunay conditions) Let S be a complete finite area hyperbolic
surface with at least one cusp, decorated with small enough horocycles so they bound
disjoint cusp neighborhoods. An ideal triangulation � is a Delaunay triangulation if
and only if for every edge e, one and hence all of the equivalent conditions (lD1)–(lD3)
are satisfied. Note that the directions left and right relative to e are only defined once
an orientation is chosen for e, but the truth values of conditions (lD1) and (lD2) are
independent of this choice.

(lD1) The circle touching the three horocycles of the triangle to the left of e and the
remaining horocycle of the triangle to the right of e are disjoint or externally
tangent.

(lD2) The center of the circle touching the three horocycles of the triangle to the left
of e is to the left of, or coincides with, the center of the circle touching the
horocycles of the triangle to the right of e.

(lD3) The total length of the horocyclic arcs incident with e is not greater than the
total length of the horocyclic arcs opposite to e, as shown in Fig. 8:

α + α′ ≤ β + β ′ + γ + γ ′. (10)
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Fig. 8 Local Delaunay condition

Moreover, if � is a Delaunay triangulation, then an edge e is nonessential if and
only if tangency holds in (lD1), or equivalently, if the circle centers coincide in con-
dition (lD2), or equivalently, if equality holds in (10).

The globalDelaunay condition (gD) obviously implies (lD1), and it is not difficult to
see that (lD1) and (lD2) are equivalent. To see that (lD2) and (lD3) are equivalent, note
that the oriented length of the thick horocyclic arcs in Fig. 8 is−α−α′+β+β ′+γ +γ ′.
It remains to show that the local conditions imply the global condition (gD); see [26,
Thm. 5.1, 27, p. 128].

Theorem 4.8 (Weeks’ flip alogrithm [38]) An ideal Delaunay triangulation of the
decorated surface (�, λ) can be found by the flip algorithm: Iteratively flip any edge
violating the local condition (10) and update λ using Ptolemy’s relation (9) until no
such edge remains.

Remarks 4.9 (i) Issues of numerical instability that plague the Euclidean flip algo-
rithm [12,16] are also relevant in this setting.

(ii) No other algorithm for computing ideal Delaunay triangulations seems to be
known.

(iii) Because the diameter of the flip-graph is infinite, the number of flips necessary to
arrive at aDelaunay triangulation, depending on an arbitrary initial triangulation, is
unbounded. (The only exception is the sphere with three punctures, which admits
only three ideal triangulations.)

(iv) To analyze the complexity of a variational algorithm to solve the realization Prob-
lem 2.1, it would be important to bound the number of steps in the flip algorithm
under the condition that the initial triangulation is a Delaunay triangulation for a
different choice of horocycles.

(v) Little seems to be known about the following related question, except that the
number is finite [1]: How many ideal Delaunay decompositions arise for a fixed
hyperbolic surface as the decoration varies over all possible choices of horocycles?
A recent result says that the lattice ofDelaunaydecompositions of afixedpunctured
Riemann surface is the face lattice of an associated secondary polyhedron [21].
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(vi) Recently, an analogous flip algorithm for surfaces with real projective structure
was analyzed by Tillmann and Wong [37].

Definition 4.10 Let
Del : (�, λ) 
−→ (˜�, λ̃)

be a function that maps the Penner coordinates (�, λ) of a decorated surface to the
Penner coordinates (˜�, λ̃) of the same decorated surface with respect to an ideal
Delaunay triangulation ˜�.

Such a function Del can be computed using the flip algorithm (see Theorem 4.8).
The function Del is not uniquely determined because an ideal Delaunay triangulation
is in general not unique. We will use Del in situations in which it makes no difference
which ideal Delaunay triangulation is chosen.

The last main point in this section is Theorem 4.14, which establishes a one-to-one
correspondence between

(a) ideal Delaunay triangulations of decorated complete hyperbolic surfaces, and
(b) Delaunay triangulations of closed piecewise Euclidean surfaces with cone singu-

larities.

Delaunay triangulations and Voronoi diagrams of piecewise Euclidean surfaces with
cone singularities were invented and reinvented many times in the context of different
applications, for example in [9,19,23,36]. It seems that Theorem 4.14 ought to be
known, too, but we do not have a reference.

First we need the following observation, which is due to Penner [26, Lem. 5.2]:

Lemma 4.11 (Ideal Delaunay triangulations and triangle inequalities) Let � be a tri-
angulation of (Sg, V ), let λ ∈ R

E� , and let � ∈ R
E�

>0 be defined by (8). If the local
Delaunay condition (10) is satisfied for every edge of the decorated hyperbolic sur-
face with Penner coordinates (�, λ), then � satisfies the triangle inequalities for every
triangle t ∈ T�:

−�e1(t) + �e2(t) + �e3(t) > 0,

�e1(t) − �e2(t) + �e3(t) > 0,

�e1(t) + �e2(t) − �e3(t) > 0.

(11)

Remark 4.12 This is a global statement. The triangle inequalities (11) for any particular
triangle t are satisfied if the local Delaunay conditions (10) are satisfied for all edges
of the triangulation. It is not sufficient to assume the local Delaunay condition for, say,
the edges of triangle t , or in some neighborhood.

If� is a triangulation of (Sg, V ) and � ∈ R
E�

>0 satisfies the triangle inequalities (11)
for every triangle t ∈ T�, then there is a piecewise Euclidean metric on Sg that turns
every triangle in T� into a Euclidean triangle and every edge e ∈ E� into a straight
line segment of length �e.

Definition 4.13 Wewill refer to the surface Sg equipped with the piecewise Euclidean
metric described in the previous paragraph and together with the triangulation � as
the triangulated piecewise Euclidean surface (�, �).
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Theorem 4.14 (Ideal and Euclidean Delaunay triangulations) Let� be a triangulation
of (Sg, V ), let λ ∈ R

E� , and let � ∈ R
E�

>0 be defined by (8).

(i) If � is an ideal Delaunay triangulation of the decorated hyperbolic surface with
Penner coordinates (�, λ), then � is also a Euclidean Delaunay triangulation of
the piecewise Euclidean surface (�, �), which exists by Lemma 4.11.

(ii) Conversely, if � satisfies the triangle inequalities for every triangle t ∈ T�, and if
� is a Delaunay triangulation of the piecewise Euclidean surface (�, �), then �

is also an ideal Delaunay triangulation of the decorated hyperbolic surface with
Penner coordinates (�, λ).

Proof First note that a decorated ideal tetrahedron with horosphere distances λi as
shown in Fig. 3 exists if and only if the �i defined by (8) satisfy the triangle inequal-
ities. Now consider two decorated ideal tetrahedra as shown in Fig. 3 glued along
two matching vertical faces. The local Delaunay condition (lD2) for the decorated
ideal triangles in the base planes is equivalent to the local Delaunay condition for the
Euclidean triangles in which the horocycle at v∞ intersects the tetrahedra. To see this,
note that the circumcenters of the Euclidean triangles project vertically down to the
highest points of the hyperbolic base planes, and that these points are the centers of
circles touching the incident horocycles. �

5 Akiyoshi’s Compactification

Every triangulation � of (Sg, V ) with n = |V | > 0, 2 − 2g − n < 0 is the Delaunay
decomposition for some decorated complete finite area hyperbolic metric on Sg,n . For
example, the decorated surface (�, λ) with Penner coordinates λ = 0 has Delaunay
decomposition �. There are infinitely many triangulations of (Sg, V ), unless g = 0
and n ≤ 3. However, a fixed hyperbolic surface supports only a finite number of ideal
Delaunay triangulations:

Theorem 5.1 (Akiyoshi [1]) Let S be a complete hyperbolic surface of finite area with
at least one cusp. There are only finitely many ideal triangulations � of S such that
there exists a decoration of S with horocycles such that � is a Delaunay triangulation
of the decorated surface.

In fact, Akiyoshi proved a more general result, the generalization of Theorem 5.1 to
hyperbolic manifolds of arbitrary dimension. A simpler proof for the two-dimensional
case can be found in [18].

Akiyoshi’s proof is based on the observation that the convex hull construction
of Epstein and Penner generalizes naturally to partially decorated surfaces, that is,
complete hyperbolic surfaces of finite area, decorated with horocycles at some, but
at least one, of the cusps. A missing horocycle should be interpreted as the limit of
horocycles vanishing at infinity.

We need to consider partially decorated surfaces, their Delaunay decompositions,
and Penner coordinates in some detail because the definition of realizable coordi-
nates (Definition 6.1) is based on this: Roughly, realizable coordinates are Penner
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Fig. 9 An ideal polygon with a cusp (shaded region), which is a face of a Delaunay decomposition of a
partially decorated surface. The left and right boundaries are identified by an isometry z 
→ z + c. The
vertical edges are nonessential edges of an adjusted Delaunay triangulation

coordinates with respect to a Delaunay triangulation of a partially decorated punc-
tured sphere with exactly one horocycle missing (condition (r1) of Definition 6.1),
that satisfy an additional condition (condition (r2)). In the remainder of this section,
we collect the relevant definitions and facts. We state the results without proof because
they are either straightforward translations of known facts into the language of ideal
Delaunay decompositions, or they are relatively simple consequences.

Remark 5.2 The need to deal with partially decorated surfaces is one reason why
the case of genus zero is more complicated. It is not necessary to consider partially
decorated surfaces to treat the higher genus cases (Sect. 11). Readers interested only
in the higher genus cases may safely skip the remainder of this section and everything
in Sect. 7 that has to do with missing horocycles.

The existence and uniqueness Theorem 4.3 generalizes to partially decorated sur-
faces:

Theorem 5.3 (Existence and uniqueness) Every partially decorated surface has a
unique ideal Delaunay decomposition.

However, Definition 4.2 of an ideal Delaunay decomposition has to be modified
quite radically: an ideal Delaunay decomposition of a partially decorated surface with
missing horocycles is not an ideal cell decomposition (see Definition 5.5). A cusp with
missing horocycle is contained in a Delaunay face that is not an ideal polygon, but an
ideal polygon with a cusp in the sense of the following definition:

Definition 5.4 An ideal polygon with a cusp is a hyperbolic manifold-with-boundary
f of finite area whose interior is homeomorphic to an open disk with one puncture
such that a neighborhood of the puncture corresponds to a cusp neighborhood in f
and the boundary is a union of complete geodesics (see Fig. 9).

However, the Delaunay decomposition of a partially decorated surface is a cell
decompositionwhen viewed as a decomposition of (Sg, V ), the closed surface of genus
g with marked points. The faces are cells, but the marked points v ∈ V that correspond
to cusps without decorating horocycle are not vertices of the decomposition. A face
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contains at most onemarked point in its interior, which we call the central vertex of the
face (although it is not a vertex of the decomposition). Let us call the regular vertices
of an ideal polygon with a cusp its peripheral vertices to distinguish them from its
central vertex.

Definition 5.5 (Delaunay decomposition of a partially decorated surface) Let D be a
decomposition of a partially decorated surface into ideal polygons and ideal polygons
with a cusp, called the faces of the decomposition. Suppose first that the decorating
horocycles are disjoint. Then the decomposition D is called aDelaunaydecomposition,
if its lift D̂ to H2 and the lifted horocycles satisfy the following conditions:

(gD) If f̂ is the lift of a face of D that is an ideal polygon, then there is a circle that
touches all lifted horocycles at the vertices of f̂ externally and does not meet
any other lifted horocycles.

(gD′) If f̂ is the lift of a face f of D that is an ideal polygon with a cusp, then every
peripheral vertex of f is decoratedwith a horocycle, and there exists a horocycle
centered at the lifted central vertex of f̂ that touches the lifted horocycles at the
lifted peripheral vertices of f̂ and does not meet any other lifted horocycles.

Extend this definition to the case of intersecting horocycles like in Definition 4.2.

Remark 5.6 Generically, the puncturedDelaunay faces are puncturedmonogons. Such
punctured monogons were already considered by Penner to construct coordinates on
the Teichmüller space of partially decorated punctured surfaces [26, Addendum, 27,
Sect. 5.1].

Even if a cusp is not decorated with a horocycle, differences of distances to horo-
cycles at other cusps are well defined. This can be used to characterize the punctured
Delaunay faces (see Fig. 9):

Proposition 5.7 (Characterization of punctured Delaunay faces) Let S be a partially
decorated surface, let v be a cusp with missing horocycle, and let p be an ideal
polygon with a cusp in S whose central vertex is v. Then p is a face of the Delaunay
decomposition of S if and only if all peripheral vertices of p are decorated with
horocycles, and these horocycles have all the same distance to v, and this distance is
strictly smaller than the distance of any other horocycle to v.

Definition 4.4 of ideal Delaunay triangulations, and essential and nonessential
edges remains valid without change. However, it will be useful to triangulate the
punctured Delaunay faces in a canonical way:

Definition 5.8 (Adjusted Delaunay triangulation) An ideal triangulation � of a par-
tially decorated surface is called an adjusted Delaunay triangulation if it refines the
ideal Delaunay decomposition and every punctured face is triangulated by adding the
ideal arcs connecting the central vertex with the peripheral vertices.

Theorem 4.7 on local Delaunay conditions remains valid after the following mod-
ifications: A triangle of a Delaunay triangulation has at most one vertex with missing
horocycle. For an ideal triangle with missing horocycle at one vertex v, one has to con-
sider the horocycle centered at v and touching the triangle’s two horocycles, instead of
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a circle touching three horocycles. If a horocycle is missing, the respective arc length
in condition (10) is zero.

The flip algorithm (see Theorem 4.8) remains valid, but some details have to be
modified (see Proposition 5.10) because Penner coordinates (�, λ) do not describe
partially decorated surfaces. Instead, wemay use the parametrization of a fiber of ˜Tg,n

described in Proposition 3.2, which extends nicely to partially decorated surfaces:

Definition 5.9 (Parametrizing an extended fiber of ˜Tg,n) Let (�, λ) be Penner coor-
dinates for a decorated surface in ˜Tg,n , let

R = R ∪ {+∞}, (12)

and
u ∈ R

V \ {+∞V },
where +∞V denotes the constant function +∞ on V . Let the partially decorated
surface (�, λ, u) be the surface obtained from the decorated surface (�, λ) bymoving,
for each vertex v, the horocycle at v a distance u(v) in the direction of the cusp v.
If u(v) = +∞, the horocycle at v is missing. In particular, for u ∈ R

V , the surface
(�, λ, u) is just the decorated surface with Penner coordinates (�,��,λ(u)).

If (10) is the local Delaunay condition at edge e ∈ E� for the decorated surface
(�, λ), then the local Delaunay condition at e for the partially decorated surface
(�, λ, u) is

αe−u(va) + α′e−u(va′ ) ≤ (β + β ′)e−u(vb) + (γ + γ ′)e−u(vc), (13)

where e−∞ = 0.

Proposition 5.10 (Flip algorithm for partially decorated surfaces) An ideal Delaunay
triangulation of the partially decorated surface (�, λ, u) can be found by Weeks’ flip
algorithm (see Theorem 4.8)with the local condition (10) replaced by (13). An adjusted
Delaunay triangulation can then be found by iteratively flipping all nonessential edges
opposite an undecorated cusp until no such edge remains.

With Proposition 5.11 below, the correctness of this algorithm for partially dec-
orated surfaces can be deduced from the correctness of the original algorithm for
decorated surfaces.

Proposition 5.11 If ˜� is an adjusted Delaunay triangulation for the partially deco-
rated surface (�, λ, u), then there is an M ∈ R such that ˜� is also an ideal Delaunay
triangulation for the decorated surfaces (�,��,λ(ũ)) with ũ ∈ R

V satisfying

ũ(v) = u(v) if u(v) < +∞,

ũ(v) > M if u(v) = +∞.

This is a corollary of the characterization of punctured Delaunay faces in terms of
horocycle distances (see Proposition 5.7).
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Definition 5.12 (Generalized Penner coordinates) If � is an arbitrary triangulation
of a partially decorated surface, then the surface is in general not determined by �

and the function λ ∈ R
E of horocycle distances, which takes the value +∞ if the

horocycle at one or both ends is missing. However, if � is an adjusted Delaunay
triangulation, then the pair (�, λ) determines the partially decorated surface uniquely
(see Proposition 5.7), and we call such a pair generalized Penner coordinates.

Definition 5.13 Let Del also denote a function

Del : (�, λ, u) 
−→ (˜�, λ̃)

that maps the parameters (�, λ, u) of a partially decorated surface to generalized
Penner coordinates (˜�, λ̃) of the same partially decorated surface, where ˜� is an
adjusted Delaunay triangulation. Hence

λ̃ = �
˜�,τ�,˜�(λ)(u) ∈ R

E
˜�,

where τ�,˜� : RE� → R
E
˜� is the chart transition functionmapping Penner coordinates

with respect to � to Penner coordinates with respect to ˜�.

Such a function Del can be computed by the modified flip algorithm of Proposi-
tion 5.10.

The bounds constraints in the variational principle of Theorem 7.18 involve signed
distances of horocycles in a decorated surface, which are defined as follows:

Definition 5.14 (Signed distance of horocycles) Let δ�,λ(v1, v2) denote the signed
distance of the horocycles at the vertices v1, v2 ∈ V in the decorated surface with
Penner coordinates (�, λ). More precisely, let

δ�,λ(v1, v2) = min
h1,h2

d(h1, h2), (14)

where d denotes the signed distance of horocycles in H2 and the minimum is taken
over all pairs of horocycles h1 �= h2 in H2 that are lifts of the horocycles at v1 and v2,
respectively.

Remark 5.15 The distance δ�,λ(v1, v2) is well defined and non-trivial even for v1 =
v2, but we will not need this.

Proposition 5.7 implies that the horocycle distances δ�,λ can be calculated using
the flip algorithm:

Proposition 5.16 (Calculating δ�,λ) Let (�, λ) be Penner coordinates for a decorated
surface, let v1, v2 ∈ V , let

u ∈ R
V , u(v) =

{

0 if v = v2,

+∞ otherwise,
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and let (˜�, λ̃, u) be the output of the modified flip algorithm (see Proposition 5.10).
Then v1 is the central vertex of a punctured face of ˜� and all peripheral vertices are
v2. For any edge e ∈ E

˜� connecting v1 and v2,

δ�,λ(v1, v2) = λ̃e.

6 Realizable Coordinates

In this section, we characterize the Penner coordinates that may be obtained from
an ideal polyhedron by the construction described in Sect. 2: They are realizable
coordinates by Definition 6.1 (see Proposition 6.2). Conversely, for given realizable
coordinates, a corresponding ideal polyhedron is uniquely determined by an explicit
construction (see Proposition 6.3).

Definition 6.1 (Realizable coordinates) Let S be a complete finite area hyperbolic
surface of genus 0 with n ≥ 3 cusps. Realizable coordinates for S with distinguished
vertex v∞ ∈ V are a pair (˜�, λ̃) consisting of a triangulation ˜� of (S0, V ) and a
function λ̃ = R

E
˜� , where R = R ∪ {+∞}, satisfying the following conditions (r1)

and (r2):

(r1) ˜� is an adjusted Delaunay triangulation for a decoration of S with exactly one
missing horocycle at v∞, and (˜�, λ̃) are the corresponding generalized Penner
coordinates (see Definition 5.12).

(r2) Let˜�◦ be the subcomplex of˜� consisting of all closed cells not incidentwith v∞,
i.e.,

V
˜�◦ = V \ {v∞}, (15)

E
˜�◦ = {e ∈ E

˜� | e not incident with v∞}, (16)

T
˜�◦ = {t ∈ T

˜� | t not incident with v∞}. (17)

Then either (r2a) or (r2b) are true:

(r2a) T
˜�◦ = ∅, and ˜�◦ is a linear graph, that is, a graph of the form

• − • − · · · − •.
(r2b) T

˜�◦ �= ∅ and ˜�◦ is a triangulation of a closed disk. Moreover,

˜v = 2π if v is an interior vertex of ˜�◦, (18)

˜v ≤ π if v is a boundary vertex of ˜�◦, (19)

where
˜v = sum of angles around v in ˜�◦, (20)

measured in the piecewise Euclidean metric that turns each triangle in T
˜�◦ into

a Euclidean triangle and each edge in e ∈ E
˜�◦ into a Euclidean line segment

of length �̃e, where
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�̃ = eλ̃/2. (21)

Proposition 6.2 (Ideal polyhedron → realizable coordinates) Let P be a three-
dimensional convex ideal polyhedron or a two-sided ideal polygon in H 3 realizing a
surface S ∈ T0,n, which has Penner coordinates (�, λ) for some decoration. Let v∞
be an ideal vertex of P. Let ˜� be a triangulation obtained by adding diagonals to
triangulate all non-triangular faces of P. The choice of diagonals is arbitrary except
for non-triangular faces incident with v∞, in which the diagonals incident with v∞
are be chosen. Let s∞ be a horosphere centered at v∞. For any other vertex v, let sv be
the horosphere centered at v and touching s∞. For each edge e ∈ E� not incident with
v∞, let λ̃e be the signed distance of the horospheres at the ends of e. If e is incident
with v∞, let λ̃e = ∞. Then (˜�, λ̃) are realizable coordinates for S.

Proof In the case of a two-sided polygon, the statement follows easily from the char-
acterization of punctured Delaunay faces, Proposition 5.7. It remains to consider the
case of P being a three-dimensional polyhedron.

To show (r1), first note that for an edge e not incident with v∞, λe is also the intrinsic
signed distance of the horocycles hv = sv ∩ P at the vertices of e. It remains to show
that ˜� is an adjusted Delaunay triangulation. First, the union of triangles incident
with v∞ is the Delaunay face around the vertex v∞ with vanished horocycle. Indeed,
the horocycle h∞ touches the horocycles at adjacent vertices and does not meet the
horocycles at all other vertices.

It remains to show that the local Delaunay conditions (see Theorem4.7) are satisfied
for all edges between two triangles that are not incident with v∞. We may assume
without loss of generality that the horosphere s∞ was chosen large enough so that
the horospheres at the other vertices are pairwise disjoint. Consider a face f of P
that is not incident with v∞. The point in the hyperbolic plane of f that is closest to
s∞ is the center of the circle in this plane that touches all horospheres at the vertices
of f externally. (See Fig. 1: The points closest to s∞ are the highest points in the
hemispheres.) Using this fact, it is not difficult to see that the local convexity of the
edge e in P is equivalent to the local Delaunay condition (lD2) of Theorem 4.7.

(r2) Since we assume that P is a three-dimensional polyhedron, ˜�◦ is a triangula-
tion of a closed disk. Now (r2b) follows by decomposing P into ideal tetrahedra as
shown in Fig. 3, one tetrahedron for each triangle in ˜�◦. The horosphere s∞ intersects
these tetrahedra in Euclidean triangles with side lengths �̃ determined by (21). This
implies (18) and (19) because P intersects s∞ in a convex Euclidean polygon. �
Proposition 6.3 (Realizable coordinates → ideal polyhedron) Let (˜�, λ̃) be realiz-
able coordinates of a surface S ∈ T0,n. Let ˜�◦ be the subcomplex of ˜� defined in
Definition 6.1 (r2).

(i) If ˜�◦ is a triangulation of a closed disk, one obtains a polyhedral realization
of S as follows: Construct a decorated ideal tetrahedron as shown in Fig. 3 for
each triangle of ˜�◦. These ideal tetrahedra fit together to form a polyhedron that
realizes S.

(ii) If˜�◦ is a linear graph then˜� is a decomposition of S into partially decorated ideal
triangles that fit together to form a realization of S as two-sided ideal polygon.
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Weomit a detailed proof. The tetrahedra in (i) exist byLemma4.11. Theyfit together
to form an ideal polyhedron realizing S by (r2b). That the polyhedron is convex follows
from inequality (19) and from the fact that ˜� is a Delaunay triangulation.

The realizable coordinates (˜�, λ̃) with distinguished vertex v∞ that are obtained
from a polyhedron or two-sided polygon by Proposition 6.2 are not uniquely deter-
mined:

• Non-triangular faces that are not incident with v∞ may be triangulated in different
ways.

• A different choice of horosphere s∞ leads to realizable coordinates (˜�, λ̃+h1E
˜�
)

for some h ∈ R.

But these are the only sources of ambiguity: If (˜�, λ̃) and (˜�′, λ̃′) are both realizable
coordinates obtained from the same polyhedron or two-sided polygon with the same
distinguished vertex v∞ by Proposition 6.2, then

(u1) ˜� and ˜�′ are both adjusted Delaunay triangulations of the same ideal Delaunay
decomposition,

(u2) λ̃′ = τ
˜�,˜�′(λ̃ + h1E

˜�
) for some h ∈ R.

Conversely, the polyhedra obtained from different realizable coordinates (˜�, λ̃) and
(˜�′, λ̃′) with the same distinguished vertex v∞ are congruent (as polyhedra marked
by (S0, V )) if and only if conditions (u1) and (u2) are satisfied.

Definition 6.4 (Equivalent realizable coordinates) Realizable coordinates (˜�, λ̃) and
(˜�′, λ̃′) with distinguished vertex v∞ are equivalent if they satisfy conditions (u1)
and (u2).

Realizable coordinates are equivalent if and only if they correspond to congruent
realizations.

7 The Variational Principle

In this section we present a variational principle (see Theorem 7.18) for Problem 2.3 of
finding realizable coordinates. The variational principle involves the function Ē v∞

�,λ(u)

(see Definition 7.16). The variables u ∈ R
V \{v∞} parametrize a part of the extended

fiber of ˜Tg,n over the surface (�, λ). More precisely, they parametrize the horocycle
decorations of that surface with missing horocycle at v∞. The variables are subject to
bounds constraints, which ensure that the horocycles do not intersect an arbitrary but
fixed horocycle at v∞. The definition of Ē v∞

�,λ(u) requires some preparation. After the
following brief summary, a detailed account begins with Definition 7.1.

The function f (x1, x2, x3) (see Definition 7.1) provides a variational encoding
of Euclidean trigonometry: If the variables xi are the logarithmic side lengths of a
Euclidean triangle, then the partial derivatives of f are its angles (see Proposition 7.2).

Using this building block, the function λ 
→ H(�, λ) (see Definition 7.3) is
defined on an open subset A� of the decorated Teichmüller space ˜Tg,n . The function
E,�,λ(u) (see Definition 7.5) is the restriction of H(�, · ) to the intersection of A�
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with the fiber of ˜Tg,n over the surface (�, λ). This function was already used in a
previous article (see Remark 7.6).

Nextweextend the functionH(�, λ) to thewhole decoratedTeichmüller space and
the function E,�,λ(u) to a whole fiber by adapting the triangulation appropriately.
To this end, consider the restriction of H(�, · ) to the closed Penner cell of all
λ ∈ R

E� for which � is a Delaunay triangulation of the decorated surface (�, λ).
For different triangulations �, these restrictions of H(�, · ) fit together to define a
C2 functionH on the whole decorated Teichmüller space ˜Tg,n (see Corollary 7.10).
We denote by H,�(λ) the representation of H in the global Penner coordinate
system belonging to the ideal triangulation � (see Definition and Proposition 7.9).
The convex function E,�,λ(u) (see Definition 7.11) is the restriction ofH,�(λ) to
the fiber of ˜Tg,n over (�, λ). Finally, Ē v∞

�,λ(u) is obtained by setting v∞ = 0 and
v = 2π for v �= v∞, and taking the limit uv∞ → +∞ (see Definition 7.16).

Definition 7.1 (The triangle function f ) Let f be the function

f : R3 ⊇ A −→ R,

f (x1, x2, x3) = α1x1 + α2x2 + α3x3 + L(α1) + L(α2) + L(α3), (22)

where

A =

⎧

⎪

⎨

⎪

⎩

⎛

⎝

x1
x2
x3

⎞

⎠ ∈ R
3

∣

∣

∣

∣

∣

∣

∣

ex1 > ex2 + ex3

ex2 > ex3 + ex1

ex3 > ex1 + ex2

⎫

⎪

⎬

⎪

⎭

(see Fig. 10), L is Milnor’s Lobachevsky function [24],

L(α) = −
∫ α

0
log |2 sin(t)| dt (23)

Fig. 10 Intersection of the domain A with the plane x3 = 0. The domain A is invariant with respect to
translations in the scaling direction (1, 1, 1)
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Fig. 11 Milnor’s Lobachevsky function L is π -periodic, odd, and analytic except at α ∈ π Z, where the
derivative tends to +∞

Fig. 12 Triangle with sides ex1 , ex2 , ex3

(see Fig. 11), and α j are the angles in a triangle with sides ex j as shown in Fig. 12.

Proposition 7.2 (Properties of f )

(i) The function f is analytic, and it satisfies the scaling relation

f (x1 + h, x2 + h, x3 + h) = f (x1, x2, x3) + πh. (24)

(ii) The partial derivatives of f are

∂ f

∂xi
= αi . (25)

(iii) The second derivative of f is

D2 f |x = cot α1(dx2 − dx3)
2 + cot α2(dx3 − dx1)

2 + cot α3(dx1 − dx2)
2. (26)

(iv) The secondderivative D2 f |x is positive semidefinitewith one-dimensional kernel
spanned by (1, 1, 1). In particular, f is locally convex.

See [7, Sect. 4.2] for proofs.

Definition 7.3 (The function H) For a triangulation � of (Sg, V ) and  ∈ R
V , let

H(�, · ) : A� −→ R,
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H(�, λ) =
∑

t∈T�

2 f

(

λe1(t)

2
,
λe2(t)

2
,
λe3(t)

2

)

− π
∑

e∈E�

λe

−
∑

v∈V
v log cv(�, λ),

(27)

where A� ⊆ R
E� is the subset

A� = {

λ ∈ R
E�

∣

∣
1
2

(

λe1(t), λe2(t), λe3(t)
) ∈ A for all t ∈ T�

}

, (28)

and cv is defined by (5).

Proposition 7.4 (Properties of H)

(i) The function H(�, · ) is analytic and satisfies the scaling relation

H(�, λ + h 1E�) = H(�, λ) + h π

(

|T�| − |E�| + 1

2π

∑

v∈V
v

)

. (29)

(ii) For  = 0, the function H0(�, · ) is convex, and the kernel of the positive semi-
definite second derivative is one-dimensional and spanned by 1E� .

This follows immediately from the corresponding properties of f and the scaling
behavior of cv:

cv(�, λ + h 1E�) = cv(�, λ) − 1

2
h. (30)

Definition 7.5 (The function E,�,λ) Let E,�,λ be the restriction of H to the fiber
of ˜Tg,n over (�, λ) parameterized by ��,λ as defined by (2), that is,

E,�,λ : {u ∈ R
V | ��,λ(u) ∈ A�} −→ R,

E,�,λ(u) = H(�,��,λ(u)). (31)

Remark 7.6 The function E,�,λ(u) is up to an additive constant equal to the function
ET,,λ(u) (with T = �) defined in the previous article [7, Eqs. (4–6)]. In that article,
the domain of ET,,λ(u) is extended to the whole R

V by exploiting the fact that
the function f can be extended to a convex function on the whole R3. Here, we do
not need this extension. Instead, we will extend the functions H(�, · ) and hence
also E,�,λ(u) by changing the triangulation (see Definition and Proposition 7.9 and
Definition 7.11).

Proposition 7.7 (Properties of E,�,λ)

(i) The function E,�,λ is analytic and satisfies the scaling relation

E,�,λ(u + h 1V ) = E,�,λ(u) + h 2π

(

|T�| − |E�| + 1

2π

∑

v∈V
v

)

. (32)
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(ii) For a vertex v ∈ V , the partial derivative of E�,λ(u) with respect to uv is

∂

∂uv

E,�,λ(u) = v − ˜v, (33)

where ˜v is the angle sum around vertex v measured in the piecewise Euclidean
metric that turns every triangle in T� into a Euclidean triangle and every edge
e ∈ E� into a straight line segment of length �̃e, where �̃ is defined by (21) with

λ̃ = ��,λ(u).

(iii) The second derivative of E,�,λ at u is

∑

v,v′∈V

∂2E,�,λ

∂uv∂uv′
duv duv′ = 1

4

∑

e∈E�

(cot αe(u) + cot α′
e(u))

(

duv1(e) − duv2(e)
)2

,

(34)
where αe(u) and α′

e(u) are the angles opposite edge e in the piecewise Euclidean
metric described in (ii).

(iv) The function E,�,λ is locally convex. The second derivative is positive semidef-
inite with one-dimensional kernel spanned by 1V .

Remark 7.8 The second derivative of E,�,λ is the Dirichlet energy of the piecewise
linear function taking the value uv at vertex v [11, Eq. (8), 28]. A satisfactory expla-
nation for this coincidence seems to be unknown.

Proof of Proposition 7.7 (i) and (iv) follow from the corresponding properties of H

(see Proposition 7.4), the scaling behavior of ��,λ,

��,λ(u + h 1V ) = ��,λ(u) + 2h · 1E�, (35)

and the equation
log cv(�,��,λ(u)) = log cv(�, λ) − uv. (36)

(ii) Follows from (25) and (36) by a direct calculation. Note that if (i, j, k) is a
permutation of (1, 2, 3) and

xi = λi + u j + uk
2

then, with the notation of Fig. 5,

∂

∂ui
2 f (x1, x2, x3) = α j + αk = π − αi . (37)

(iii) Follows from (26), (27), and (36) by a direct calculation (see also [7,
Prop. 4.1.6]). �

The functions H(�, · ), restricted to the respective Penner cells of �, fit together
to form a single C2 function on the decorated Teichmüller space:
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Definition and Proposition 7.9 (The functionH,�)For a triangulation�of (Sg, V ),
letH,� be the function

H,� : RE� −→ R,

H,�(λ) = H(Del(�, λ)) . (38)

(Del(�, λ) is defined in Definition 4.10.) The function H,� is well defined, twice
continuously differentiable, analytic in each open Penner cell of ˜Tg,n, and satisfies
the scaling relations

H,�(λ + h 1E�) = H,�(λ) + h π

(

|T�| − |E�| + 1

2π

∑

v∈V
v

)

. (39)

Corollary 7.10 There is a C2 function H : ˜Tg,n → R on the decorated Teichmüller
space,which is analytic on eachopenPenner cell, such that for each ideal triangulation
�, the function H,� is the representation of H in the global Penner coordinate
chart belonging to �. The function H is invariant under the action of the mapping
class group.

Proof of Proposition 7.9 The right hand side of (38) is well-defined for all λ ∈ R
E�

because (˜�, λ̃) = Del(�, λ) implies λ̃ ∈ A
˜� by Lemma 4.11.

The function H,� is analytic on open Penner cells because the functions
H(˜�, · ) are analytic for all triangulations ˜�, and so are the chart transition functions
τ�,˜� : λ 
→ λ̃ for Penner coordinates with respect to different triangulations � and
˜�.

If the Delaunay triangulation for (�, λ) is not unique, then the value of the right
hand side of (38) and its first two derivatives are independent of the choice of Delaunay
triangulation. This follows from Lemma 8.1, which we defer to Sect. 8. It also implies
that H,� is twice continuously differentiable.

The scaling relation (39) follows from the scaling relation for H (see Proposi-
tion 7.4).

Definition 7.11 Let E,�,λ be the restriction ofH,� to the fiber of ˜Tg,n over (�, λ)

parametrized by ��,λ, that is,

E,�,λ : RV −→ R,

E,�,λ(u) = H,�(��,λ(u)). (40)

Proposition 7.12 (Properties of E,�,λ)

(i) The function E,�,λ is twice continuously differentiable, analytic in the interior
of each Penner cell, and satisfies the scaling relations

E,�,λ(u + h 1V ) = E,�,λ(u) + h 2π

(

|T�| − |E�| + 1

2π

∑

v∈V
v

)

. (41)
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(ii) The partial derivatives are

∂

∂uv

E,�,λ(u) = v − ˜v, (42)

where˜v is the total angle at v when Sg is equipped with the piecewise Euclidean
metric that turns every triangle in T

˜� into a Euclidean triangle and every edge
e ∈ E

˜� into a straight line segment of length �̃e, where �̃ is defined by (21) and

(˜�, λ̃) = Del(�,��,λ(u)). (43)

(iii) The second derivative of E,�,λ at u satisfies

D2E,�,λ

∣

∣

u = D2E,˜�,λ̃

∣

∣

u, (44)

with (˜�, λ̃) defined by (43).
(iv) The function E,�,λ is convex. The second derivative is positive semidefinite with

one-dimensional kernel spanned by 1V .

Remark 7.13 By (44), one can calculate the second derivative D2E,�,λ|u by applying
the flip algorithm (see Theorem 4.8) to determine (˜�, λ̃) and then (34) for the second
derivative of E,˜�,λ̃.

Proof The claims follow from the corresponding properties ofH,� and E,�,λ. Note
that the scaling action of u ∈ R

V onRE� commutes with the chart transition functions
τ�,˜�:

τ�,˜�(��,λ(u)) = �
˜�,τ�,˜�(λ)(u). (45)

So with

(˜�, λ̃) = Del(�,��,λ(u)) = (

˜�, τ�,˜���,λ(u)
) = (

˜�,�
˜�,τ�,˜�(λ)(u)

)

one obtains

E,�,λ(u) = H (��,λ(u)) = H(Del(�,��,λ(u))) = H

(

˜�,�
˜�,τ�,˜�(λ)(u)

)

= E,˜�,τ�,˜�(λ)(u).

(46)
Statements (ii) and (iii) follow with (46) from the corresponding properties of

E,�,λ (see Proposition 7.7). �
To formulate the variational principle of Theorem 7.18 and for the variational

existence proofs (see Sects. 9 and 11) we need to consider limits of E,�,λ(u) as some
variables uv tend to infinity. It is enough to consider E0,�,λ, that is, the case  = 0,
because by (36),

E,�,λ(u) = E0,�,λ(u) −
∑

v∈V
v

(

log cv(�, λ) − uv

)

. (47)
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Lemma 7.14 (Limits of E0,�,λ) Let ū ∈ R
V , with R defined by (12), and assume

ūv < +∞ for at least one vertex v ∈ V . Then

lim
u→ū

E0,�,λ(u) =
∑

t∈T
˜�◦

2 f

(

λ̃e1(t)

2
,
λ̃e2(t)

2
,
λ̃e3(t)

2

)

− π
∑

e∈E
˜�◦

λ̃e, (48)

where
(˜�, λ̃) = Del(�, λ, u),

and ˜�◦ is the subcomplex of the adjusted Delaunay triangulation ˜� consisting of all
closed cells that are not incident with an undecorated vertex, that is,

V
˜�◦ = {v ∈ V | uv < +∞},

E
˜�◦ = {

e ∈ E
˜� | vertices of e are contained in V

˜�◦
}

,

T
˜�◦ = {

t ∈ T
˜� | vertices of t are contained in V

˜�◦
}

.

Corollary 7.15 If  ≥ 0 and v > 0 for at least one v ∈ V with ūv = +∞, then

lim
u→ū

E,�,λ(u) = +∞.

Proof of Lemma 7.14 By Akiyoshi’s Theorem 5.1, only finitely many ideal Delaunay
decompositions arise from different decorations of the surface (�, λ). It is therefore
enough to consider the limit of E0,�,λ(u) as u tends to ū in the subset

{

u ∈ R
V

∣

∣ �̄ is an ideal Delaunay triangulation for
(

�,��,λ(u)
)} ⊆ R

V (49)

for some fixed ideal triangulation �̄. Then �̄ is also a Delaunay triangulation of the
partially decorated surface (�, λ, ū), because the local Delaunay conditions (13) are
non-strict inequalities, both sides of which extend continuously to R

V . In particular,
�̄ and the adjusted Delaunay triangulation ˜� are ideal Delaunay triangulations of the
same ideal Delaunay decomposition. For u in the subset (49),

E0,�,λ(u) = H0(�̄, λ̄(u))

=
∑

t∈T�̄

2 f

(

λ̄e1(t)(u)

2
,
λ̄e2(t)(u)

2
,
λ̄e3(t)(u)

2

)

− π
∑

e∈E�̄

λ̄e(u), (50)

where
λ̄(u) = τ�,�̄ ◦ ��,λ(u).

In particular, for each triangle t ∈ T�̄ and all u in the subset (49),

1

2

(

λ̄e1(t)(u), λ̄e2(t)(u), λ̄e3(t)(u)
)

(51)

is contained in A (see Definition 7.1). There are three possibilities:
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Fig. 13 Ideal triangle contained in punctured Delaunay face, but not incident with the central vertex

(i) Triangle t is not contained in a punctured Delaunay cell of (�, λ, ū). Then (51)
converges to a point in A .

(ii) Triangle t is contained in a punctured Delaunay cell of (�, λ, ū) and t is incident
with the undecorated central vertex. Then (51) goes to infinity in A . If ei (t) is
the edge opposite the central vertex, and e j (t), ek(t) are the edges incident with
the central vertex, then λ̄ei (t)(u) has a finite limit while λ̄e j (t)(u) and λ̄ek(t)(u)

tend to +∞.
(iii) Triangle t is contained in a punctured Delaunay cell of (�, λ, ū) and t is not

incident with the undecorated central vertex. Then (51) converges to a boundary
point (x̄1, x̄2, x̄3) ∈ ∂A , that is, for some permutation (i, j, k) of (1, 2, 3),

ex̄i = ex̄ j + ex̄k

(see Figs. 4, 13).

Now (48) for the limit follows from (50) and the following limits of the function f .

(a) As (x1, x2, x3) −→ (x̄1,+∞,+∞) in A ,

f (x1, x2, x3) − π

2
(x2 + x3) −→ 0. (52)

To see this, note that

(α1, α2, α3) −→
(

0,
π

2
+ δ,

π

2
− δ

)

for some δ ∈ [

0, π
2

]

. So

α1x1 −→ 0 and L(α1) + L(α2) + L(α3) −→ 0

because L(0) = 0 and L
(

π
2 + δ

) + L
(

π
2 − δ

) = 0. Now (52) follows from

α2x2 + α3x3 − π

2
(x2 + x3) −→ 0.
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To see this, note that

α2x2 + α3x3 − π

2
(x2 + x3) = −1

2
α1 (x2 + x3) + 1

2
(α2 − α3)(x2 − x3).

The triangle inequalities imply (x2− x3) → 0, and using the sine rule one obtains
− 1

2α1(x2 + x3) → 0 from limα→0 α log sin α = 0.
(b) As (x1, x2, x3) −→ (x̄1, x̄2, x̄3) ∈ ∂A , where ex̄1 = ex̄2 + ex̄3 ,

f (x1, x2, x3) −→ π x̄1.

This follows from (α1, α2, α3) −→ (π, 0, 0). �
The variational principle (see Theorem 7.18) involves the function E,�,λ with

v∞ = 0, v = 2π for all other vertices, and uv∞ → +∞. We denote this function
by Ē v∞

�,λ (see Definition 7.16) and collect its relevant properties (see Proposition 7.17).

Definition 7.16 (Ē v∞
�,λ) For a triangulation � of (Sg, V ), a vertex v∞ ∈ V , and λ ∈

R
E� , let

V ◦ = V \ {v∞}, (53)

let  ∈ R
V be defined by

v =
{

0 if v = v∞,

2π if v ∈ V ◦,
(54)

and define

Ē v∞
�,λ : RV ◦ −→ R,

Ē v∞
�,λ(u) = lim

x→+∞E,�,λ(u|uv∞=x ), (55)

where for u ∈ R
V ◦
, we write u|uv∞=x for the function in R

V with value x at v∞ and
agreeing with u on V ◦.

Proposition 7.17 (Properties of Ē v∞
�,λ)

(i) The limit in (55) exists and is equal to

Ē v∞
�,λ(u) =

∑

t∈T
˜�◦

2 f

(

λ̃e1(t)

2
,
λ̃e2(t)

2
,
λ̃e3(t)

2

)

− π
∑

e∈E
˜�◦

λ̃e

− 2π
∑

v∈V ◦
(log cv(�, λ) − uv), (56)

where
(˜�, λ̃) = Del(�, λ, u|uv∞=+∞) (57)

(see Definition 5.13), and E
˜�◦ and T

˜�◦ are defined by (16) and (17).
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(ii) The function Ē v∞
�,λ is twice continuously differentiable and analytic in the interior

of each Penner cell.
(iii) The partial derivatives are

∂

∂uv

Ē v∞
�,λ(u) = −˜v + π(deg2(v) − deg1(v) + 2), (58)

where ˜ is defined as in Definition 6.1, (20), and

deg1(v) = edge-degree of v,

that is, the number of edges emanating from v counted with multiplicity, and

deg2(v) = triangle-degree of v,

that is, the number of triangles around v counted with multiplicity.
(iv) The second derivative is

D2Ē v∞
�,λ

∣

∣

u = 1

4

∑

e∈E
˜�◦

we(u)
(

duv1(e) − duv2(e)
)2

, (59)

where, if edge e is not a boundary edge of ˜�◦,

we(u) = cot αe(u) + cot α′
e(u)

and αe(u), α′
e(u) are the angles opposite e in the piecewise Euclidean metric

defined in Definition 6.1 (r2b). If e is a boundary edge, then e has one or zero
opposite angles and we(u) = cot αe(u) or we(u) = 0, respectively.

(v) The function Ē v∞
�,λ is convex and satisfies the scaling relation

Ē v∞
�,λ(u + h 1V ◦) = Ē v∞

�,λ(u) + 2π h. (60)

Proof Statement (i) follows from Lemma 7.14. By direct calculations, one obtains
equations (58) and (59) in the interior of Penner cells. As for H,�, one finds that
the first and second derivatives are continuous at the boundaries of Penner cells. This
implies the differentiability statement (ii).

Statement (iii) follows from the corresponding properties of E,�,λ (see Proposi-
tion 7.12), because convexity and the scaling relation survive taking the limit (55).
Note that

∑

v∈V
v = 2π(|V | − 1)

due to (54), and hence

|T
˜�| − |E

˜�| + 1

2π

∑

v∈V
v = |T

˜�| − |E
˜�| + |V | − 1 = 1,
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because ˜� is a triangulation of a sphere. Alternatively, one can also deduce statement
(v) directly from (56). �
Theorem 7.18 (Variational principle for Problem 2.3) Let S ∈ T0,n be a complete
finite area hyperbolic surface of genus 0 with n ≥ 3 cusps, and let (�, λ) be Penner
coordinates for S, decorated with arbitrary horocycles. Let V ◦ = V \ {v∞} for some
distinguished vertex v∞ ∈ V .

(i) If the function Ē v∞
�,λ attains its minimum under the constraints

uv ≥ δ�,λ(v, v∞) (61)

at the point u ∈ V ◦, then (˜�, λ̃) defined by (57) are realizable coordinates with
distinguished vertex v∞.

(ii) Up to equivalence (see Definition 6.4), all realizable coordinates with distin-
guished vertex v∞ correspond to constrained minima of Ē v∞

�,λ as in (i).

Proof We will show (i) and omit the proof of the converse statement (ii) because it is
easier and no new ideas are required. So assume Ē v∞

�,λ attains a minimum under the

constraints (61) at u ∈ R
V ◦
.We have to show conditions (r1) and (r2) of Definition 6.1.

Since condition (r1) obviously holds by construction, it remains to show (r2).
First, note that the convex function Ē v∞

�,λ attains a minimum under the con-

straints (61) at u ∈ R
V ◦

if and only if for all v ∈ V ◦:

∂

∂uv

Ē v∞
�,λ(u) = 0 if uv > δ�,λ(v, v∞), (62)

∂

∂uv

Ē v∞
�,λ(u) ≥ 0 if uv = δ�,λ(v, v∞). (63)

The scaling relation (60) implies that if a constrained minimum is attained at u then
u satisfies at least one constraint (61) with equality. The vertices v ∈ V ◦ for which
the constraint (61) is satisfied with equality are precisely the vertices adjacent to v∞
in ˜� (see Proposition 5.7). Now let v ∈ V be a vertex adjacent to v∞. By (58) and
inequality (63), we have

− ˜v + π(deg2(v) − deg1(v) + 2) ≥ 0. (64)

Consider two cases separately:

(a) deg2(v) = 0: In this case ˜v = 0 because there are no triangles t ∈ T
˜�◦ incident

with v. Inequality (64) implies

deg1(v) ≤ 2.

Using the following two observations, one deduces that the cell complex ˜�◦ =
(V ◦, E

˜�◦ , T
˜�◦) is a linear graph:

(1) Any vertex v′ �= v∞ adjacent to v also satisfies deg2(v) = 0.
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(2) The cell complex ˜�◦ is connected because its complement in the sphere S0 is
an open disk.

This proves condition (r2a) of Definition 6.1.
(b) deg2(v) > 0: In this case ˜v > 0, so inequality (64) implies

deg1(v) < deg2(v) + 2.

On the other hand, because T
˜�◦ does not contain all triangles of T

˜� incident with
v, we have

deg1(v) ≥ deg2(v) + 1,

and therefore
deg1(v) = deg2(v) + 1. (65)

Because the complement of ˜�◦ in the sphere S0 is an open disk, this implies that
the cell complex ˜�◦ is a triangulation of a closed disk. With (65), inequality (64)
implies (19), and (62) implies (18). This proves condition (r2b).

This concludes the proof of (i). �

8 The Differentiability Lemma

In this section we treat Lemma 8.1, which proves the well-definedness and differen-
tiability statement of Definition and Proposition 7.9.

Lemma 8.1 Suppose �1 and �2 are both Delaunay triangulations for the decorated
surface with Penner coordinates (�, λ∗), and let τ12 = τ�1,�2 be the chart transition
function R

E�1 → R
E�2 mapping Penner coordinates with respect to �1 to Penner

coordinates with respect to �2. Then the function values and the first and second
derivatives of H(�1, · ) and H(�2, τ12( · )) at λ∗ are equal:

H(�1, λ
∗) = H

(

�2, τ12(λ
∗)
)

, (66)

dH(�1, · )∣∣
λ∗ = d

(

H(�2, τ12( · )))∣∣
λ∗ , (67)

D2H(�1, · )∣∣
λ∗ = D2(H(�2, τ12( · )))∣∣

λ∗ . (68)

Remarks 8.2 (i) It is easy to check numerically that the analogous equations for
higher derivatives are in general false. In particular,

D3H(�1, · )∣∣
λ∗ �= D3(H(�2, τ12( · )))∣∣

λ∗ ,

so the third derivative of the function H on ˜Tg,n is generally discontinuous at
the boundaries of Penner cells.

(ii) The proof of (68) given in this section consists of a straightforward but unillu-
minating calculation. A more conceptual argument would be desirable.
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(iii) In the variational principles of Theorems 7.18 and 11.4, only the function
E,�,λ(u) plays a role, which is the restriction of H,�(λ) to one fiber of
the decorated Teichmüller space ˜Tg,n . In the context of realization and discrete
uniformization theorems, it would be enough to show that E,�,λ(u) is twice con-
tinuously differentiable. In view of Theorem 4.14 and Remark 7.8, this follows
from Rippa’s Minimal Roughness Theorem [30] for the PL Dirichlet energy. (This
is also proved by an unilluminating calculation.) Lemma 8.1 shows that the func-
tion H,� and hence the function H of Corollary 7.10 is twice continuously
differentiable on the whole decorated Teichmüller space. We believe this is of
independent interest.

The rest of this section is devoted to the proof of Lemma 8.1.

1. Reduction to  = 0 Since the total length of the decorating horocycle at a vertex
v does not depend on the triangulation, we have

cv(�1, λ) = cv(�2, τ12(λ))

and hence trivially also

dcv(�1, · )∣∣
λ

= dcv(�2, τ12( · ))∣∣
λ
, (69)

D2cv(�1, · )∣∣
λ

= D2cv(�2, τ12( · ))∣∣
λ

(70)

for all ideal triangulations �1, �2 and all λ ∈ R
E�1 . To prove Lemma 8.1, it is

therefore enough to consider the function H0 with  = 0.

2. Reduction to a single edge flip Without loss of generality, we may assume that�1
and �2 differ by a single edge flip. Indeed, any two Delaunay triangulations for the
same decorated surface are related by a finite sequence of flips of nonessential edges,
and (66)–(68) have the necessary transitivity property. To be more specific, assume
�1, �2, �3 are three ideal triangulations. To abbreviate, we write Hi for H(�i , · )
and τi j for τ�i ,� j . Then, by a straightforward application of the chain rules for first
and second derivatives, the equations

H1(λ
∗) = H2 ◦ τ12(λ

∗),

dH1
∣

∣

λ∗ = d(H2 ◦ τ12)
∣

∣

λ∗ ,

D2H1
∣

∣

λ∗ = D2(H2 ◦ τ12)
∣

∣

λ∗ ,

and

H2(τ12(λ
∗)) = H3 ◦ τ23(τ12(λ

∗)),

dH2
∣

∣

τ12(λ∗) = d(H3 ◦ τ23)
∣

∣

τ12(λ∗),

D2H2
∣

∣

τ12(λ∗) = D2(H3 ◦ τ23)
∣

∣

τ12(λ∗)

imply

H1(λ
∗) = H3 ◦ τ13(λ

∗),

dH1
∣

∣

λ∗ = d(H3 ◦ τ13)
∣

∣

λ∗ ,

D2H1
∣

∣

λ∗ = D2(H3 ◦ τ13)
∣

∣

λ∗ .
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Fig. 14 Lengths and angles in a Euclidean cyclic quadrilateral

3. Notation In the following we assume that �2 is the result of flipping edge e of
�1, which is replaced by edge f in �2. Let a, b, c, d ∈ E�1 ∩ E�2 be the adjacent
edges of e and f as in Fig. 7, and let � be defined by (8). By Lemma 4.11 and
Theorem 4.14, the Euclidean triangles with side lengths �a, �b, �e and �e, �c, �d form a
cyclic quadrilateral as shown in Fig. 14. By Ptolemy’s theorem of Euclidean geometry,
� f is the length of the other diagonal.

4. Equality of function values To show (66), we use the notation of Fig. 14 for the
angles. Writing

Vtet(α1, α2, α3) = L(α1) + L(α2) + L(α3), (71)

we obtain from (27)

H0(�1, λ
∗) − H0

(

�2, τ12(λ
∗)
)

= 2Vtet(α, β, γ + δ) + 2Vtet(γ, δ, α + β) + (α + β + γ + δ − π)λ∗
e

− 2Vtet(β, γ, α + δ) − 2Vtet(δ, α, β + γ ) − (α + β + γ + δ − π)λ∗
f ,

which is zero because
α + β + γ + δ = π (72)

and because (71) is Milnor’s formula [24] for the volume Vtet of an ideal tetrahedron
with dihedral angles α1, α2, α3 as shown in Fig. 3. So

Vtet(α, β, γ + δ) + Vtet(γ, δ, α + β) and Vtet(β, γ, α + δ) + Vtet(δ, α, β + γ )

are two ways of writing the volume of an ideal quadrilateral pyramid as the sum of
the volumes of two tetrahedra.

5. Equality of first derivatives To show (67), note that the chart transition function τ12
changes λ∗

e to λ∗
f as determined by Ptolemy’s relation (9) and leaves the values of λ∗
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for all other edges unchanged. Now consider the partial derivatives of both sides of
(66) at λ∗. From (25) and (27) one obtains by a straightforward calculation

∂H0(�1, · )
∂λe

∣

∣

∣

λ∗ = α + β + γ + δ − π = 0, (73)

and similarly

∂H0(�2, · )
∂λ f

∣

∣

∣

τ12(λ∗)
= δ + α + β + γ − π = 0, (74)

which implies

∂H0(�2, τ12( · ))
∂λe

∣

∣

∣

λ∗ = 0, (75)

and hence equality of the partial derivativeswith respect to λe . For the partial derivative
with respect to λa one obtains

∂H0(�1, · )
∂λa

∣

∣

∣

λ∗ = α = ∂H0(�2, τ12( · ))
∂λa

∣

∣

∣

λ∗ (76)

and similarly for λb, λc, λd . For all other edges ε ∈ E�1 ∩ E�2 , the difference
of partial derivatives is zero because all terms depending on λε in the difference
H0(�1, λ) − H0(�2, τ12(λ)) cancel. This proves (67).

5. Some useful identities In the calculation proving (68), we will use the identities

−dλa − dλc + dλe + dλ f = sin β sin δ

sin α sin γ + sin β sin δ
(−dλa + dλb − dλc + dλd),

dλb + dλd − dλe − dλ f = sin α sin γ

sin α sin γ + sin β sin δ
(−dλa + dλb − dλc + dλd),

(77)
which are valid at λ∗, as well as the simple trigonometric identities

cot x ± cot y = sin(±x + y)

sin x sin y
. (78)

To see (77), take derivatives on both sides of of Ptolemy’s relation

e(λe+λ f )/2 = e(λa+λc)/2 + e(λb+λd )/2
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to obtain

dλe + dλ f = e(λa+λc)/2

e(λa+λc)/2 + e(λb+λd )/2
(dλa + dλc)

+ e(λb+λd )/2

e(λa+λc)/2 + e(λb+λd )/2
(dλb + dλd)

= 1

1 + e(−λa+λb−λc+λd )/2
(dλa + dλc)

+ 1

1 + e(λa−λb+λc−λd )/2
(dλb + dλd),

then by the law of sines

dλe + dλ f = sin α sin γ

sin α sin γ + sin β sin δ
(dλa + dλc)

+ sin β sin δ

sin α sin γ + sin β sin δ
(dλb + dλd) (79)

and finally the identities (77).

6. Equality of second derivatives To show (68), first consider the right hand side.
The chain rule for second derivatives says

D2(H0(�2, τ12( · )))∣∣
λ∗(v,w) = D2H0(�2, · )∣∣

τ12(λ∗)
(

dτ12|λ∗(v), dτ12|λ∗(w)
)

+ dH0(�2, · )∣∣
τ12(λ∗)

(

D2τ12
∣

∣

λ∗(v,w)
)

︸ ︷︷ ︸

=0

, (80)

where the term involving dH0(�2, · ) vanishes due to (74), because D2τ12 only has a
component in the direction of ∂

∂λ f
.

Now use (26), (27), and (72) to obtain

2
(

D2H0(�1, · ) − D2(H0(�2, τ12( · )))
)∣

∣

∣

λ∗

= cot α
(

(dλb − dλe)
2 − (dλ f − dλd)

2)

+ cot β
(

(dλe − dλa)
2 − (dλc − dλ f )

2)

+ cot γ
(

(dλd − dλe)
2 − (dλ f − dλb)

2)

+ cot δ
(

(dλe − dλc)
2 − (dλa − dλ f )

2)

+ cot(α + β)
(

(dλc − dλd)
2 − (dλa − dλb)

2)

− cot(β + γ )
(

(dλd − dλa)
2 − (dλb − dλc)

2)

= cot α (dλb + dλd − dλe − dλ f )(dλb − dλd − dλe + dλ f )

+ cot β (−dλa − dλc + dλe + dλ f )(−dλa + dλc + dλe − dλ f )

+ cot γ (dλb + dλd − dλe − dλ f )(−dλb + dλd − dλe + dλ f )
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+ cot δ (−dλa − dλc + dλe + dλ f )(dλa − dλc + dλe − dλ f )

+ cot(α + β)(dλa − dλb + dλc − dλd)(−dλa + dλb + dλc − dλd)

− cot(β + γ )(−dλa + dλb − dλc + dλd)(−dλa − dλb + dλc + dλd)

= (dλb + dλd − dλe − dλ f )
(

(cot α − cot γ )(dλb − dλd)

+ (cot α + cot γ )(−dλe + dλ f )
) + (−dλa − dλc + dλe + dλ f )

(

(cot β − cot δ)(−dλa + dλc) + (cot β + cot δ)(dλe − dλ f )
)

+ (dλa − dλb + dλc − dλd)
(

(cot(α + β) − cot(β + γ ))(dλb − dλd)

+ (cot(α + β) + cot(β + γ ))(−dλa + dλc)
)

5.= (−dλa + dλb − dλc + dλd)

(

1

sin α sin γ + sin β sin δ

× (

sin(−α + γ )(dλb − dλd) + sin(α + γ )(−dλe + dλ f )

+ sin(−β + δ)(−dλa + dλc) + sin(β + δ)(dλe − dλ f )
)

− 1

sin(α + β) sin(β + γ )

(

sin(−α + γ )(dλb − dλd)

+ sin(−β + δ)(−dλa + dλc)
)

)

= 0. (81)

To see equality “
5.=”, use the identities (77) and (78). To see the last equality, note

that (72) implies

sin(α + β) sin(β + γ ) = sin α sin γ + sin β sin δ. (82)

This proves (68) and completes the proof of Lemma 8.1.

Remark 8.3 In connection with Remark 8.2 (iii), it is curious to note that for a vertical
tangent vector in T ˜Tg,n , that is, a vector tangent to the fiber over a point in Tg,n , the
first factor in (81),

−dλa + dλb − dλc + dλd ,

vanishes as well.

9 Proof of Theorem 1.1

In this section, we prove Theorem 1.1 using the variational principle of Theorem 7.18.
By Propositions 6.2 and 6.3, Theorem 1.1 is equivalent to the following statement
about the existence and uniqueness of realizable coordinate:

Proposition 9.1 Problem 2.3 has a unique solution up to equivalence (see Defini-
tion 6.4).
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Proposition 9.1 is in turn equivalent to the following statement about the unique
solvability of an optimization problem with bounds constraints (see Theorem 7.18):

Proposition 9.2 Let � be a triangulation of (S0, V ), the oriented surface of genus 0
with n = |V | ≥ 3 marked points, let λ ∈ R

E� , let v∞ ∈ V , and let V ◦ be defined
by (53). Then there exists a unique solution to the minimization problem

minimize Ē v∞
�,λ(u) for u ∈ R

V ◦
,

subject to the bounds constraints (61).
(83)

The rest of this section is concerned with proving Proposition 9.2, first the unique-
ness statement, then the existence statement.

Uniqueness Assume the minimization problem (83) has a solution. To show the
solution is unique, assume u ∈ R

V ◦
solves (83) and let (˜�, λ̃) be defined by (57). By

Theorem 7.18, (˜�, λ̃) are realizable coordinates with distinguished vertex v∞.
Either the subcomplex ˜�◦ of cells not incident with v∞ is a linear graph. In this

case all constraints (61) are satisfied with equality, which determines u uniquely.
Or ˜�◦ is a triangulation of a closed disk. Then the second derivative of Ē v∞

�,λ at
u is positive semidefinite with one-dimensional kernel spanned by 1V ◦ . This follows
from (56) and the convexity of f (see Proposition 7.2 (iii)). Togetherwith (62) and (63),
this implies that

Ē v∞
�,λ(u

′) > Ē v∞
�,λ(u)

for any u′ ∈ R
V ◦ \ {u} satisfying the constraints (61).

Existence To show that the continuous function Ē v∞
�,λ attains its minimum on the

closed subset

D = {

u ∈ R
V ◦ ∣

∣ u satisfies the bounds constraints (61)
} ⊆ R

V ◦
,

it is enough to show that every unbounded sequence (un) in D has a subsequence (unk )
with Ē v∞

�,λ(unk ) → +∞.
So let (un) be an unbounded sequence in D. Note that (un) is bounded from below

by the constraints (61). Hence, after taking a subsequence if necessary, wemay assume
that for every v ∈ V ◦ either un(v) converges to a finite limit, or un(v) → +∞. Since
un(v) → +∞ for at least one v ∈ V ◦ and v = 2π , Corollary 7.15 implies

lim
n

Ē v∞
�,λ(un) = +∞.

This concludes the proof of Proposition 9.2, and hence of Theorem 1.1.

10 Discrete Conformal Equivalence and the Uniformization Spheres

In this section we recall the basic definitions of discrete conformal equivalence, and
we discuss the equivalence of Rivin’s Theorem 1.1 and the discrete uniformization
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theorem for spheres (see Theorem 10.5). The relation of discrete conformal equiva-
lence was first defined for triangulated piecewise Euclidean surfaces. As explained in
Definition 4.13, we use the notation (�, �) for the triangulated piecewise Euclidean
surface with triangulation � and edge lengths � ∈ R

E�

>0 .

Definition 10.1 (Discrete conformal equivalence of triangulated surfaces) The tri-
angulated piecewise Euclidean surfaces (�, �) and (�, �̃) are discretely conformally
equivalent if there is a function u ∈ R

V� such that for every edge e ∈ E�,

�̃(e) = e(uv1(e)+uv2(e))/2�(e). (84)

This definition is due to Luo [22]. It has the following interpretation in terms of
hyperbolic geometry:

Proposition 10.2 (See [7, Thm. 5.1.2])Ona triangulated piecewiseEuclidean surface,
one obtains a complete hyperbolicmetric of finite area by equipping every trianglewith
the hyperbolic Klein metric induced by its circumcircle. Then the following statements
are equivalent:

(i) The triangulated piecewise Euclidean surfaces (�, �) and (˜�, �̃) are discretely
conformally equivalent.

(ii) The triangulated piecewise Euclidean surfaces (�, �) and (˜�, �̃) are isometric
with respect to the induced hyperbolic metrics.

The induced hyperbolic metric has Penner coordinates (�, λ), where λ and � are
related by (8). Proposition 10.2 can also be seen by considering decorated ideal tetra-
hedra as shown in Fig. 3: The projection form the point v∞ maps the Euclidean triangle
A1A2A3 in the horosphere centered at v∞ to the ideal triangle v1v2v3. The hyperbolic
Klein metric induced on the Euclidean triangle A1A2A3 by its circumcircle is the
pullback of the hyperbolic metric of the ideal triangle v1v2v3.

Note that Definition 10.1 requires the triangulations of both surfaces to be equal.
Discrete conformal mapping problems based on this notion of discrete conformal
equivalence can be solved using the variational principles introduced in [7]—provided
a solution exists. The variational principle also implies strong uniqueness theorems
for the solutions. But to prove any reasonable existence theorem for discrete confor-
mal maps, it seems necessary to allow changing the triangulation. Proposition 10.2
motivates the following definition, which leads to strong uniformization theorems:

Definition 10.3 (Discrete conformal equivalence of piecewise Euclidean surfaces)
Piecewise Euclidean metrics d and d̃ on the oriented surface (Sg, V ) of genus g
with n = |V | marked points are discretely conformally equivalent if the Delaunay
triangulations of (Sg, V )with respect to the metrics d and d̃ induce the same complete
hyperbolic metric on the punctured surface Sg,n = Sg \ V .

Definition 10.3 is equivalent to the definition of Gu et al. [18]:

Proposition 10.4 Two piecewise Euclidean metrics d and d̃ on (Sg, V ) are discretely
conformally equivalent, if there is a sequence of triangulated piecewise Euclidean
surfaces

(�0, �0), . . . , (�m, �m)
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such that:

(i) The metric of (�0, �0) is d and the metric of (�m, �m) is d̃.
(ii) Each�i is a Delaunay triangulation of the piecewise Euclidean surface (�i , �i ).
(iii) If �i = �i+1, then (�i , �i ) and (�i+1, �i+1) are discretely conformally equiv-

alent in the sense of Definition 10.1.
(iv) If �i �= �i+1, then (�i , �i ) and (�i+1, �i+1) are the same piecewise Euclidean

surface with two different Delaunay triangulations �i and �i+1.

Proof This is a consequence of Proposition 10.2 and Theorems 4.6 and 4.14. �
The connection of realization problems for ideal polyhedra and discrete conformal

equivalence in the sense of Definition 10.1 was observed in [7, Sect. 5.4]. With Defi-
nition 10.3, Rivin’s polyhedral realization Theorem 1.1 is equivalent to the following
uniformization theorem for spheres:

Theorem 10.5 (Discrete uniformization of spheres) For every piecewise Euclidean
metric d on the 2-sphere (S0, V ) with n = |V | marked points, there is a realization of
(S0, V ) as a convex Euclidean polyhedron P with vertex set V , such that all vertices lie
on the unit sphere and the inducedpiecewiseEuclideanmetric is discretely conformally
equivalent to d. The polyhedron P is unique up to projective transformations ofRP3 ⊇
R
3 mapping the unit sphere to itself.

The equivalence of both problems follows fromProposition 10.2, theMöbius invari-
ance of discrete conformal equivalence [7, Sect. 2.5], the construction described in [7,
Sect. 5.4], and Theorem 4.14.

The constructive variational proof of Theorem 1.1 (see Sect. 9) also shows that
the uniformizing polyhedron of a piecewise Euclidean sphere with n vertices can be
computed by solving a convex optimization problem with n − 1 variables.

11 Higher Genus and Prescribed Cone Angles

The variational method of proving Theorems 1.1 and 10.5 extends to other polyhedral
realization and discrete uniformization problems. The following theorem was proved
by Gu et al. [18]:

Theorem 11.1 Let d be a piecewise Euclidean metric on (Sg, V ), the surface of genus
g with n = |V | marked points, and let  ∈ R

V satisfy  > 0 and the Gauss–Bonnet
condition

1

2π

∑

v∈V
v = 2g − 2 + n. (85)

Then there exists a discretely conformally equivalent metric d̃ on (Sg, V ) such that
the cone angle at each v ∈ V is v . The metric d̃ is uniquely determined up to scale.

The special case of v = 2π for all v is the uniformization theorem for tori:
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Theorem 11.2 (Uniformization theorem for tori)For every piecewiseEuclideanmetric
d on (S1, V ), the torus with n = |V | marked points, there exists a flat metric d̃
on (S1, V ) that is discretely conformally equivalent to d. The metric d̃ is uniquely
determined up to scale.

Theorem 11.2 is equivalent to the following polyhedral realization theorem:

Theorem 11.3 Every oriented complete hyperbolic surface of finite area that is home-
omorphic to a punctured torus S1,n can be realized as a convex polyhedral surface in
H3 that is invariant under a faithful action of the fundamental group π1(S1) on H3

by parabolic isometries.

Theorem 11.3 is a special case of a more general result of Fillastre [14, Thm. B],
who used Alexandrov’s method to prove it. It seems the more general polyhedral
realization theorem that is equivalent to Theorem 11.1 has not been treated. It would
involve hyperbolic manifolds with one cusp, convex polyhedral boundary with ideal
vertices, and with “particles”. Izmestiev and Fillastre prove an analogous realization
theorem for polyhedral surfaces with finite vertices instead of ideal ones [15]. They
use a variational method that is analogous to the method presented in this article. Since
the vertices are finite, they do not need the Epstein–Penner convex hull construction.

The following variational principle for Theorem 11.1 is simpler than the variational
principle for the uniformization of spheres (see Theorem 7.18) because the minimiza-
tion problem is unconstrained, no vertex is distinguished, and it involves the function
E,�,λ instead of Ē v∞

�,λ.

Theorem 11.4 (Variational principle forTheorem11.1)Let d be apiecewiseEuclidean
metric on (Sg, V ), the surface of genus g with n = |V |marked points, and let ∈ R

V .
Let � be a straight triangulation of (Sg, V ) and for each edge e let �e be length of
edge e. Then the following statements are equivalent:

(i) Themetric of the piecewise flat surface (˜�, �̃) is discretely conformally equivalent
to d and has cone angle v at each vertex v ∈ V .

(ii) The function E,�,λ attains its minimum at u ∈ R
V , the realizable coordinates

(˜�, λ̃) are equivalent to Del(�,��,λ(u)) (see Definition 6.4), and �̃ satisfies
(21).

Proof This follows from Proposition 7.12 and Theorem 4.14. �
To prove Theorem 11.1 using the variational principle of Theorem 11.4, note the

following:

• The Gauss–Bonnet condition (85) is equivalent to the scale invariance of E,�,λ,
that is,

E,�,λ(u + h1V ) = E,�,λ(u). (86)

This follows form (41).
• The uniqueness statement of Theorem 11.1 follows from the convexity of E,�,λ,
Proposition 7.12 (iii). If the Gauss–Bonnet condition is satisfied and E,�,λ attains
its minimum at u and at u′, then u − u′ ∈ R1V .
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• To prove the existence statement, proceed as in the proof of Theorem 1.1 (see
Sect. 9). Note that due to the scale invariance (86) it is enough to consider
unbounded sequences (un) in RV that are bounded from below.

A completely analogous theory of discrete conformal equivalence for triangulated
piecewise hyperbolic surfaces, including a convex variational principle, was developed
in [7, Sect. 6], see also [8]. A result analogous to Theorem 11.1 was proved by Gu et
al. [17]. A corresponding realization result, analogous to Theorem 11.3 for higher
genus, is also due to Fillastre [14, Thm. B′]. To obtain a variational proof and a
practical method for computation, one can translate the variational method developed
here to the setting of piecewise hyperbolic surfaces. This is beyond the scope of this
article.
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