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Abstract
We show that a convex body admits a translative dense packing in Rd if and only if it
admits a translative economical covering.

Keywords Packings · Coverings · The Kuperberg conjecture

1 Introduction

1.1 Packing and Covering Densities

LetC be a d-dimensional convex body inRd , i.e., a compact convex set with nonempty
interior. A (translative) arrangement is a set C + A, where A is a discrete point set in
R
d . We assume that A is infinite. An arrangement is called packing if no two translates

of C in C + A have an interior point in common. An arrangement is called covering
if Rd = C + A.

Define upper and lower densities of an arrangement

den(C + A) = lim sup
r→∞

∑
a∈A vol((C + a) ∩ Bd(r))

vol(Bd(r))
,
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den(C + A) = lim inf
r→∞

∑
a∈A vol((C + a) ∩ Bd(r))

vol(Bd(r))
,

where Bd(r) is the Euclidean ball of radius r centered at the origin.
The (translative) packing density of C is

δT (C) = sup
C+A is a packing

den(C + A).

Similarly, the (translative) covering density of C is

θT (C) = inf
C+A is a covering

den(C + A).

An important example is a periodic arrangement, i.e., an arrangement of the form
C + � + X , where � is a lattice and X is a finite point set. In this case,

den(C + � + X) = den(C + � + X) = |X |vol(C)

vol(Rd/�)
.

Then we will denote this quantity just as den(C + � + X).
We can consider arrangements consisting not only from translates of C , but from

any congruent copies of C . In this case the packing and covering densities of C can
be defined similarly. Denote them by δ(C) and θ(C) respectively. Another important
case is the case of lattice arrangements, i.e., of the form C + �, where � is a lattice.
The corresponding densities over lattice arrangements only are denoted by δL(C) and
θL(C).

Bounding packing and covering densities (especially for some specific choices of
C , e.g., Euclidean balls) is one of the main problems in discrete geometry. Despite a
lot of progress, plenty important questions remain open.

Clearly, for any C we have

δT (C) � δ(C) � 1

and

θT (C) � θ(C) � 1.

The equality of any of these densities to 1 is equivalent to the property that copies of
C can tessellate Rd . This was proved by Schmidt [19], one can also look for a proof
in [5, p. 805].

δ(C) = 1 ⇐⇒ θ(C) = 1,

δT (C) = 1 ⇐⇒ θT (C) = 1.

A natural question arises from this observation: if a body C cannot be packed
densely, does it mean that it cannot cover Rd economically? In the book by Brass et
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al. [1] this conjecture is attributed to W. Kuperberg (Conjecture 1 in Chapter 1.10, the
original notation is saved):

Conjecture 1.1 Let d � 2 be fixed. Then for any ε > 0 there exists a δ > 0 with the
property that for every d-dimensional convex body C,

(1) δ(C) � 1 − ε implies θ(C) � 1 + δ,

(2) θ(C) � 1 + ε implies δ(C) � 1 − δ.

In the notation of Conjecture 1.1, δ and δ(C) are not the same. The notation δ(C)

is conventional for the packing density and another δ is common for the epsilon–delta
notation.

The aim of the present note is to prove this conjecture for translative densities. It
will be more helpful to give our statement in the form of converse implications.

Theorem 1.2 Let d � 2 be fixed.

(1a) Let 0 < ε � 1/dd+1 and C be a d-dimensional convex body, or 0 < ε < 1 and
C in addition be centrally symmetric. If for the translative packing density we
have δT (C) > 1 − ε, then the translative covering density of C satisfies

θT (C) <
(
1 + ε1/(d+1))d+1

.

(1b) Let 1/dd+1 < ε < 1 and C be non-centrally symmetric. If for the translative
packing density we have δT (C) > 1− ε, then the translative covering density of
C satisfies

θT (C) <
(
1 + εdd

)
(

1 + 1

d

)d

.

(2) Let 0 < ε < 1 and C be a d-dimensional convex body. If for the translative
covering density we have θT (C) < 1+ ε, then the translative packing density of
C satisfies

δT (C) >
(
1 − ε1/(d+1))d+1

.

Clearly, Conjecture 1.1 for translative densities follows from this theorem.

1.2 Previous Results and Future Perspectives

The only already known case of Conjecture 1.1 was established by Ismailescu in [8].
He considered d = 2 and only centrally symmetric convex bodies. More precisely, he
showed that in this case

1 − δL(C) � θL(C) − 1 � 1.25
√
1 − δL(C).
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Fejes Tóth [6] established that for any planar centrally symmetric convex body
C we have δ(C) = δT (C) = δL(C), and Dowker [2] proved that θL(C) = θT (C).
Hence, Ismailescu’s result extends to the case of all translative arrangements. His proof
is based on the approximation of C by centrally symmetric octagons and cannot be
extended to higher dimensions.

In [4] Fejes Tóth and Kuperberg proposed to understand links between packing
and covering densities in a more general way. They defined the set �d (resp. �∗

d )
of points (x, y) ∈ R

2 such that there exists a d-dimensional convex (resp. centrally
symmetric) body C with δ(C) = x and θ(C) = y. The definition of �d (resp. �∗

d )
can be restricted to the case of translative or lattice densities. It may be of interest
to characterize these sets. In fact, it is still unknown whether these sets are closed
(but it is known for translative or lattice cases) or convex. We refer the reader to the
paper [11] investigating the planar case. Several inequalities involving both δL(C) and
θL(C) were established, e.g., in [9,10,21], but also only in low dimensions.

In order to prove the translative Kuperberg conjecture it is enough to consider only
sufficiently small values of ε with respect to d. When ε is not very small and d is
sufficiently large it is interesting to compare Theorem 1.2 with the best known general
bounds on packing and covering densities.

In the case of coverings by translates of an arbitrary d-dimensional convex body C
the following inequality was established by Fejes Tóth [3] (which slightly improves a
previous result by Rogers):

θT (C) � d ln d + d ln ln d + d + o(d).

We see that Theorem 1.2 gives us a stronger bound if

1 − δT (C) <
ln d

edd−1

or if

1 − δT (C) <

(
ln(d ln d + d ln ln d + d)

d + 1

)d+1

and C in addition is centrally symmetric.
For packing densities of centrally symmetric convex bodies the following result by

Schmidt [20] is the best known:

δT (C) � δL(C) � d ln 2

2d+1 − o(1).

Comparing with the last inequality in Theorem 1.2 we see that the latter gives a
stronger bound for sufficiently large d if

θT (C) − 1 <

(
1

2
− ln(d ln 2)

d + 1

)d+1

.
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For a non-centrally symmetric C we should use the observation of Minkowski (see
[7, Chap. 2]):

δT (C) = 2dδT (C − C)
vol(C)

vol(C − C)
.

Denote
( vol(C−C)

vol(C)

)1/d by W (C). Then we have

δT (C) � cd

Wd(C)
.

Hence, we obtain a better bound provided d is sufficiently large and

θT (C) − 1 <

⎛

⎝1 − 1

W (C)
−

ln
(
W (C)d ln

√
2
)

d + 1

⎞

⎠

d+1

.

An interesting question is to understand if the dependence of our bounds on d is
necessary. In other words, we would like to propose the following problem:

Question 1.3 Is it true that for any ε > 0 there exists μ > 0 with the property that for
every d and every d-dimensional convex body C,

(1) δ(C) � 1 − ε implies θ(C) � 1 + μ,

(2) θ(C) � 1 + ε implies δ(C) � 1 − μ.

It is also of interest to prove an analogue of Theorem 1.2 for the case of lattice
densities only (it is conjectured [1] that in higher dimensions δL(C) 
= δT (C) and
θL(C) 
= θT (C)). Such a proof should use totally different ingredients.

Our proof is based on a boundon the number of steps of a certain greedy algorithm. It
seems that in previous yearsmost of results on packing and covering densities in higher
dimensions used averaging or probabilistic arguments. Recently the focus started to
shift in the direction of more deterministic techniques. For instance, in [12] Naszódi
gave a new proof of some well-known covering results via discretization and a lemma
connecting fractional coveringnumbers offinite hypergraphswith integral ones. Proofs
of this lemma considered a greedy algorithm applied to finite sets. In [18] Rolfes and
Vallentin explored a greedy algorithm applied directly to geometric covering problems
and also obtained several classical results through their method.

Packing and covering results have some applications to other problems in discrete
geometry. For instance, consider the problem of finding the chromatic number χ(S)

of a subset S ⊆ R
d . The chromatic number χ(S) is the minimal number of colors

sufficient to color S in such a way that any two points at the distance 1 have different
colors. Using deterministic covering algorithms in [13] the author gave a new proof
of the upper bound for χ(Rd) and in [14] the author established new upper bounds
for χ(Sd−1

R ), where Sd−1
R is a (d − 1)-dimensional Euclidean sphere of radius R.

For more details about geometric chromatic numbers the reader is refereed to the
surveys [15,16].
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2 Proof of Theorem 1.2

We need an important theorem of Rogers (see [17, Thms 1.7, 1.9]).

Theorem 2.1 For a convex body C in the definition of its translative packing density
we can take the supremum over only periodic arrangements. The same holds for its
translative covering density.

We assume that C contains the origin in the interior. By λC + x we denote the
image of C under the composition of the homothety with the center at the origin and
the coefficient λ and the translation by the vector x . Now we are able to give a proof
of the main theorem.

Proof of (1) Assume that δT (C) > 1 − ε. By Theorem 2.1 there is a lattice � and a
finite point set X such that C + � + X is a packing and

den(C + � + X) > 1 − ε.

Consider the torus T = R
n/�. The sets X and C can be projected to T . Abusing the

notation, we still denote by X and C their images under this projection. This will not
lead to an ambiguity as from now on we work only on T . The arrangement C + X is
a packing on T .

Let k = |X |. Then
k vol(C)

vol(T )
= den(C + � + X) > 1 − ε.

As our problem is homothety invariant, we may assume that vol(T ) = 1. Hence,

k vol(C) > 1 − ε.

Define S0 = vol(T \(C + X)). We have S0 < ε. Also, let X0 = X .
Fix 0 < α < 1. We proceed iteratively. Assume that (1 + α)C + Xi does not cover

T . Then there exists y ∈ T which is not covered by (1 + α)C + Xi . We have that for
every x ∈ X ,

(−αC + y) ∩ (C + x) = ∅.

Indeed, −αC + y can be obtained as the image of C + x under a homothety with
the coefficient −α and the center in the segment xy laying outside of C + x . Next,
we are looking for y′ such that C + y′ covers −αC + y. If C is centrally symmetric,
then we can take y′ = y. In the other case we need the condition α � 1/d. Then
the existence of such y′ follows from the fact that we can put a translate of − 1

d C
into C . This statement is equivalent to the existence of a point in the interior of C
such that every chord through this point is divided in a ratio not greater than d. It is
a well-known implication of the Helly theorem and was proved by Minkowski and
Radon, see, e.g., [22, Cor. 1.4.2].
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Consider Xi+1 = Xi ∪ {y′} and Si+1 = vol(T \(C + Xi+1)). Clearly,

0 � Si+1 � Si − vol (−αC) = Si − αdvol(C) < ε − (i + 1)αdvol(C).

If (1 + α)C + Xi+1 does not cover T , then repeat this process. At every step Si � 0.
Hence, we stop after l steps and the upper bound on l can be deduced from the
inequality

ε > lαd vol(C).

We rewrite it as

l vol(C) <
ε

αd
.

We obtain that (1 + α)C + Xl covers T . Then (1 + α)C + Xl + � covers Rd .
Now we need to estimate the density of this arrangement

θT (C) = θT ((1 + α)C)

� den ((1 + α)C + Xl + �) = |Xl |vol ((1 + α)C)

= (k + l) (1 + α)d vol(C) = (k vol(C) + l vol(C)) (1 + α)d .

As C + X0 is a packing, then k vol(C) � 1. Using this and l vol(C) < ε/αd we
get

θT (C) <
(
1 + ε

αd

)
(1 + α)d .

After the calculation of the derivative in α we can see that for fixed d and ε this
expression attains its minimal value at α = ε1/(d+1). If ε1/(d+1) � 1/d, then it is an
admissible value for any C . After the substitution we obtain the bound

θT (C) <
(
1 + ε

1
d+1

)d+1
.

If ε
1

d+1 > 1
d and C is not centrally symmetric, then the admissible value of α

minimizing the expression at the right-hand side is α = 1
d . In this case we have

θT (C) <
(
1 + εdd

)(
1 + 1

d

)d
. ��

Proof of (2) Assume that θT (C) < 1 + ε. Similarly, by Theorem 2.1 there is a lattice
� and a finite point set X such that C + � + X is a covering and

den(C + � + X) < 1 + ε.
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Moreover, we can choose � such that for any λ1 and λ2 ∈ �, the translate C + λ1
does not intersect C + λ2. Indeed, let m > 0 be an integer. For every element γ of
the group �/m� choose a representative λ(γ ) ∈ �. By �m ⊂ R

d denote the set
{λ(γ ) : γ ∈ �/m�}. There exists m such that the desired condition is satisfied for
m�. Take X ′ = X + �m . Then C + m� + X ′ is a covering and

den(C + m� + X ′) = den(C + � + X) < 1 + ε.

Then we can replace � with m� and X with X ′.
Let T be the torus Rn/� and k = |X |. As in the proof of (1) from now on we

consider X and C as subsets of T . Then C + X is a covering of T and

k vol(C)

vol(T )
= den(C + � + X) < 1 + ε.

As previously, assume that vol(T ) = 1. Hence,

k vol(C) < 1 + ε.

Define S0 = k vol(C) − 1. Then S0 < ε. Also, let X0 = X .
Fix 0 < α < 1. Now we proceed iteratively. Assume that (1 − α)C + Xi is not a

packing. Then there exists y ∈ T and x, x ′ ∈ Xi such that

(αC + y) ⊂ (
(C + x) ∩ (C + x ′)

)
.

Indeed, there are x, x ′ ∈ Xi such that

((1 − α)C + x) ∩ (
(1 − α)C + x ′) 
= ∅.

Choose y in their intersection. Then clearly

(αC + y) ⊂ (αC + (1 − α)C + x) = C + x .

Similarly, (αC + y) ⊂ C + x ′.
Consider Xi+1 = Xi\{x ′} and

Si+1 = |Xi+1|vol(C) − (1 − vol(T \(C + Xi+1))).

Naturally, Si measures the covering excess of the arrangement C + Xi . We obtain

0 � Si+1 � Si − vol (αC) = Si − αdvol(C) < ε − (i + 1)αdvol(C).

If (1 − α)C + Xi+1 is not a packing, then repeat this process. At every step Si � 0.
Hence, as previously we will stop after l steps, where

l vol(C) <
ε

αd
.
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We have (1 − α)C + Xl is a packing in T and (1 − α)C + Xl + � is a packing in
R
d . Now we need to estimate the density of this arrangement

δT (C) = δT ((1 − α)C) � den ((1 − α)C + Xl + �)

= |Xl |vol ((1 − α)C) = (k − l) (1 − α)d vol(C)

= (k vol(C) − l vol(C)) (1 − α)d >
(
1 − ε

αd

)
(1 − α)d .

This expression is maximized as α = ε1/(d+1). Then we obtain

δT (C) >
(
1 − ε1/(d+1))d+1

. ��
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