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Abstract
A more sums than differences (MSTD) set A is a subset of Z for which |A + A| >

|A − A|. Martin and O’Bryant used probabilistic techniques to prove that a non-
vanishing proportion of subsets of {1, . . . , n} are MSTD as n → ∞. However, to
date only a handful of explicit constructions of MSTD sets are known. We study finite
collections of disjoint intervals on the real line, I, and explore the MSTD question
for such sets, as well as the relation between such sets and MSTD subsets of Z. In
particular we show that every finite subset of Z can be transformed into an element
of I with the same additive behavior. Using tools from discrete geometry, we show
that there are no MSTD sets in I consisting of three or fewer intervals, but there are
MSTD sets for four or more intervals. Furthermore, we show how to obtain an infinite
parametrized family of MSTD subsets of Z from a single such set A; these sets are
parametrized by lattice points satisfying simple congruence relations contained in a
polyhedral cone associated to A.
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1 Introduction

Let A be a finite subset of the integers. The sumset and difference set are defined,
respectively, as:

A + A := {a1 + a2 : a1, a2 ∈ A}, (1.1)

A − A := {a1 − a2 : a1, a2 ∈ A}. (1.2)

If |A−A| > |A+A|, we say that the set A is difference dominant. If |A+A| > |A−A|,
we say that A is sum dominant or, following the terminology of [10], a more sums
than differences (MSTD) set. If |A − A| = |A + A|, we say A is balanced.

Due to the commutativity of addition, there is a lot of redundancy in A + A, and
its size is at most

(n
2

) + n = n(n+1)
2 where n = |A| (with equality being achieved

with a geometric progression, for example). In the difference set, although 0 can be
represented in numerous ways (e.g. 0 = ai − ai for any i), as subtraction is not
commutative there are at most n2 − n + 1 elements in A − A (again with equality
being achieved when A is a geometric progression).

Since the difference set has the potential to bemuch larger than the sumset, wemight
naively believe that in general the difference set is larger. A well-known example of an
MSTD set, whose exact origin is not clear, is {0, 2, 3, 4, 7, 11, 12, 14}; otherswere given
in [5,11]. Ruzsa [13–15] used probabilistic techniques to prove the existence of many
MSTD sets. Though Roesler [12] was able to show that the average size of the differ-
ence set is larger than the average size of the sumset for subsets of [n] := {1, . . . , n},
surprisingly, Martin and O’Bryant [6] proved using probabilistic techniques that for
all n ≥ 15, the probability of being MSTD among subsets of [n] is at least 2 × 10−7.
Zhao [19] showed that the probability of being sum dominant converges to a limit as
n → ∞ and that this limiting probability is at least 4.28 × 10−4. Based on computer
simulation, we expect the true limiting value to be around 4.5×10−4. If, however, we
independently choose elements of [n] to be in A with probability p(n) which tends to
zero with n, then Hegarty and Miller [4] proved that with probability 1 such a set is
difference dominated.

In the last decade there has been considerable interest in explicit constructions
of MSTD sets (which in light of [6] must exist in large numbers). A well-known
technique for producing an infinite family of MSTD sets from a single one is base
expansion: let A = {a1, . . . , an} be an MSTD set. For each t ∈ N and some fixed
m > 2 ∗ max{|ai | : i ∈ [n]}, define At as

At :=
{

k∑

i=1

a jm
i−1 : j ∈ [n], k ∈ [t]

}

. (1.3)

Then |At±At | = |A±A|t , thus leading to a parametrized infinite family ofMSTDsets,
though of extremely low density. Nathanson in [9] asks if there are other parametrized
families of MSTD sets. Hegarty [3] and Nathanson provide a positive answer; in both
cases their ideas involve taking some set which is symmetric (and thus balanced) and
perturbing it slightly so as to increase the number of sumswhile keeping the number of
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differences the same. Hegarty [3] then posits: “More interesting, though, would be to
have explicit examples ofMSTD sets which are, in somemeaningful sense, ‘radically’
different from some perturbed symmetric set.”

A new method of explicitly constructing MSTD sets was found by Miller et al. [7].
Their idea is to find sets whose sumset contains all possible sums (i.e., all integers
between 2a1 and 2an). Then by appropriately adding elements to the fringes of such a
set, one obtains anMSTD set. This technique was furthered by Zhao [18], who found a
larger class of sets whose sumset is as large as possible. These methods yield densities
on the order of 1/nr (the ideas in [7] yield r = 2, while those in [18] give r = 1).

We introduce another “radically” different way of constructing MSTD sets. The
heuristic behind our techniques is that the property of being an MSTD set should be
“stable” under small perturbations. In order to make this notion rigorous, wemust pass
from the realm of the discrete to the realm of the continuous (but we will ultimately
return to the discrete setting). Let I denote the set of all collections of finitely many
disjoint open intervals on the real line, and let In denote the set of all collections of n
disjoint open intervals on the real line.1 For eachA ∈ I, we defineA+A andA−A
as in the discrete case. However, we are no longer interested in the cardinality of these
sets, but rather in the (Lebesgue) measure, μ. We say that A is difference dominant,
sum dominant, or balanced if μ(A − A) > μ(A + A), μ(A − A) < μ(A + A), or
μ(A − A) = μ(A + A), respectively.

The foundational result of this paper is the following, which is proven in Sect. 2.

Theorem 1.1 Let A ⊂ Z with |A| < ∞. Then, there exists an A ∈ I such that
|A + A| = μ(A + A) and |A − A| = μ(A − A).

Wewill show that the construction ofA from A is very natural and straightforward.
Theorem 1.1 justifies the study of the additive behavior of elements in I as a means

to study the additive behavior of subsets ofZ. The space In (and related spaces) have a
natural topology, and thus we have the utility of continuity arguments at our disposal
in this setting. In the latter half of Sect. 2, we discuss how to topologize In and related
spaces.

In Sect. 3, we introduce a number of tools from discrete geometry to analyze the
MSTD question for elements in I. The main result of that section is the following.

Theorem 1.2 For n ≤ 3, there does not exist A ∈ In such that A is MSTD. For all
n ≥ 4, there do exist MSTD A ∈ In.

This theoremmay be loosely interpreted as the continuous analogue of the theorem
of Hegarty [3] that there are no MSTD subsets of Z of cardinality less than 8.

In addition to allowing us to prove Theorem 1.2, the tools developed in Sect. 3 will
give us a way of producing an infinite parametrized family ofMSTD subsets ofZ from
a single MSTD set (either in the discrete or continuous sense). This infinite family
will in fact have a simple algebraic structure. As is to be seen, our techniques in some

1 As if often the case when dealing with measure theoretic arguments, it does not make a meaningful
difference if we use open or closed intervals (or even half-open/half-closed intervals). Certain arguments
are cleaner if one uses one or the other, and thus in this paper we shall sometimes assume that the elements
of I and In consist of collections of open intervals, and at other times closed intervals.
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sense allow one to uncover the structure of the set which resulted in it being MSTD
and then to systematically enumerate all MSTD sets with this same structure. This is
progress towards answering the open-ended question of Nathanson in [9]: “What is
the structure of finite sets satisfying |A + A| > |A − A|?” These ideas are presented
in Sect. 4.

In Sect. 5 we present a sort of converse result to Theorem 1.1, namely that up to
affine transformation, given any A ∈ I, we can find an A ⊂ Z such that the additive
behavior of A and A are as similar as we like. Finally, in Sect. 6, we present some
experimental data and pose some open questions and lines of further research.

2 Discrete to Continuous

In the sequel, A always denotes a finite subset of Z. For convenience, in this section
we assume that elements of I consist of closed intervals.

Definition 2.1 Let a, b ∈ Zwith a ≤ b.We call the set [a, b]Z := {a ≤ x ≤ b | x ∈ Z}
a closed integer interval.

Definition 2.2 The interval decomposition of A is the unique decomposition of A into
closed integer intervals A = [b1, c1]Z ∪ [b2, c2]Z ∪ · · · ∪ [bk, ck]Z such that for all
i 
= j , we have |bi − c j | ≥ 2 (that is, adjacent integers are always grouped into the
same closed integer interval; see Example 2.3).

Example 2.3 Let A = {0, 1, 3, 4, 5, 7, 9, 10}. Then the interval decomposition of A is

A = [0, 1]Z ∪ [3, 5]Z ∪ [7, 7]Z ∪ [9, 10]Z. (2.1)

Definition 2.4 Suppose A has interval decomposition A = [b1, c1]Z ∪ · · · ∪ [bk, ck]Z.
The continuous representation of A, denoted A∗, is

A∗ :=
[
b1 − 1

4
, c1 + 1

4

]
∪ · · · ∪

[
bk − 1

4
, ck + 1

4

]
. (2.2)

We are now ready to state our main theorem of this section.

Theorem 2.5 Let A and B be finite subsets of Z, and A∗ and B∗ their continuous
representations. Let μ be the Lebesgue measure on the real line. Then

|A + B| = μ(A∗ + B∗) (2.3)

and

|A − B| = μ(A∗ − B∗). (2.4)

Before proving this theorem we shall prove a sequence of ancillary propositions.
The following proposition is a straightforward exercise.
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Proposition 2.6 Let A = [a1, a2]Z and B = [b1, b2]Z with a1 < b1. Then the follow-
ing are true:

A + B = [a1 + b1, a2 + b2]Z, (2.5)

A∗ + B∗ =
[
a1 + b1 − 1

2
, a2 + b2 + 1

2

]
, (2.6)

A − B = [a1 − b2, a2 − b1]Z, (2.7)

and

A∗ − B∗ =
[
a1 − b2 − 1

2
, a2 − b1 + 1

2

]
. (2.8)

Corollary 2.7 If A = [a1, a2]Z and B = [b1, b2]Z, then |A + B| = μ(A∗ + B∗) and
|A − B| = μ(A∗ − B∗).

Proposition 2.8 Let A and B be finite subsets of Z. Let n be in Z. Then n is in A + B
if and only if n is in A∗ + B∗. Similarly, n is in A − B if and only if n is in A∗ − B∗.

Proof This follows almost immediately from Proposition 2.6. Let A = [a1, b1]Z ∪
· · · ∪ [ak, bk]Z and B = [c1, d1]Z ∪ · · · ∪ [c�, d�]Z be the interval decompositions
of A and B respectively. Suppose n ∈ A + B. This clearly can only happen if n ∈
[ai , bi ]Z + [c j , d j ]Z for some i and j . By Proposition 2.6, letting A′ = [ai , bi ]Z and
B ′ = [c j , d j ]Z, we know that n ∈ A′∗ + B ′∗, and therefore n is also in A∗ + B∗.

Now suppose that n ∈ A∗ + B∗ with n ∈ Z. This implies that n ∈ [ai , bi ]∗Z +
[c j , d j ]∗Z for some i and j . ByProposition 2.6, this implies thatn ∈ [ai , bi ]Z+[c j , d j ]Z
since ([ai , bi ]∗Z +[c j , d j ]∗Z)∩Z = [ai , bi ]Z +[c j , d j ]Z. Thus we get that n ∈ A+ B.

By switching the plus signs above to minus signs, we obtain a proof for the second
half of the proposition statement. �
Proposition 2.9 Let A and B be finite subsets ofZ. Let CA∗+B∗ and CA∗−B∗ be defined
as

CA∗+B∗ :=
⋃

n∈(A∗+B∗)∩Z
B 1

2
(n) (2.9)

and

C∗
A∗−B∗ :=

⋃

n∈(A∗−B∗)∩Z
B 1

2
(n), (2.10)

where B 1
2
(n) is the closed ball of radius 1

2 centered at n. Then CA∗+B∗ = A∗ + B∗

and CA∗−B∗ = A∗ − B∗.

Proof Notice that this statement is clearly true in the case that A = [a1, a2]Z and
B = [b1, b2]Z fromProposition2.6. Supposenow that A = ⋃k

i=1 Ii and B = ⋃�
j=1 J j
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where the Ii are the integer intervals in the interval decomposition of A, and the J j
are the integer intervals in the interval decomposition of B. Thus

CA∗+B∗ =
⋃

1≤i≤k,1≤ j≤�

CI ∗
i +J∗

j

=
⋃

1≤i≤k,1≤ j≤�

I ∗
i + J ∗

j

= A∗ + B∗.

(2.11)

As before, by changing plus signs to minus signs we get a proof for the latter part of
the proposition statement. �

We are now ready to prove Theorem 2.5.

Proof of Theorem 2.5 By Proposition 2.9, we know that CA∗+B∗ = A∗ + B∗. The set
CA∗+B∗ is composed to sets of measure 1 such that the intersection of any pair of them
is either empty or a single point. This implies that themeasure of the intersection of any
pair of these sets is 0.We can therefore conclude thatμ(A∗+B∗) = # {(A∗+B∗)∩Z}.
However, by Proposition 2.8, we know that # {(A∗ + B∗) ∩Z} = |A+ B|. Therefore,
μ(A∗ + B∗) = |A+ B|. Showing that μ(A∗ − B∗) = |A− B| follows analogously. �

The above results show that by studying sumsets and difference sets for collections
of intervals, we can retrieve results about collections of intervals as a special case.
However, the power of instead studying collections of intervals is that, as we contin-
uously vary the endpoints of our intervals, the sizes of the sumset and the difference
set also vary continuously. Therefore, for example, given a single MSTD collection of
intervals, we can vary the endpoints of these intervals slightly and still have an MSTD
set.

In general, rather than deal with I, we shall fix some n and deal with In . Since
additive behavior (in particular the property of being MSTD) is invariant under affine
transformation, modding out by affine equivalence does not change In in a meaning-
ful way. With this in mind, there are several natural ways to topologize In and its
quotient by some or all of the affine group. These fall into two broad categories of
parametrizations: endpoint parametrizations and interval-gap parametrizations.

Endpoint parametrizations refer to subsets of some Euclidean space where each
component of a vector in the space is either a left or right endpoint for some interval
on the real line. The free simplex model is the subset ofR2n composed of vectors of the
form (a1, b1, . . . , an, bn) with the condition that a1 ≤ b1 ≤ · · · ≤ an ≤ bn . We think
of this vector as representing the set [a1, b1] ∪ [a2, b2] ∪ · · · ∪ [an, bn]. This model
is a parametrization of all of In ; we have not modded out by any affine equivalences.
This model will be particularly useful in the next section.

One disadvantage of the above model is that the space is not compact. A similar
model, which we call the simplex model is the subset of R2n composed of vectors
(a1, b1, . . . , an, bn) with the condition that 0 ≤ a1 ≤ b1 ≤ · · · ≤ b1 ≤ b2 ≤ 1. This
model is named as such because the points in this space all live in a 2n-dimensional
simplex.
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Yet another disadvantage of both of the above models is that there is some redun-
dancy: up to affine transformationwe still have several representatives for the same set.
We can mod out by all affine transformations (with positive determinant) by requiring
that our leftmost interval start at 0 and our rightmost interval end at 1. We thus define
the restricted simplex model to be those vectors (b1, a2, b2, . . . , an−1, bn−1, an) in
R
2n−2 such that 0 ≤ b1 ≤ a2 ≤ · · · ≤ bn−1 ≤ an ≤ 1 with the understanding that

this vector corresponds to the collection of intervals [0, b1] ∪ [a2, b2] ∪ · · · ∪ [an, 1].
Another class of natural parametrizations we call interval-gap parametrizations; in

these, instead of designating where intervals begin and end, we designate how long
each interval is and how long the gaps between consecutive intervals are (thus we
have already modded out by translations). The free cube model consists of vectors
(�1, g1, . . . , gn−1, �n) in R2n−1 such that �i , gi ≥ 0 for all i . Given such a vector, we
construct a collection of n intervals as follows: the leftmost interval is [0, �1]. The gap
between the leftmost interval and its neighboring interval to the right is g1 and the
length of this next interval is �2, and so on.

The above model has a natural compactification which we call the unit cube model
in which we require that 0 ≤ �i , gi ≤ 1 for all i (so that we may think of our points as
living in the unit cube in R

2n−1). Though we do not use this model in this paper, this
model was utilized in [8] to give a geometric interpretation to the enumeration and
growth rate of bidirectional ballot sequences/(1, 1)-culminatingpaths (these sequences
were used by Zhao in his constructions of MSTD sets).

Lastly, analogously to the restricted simplex model, we can mod out by all affine
transformations to get the restricted unit cube model. That is, we can additionally
require that �1+g1+· · ·+�n = 1. This model is essentially the same as the restricted
simplex model.

3 A Geometric Perspective

The main goal of this section is to prove Theorem 1.2. However, as we shall see, in
doing so we shall develop a powerful set of tools for analyzing continuous sumsets
and difference sets. These tools will end up being useful for studying subsets of Z as
well.

In the sequel we shall generally let n be fixed, and let J represent some element in
In consisting of closed intervals. Thus, J = {J1, . . . , Jn} where Ji = [xi , yi ], and for
i < j , Ji is to the left of J j on the number line. Vectors will be denoted by parentheses
(i.e., [x, y] is an interval and (x, y) is a vector).

To handle the n = 1 case of Theorem 1.2 is more or less trivial. Already with the
n = 2 case some work is required; the analysis of the n = 2 case reveals most of the
important ideas that go into the n ≥ 3 case, and we choose to analyze the n = 2 case
in such a way that the core ideas are clearest, rather than using the more powerful but
harder to visualize framework used in the n ≥ 3 case.

Lemma 3.1 There are no MSTD sets in I1.

Proof Suppose J = [x1, y1]. The sumset consists of a single interval, [x1+x1, y1+y1],
which has length 2y1 − 2x1. The difference set also consists of a single interval,
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[x1 − y1, y1 − x1], which has length 2y1 − 2x1. Thus, the length of the sumset is
exactly equal to the length of the difference set, so in all cases J is balanced. Notice
that this analysis reveals that there is only one type of behavior in the n = 1 case, which
is to be expected since all intervals are equivalent mod affine transformations. �

The n = 2 case requires some more work. As has been previously discussed, J + J
can be expressed as the union over all i and j of intervals of the form Ji + J j (and
similarly for the difference set). If we know the locations of all intervals of the form
Ji + J j (or Ji − J j ) relative to each other, then we know exactly what the sumset (or
difference set) is. More precisely, if we know the total ordering on the left and right
endpoints of all intervals of the form Ji + J j (or Ji − J j ), then we know exactly which
points are in J + J (or J − J ), and additionally, we know the measure of J + J . This
motivates the following definition.

Definition 3.2 Given J , the total ordering on the left and right endpoints of intervals
of the form Ji + J j (Ji − J j ) is called the structure of the sumset (difference set). The
structure of J refers to the structure of both the sumset and the difference set.

Thus, stated succinctly, the above observations say that if we know the structure of
the sumset/difference set, then we know exactly what the sumset/difference set is.

Another notational definition which will make analysis easier is the following:

Definition 3.3 Let (Ji ± J j )L and (Ji ± J j )R denote the left and right endpoints
respectively of the interval Ji ± J j .

Lemma 3.4 There are no MSTD sets in I2.

Proof Let J = J1 ∪ J2. If we use the free simplex model, then J has four degrees
of freedom. However, if we instead use the restricted simplex model, then J only
has two degrees of freedom, so all possible cases for the structure of J can be read-
ily visualized. Using this model, we can represent a given J as a point in R

2: if
J = {[0, y1], [x2, 1]}, we represent this as the point J = (y1, x2) ∈ R

2. The restricted
simplex model restricts to the region in the plane simultaneously satisfying the fol-
lowing inequalities:

y1 ≥ 0, (3.1)

x2 ≤ 1, (3.2)

y1 ≤ x2. (3.3)

We call this region A.
First we see what information we need to figure out the structure of J + J . There

are three intervals we are concerned with: J1 + J1, J1 + J2 and J2 + J2. Note that

123



840 Discrete & Computational Geometry (2019) 62:832–855

since J1 is to the left of J2, we immediately know that:

(J1 + J1)L ≤ (J1 + J2)L ≤ (J2 + J2)L ,

(J1 + J1)R ≤ (J1 + J2)R ≤ (J2 + J2)R,

(J1 + J1)L ≤ (J1 + J1)R,

(J1 + J2)L ≤ (J1 + J2)R, (3.4)

(J2 + J2)L ≤ (J2 + J2)R,

(J1 + J1)R ≤ (J2 + J2)L .

Thus to figure out the structure of J + J , we only need the following informa-
tion:

(J1 + J1)R
?≤ (J1 + J2)L ,

(J1 + J2)R
?≤ (J2 + J2)L . (3.5)

These two inequalities in question are equivalent to knowing on which side of the
following lines in the plane our point J lies:

y1 + y1 = 0 + x2, (3.6)

y1 + 1 = x2 + x2. (3.7)

We now turn to determining the structure of J − J . From (3.1) to (3.3), we already
know:

(J1 − J2)L ≤ (J1 − J1)L ≤ (J1 − J1)R ≤ (J2 − J1)R,

(J1 − J2)L ≤ (J2 − J2)L ≤ (J2 − J2)R ≤ (J2 − J1)R, (3.8)

(J1 − J2)L ≤ (J1 − J2)R ≤ (J2 − J1)L ≤ (J2 − J1)R .

By the symmetry of the difference set, we only need to know the following infor-
mation to determine the structure of the difference set:

(J1 − J1)R
?≤ (J2 − J2)R,

(J1 − J1)R
?≤ (J2 − J1)L , (3.9)

(J2 − J2)L
?≤ (J2 − J1)L .

These three inequalities in question are equivalent to knowing on which side of the
following lines in the plane our point J lies:

y1 − 0 = 1 − x2, (3.10)

y1 − 0 = x2 − y1, (3.11)

1 − x2 = x2 − y1. (3.12)
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x2 = 1

y1 axis

x2 axis

y1 = 0
x2 = y1

2y1 = x2

1 + y1 = 2 x2

1 − x2 = y1

1

2

3

4

5

6

Fig. 1 The space A is partitioned into six regions such that within each region the structure is constant.
Note that all regions are defined by a system of linear inequalities

However notice that (3.11) is the same as (3.6), and also (3.12) is the same as (3.7).
Thus for points within A, by knowing on which side of the three lines given by (3.6),
(3.7), and (3.10) our point J lies, we completely know the structure of J . All of the
above information is captured geometrically in Fig. 1. We see that A is divided into
6 regions such that all points in the same region have the same structure. Table 3 at
the end of this paper enumerates which structure each of these regions corresponds
to.

In Table 3 we claim that regions 1-4 are difference dominant, and regions 5 and 6
are balanced. That regions 3 and 4 are difference dominant and that regions 5 and 6 are
balanced are immediate to see. To see that regions 1 and 2 are difference dominant is
also straightforward. We shall show this is the case for region 1. The proof for region
2 is similar.

In (the interior of) region 1, the following inequalities hold:

2y1 < x2,

1 + y1 < 2x2,

1 − x2 < y1. (3.13)

From Table 3 we see that μ(J + J ) = 3y1 − 3x2 + 3 and μ(J − J ) = 4y1 − 2x2 + 2.
Therefore,μ(J− J )−μ(J + J ) = y1+x2−1.We thus are interested in the following
inequality:

0
?
< y1 + x2 − 1. (3.14)
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Table 1 The four types of comparison polynomials, along with exactly what type of comparison each type
of polynomial is good for

Type of polynomial Purpose

0
?
< xi + x j − xk − x� Compares (Ji + J j )L and (Jk + J�)L

0
?
< xi + x j − yk − y� Compares (Ji + J j )L and (Jk + J�)R

If i < k and � < j , compares (Ji − Jk )L and (J� − J j )R

0
?
< yi + y j − yk − y� Compares (Ji + J j )R and (Jk + J�)R

0
?
< xi + y� − x j − yk If i < k and � < j , compares (Ji − Jk )L and (J� − J j )L

However from (3.13) we know that this inequality holds true everywhere in region 1.
Therefore, region 1 is difference dominant. �

In handling the n = 3 case of Theorem 1.2, rather than use the restricted simplex
model, we shall use the free simplex model. The main utility of this model is that the
sum of two vectors in In , as represented in this model, is again in In in this model (that
is, In has a semigroup structure). Similarly to before, if J = {[x1, y1], . . . , [xn, yn]},
we associate to this the point J = (x1, y1, . . . , xn, yn). The goal is again to determine
the structure of J . Like in the n = 2 case, in order to figure out the total ordering on the
left and right endpoints of the intervals in the sumset/difference set, it suffices to know
the outcomes of every comparison between endpoints. Each such comparison can be
expressed as evaluation of a linear polynomial in the xi s and yi s. After a bit of thought,
one realizes that up to multiplication by unit, there are four types of such polynomials
that we are interested in, as described in Table 1.We call such polynomials comparison
polynomials.

For each linear polynomial as in Table 1, we have an associated coefficient vector,
v, namely the vector which when dotted with (x1, y1, . . . , xn, yn) gives the linear
polynomial in question. Additionally, to each such linear polynomial we have an
associated hyperplane H , namely the hyperplane obtained by setting the polynomial
equal to zero. This hyperplane partitionsR2n into two pieces corresponding to the two
different outcomes of the comparison which the linear polynomial represents. Note
that v is a basis for the orthogonal complement to H .

We now recall some definitions from discrete geometry.

Definition 3.5 A central hyperplane arrangement is a finite collection of hyperplanes
which all pass through the origin.

Note that the set of associated hyperplanes to the linear polynomials of interest
form a central hyperplane arrangment which we call the structure arrangement.

Definition 3.6 A conical combination of vectors v1, . . . , vm is any combination of the
form

α1v1 + · · · + αmvm (3.15)
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such that αi ≥ 0 for all 1 ≤ i ≤ m. The set of all conical combinations of a set of
vectors is called the conical span.

Definition 3.7 A polyhedral cone is the conical span of a fixed finite set of vectors.
Equivalently, it is all points in the intersection of finitely many halfspaces for which
the corresponding set of hyperplanes forms a central hyperplane arrangement.

In this paper we shall be dealing exclusively with rational polyhedral cones, so we
can always assume that each generator of the cone is a vector in Z

n with relatively
prime entries (a primitive integer vector).

Definition 3.8 An orientation on a hyperplane is a choice to label one of the corre-
sponding halfspaces as positive and the other as negative. Equivalently, it is a choice of
a non-zero vector b in the (1D) orthogonal complement to the hyperplane: the positive
halfspace is the set of points v such that v · b ≥ 0. We call b a positive normal.

If we have a central hyperplane arrangement, then for each way of simultaneously
orienting all the hyperplanes in the arrangement, we get an associated polyhedral cone
(this cone may just be zero). Our space is thus partitioned into disjoint polyhedral
cones such that disjoint cones have disjoint interiors. Dually, if we choose a specific
polyhedral cone arising from a central hyperplane arrangement, thenwe get an induced
orientation on the hyperplane arrangement as follows: for each hyperplane, we say
that the halfspace containing the polyhedral cone is the positive halfspace.

Given the structure arrangement, we get a partition of R2n into finitely many poly-
hedral cones, each of which we call a structure cone. For a given structure cone, when
choosing positive normals for the induced orientation on the arrangement, we may
choose for each hyperplane either the corresponding coefficient vector or its negative.

Definition 3.9 Let V be a polyhedral cone in R
n . Let V ∗ = {w ∈ R

n : ∀ v ∈
V , w · v ≥ 0}. Then V ∗ is called the dual cone of V .

We may interpret the dual cone to V as the set of all possible positive normals
to oriented hyperplanes such that all of V lies on the positive side of the hyperplane
(together with the zero vector).

The following basic result from the theory of polyhedral cones makes it easy to find
dual cones, especially when the polyhedral cones are given in terms of intersections
of half-spaces (as is the case here).

Proposition 3.10 Given a polyhedral cone, V , the conical span of the set of positive
normals in the induced orientation on V is the dual cone of V .

Suppose V is a structure cone. For all J such that J ∈ V , the structure of J is
the same. For all J ∈ V , there exists a single homogeneous linear polynomial in the
xi ’s and yi ’s, call it P+ with coefficient vector v+, such that μ(J + J ) = v+ · J .
Analogously there exists P− with coefficient vector v− such that μ(J − J ) = v− · J .
The vectors v+ and v− are called the sum vector and difference vector, respectively,
for the cone V . The vector d = v+ − v− is called theMSTD vector for V ; a collection
of intervals J ∈ In with J ∈ V is an MSTD set if and only if d · J > 0. Note that if
d · J = 0, then J is balanced, and if d · J < 0, then J is difference dominant.
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The MSTD vector gives rise to an oriented hyperplane, namely the orthogonal
complement to the span of d, with positive normal equal to d. We thus have the
following crucial observation.

Observations 3.11 Let V be a structure cone withMSTD vector d. If and only if d = 0,
then all of V is balanced. Now suppose d is non-zero. Then, if and only if d is in the
dual cone to V , then V is sum-dominant (except possibly on the boundary which may
be balanced). If and only if −d is in the dual cone to V , then V is difference domaint
(except possibly on the boundary which may be balanced). In all other cases, V splits
into a sum dominant region and a difference dominant region.

Lemma 3.12 For all J ∈ I3, J is not an MSTD set.

Proof We now have all the tools necessary to handle the n = 3 case of Theorem 1.2.
In light of Observation 3.11, rather than needing to (somehow) check the uncountably
many possible collections of three intervals, we instead now need only check that for
each structure cone V for the I3 structure arrangement, either d = 0 or −d ∈ V ∗.
To prove the n = 3 case, we proceed as in the n = 2 case, namely we enumerate all
structure cones and show that in all cases either d = 0 or −d ∈ V ∗. We present an
algorithm to carry our this procedure. A variant on this algorithm was implemented in
SAGE [2] on a computer to enumerate and check all cases. Whereas there were only
six cases for n = 2, there are over 500 cases for n = 3.

The difficult part of the algorithm is enumerating all of the structure cones. We
shall describe a simple algorithm for doing just that; after stating the algorithm we
shall discuss exactly what it does (and why it works).

1 Input: the number of intervals, n
2 Output: the dual cones to the structure cones
3 partial_dual_cones = {{ŷ1 − x̂1, x̂2 − ŷ1, . . . , ŷn − x̂n}}
4 list_of_normals = GENERATE_LIST_OF_NORMALS (n)
5 for new_normal in list_of_normals do
6 new_partial_dual_cones = ∅
7 for partial_dual_cone in partial_dual_cones do
8 if IS_CONSISTENT (partial_dual_cone, new_normal) then
9 new_partial_dual_cones ∪ = (partial_dual_cone ∪ new_normal)

10 end
11 if IS_CONSISTENT (partial_dual_cone, −new_normal) then
12 new_partial_dual_cones ∪ = (partial_dual_cone ∪ (−new_normal))
13 end
14 end
15 partial_dual_cones = new_partial_dual_cones
16 end
17 return partial_dual_cones

Algorithm 1: Algorithm to find the structure cones with non-empty interior.

In essence, Algorithm 1 adds one hyperplane at a time to our arrangement, keeping
track at each step what the non-trivial cones are (the cones that are not just the zero
vector). It represents each cone by the generators of its dual cone, that is by the choice
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of orientation (positive normals) on the partial hyperplane arrangement which gives
rise to that specific cone.

Since for all J ∈ In , x1 ≤ y1 ≤ · · · ≤ xn ≤ yn , for every structure cone of
interest to us, the vectors ŷ1 − x̂1, . . . , ŷn − x̂n must be positive normals (where
x̂i is the coefficient vector to the polynomial xi ). This explains line 3. The variable
partial_dual_cones keeps track of all partial choices of positive normals for structure
cones in our arrangement.

In line 4 of Algorithm 1, the function GENERATE_LIST_OF_NORMALS returns
the coefficient vectors for all the relevant comparison polynomials (irredundantly up
to multiplication by unit).

The remainder of the algorithm consists of two loops. The outer loop iter-
ates through the set of normals in this list, and the inner loop iterates through
the cones in our partial hyperplane arrangement. A single iteration of the outer
loop introduces a new hyperplane to the arrangement (as represented by its
normal new_normal) and a single iteration of the inner loop keeps track if a
given cone in the partial arrangement (as represented by partial_dual_cone) splits
into two cones. The function IS_CONSISTENT (partial_dual_cone, new_normal)
tests whether or not −new_normal is in the conical span of the elements of
partial_dual_cone. In other words, it tests if the cone corresponding to par-
tial_dual_cone lies entirely on the negative side of the oriented hyperplane with
positive normal new_normal. If so, then adding new_normal to partial_dual_cone
as a positive normal would result in a cone with empty interior. Any such
cone would be on the boundary of some other cone with non-empty interior,
and thus is safe to ignore since it would be handled by other cases. An exam-
ple of an inconsistent choice of positive normal is the following: suppose we
already know that x1 ≤ x2 ≤ x3. Then we necessarily know that x1 + x2 ≤
x2 + x3, and thus adding the vector x̂1 + x̂2 − x̂2 − x̂3 to our list of pos-
itive normals is inconsistent. Testing consistency in this sense can be phrased
a feasibility problem in linear programming, and thus there exist efficient algo-
rithms to solve this problem. The variable new_partial_dual_cones keeps track
of the new cones in our new hyperplane arrangement with non-empty inte-
rior. Once the interior loop has finished, we set partial_dual_cones equal to
new_partial_dual_cones and repeat the outer loop, until we finally finish and
return the set of cones with non-empty interior in our structure hyperplane
arrangement.

Once we have all of our structure cones, as represented by the the list of positive
normals for the induced orientation on the hyperplane arrangement, we have all of the
information we need to figure out the sum vector and difference vector for each cone.
We do not explicity describe an algorithm to do so here, but leave it as an exercise to
the interested reader to think about how to do this.

Once we have the sum and difference vectors, we have the MSTD vector. Testing
if the MSTD vector is in the dual cone is a cone membership problem and thus can
also be solved by linear programming techniques.

We implemented in SAGE a slight variation on Algorithm 1. In particular, our algo-
rithm does not enumerate all regions where the structure is constant (i.e. all structure
cones), but rather just those regions such that within a region, the sum vector and dif-
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ference vector is constant (e.g. in the n = 2 case, regions 5 and 6 have the same sum
formula and difference formula, but have different structures; using an improvement
on Algorithm 1, these two regions would not be distinguished). We do not describe
the improved algorithm here; the mere existence of an algorithm such as Algorithm 1
is what is most important. When the improved algorithm ran, it found 502 cases, and
in all such cases either d = 0 or −d was in the dual cone implying there are no sum
dominant sets for n = 3. On a personal computer with 4GB of RAM, the computation
took around 30 minutes to complete. �

Proof of Theorem 1.2 To complete the proof of Theorem 1.2, we must show that for
n ≥ 4, there do exists collections of n intervals which are sum dominant. Note that it
suffices to just show that this is the case when n = 4 (if this is not clear, see Sect. 6
on cleaving). We can actually turn to the existing literature on MSTD sets of integers
to find an example. In Hegarty [3], we have

{0, 1, 2, 4, 5, 9, 12, 13, 14}. (3.16)

The corresponding collection of intervals is:

J =
{[

−1

4
, 2 + 1

4

]
,

[
4 − 1

4
, 5 + 1

4

]
,

[
9 − 1

4
, 9 + 1

4

]
,

[
12 − 1

4
, 14 + 1

4

]}
. �

4 FromOneMSTD Set to Many

In this section we show a method of producing a large class of MSTD sets (both
continuous and discrete) from a single set. In particular this gives a new method of
producing parametrized families of MSTD sets of integers.

The idea of the method is straightforward given the ideas in Sect. 3: given J ∈ In ,
we find the generators for its structure cone. We then also find the MSTD vector, d,
for this cone. Since J is MSTD, we know that either d ∈ V ∗, implying the entire
cone is MSTD, or else the oriented hyperplane with positive normal d partitions the
hyperplane into two cones, both with non-empty interior. One of these cones is entirely
MSTD. We then find the generators for this cone.

Before formally presenting the details of the algorithm (Algorithm 2), we show the
procedure on a concrete example. This example has a few peculiarities which make
the example simpler than most, but the core ideas are present.

Example 4.1 Let G = {0, 1, 2, 4, 5, 9, 12, 13, 14} and let J be its continuous repre-
sentation. A computer program reveals that J is on the boundary of 108 different
structure cones. We choose one of these cones arbitrarily and call it V . The extremal
rays of V are the columns of the following matrix:

123



Discrete & Computational Geometry (2019) 62:832–855 847

⎡

⎢
⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢
⎣

0 0 0 0 0 0 0 1 −1

1 1 2 2 1 1 1 1 −1

2 2 4 3 2 2 2 1 −1

3 2 6 4 3 3 3 1 −1

4 4 10 7 5 5 6 1 −1

5 4 10 7 5 5 6 1 −1

6 5 13 9 7 7 8 1 −1

7 7 16 11 8 9 10 1 −1

⎤

⎥
⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥
⎦

. (4.1)

We then compute the MSTD vector, d, for V:

d = (−1 2 −2 0 1 2 −2 0
)T

. (4.2)

We check if d ∈ V ∗ and find that it is not. We therefore add d to V ∗ and then take
its dual cone to get a new cone W . The extremal rays for W are the columns of the
following matrix:

A =

⎡

⎢⎢⎢⎢⎢
⎢⎢⎢⎢⎢
⎢⎢
⎣

0 0 0 0 0 0 0 1 −1

1 1 2 3 2 1 3 1 −1

2 2 4 5 3 2 5 1 −1

3 2 6 7 4 3 7 1 −1

4 4 10 12 7 6 12 1 −1

5 4 10 12 7 6 12 1 −1

6 5 13 16 9 8 16 1 −1

7 6 16 19 11 10 20 1 −1

⎤

⎥⎥⎥⎥⎥
⎥⎥⎥⎥⎥
⎥⎥
⎦

. (4.3)

Note then that any vector in the conical column span of A is either balanced or sum
dominant. A closer examination reveals that all the columns give rise to balanced sets
except for the 5th column. Therefore, any vector of the form Az with zi ≥ 0 and
z5 > 0 gives rise to a continuous MSTD set. Thus from finding a single MSTD set,
we have found a huge class of continuous MSTD sets.

With just a bit more work we can find an infinite family of MSTD sets of integers
as well. In fact, we shall find all MSTD subsets of Z whose continuous representation
corresponds to a point in W . Recall that given a point corresponding to an MSTD set
of the form a = (x1 −1/4, y1 +1/4, . . . , xn −1/4, yn +1/4) where each xi and yi is
in Z, then we can obtain an MSTD set of integers, namely {[x1, y1]Z, . . . , [xn, yn]Z}.
If a is in some cone X , then αa ∈ X for all α ≥ 0. In particular, 4a ∈ W ; note
that 4a ∈ Z

2n . Furthermore, mod 4, the entries of 4a must be (3, 1, 3, 1, . . . , 3, 1).
Conversely, if some point in Z

2n is of the form (3, 1, . . . , 3, 1) mod 4, then we can
find anMSTD set of integers from that point by dividing by 4 and undoing the discrete
to continuous process. We say that a point x ∈ R

2n is an (α, β)-lattice point mod k if
x ∈ Z

2n and mod k, x = (α, β, . . . , α, β). Thus our goal is to find the (3, 1)-lattice
points mod 4 in the conical column span of A.
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Let B be the matrix A without the last column (the last two columns are linearly
dependent, so right now we can ignore the last column). From the above observations,
we are interested in finding solutions to the following system of equations:

Bα =

⎡

⎢⎢⎢⎢
⎢⎢⎢⎢⎢
⎢
⎣

0 0 0 0 0 0 0 1
1 1 2 3 2 1 3 1
2 2 4 5 3 2 5 1
3 2 6 7 4 3 7 1
4 4 10 12 7 6 12 1
5 4 10 12 7 6 12 1
6 5 13 16 9 8 16 1
7 6 16 19 11 10 20 1

⎤

⎥⎥⎥⎥
⎥⎥⎥⎥⎥
⎥
⎦

⎡

⎢⎢⎢⎢
⎢⎢⎢⎢⎢
⎢
⎣

α1
α2
α3
α4
α5
α6
α7
α8

⎤

⎥⎥⎥⎥
⎥⎥⎥⎥⎥
⎥
⎦

=

⎡

⎢⎢⎢⎢
⎢⎢⎢⎢⎢
⎢
⎣

1
3
1
3
1
3
1
3

⎤

⎥⎥⎥⎥
⎥⎥⎥⎥⎥
⎥
⎦

(mod 4). (4.4)

Using Mathematica [17], we get that the unique such α is

α = (
2 0 0 0 0 0 0 3

)T
. (4.5)

Therefore, by dividing any vector of the form below by 4 and then undoing the discrete
to continuous process, we obtain an MSTD set of integers (see Table 2 for some
examples):

⎡

⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢
⎣

0 0 0 0 0 0 0 1
1 1 2 3 2 1 3 1
2 2 4 5 3 2 5 1
3 2 6 7 4 3 7 1
4 4 10 12 7 6 12 1
5 4 10 12 7 6 12 1
6 5 13 16 9 8 16 1
7 6 16 19 11 10 20 1

⎤

⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥
⎦

⎡

⎢⎢⎢⎢⎢⎢
⎢⎢⎢⎢
⎣

2 + 4β1
4β2
4β3
4β4

4 + 4β5
4β6
4β7

3 + 4β8

⎤

⎥⎥⎥⎥⎥⎥
⎥⎥⎥⎥
⎦

β1 ∈ N0
β2 ∈ N0
β3 ∈ N0
β4 ∈ N0
β5 ∈ N0
β6 ∈ N0
β7 ∈ N0
β8 ∈ Z

. (4.6)

Furthermore, since the B has 8 rows, which is the dimension of the vector space W
lives in, and since the determinant of B is -1, we know that in fact all MSTD sets
of integers in W are obtained in this way (in general it will not be the case that the
number of generators is equal to the dimension of the space, or even if the number of
generators is equal to the dimension, that the determinant of the matrix whose rows are
those generators will be ±1; we shall discuss how to deal with these issues shortly).

In the above procedure, we took a single MSTD set and not only found a huge class
of continuous MSTD sets, but also a non-trivial infinite family of discrete MSTD sets
(in fact all of the discrete MSTD sets in the structure cone). Furthermore, the MSTD
set we started with led us to find 108 different MSTD cones, so from the same starting
MSTD set, we can carry out the above process 107 more times to find even more
MSTD sets (all of this arising from finding a single MSTD set)!

We now discuss a more general algorithm for carrying out the above procedure.
There are three main issues which up to this point we have glossed over.
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Table 2 A few of the MSTD sets of integers contained in this structure cone

β1 β2 β3 β4 β5 β6 β7 β8 MSTD integer set

0 0 0 0 0 0 0 −1 {0, 1, 2, 4, 5, 9, 12, 13, 14}
1 0 0 0 0 0 0 −1 {0, 1, 2, 3, 6, 7, 8, 13, 14, 18, 19, 20, 21}
0 1 0 0 0 0 0 −1 {0, 1, 2, 3, 6, 7, 13, 17, 18, 19, 20}
0 0 1 0 0 0 0 −1 {0, 1, 2, 3, 4, 8, 9, 10, 11, 19, 25, 26, 27, 28, 29, 30}
0 0 0 1 0 0 0 −1 {0, 1, 2, 3, 4, 5, 9, 10, 11, 12, 21, 28, 29, 30, 31, 32, 33}
0 0 0 0 1 0 0 −1 {0, 1, 2, 3, 4, 7, 8, 9, 16, 21, 22, 23, 24, 25}
0 0 0 0 0 1 0 −1 {0, 1, 2, 3, 6, 7, 8, 15, 20, 21, 22, 23, 24, 25}
0 0 0 0 0 0 1 −1 {0, 1, 2, 3, 4, 5, 9, 10, 11, 12, 21, 28, 29, 30, 31, 32, 33, 34}

(1) The set J may be contained in multiple structure cones, so we need a way of
enumerating all structure cones containing J ; this can be resolved using ideas
similar to those presented in Algorithm 1.

(2) A given structure cone containing J may havemore generators than the dimension
of the space; the trick here is to partition the cone into a collection of simplicial
cones.

(3) For a given rational simplicial cone with generators represented as primitive inte-
ger vectors, if the determinant of the corresponding matrix is not±1, then integer
conical combinations of the generatorswill not necessarily give all lattice points in
the cone (and in particular will not necessarily give all lattice points corresponding
to MSTD subsets of Z).

First we discuss issue (1); Algorithm 2 gives a way of resolving this issue. In words,
this algorithm first orients those hyperplanes for which J is on the strictly positive
side. This results in a polyhedral cone for which J is in the interior. The remaining
hyperplanes (as represented by non_strict_normals) are then one by one tested to see
if they partition the partial cones found so far into two cones with non-empty interiors.
Lines 15-28 are virtually identical to Algorithm 1 and thus their function should be
clear.

Once we have the representation of a polyhedral cone as an intersection of halfs-
paces, there are algorithms to find its representation as the concial span of a collection
of generators. Issue (2) is then quite straightforward to deal with. Partitioning a polyhe-
dral cone into simplicial cones is virtually the same as partitioning a compact polytope
into simplices and there exist algorithms to do so.

Issue (3) is also not too bad to deal with. Let V be a rational simplicial cone.
Let A be a matrix whose columns are primitive integer vectors generating the cone.
Then, det(A) ∈ Z. Let D = | det(A)|. Then, since A−1 = adj(A)/ det(A), all x such
that Ax ∈ Z are in Z

n/D, that is the set of points whose product with D is in Z
n .

Suppose x ∈ Z
n/D such that Ax is a (3, 1)-lattice point mod 4. Then, A(Dx) must

be a (3D, D)-lattice point mod 4D. Conversely, if Ay is a (3D, D)-lattice point mod
4D, then A(y/D) is a (3, 1)-lattice point mod 4. Therefore, finding all x ∈ Q

n such
that Ax is a (3, 1)-lattice point mod 4 is equivalent to finding all y ∈ Z

n such that Ay
is a (3D, D)-lattice point mod 4D. To do this we need only find the set of solutions
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1 Input: a point J corresponding to an MSTD set consisting of n intervals
2 Output: all structure cones containing J
3 list_of_normals = GENERATE_LIST_OF_NORMALS(n)
4 partial_cone = ∅
5 non_strict_normals = ∅
6 for new_normal in list_of_normals do
7 dotted = new_normal · J
8 if dotted > 0 then
9 partial_cone ∪ = new_normal

10 else if dotted < 0 then
11 partial_cone ∪ = −new_normal
12 else
13 non_strict_normals ∪ = new_normal
14

15 end
16 partial_cones = {partial_cone}
17 for normal in non_strict_normal do
18 new_partial_cones = ∅
19 for cone in partial_cones do
20 if IS_CONSISTENT(cone, normal) then
21 new_partial_cones ∪ = (cone ∪ normal)
22 end
23 if IS_CONSISTENT(cone, −normal) then
24 new_partial_cones ∪ = (cone ∪ −normal)
25 end
26 end
27 partial_cones = new_partial_cones
28 end
29 return partial_cones

Algorithm 2: Algorithm describing how to find all the structure cones containing a
given point.

to the following system of equations over Z/(4DZ).

Ay =

⎡

⎢⎢⎢
⎢⎢
⎣

3D
D
...

3D
D

⎤

⎥⎥⎥
⎥⎥
⎦

(mod 4D). (4.7)

Suppose that v1, . . . , v2n are the generators for some simplicial cone, S, arising as the
MSTD refinement of an MSTD structure cone with MSTD vector d. Let vi1 , . . . , vik
be those vi such that vi · d > 0. Let p be any particular solution to 4.7. A point m is
an MSTD (3, 1)-lattice point mod 4 if and only if it can be expressed as

m = A

(
p

D
+ k

D
+ 4�

)
, (4.8)
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where k is in the kernel of A as an endomorphism on (Z/(4D)Z)2n , and � ∈ Z
2n and

such that f = p/D + k/D + 4� satisfies f · êi ≥ 0 for all i ∈ [2n] and f · êi j > 0
for some j ∈ [k].

5 Continuous to Discrete

In this short section we prove a simple “converse” to Theorem 1.1: up to scaling, every
element in I can be arbitrarily well approximated by (the continuous representation
of) a finite collection of integers.

Theorem 5.1 Let A ∈ I. For every ε > 0, there exists α > 0 and B ⊂ Z, with
continuous representation B, such that

μ ((αA + αA) � (B + B)) < ε,

and

μ ((αA − αA) � (B − B)) < ε.

Proof The idea of the proof of Theorem 5.1 is to dilate the setA and then approximate
each dilated interval by the set of integers contained in the interval. Without loss of
generality, we may assume that A ⊂ [0, 1]. Suppose that A consists of k intervals,
that is A = J1 ∪ · · · ∪ Jk with Ji = [xi , yi ] and with Ji to the left of J j for i < j .
Suppose the length of the shortest of these intervals is δ. Let N ∈ Z be any number
such that

N ≥ max

(
3

δ
,
8k2

ε

)
. (5.1)

Let FN = {i/N : 0 ≤ i ≤ N , i ∈ Z}. By (5.1), we know

# (Ji ∩ FN ) ≥ 3 (5.2)

Let �i , ri ∈ Z be such that �i/N = min(Ji ∩ FN ) and ri/N = max(Ji ∩ FN ). Notice
that by (5.1),

∣∣∣
∣
�i + 1

N
− xi

∣∣∣
∣ <

2

N
(5.3)

and
∣∣∣∣yi − ri − 1

N

∣∣∣∣ <
2

N
. (5.4)

Let Bi = [�i + 1, ri − 1]Z (by (5.2) each Bi is non-empty). Let B = ⋃
i Bi . Let B be

the continuous representation of B with Bi the continuous representation of Bi . Let
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C be the set B scaled by 1/N , and Ci the set Bi scaled by 1/N . Notice that C ⊆ A.
Therefore

D := (A ± A) � (C ± C) = (A ± A) \ (C ± C). (5.5)

Let x ∈ D. We have that

D ⊆
⋃

i, j

(
(Ji ± J j ) \ (Ci ± C j )

)
(5.6)

Therefore

μ(D) ≤
∑

i, j

μ
(
(Ji ± J j ) \ (Ci ± C j )

)

≤ k2 max
i, j

μ
(
(Ji ± J j ) \ (Ci ± C j )

)
.

(5.7)

By (5.3) and (5.4), we know that

max
i, j

μ
(
(Ji ± J j ) \ (Ci ± C j )

)
<

8

N
. (5.8)

Therefore,

μ(D) <
8k2

N
≤ ε. �

6 Open Questions and Concluding Remarks

The ideas presented in Sects. 3 and 4 motivate several interesting follow-up questions.
First, there is the question of whether or not a more elegant proof of Theorem 1.2
exists.

Question 6.1 Is there a proof of Theorem 1.2 that does not reduce to casework?

There are also several interesting combinatorial questions that arise. One basic
question is:

Question 6.2 How many cones are there in the structure hyperplane arrangement for
In?

A closely related question has been investigated before in [1]. The number of such
regions is closely related to (and upper bounded by) the even indexed entries in OEIS
A237749. There is a rich theory of counting the number of regions in a hyperplane
arrangement (see [16], e.g.), and perhaps these techniques could answer Question 6.2.

Another basic question is:
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Fig. 2 Probability of being balanced in the simplex and cube models based on Monte Carlo simulation (10
million trials)

Question 6.3 HowmanyMSTDstructure cones are there for In?What are their relative
(intrinsic) volumes? Is there a “dominating” MSTD cone?

In our opinion, one of the most interesting subsequent question is the following.

Question 6.4 Do the set of MSTD points in In form a connected region? If so, what
is the degree of connectivity of this region (is it 2n-connected?)? If not, how many
connected components does it contain? Does the number of connected components
change as n increases?

If the answer to Question 6.4 is yes, then it would in some sense imply that there
is only one “type” of MSTD set, from a single MSTD set (with a fixed number of
intervals), all other MSTD sets can be found by perturbing that set (and keeping it
MSTD along the way).

Given an MSTD J ∈ In , there are several ways of naturally “embedding” this set
into In+1. If J is composed of open intervals, then removing any single point in J
results in n + 1 intervals, call it J ′, but the sets J and J ′ are basically the same. We
say that J ′ is obtained from J by cleaving. Assuming the answer to Question 6.4 is
no, a refined question is

Question 6.5 Can every MSTD point in In+1 be obtained by an MSTD path from the
image of some cleaved MSTD point in In?

If we deal with a compact parameter space, as in the simplex model and unit
cube model, we may then talk about the probability that a point is MSTD, balanced,
or difference dominant. Figures 2 and 3 show approximations of these probabilities
based on Monte Carlo simulation with 10 million trials.

Interestingly, the probabilities for being MSTD and balanced appear to be different
for the simplex model and unit cube model. However, in both cases, the probability of
being sum-dominant appears to converge to a similar value to the limiting probability
in the discrete case (∼ 4.5 × 10−4).

Question 6.6 Do the probabilities of being sum dominant and balanced converge for
the simplex model and the cube model?What is the relationship between theseMSTD
probabilities and the limiting MSTD probability in the discrete case?
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Table 3 Table enumerating the structures of each of the six regions of A, along with the size of the sumset,
difference set, and type

J1 + J1

J1 + J2

J2 + J2

J + J

J1 − J1

J1 − J2

J2 − J1

J2 − J2

J − J

2y1
?
x2

1 + y1
?
2x2

1 − x2
?
y1

µ (J + J )

µ (J − J )

Type

Region 1 Region 2 Region 3 Region 4 Region 5 Region 6

yes yes no yes no no
yes yes yes no no no
yes no yes no yes no

3y1 − 3x2 + 3

4y1 − 2x2 + 2

Difference dominant

3y1 − 3x2 + 3

2y1 − 4x2 + 4

Difference dominant

y1 − 2x2 + 3

2

Difference dominant

2y1 − x2 + 2

2

Difference dominant

2

2

Balanced

2

2

Balanced

One of the main open questions in the study ofMSTD sets is to construct a constant
density family of MSTD sets as n → ∞. Thus we may ask:

Question 6.7 Can the techniques in this paper be used to construct a constant density
family of MSTD subsets of [n] as n → ∞?

There are several interesting subsequent lines of inquiry stemming from the ideas
in the paper. More generally, we believe that there is a lot of utility in passing from
the discrete to the continuous as in this paper. Ideas closely related to those here were
utilized in the related paper [8] to reveal a geometric structure of a certain family
of combinatorial objects which was not visible previously. We believe there may be
several further fruitful applications of the ideas of this paper (Table 3).
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