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Abstract
We study the ‘no-dimension’ analogue of Carathéodory’s theorem in Banach spaces.
We prove such a result together with its colorful version for uniformly smooth Banach
spaces. It follows that uniform smoothness leads to a greedy de-randomization of
Maurey’s classical lemma Pisier (in: Séminaire Analyse fonctionnelle (dit “Maurey-
Schwartz”), 1980), which is itself a ‘no-dimension’ analogue of Carathéodory’s
theorem with a probabilistic proof. We find the asymptotically tight upper bound
on the deviation of the convex hull from the k-convex hull of a bounded set in L p with
1 < p ≤ 2 and get asymptotically the same bound as in Maurey’s lemma for L p with
1 < p < ∞.

Keywords Carathéodory’s theorem · Uniform smoothness · Supporting hyperplane ·
Type of a Banach space
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1 Introduction

Carathéodory’s theorem [4] is a classical result in Convex Geometry. It states that
every point in the convex hull conv S of a set S ⊂ R

d is a convex combination of
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at most d + 1 points of S. There are many different generalizations of this theorem.
Recently, several authors studied so-called approximate versions of Carathéodory’s
theorem, where the distance between a point of the convex hull conv S of a bounded
set S and the k-convex hull convk S were investigated. The latter, the k-convex hull
of S, is the set of all convex combinations of at most k points of S. For example, [1,
Thm. 2.2] the following optimal result in the Euclidean case was proven:

The distance between any point p in the convex hull of a bounded set S of a Euclidean
space and the k-convex hull convk S is at most diam S√

2k
.

However, not only the Euclidean case was studied. Probably, the most signifi-
cant result in the area is Maurey’s lemma [16], in which an approximate version of
Carathéodory’s theorem is proven for spaces that have (Rademacher) type p > 1.
We explain the definitions and formulate Maurey’s lemma and explain its relation to
our results in the next section. We note here that Maurey’s lemma is a more general
statement than our results. However, Maurey’s proof uses Khintchine’s inequality and
it is probabilistic.

We think that a simple geometric property of Banach spaces hides behind such a
sophisticated technique. In this paper, we prove the approximate Carathéodory’s theo-
rem for uniformly smoothBanach spaces, andbound the distance between apoint of the
convex hull of a bounded set and its k-convex hull in terms of the modulus of smooth-
ness of a Banach space. In fact, we provide a greedy algorithm for the approximation
of a point of the convex hull of a bounded set in a uniformly smooth Banach space.
We note here that an L p space for 1 < p < ∞ is uniformly smooth and its modulus
of smoothness is well known.We give all the required definitions in Sect. 2 and briefly
discuss there some properties of Banach spaces that are connected to the uniform
smoothness of Banach spaces. The following statement is the main result of the paper.

Theorem 1.1 Let S be a bounded set in a uniformly smooth Banach space X,
a ∈ conv S. Then there exists a sequence {xi }∞i=1 ⊂ S such that for vectors
ak = 1

k

∑
i∈[k] xi the following inequality holds:

‖a − ak‖ ≤ 2e2

kρ−1
X (1/k)

diam S, (1.1)

where ρX (·) is the modulus of smoothness of X.

In the proof we provide a greedy algorithm for constructing such a sequence, which
directly implies the colorful version of approximate Carathéodory’s theorem.

Corollary 1.2 Let {Si }∞i=1 be a family of sets of a Banach space X such that a ∈⋂∞
i=1

conv Si and D = supi diam Si < ∞ Then there exists a transversal sequence

{xi }∞i=1 (that is, xi ∈ Si ) such that for vectors ak = 1
k

∑
i∈[k] xi the following inequality

holds:

‖a − ak‖ ≤ 2e2

kρ−1
X (1/k)

D, (1.2)

where ρX (·) is the modulus of smoothness of X.
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At the end of the next section, we show that the bound in inequality (1.1) is tight
for all L p spaces with 1 ≤ p ≤ 2 and coincides with the bound obtained in [2] for
2 ≤ p < ∞ up to a reasonable constant factor.

There are some other “measures of non-convexity” of the k-convex hull. We refer
the reader to the survey [8]. However, they were mostly studied in the Euclidean case.

2 Modulus of Smoothness and Its Properties

In this section, we give definitions from the Banach space theory and provide a certain
reformulation of the main result using this language.

The modulus of smoothness (or Lindenstrauss’ modulus) of a Banach space X is
the function ρX : [0,∞] → [0,∞] given by

ρX (τ ) = sup

{
1

2
(‖x + τ y‖ + ‖x − τ y‖) − 1

∣
∣
∣
∣ ‖x‖ = ‖y‖ ≤ 1

}

.

A Banach space X is called uniformly smooth if ρX (t) = o(t) as t → 0. It is known
that uniform smoothness is equivalent to the uniform differentiability of the norm.
As a good reference with simple geometric explanations of different properties of the
modulus of smoothness and uniformly smooth spaces we refer to Chapter 2 of [6].

It is known that the modulus of smoothness ρX (·) of a Banach space X is a convex
strictly increasing function that satisfies the following inequality of Day–Nordlander
type [13] for all positive τ :

√
1 + τ 2 − 1 = ρH (τ ) ≤ ρX (τ ) ,

where ρH (τ ) is the modulus of smoothness of Hilbert space. The latter inequality
implies the following technical observations, which we use in the sequel:

2e2

ρ−1
X (1)

≥ 1; 2e2

ρ−1
X (1/2)

≥ 2; (2.1)

and
1

ρ−1
X (1/k)

≥ 1 for k ≥ 3. (2.2)

Clearly, uniform smoothness of the norm is not stable under small perturbations
of the norm. However, equivalent renormalization of a space just adds a constant
factor to inequalities (1.1), (1.2). That is, we can approximate a point of the convex
hull by a point of the k-convex hull of a bounded set in every Banach space, which
admits an equivalent uniformly smooth norm. Such spaces are well-studied; moreover,
due to Enflo [7] and Pisier [15], we know that these spaces are exactly the so-called
super-reflexive Banach spaces. Summarizing their results, the following assertions are
equivalent

• a Banach space X admits an equivalent uniformly smooth norm;
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• a Banach space X admits an equivalent uniformly smooth norm with modulus of
smoothness of power type p;

• a Banach space X is a super-reflexive space.

It is said that a uniformly smooth Banach space X has modulus of smoothness of
power type p if, for some 0 < C < ∞, ρX (τ ) ≤ Cτ p. Now we can reformulate
our results in a norm renormalization invariant way. We use dist (a, B) to denote the
distance between a point a and a set B. We define the deviation of a set A from a set
B as follows:

h+(A, B) = sup
a∈A

dist (a, B) .

We say that a Banach space X has Carathéodory’s approximation property if there is
a function f : N → [0,∞) with limk→∞ f (k) = 0 such that h+(conv S, convk S) ≤
f (k) for an arbitrary subset S of the unit ball of X . Theorem 1.1 and the discussion
above imply the following.

Corollary 2.1 A super-reflexive Banach space X has Carathéodory’s approximation
property: that is, there exists p ∈ (1, 2] and constant C such that

h+(conv S, convk S) ≤ ε,

for all ε > 0 and k ≥ C
( diam S

ε

)p/(p−1)
.

A Banach space X is said to be of type p for some 1 < p � 2, if there exists a
constant Tp(X) < ∞ such that, for every finite set of vectors {x j }n

j=1 in X , we have

∫ 1

0

∥
∥
∥
∥
∥
∥

n∑

j=1

r j (t)x j

∥
∥
∥
∥
∥
∥

dt � Tp(X)

⎛

⎝
n∑

j=1

‖x j‖p

⎞

⎠

1/p

,

where
{
r j

}∞
j=1 denotes the sequence of the Rademacher functions.

We can formulate Maurey’s lemma as follows (see also [3, Lem. D]).

Let S be a bounded set in a Banach space X which is of type p, a ∈ conv S.
Set q = p/(p − 1). Then there exists a sequence {xi }∞i=1 ⊂ S such that for vectors
ak = 1

k

∑
i∈[k] xi the following inequality holds:

‖a − ak‖ ≤ Tp(X)k−1/qdiam S.

Since a Banach space with modulus of smoothness of power type p implies type
p, then Theorem 1.1 follows from Maurey’s lemma (up to a constant term in the
inequalities). The converse is not true in general (see [12,17]). However, type p with
some additional not very restrictive property (see table on p. 101 in [14]) implies
modulus of smoothness of power type p. It is known [13] that L p, 1 < p < ∞, is
of type q = max{p, 2} and has modulus of smoothness of power max{p, 2}. More
precisely,

123



Discrete & Computational Geometry (2021) 66:273–280 277

ρL p (t) =
(

(1 + t)p + (1 − t)p)

2

)1/p

− 1 <
p − 1

2
t2 for 2 � p < ∞; (2.3)

ρL p (t) = (1 + t p)1/p − 1 ≤ t p

p
for 1 < p � 2. (2.4)

Since p in Corollary 2.1 can be chosen to be the order of the modulus of smoothness,
we see that k = O

( diam2S
ε2

)
in L p, 2 ≤ p < ∞, which coincides with the rate

of convergence in Maurey’s lemma. Moreover, as was shown in Barman’s paper [2,
Thm. 3.2], the constants in both inequalities are close enough to one another in this
case.

In case of an L p space with 1 ≤ p ≤ 2, the bound in inequality (1.1) is the best
possible up to a constant: when n = 2k, S = {e1, . . . , e2n} and a = {1/n, . . . , 1/n},
then dist (a, convk S) ≥ 1

4 k1/p−1. Moreover, this implies that L1 and L∞ have no
Carathéodory’s approximation property.

3 Geometrical Idea Behind the Proof

We begin with a sketch of the proof of the following folklore analogue of the main
theorem in a Euclidean space (see [5,18]).

Let S be a subset of the unit ball of a Euclidean space such that 0 ∈ conv S. Then
there exists a sequence {xi }∞i=1 ⊂ S such that

∥
∥
∥
∥
∥

k∑

i=1

xi

∥
∥
∥
∥
∥

�
√

k

for all k ∈ N.

We apply induction on k. Assume that we have chosen x1, . . . , xn that satisfy
the inequality for all k ∈ [n]. Since 0 ∈ conv S, there exists xn+1 such that〈
xn+1,

∑n
i=1 xi

〉 ≤ 0. Then, by the law of cosines,

∥
∥
∥
∥
∥

n∑

i=1

xi + xn+1

∥
∥
∥
∥
∥

≤
√
√
√
√

∥
∥
∥
∥
∥

n∑

i=1

xi

∥
∥
∥
∥
∥

2

+ ‖xn+1‖2 ≤ √
n + 1.

The statement is proven.
In fact, the law of cosines can be reformulated in terms of the deviation of the unit

sphere from its supporting hyperplane as follows.
We use u∗ to denote a unit functional that attains its norm on a non-zero vector u of a

Banach space X , i.e., 〈u∗, u〉 = ‖u‖ ‖u∗‖ = ‖u‖. Clearly, a set {x ∈ X | 〈u∗, x〉 = 1}
is a supporting hyperplane to the unit ball of X at u/ ‖u‖. For simplicity, we assume
that u∗ = 0 for u = 0. Let H be a supporting hyperplane at a unit vector u of the unit
ball in a Euclidean space E and x be such that 〈u∗, x〉 ≤ 0. Then the norm of ‖u + x‖

123



278 Discrete & Computational Geometry (2021) 66:273–280

is at most
√
1 + ‖x‖2 (≈ 1 + ρE (‖x‖) for sufficiently small ‖x‖) with equality only

for x parallel to H . That is, we see that vectors from the supporting hyperplane spoil
the summost badly and we measure the deviation of the unit sphere from a supporting
hyperplane to bound the norm of the sum on each step. Similar statements can be
proven in a uniformly smooth Banach space. However, it is not necessarily true that
for an arbitrary unit vector u of a Banach space the maximum of norm ‖u + v‖, where
‖v‖ is fixed and 〈u∗, v〉 ≤ 0, is attained on the supporting hyperplane to the unit ball
at u. But one can measure this deviation using the modulus of smoothness, which we
do in the following simple lemma.

Lemma 3.1 Let u be a unit vector of Banach space X and x ∈ X such that 〈u∗, x〉 ≤ 0.
Then

‖u + x‖ ≤ 2ρX (‖x‖) + 1.

Proof Since 〈u∗, x〉 ≤ 0 and Hu = {q ∈ X | 〈u∗, q〉 = 1} is a supporting hyperplane
for the unit ball of X , we have that ‖u − x‖ ≥ 1. Therefore, by the definition of the
modulus of smoothness, we obtain

‖u + x‖ + ‖u − x‖ ≤ 2ρX (‖x‖) + 2,

or, equivalently,

‖u + x‖ ≤ 2ρX (‖x‖) + 2 − ‖u − x‖ ≤ 2ρX (‖x‖) + 1. ��
Our proof follows the same line as in the above-mentioned Euclidean analogue

with the use of Lemma 3.1 instead of the law of cosines.

Remark 3.2 The deviation of the unit sphere from the supporting hyperplane in a
Banach space was studied by the author in [9]. In particular, it was shown that the
inequality from Lemma 3.1 is asymptotically tight as ‖x‖ tends to zero. On the other
hand, it was proven in [11] that for any τ in an arbitrary Banach space, there is a unit
vector u and a vector x parallel to a supporting hyperplane to the unit ball at u such
that ‖u + x‖ =

√
1 + ‖x‖2 = √

1 + τ 2. That is, the smallest upper bound is attained
in the Euclidean case.

4 Proof of theMain Result

By setting Si = S for all i ∈ N, we see that Corollary 1.2 implies Theorem 1.1. We
give the proof of the corollary, which coincides with the proof of the theorem up to
above-mentioned renaming of sets.

Proof To simplify the proof, we translate Si to Si − a and then scale them in such a
way that D = supi diam Si = 1. Then inequality (1.2) transforms into

‖ak‖ ≤ 2e2

kρ−1
X (1/k)

. (4.1)
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Let us construct a sequence {xi }∞i=1, where xi ∈ Si , that satisfies the latter inequality.
We use the following algorithm:

(1) x1 is an arbitrary point from S1; x2 is an arbitrary point from S2.
(2) For the constructed sequence {x1, . . . , xk}, k ≥ 2, we choose xk+1 ∈ Sk+1 such

that
〈
xk+1, a∗

k

〉 ≤ 0 (that is, xk+1 is an arbitrary point of Sk+1 if ak = 0).

Firstly, the sequence {xi }∞i=1 is well defined. Indeed, there exists q ∈ Sk+1 such that
〈q, p〉 ≤ 0 for an arbitrary functional p ∈ X∗, since 0 ∈ conv Sk+1. In the algorithm
we choose a functional p = a∗

k such that
∥
∥a∗

k

∥
∥ = 1 and for ak = 1

k

∑
i∈[k] xi , ak �= 0,

the equality
〈
a∗

k , ak
〉 = ‖ak‖ is valid.

Secondly, let us show that {xi }∞i=1 satisfies inequality (4.1). Fix k. By inequality
(2.1), we assume that k ≥ 3. By definition put ηk = 1/ρ−1

X (1/k) and uk = kak . If
inequality ‖uk‖ ≤ ηk holds, it implies the required inequality. Assume that ‖uk‖ > ηk .
Then letm−1 be the biggest number in [k−1] such that ‖um−1‖ ≤ ηk and ‖um‖ > ηk .
Suchm exists since, by inequality (2.2), we have that ‖u1‖ = ‖x1‖ ≤ ηk . Since ηk ≥ 1
for k ≥ 3, we have

‖um‖ ≤ ηk + 1 ≤ 2ηk . (4.2)

By the choice of m, we have that ‖um+�−1‖ > ηk ≥ 1 for all � ∈ [k − m]. Hence, by
the definition of ηk and the construction of {xi }∞i=1, we get

‖um+�‖ = ‖um+�−1 + xm+�‖
= ‖um+�−1‖

∥
∥
∥
∥

um+�−1

‖um+�−1‖ + xm+�

‖um+�−1‖
∥
∥
∥
∥

Lemma 3.1≤ ‖um+�−1‖
(

1 + 2ρX

( ‖xm+�‖
‖um+�−1‖

))

≤ ‖um+�−1‖
(

1 + 2ρX

(
1

ηk

))

= ‖um+�−1‖
(

1 + 2

k

)

.

Combining these inequalities for all � ∈ [k − m] and inequality (4.2), we obtain

‖uk‖ ≤ ‖um‖
(

1 + 2

k

)k−m

≤ 2e2ηk .

Therefore, ak = uk/k satisfies inequality (4.1). The theorem is proven. ��
We note here that the authors used a similar idea in [10] to prove the convexity of

a special type limit object in a uniformly smooth Banach space.
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