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Abstract
Given afinite range space� = (X,R), with N = |X|+|R|, we present two simple algo-
rithms, based on the multiplicative-weight method, for computing a small-size hitting
set or set cover of �. The first algorithm is a simpler variant of the Brönnimann–
Goodrich algorithm but more efficient to implement, and the second algorithm can be
viewed as solving a two-player zero-sum game. These algorithms, in conjunction with
some standard geometric data structures, lead to near-linear algorithms for computing a
small-size hitting set or set cover for a number of geometric range spaces. For example,
they lead to O(Npolylog(N )) expected-time randomized O(1)-approximation algo-
rithms for both hitting set and set cover if X is a set of points andR a set of disks in R

2.

Keywords Geometric set cover · Near-linear algorithms · Multiplicative weight
method · Disks · Rectangles
Mathematics Subject Classification 68U05 · 52C17
1 Introduction

Let � = (X,R) be a finite range space where X is a finite set of objects and R is
a family of subsets of X called ranges. Set n = |X|,m = |R|, and N = n + m. A
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subset H ⊆ X is called a hitting set of � if H intersects every range of R, and a subset
C ⊆ R is called a set cover of � if the union of ranges in C is equal to X. It is well
known that a set cover of � is a hitting set of the dual range space �⊥ (see Sect. 2 for
the definition of �⊥). The hitting-set (resp. set-cover) problem is to find the smallest
hitting set (resp. set cover) of �. Both problems are well-known to be NP-complete
[27] and have been extensively studied. Let κ := κ(�) and χ := χ(�) denote the
size of an optimal hitting set and set cover, respectively, of �. Sometimes, we also use
OPT to denote either κ or χ and the meaning will be clear from the context.

In this paper, we are primarily interested in the hitting-set and set-cover problems
for geometric range spaces, where X is a finite set of points in R

d and R is a finite
family of simply-shaped regions chosen from some infinite class (e.g., rectangles,
balls, simplices, halfspaces). In this case, ranges are X ∩ R for R ∈ R. With a slight
abuse of notation, we denote the range space � = (X, {X ∩ R | R ∈ R}) as (X,R).
The hitting-set and set-cover problems are NP-complete even for simple geometric
range spaces, e.g., when R is a set of unit disks or unit squares in R

2 [25]. This
has led to the development of polynomial-time approximation algorithms for these
problems. Traditionally, the focus has been on developing polynomial-time algorithms
with the smallest possible approximation ratio. Many recent applications (e.g., in
sensor networks, database systems, computer vision) call for repeated computation of
hitting sets and set covers. For such applications, it is desirable to have near-linear-time
algorithms for these problems even if it means sacrificing a little on the approximation
ratio. Motivated by these applications, we study the problem of computing, in near
linear time, near-optimal hitting sets and set covers for geometric range spaces.

Relatedwork The well-known greedy algorithm gives a polynomial-time O(log n)-
approximation for a hitting set or set cover [21]. The known lower bound results imply
that this is the best one can hope for, within a constant factor, assuming certain con-
jectures in complexity theory [24]. However, by exploiting the underlying geometry,
polynomial-time algorithms with better approximation factors can be obtained for
many geometric range spaces; see [6,18,20,39] and the references therein for vari-
ous results of this kind. These algorithms employ and adapt a wide range of novel
techniques, including the usage of ε-nets [30].

Given a parameter ε ∈ (0, 1], an ε-net for range space � = (X,R) is a subset
Q ⊆ X that intersects every range R ∈ R whose size is at least ε|X|. In other words, Q
is a hitting set for all the “heavy” ranges. Haussler and Welzl [30] proved that a range
space of VC-dimension1 δ has an ε-net of size O((δ/ε) log(δ/ε)). The bounds on the
size of ε-nets have been improved for several geometric range spaces. For example,
O(1/ε)-size ε-nets exist when X is a set of points and R is a set of halfspaces in R

2 or
R
3, pseudo-disksR

2, or translates of a fixed convex polytope inR
3 [33,36,42]. Aronov

et al. [6] gave an O(n logd−1 n)-expected-time randomized algorithm to construct an
ε-net of size O((1/ε) log log(1/ε)) for the case when R is a set of axis-parallel d-
rectangles for d = 2, 3. Bus et al. [11] further improved the upper-bound to 13.4/ε
for disks in the plane, based on a construction using Delaunay triangulations. Recent

1 The VC-dimension of a range space � = (X,R) is the size of the largest subset A ⊆ X such that
|{A ∩ R | R ∈ R}| = 2|A|.
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results of Pach and Tardos [40] and Kupavskii et al. [32] show that if R is a set of
axis-parallel d-rectangles, then the size of an ε-net in the worst-case is �

( 1
ε
log log 1

ε

)

for d = 2, 3 and �
( 1

ε
log 1

ε

)
for d ≥ 4. See also [4,23] for other results on ε-nets.

Building on an iterative-reweighting technique by Clarkson [18], Brönnimann and
Goodrich [10] showed that if an ε-net of a range space� of size O((1/ε)g(1/ε)) can be
computed in polynomial time, where g(·) is a monotonically-nondecreasing sublinear
function, then a hitting set of size O(κg(κ)) also can be computed in polynomial time.
Since a set cover of � is a hitting set of the dual range space of �, their algorithm also
extends to set cover. If � has finite VC-dimension, then the dual range space also has
finite VC-dimension, and thus a hitting set (resp. set cover) of � of size O(κ log κ)

(resp. O(χ logχ)) can be computed in polynomial time. The size of hitting set reduces
to O(κ) if � admits an ε-net of size O(1/ε) (e.g. when R is a set of halfspaces in
R
3, or a set of pseudo-disks in R

2), and to O(κ log log κ) if R is a set of rectangles
in R

2 or R
3. The Brönnimann–Goodrich algorithm can be viewed as first solving the

LP relaxation of the hitting-set problem and then obtaining an approximate hitting set
from the fractional LP solution via ε-net. A more general LP solver can also be used
to obtain the same results [34]. See [6,20,44] for improved approximation ratios for
set covers of geometric range spaces.

The algorithms by Clarkson [18] and Brönnimann–Goodrich [10] are instances
of the so-called multiplicative weight (MW) method. The MW method, which has
been repeatedly discovered, goes back to the 1950’s and has been used in numerous
fields including machine learning, linear programming, semidefinite programming,
graph algorithms, game theory, on-line algorithms, and computational geometry. In
computational geometry, besides hitting-set/set-cover, the MWmethod has been used
for linear programming [19,31], constructing spanning trees of low stabbing number
[16], and constructing partition trees for range searching [35]. See the survey by Arora
et al. [8] for a comprehensive review of this method.

Approximation algorithms for hitting set and set cover are known that do not rely
on ε-nets. For instance, the local-search technique by Mustafa and Ray [39] computes
(1+ε)-approximate hitting sets for halfspaces inR

3 and pseudo-disks inR
2 in NO(ε−2)

time. Mustafa et al. [38] developed a quasi-polynomial-time algorithm for the case
where the halfspaces and pseudo-disks are weighted.

Both the greedy and the Brönnimann–Goodrich algorithms work in O(κ log N )

stages. A straightforward implementation of both algorithms takes O(mn) time per
stage, which can be improved to O(Npolylog(N )) in some cases using geometric data
structures. Thus these algorithms run in time �(Nκ).

Agarwal et al. [3] studied near-linear algorithms for the hitting-set problem. They
proposed a variant of the greedy algorithm that performs O(log n) stages and chooses,
in near-linear time, O(κφ(κ)) points in each stage for the hitting set if the union of any
subset F ⊆ R has complexity O(|F|φ(|F|)), where φ(·) is a sublinear function. They
also presented an efficient implementation of the Brönnimann–Goodrich algorithm for
the special case when R is a set of d-rectangles for d = 2, 3. Their algorithm is rather
complex and computes a hitting set of size O(κ log log κ) in O((N+κd+1)polylog(n))

time. Not only is this algorithm inefficient for large values of κ , but it also does not
extend to other range spaces.
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Our results We present two simple algorithms, both based on the MW method,
for computing a small-size hitting set or set cover of a range space � of finite VC-
dimension.Theyfirst compute a near-optimal fractional solution using theMWmethod
and then transform this fractional solution to an integral solution using ε-nets (e.g., as
in [34]). As mentioned earlier, a set cover of � is a hitting set of the dual range space
�⊥, so we only describe our algorithms in terms of computing a hitting set.

The first algorithm, described in Sect. 3, is a simpler but more efficient variant
of the Brönnimann–Goodrich algorithm [10]. It divides the O(κ log n) stages of their
algorithm into O(log n) rounds so that each range is processed only once in each round,
and it computes an ε-net twice, instead of O(κ log n) times as in [10]. Assuming that
an ε-net of � can be computed in O(npolylog(n)) time and range queries on �

can be answered in polylog(n) time, the expected running time of the algorithm is
O(Npolylog(N )). See Theorem 3.2 for a more precise bound.

The second algorithm, described in Sect. 4, is a Monte Carlo algorithm that com-
putes a small-size hitting set or set cover with high probability (i.e., with probability
at least 1−1/N�(1)). It can be viewed as solving a two-player zero-sum game. In this
game, one player Alice has the points in X as her pure strategies and the other player
Bob has the ranges in R as his pure strategies. If Alice plays x ∈ X and Bob plays
R ∈ R, then Bob pays Alice 1 if x ∈ R and 0 otherwise. An optimal mixed strategy
for Alice gives an optimal fractional solution to the hitting-set, from which one can
use ε-net to obtain a hitting set of small size. Using the MW method, the algorithm
computes near-optimal mixed strategies for both Alice and Bob, which gives a near-
optimal fractional solution to the hitting-set problem.We remark that the MWmethod
has been used to solve the zero-sum game approximately [26,28], but our algorithm
is somewhat different, tailored to computing a hitting set.

We next describe in Sect. 5 consequences of these algorithms for a number of
geometric range spaces. The results are presented in terms of the second algorithm
and thus achieve the approximation ratios with high probability. We can obtain Las
Vegas algorithms for these problems using the first algorithm, possibly paying an
additional logarithmic factor in the running time, that are guaranteed to obtain these
approximation ratios. See Table 1 for a summary of the results.

Either no near-linear algorithms with guaranteed approximation ratio were known
for these problems, or near-linear algorithms attained a worse approximation ratio. For
example, the algorithm by Agarwal et al. [3] computes only an O(log n)-approximate
hitting set for disks in O(N log3 N ) time, and it does not extend to computing a set
cover. We remark that our algorithms rely on standard range searching data structures.
It might be possible to improve polylog factors in the running time by optimizing these
data structures, but we feel it is not worth the effort.

Finally, in Sect. 6, we extend the second algorithm to compute, in near-linear time,
an O(1)-approximate (discrete) maximum independent set for disks. In this problem,
we are also given a discrete range space� = (X,R), where X is a set of points andR a
set of disks in R

2, and the goal is to compute the largest subset I of disks such that no
point of X is contained in more than one disk of I. We first use our second algorithm to
compute a fractional solution to this problem, and then round the fractional solution
to an integral one using the algorithm by Chan and Har-Peled [13]. The algorithm in
[13] employs an existing LP solver and runs in quadratic time.
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Table 1 Summary of results for different geometric range spaces using the second algorithm, so these
bounds hold with probability at least 1 − 1

N�(1)

Ranges Approximation ratio Running time

Hitting set Set cover

Rectangles (d = 2, 3) O(log log κ) O(logχ) O(N logd+1 N log logOPT)

Halfspaces (d = 3) O(1) O(1) O(N log3 N )

Disks (d = 2) O(1) O(1) O(N log3 N )

Fat triangles (d = 2) O(log κ) O(logχ) O(N log7 N log logOPT)

The first algorithm gives the same approximation ratios with probability 1, but the running time might have
an extra log N factor

2 Preliminaries

Range space and ε-nets Let � = (X,R) be a finite range space, as defined above.
The dual range space of �, denoted by �⊥ = (X⊥,R⊥) is defined as follows. There
is an object in X⊥ for each range R ∈ R, and R⊥ contains a range Rx for each point
x ∈ X, namely, Rx = {R ∈ R | R � x}. As mentioned above, a set cover of � is a
hitting set of �⊥ and vice-versa. It is also known that if � has finite VC-dimension,
then so does �⊥ [29].

A hitting set H ⊆ X is called c-approximate, for c ≥ 1, if |H| ≤ cκ(�). Similarly,
a set cover C ⊆ R is called c-approximate if |C| ≤ cχ(�).

Given a weight function w : X → R≥0, for a subset A ⊆ X, we use w(A) to denote
the total weight of points in A. Given w and a parameter ε ∈ (0, 1], we call a range
R ∈ R ε-heavy if w(R) ≥ εw(X) and ε-light otherwise. A subset Q ⊆ X is called an
ε-net with respect to weight function w if Q∩ R 
= ∅ for every ε-heavy range R ofR.

Hitting-set algorithm We first briefly describe the main idea behind the algorithm
of Brönnimann–Goodrich [10] (and Clarkson [18]), which uses a similar framework
as other more general multiplicative-weight algorithms such as the Plotkin–Shmoys–
Tardos algorithm [41] for solving packing and covering LPs.

Let k be an integer such that k/2 < κ ≤ k. Initialize the weight of each point to 1,
i.e., w(x) = 1 for all x ∈ X, and repeat the following weight-doubling step until every
range is 1

2k -heavy:

Find a 1
2k -light range R and double the weights of all points in R.

When the process stops, return a 1
2k -net Q of � with respect to the final weights.

Since each range in � is 1
2k -heavy, Q is a hitting set of �. Hence, if a 1

2k -net of size
O(kg(k)) can be computed efficiently, the above algorithm computes a hitting set
of size O(κg(κ)). The following lemma, by now a well-known argument (see e.g.
[8,10,16,18,19]), is the key to the performance of the algorithm. For completeness,
we also give the proof here.2

2 Throughout this paper, we use log x to denote log2 x .
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Lemma 2.1 If� has a hitting set of size at most k, then the algorithm performs at most
μk := 4k log(n/k) weight-doubling steps. The final weight of X is at most n4/k3.

Proof Let H be a hitting set of size k. Since each weight-doubling step is performed
on a 1

2k -light range R, the total weight of X increases by a factor of at most
(
1 + 1

2k

)
.

Thus, after z weight-doubling steps,

w(X) ≤ n

(
1 + 1

2k

)z

≤ n exp

(
z

2k

)
.

On the other hand, H ∩ R 
= ∅, thus at least one point of H gets its weight doubled
after the weight-doubling step on R. Suppose each element of h ∈ H is doubled zh
times after z weight-doubling steps, we have

w(H) =
∑

h∈H
2zh ≥ k2z/k .

Since w(H) ≤ w(X), we get

k2
z
k ≤ ne

z
2k ≤ n2

3z
4k ,

from which z ≤ μk = 4k log(n/k) follows. The final weight of X follows from the
first inequality. ��

ByLemma 2.1, if the algorithm does not terminatewithinμk steps, we can conclude
that � does not have a hitting set of size at most k. An exponential search is used to
guess the value of k such that k/2 < κ ≤ k.

In each step, the Brönnimann–Goodrich algorithm computes a 1
2k -net H and iden-

tifies a range that does not intersect H as a light range. However, verifying whether
H hits all ranges takes �(N ) time, and thus the algorithm can take �(N 2) time
in the worst case; see the original paper for details. In the next section, we group
every O(k) weight-doubling steps into one round, and find light ranges for these
steps together by looking at each range in R only once. This optimization makes
it possible to finish all weight-doubling steps in Õ(N ) time for many geometric
instances.

3 Hitting Set in Rounds

Algorithm As in [10], assume we have an integer k such that κ ∈ (k/2, k]; we
perform an exponential search to find such a value of k. The algorithm is similar to
[10] except that it works in rounds. Initially, it setsw(x) = 1 for all x ∈ X. Each round
of the algorithm performs at most 2k weight-doubling steps, as follows. It processes
each range R ∈ R one by one. If R is 1

2k -light, it doubles the weights of all points in R.
This weight-doubling step on R is performed repeatedly until R becomes 1

2k -heavy or
2k weight-doubling steps have been performed in the current round. Once R becomes
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1
2k -heavy, it is not processed again in the current round, even though it may become
1
2k -light again later in the current round while other ranges are being processed.

If 2k weight-doubling steps have been performed in the current round, the algorithm
aborts the current round and moves to the next round. On the other hand, if all ranges
have been processed with less than 2k weight-doubling steps, the algorithm stops and
returns a 1

2ke -net Q of � as a hitting set of �.
By Lemma 2.1, if � has a hitting set of size at most k, then the algorithm per-

forms at most μk = 4k log(n/k) weight-doubling steps. Since each except the
last round performs 2k weight-doubling steps, the number of rounds is at most
μk
2k + 1 = 2 log(n/k) + 1.

Correctness The correctness of the algorithm follows from the following lemma.

Lemma 3.1 All ranges are 1
2ke -heavy when the algorithm terminates.

Proof Suppose the algorithm stops in round i . Let Wi be the total weight w(X) in the
beginning of round i , and let W f be the total weight when the algorithm stops. Since
at most 2k weight-doubling steps are performed in round i and each of them increases
the total weight by a factor of at most 1 + 1

2k ,

W f ≤
(
1 + 1

2k

)2k

Wi ≤ eWi .

After a range R has been processed in round i , it is 1
2k -heavy with respect to the

current weight of X, which is at least Wi . Therefore

w(R) ≥ 1

2k
Wi ≥ 1

2ke
W f ,

implying that R is 1
2ke -heavy. Since the algorithm terminates in round i only after all

ranges have been processed in that round, all ranges are 1
2ke -heavy. ��

If an ε-net of � of size O
( 1

ε
g
( 1

ε

))
can be computed, then by Lemma 3.1, the above

algorithm returns a hitting set of size O(κg(κ)).

Running time To expedite the weight-doubling step, we perform the following pre-
processing step before running the algorithm: compute a 1

2k -net Q0 of �, and set
X = X \ Q0 and R = {R | R ∩ Q0 = ∅}. After this preprocessing, each range in R

contains at most n
2k points. The algorithm returns Q0 ∪ Q as a hitting set of �.

We assume the existence of the following three procedures:

(P1) A net finder that can compute an ε-net of size O
( 1

ε
g
( 1

ε

))
in ϕ(N ) time.

(P2) A range-counting data structure that, given a range R, returns yes if R is 1
2k -

light and no otherwise, and that can also update the weight of a point. Let
τ(n) = �(log n) be the time taken by each of these two operations. We assume
that the data structure can be built in O(nτ(n)) time.
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(P3) A range-reporting data structure that reports all s points of a range in O(τ (n)+s)
time, and that can be constructed in O(nτ(n)) time.

Using (P2) and (P3), a range R ∈ R can be processed in each round as follows. First,
using (P2)we check in τ(n) timewhether R is 1

2k -light. If the answer isyes, we use (P3)
to report all points of R in time τ(n)+|R| ≤ τ(n)+ n

2k . Recall that at most 2k weight-
doubling steps are performed in each round, so O(n) points are reported in a round.
For each reported point, it takes τ(n) time to double its weight in the range-counting
data structure. We thus conclude that a round takes O(Nτ(n)) time. Summing over
all 2 log(n/2k) + 1 rounds, the total time spent by the algorithm, including the time
spent in the preprocessing phase, is O(Nτ(n) log n+ϕ(N )). We repeat the algorithm
O(log κ) times to perform the exponential search. Putting everything together, we
obtain the following.

Theorem 3.2 Let � = (X,R) be a finite range space with |X| + |R| = N. Suppose
procedures (P1), (P2) and (P3) exist for �, then an O(g(κ))-approximate hitting set
of � can be computed in O((Nτ(N ) log N + ϕ(N )) log κ) time.

Recalling that a set cover of� is a hitting set of the dual range space�⊥, we obtain
the following.

Theorem 3.3 Let � = (X,R) be a finite range space with |X| + |R| = N. Suppose
procedures (P1), (P2) and (P3) exist for �⊥, then an O(g(χ))-approximate set cover
of � can be computed in O((Nτ(N ) log N + ϕ(N )) logχ) time.

Remarks (i) An approximate range counting data structure can be used in (P2), namely,
a data structure that always returns yes if R is 1

4k -light and always returns no if R is
1
2k -heavy. It may return yes or no if w(R) ∈ [ 1

4kw(X), 1
2kw(X)

]
. So if the algorithm

returns yes, then R must be 1
2k -light; on the other hand, if the algorithm returns no,

then Rmust be 1
4k -heavy. Aweight-doubling step is performed if the procedure returns

yes. The same argument as in Lemma 3.1 implies that each range is at least 1
4ke -heavy

when the algorithm terminates, after O(log(n/k)) rounds. Hence, the size of hitting set
is affected by a factor of at most 2. This is convenient because faster data structures are
known for approximate range counting for some range spaces (e.g., halfspace range
counting).

(ii) By Lemma 2.1, the final weight of X is bounded by O(n4/k3), so O(log n) bits
suffice for maintaining the weight of each point during the algorithm.

4 Hitting Set as 2-Player Game

Algorithm We now describe the second algorithm for computing a hitting set. As
earlier, suppose we have an integer k such that k/2 < κ ≤ k; we perform a backward
exponential search to find such a value of k as described later. The algorithm now
maintains weights on both X and R, and it also works in rounds. For i ≥ 1, let
π i : X → R≥0 and ωi : R → R≥0 be the weights of points and ranges, respectively,
in the beginning of round i . We also use π i (X) and ωi (R) to denote the total weight
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of all points in X and all ranges in R, respectively. Initially, π1(x) = 1 for all x ∈ X
and ω1(R) = 1 for all R ∈ R. Let i (resp. �i ) denote the probability distribution
induced by π i (resp. ωi ), i.e.,

i =
〈
π i (x j )

π i (X)

∣∣ 1 ≤ j ≤ n

〉
, �i =

〈
ωi (R j )

ωi (R)

∣∣ 1 ≤ j ≤ m

〉
.

We set

μ := 2

ln 2
k ln(m2n).

The algorithm performs μ rounds of the following two steps: for 1 ≤ i ≤ μ,

(i) Sample a point x̄i ∈ X from the distribution i and a range Ri ∈ R from the
distribution �i .

(ii) For each point x ∈ Ri , double its weight, i.e., π i+1(x) = 2π i (x), and for each
range R that contains x̄i , halve its weight, i.e., ωi+1(R) = ωi (R)/2.

Let X̃ = 〈x̄1, . . . , x̄μ〉 be the multi-set of points chosen by the algorithm. Let ̃ be
the distribution on X induced by X̃, i.e., if a point x ∈ X appears μx times in X̃, then set
Pr(x ∼ ̃) = μx/μ. We compute a 1

8k -net Q of � with respect to ̃. If Q is a hitting
set of �, we return Q; otherwise, we repeat the above algorithm.

Intuitively, theweights of points that lie inmany ranges are doubledmore frequently,
and thus more likely to be in the optimal hitting set; on the other hand, the weights of
ranges that contain few points are halved less frequently, so that they can be sampled
to ensure points contained in them have high weights.

Correctness We view the hitting-set problem for � as a two-player zero-sum game,
and the above algorithm computes a near-optimal mixed strategy for each of the two
players. More precisely, let Alice and Bob be two players who play the following
game: Alice chooses a point x ∈ X, Bob chooses a range R ∈ R and Bob pays I (x, R)

to Alice, where

I (x, R) =
{
1 if x ∈ R,

0 if x /∈ R.

The algorithm can be interpreted as Alice and Bob playing the game for μ rounds.
Initially, both players have uniform distributions over their pure strategies. In each
round, Alice samples a point x from the current distribution over points and Bob
samples a range R from the current distribution over ranges.According to the definition
of the game, points in R are good for Alice because had she played one of them, she
would have won 1 dollar. Therefore, Alice doubles the weights of points in R so that
she can choose them more often in the future. Similarly, ranges containing x are bad
for Bob, thus he halves the weights of those ranges.

For a probability distribution  over X and for a range R ∈ R, let I (, R) denote
the expected payoff to Alice if Bob chooses R, i.e.,
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I (, R) =
∑

x∈X
Pr(x ∼ ) I (x, R).

Similarly, we define I (x,�) for a point x ∈ X and a distribution � over R. Let λ∗ be
the value of the above game. By the min-max theorem [37],

λ∗ = max


min
R∈R

I (, R) = min
�

max
x∈X I (x,�), (1)

where , � are probability distributions over X and R, respectively.
Let H∗ ⊆ X be an optimal hitting set of � of size κ , and let H∗ be the distribution

where π(x) = 1/κ if x ∈ H∗ and 0 otherwise. Then

min
R∈R

I (H∗ , R) ≥ 1

κ

because R ∩ H∗ 
= ∅ for all R ∈ R. Hence λ∗ ≥ 1/κ ≥ 1/k. Let

∗ = arg max


min
R∈R

I (, R)

be the optimal (mixed) strategy for Alice. If we can compute ∗, then we can simply
return a (1/k)-net Q of� under the distribution∗:Q is a hitting set of� because the
weight of any R ∈ R under ∗ is at least minR∈R I (∗, R) = λ∗ ≥ 1/k. We show
that ̃ is an approximation of ∗, in the sense that with constant probability,

min
R∈R

I (̃, R) ≥ 1

8k
,

and thus a 1
8k -net of � under ̃ is a hitting set of �.

We begin by proving two lemmas, which follow from standard arguments for the
MWmethod. The first one states that the total expected payoff to Alice over μ rounds
is not much less than the payoff she would get by the best pure strategy.

Lemma 4.1 For every x ∈ X,

μ∑

t=1

I (t , Rt ) ≥ − ln n + ln 2
μ∑

t=1

I (x, Rt ).

Proof Let π t (X) be the total weight of X in the beginning of round t . Then by con-
struction,

π t+1(X) =
∑

x∈X
π t (x)(1 + I (x, Rt ))

= π t (X)

(
1 +

∑

x∈X

π t (x)

π t (X)
I (x, Rt )

)
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= π t (X)(1 + I (t , Rt )) ≤ π t (X) exp(I (t , Rt ))

≤ n exp

( t∑

i=1

I (i , Ri )

)
. (2)

The last inequality follows because π1(X) = n. However, for every x ∈ X,

πμ+1(X) ≥ πμ+1(x) = exp

(
ln 2

μ∑

t=1

I (x, Rt )

)
. (3)

The lemma follows from (2) and (3). ��
Since Lemma 4.1 holds for every x , it also holds for the optimal mixed strategy

∗.

Corollary 4.2
μ∑

t=1

I (t , Rt ) ≥ − ln n + ln 2
μ∑

t=1

I (∗, Rt ).

A similar argument proves the following lemma, which states that the expected cost
to Bob is not much worse than that by his best pure strategy.

Lemma 4.3 For every R ∈ R,

μ∑

t=1

I (x̄t ,�
t ) ≤ 2 lnm + ln 4

μ∑

t=1

I (x̄t , R).

Proof Let ωt (R) be the total weight of R in the beginning of round t . Then by con-
struction,

ωt+1(R) =
∑

R∈R
ωt (R)

(
1 − 1

2
I (x̄t , R)

)

= ωt (R)

(
1 − 1

2

∑

R∈R

ωt (R)

ωt (R)
I (x̄t , R)

)

= ωt (R)

(
1 − 1

2
I (x̄t ,�

t )

)
≤ ωt (R) exp

(
−1

2
I (x̄t ,�

t )

)

≤ m exp

(
−1

2

t∑

i=1

I (x̄i ,�
i )

)
. (4)

The last inequality follows because ω1(R) = m. However, for every R ∈ R,

ωμ+1(R) ≥ ωμ+1(R) = exp

(
− ln 2

μ∑

t=1

I (x̄t , R)

)
. (5)

123



Discrete & Computational Geometry (2020) 63:460–482 471

The lemma follows from (4) and (5). ��
The following lemma follows from the fact that the game Alice and Bob play is a

zero-sum game, but we sketch a proof for completeness.

Lemma 4.4

E
[ μ∑

t=1

I (t , Rt )

]
= E

[ μ∑

t=1

I (x̄t ,�
t )

]
,

where the expectation is taken over the random sequence of points and ranges chosen
in all rounds.

Proof For t ≥ 1, let St be the set of all point-range-pair sequences of length t , i.e.,

St = {〈(x1, R1), . . . , (xt , Rt )〉 | xi ∈ X, Ri ∈ R, 1 ≤ i ≤ t}.

If we fix a sequence S ∈ St−1, then the distributionst ,�t are fixed, which we denote
by t

|S,�
t
|S .

E[I (t , Rt )] =
∑

S∈St−1

Pr(S)
∑

Rt∈R
Pr(Rt |S) I (t

|S, Rt )

=
∑

S∈St−1

Pr(S)
∑

xt∈X
Rt∈R

Pr(xt , Rt |S) I (xt , Rt )

=
∑

S∈St−1

Pr(S)
∑

xt∈X
Pr(xt |S) I (xt ,�

t
|S)

= E[I (xt ,�t )].

The lemma now follows from linearity of expectation. ��
We are now ready to prove that the distribution ̃ on X implied by X̃ is close to ∗.

For a range R ∈ R, let

λR = 1

μ

μ∑

t=1

I (x̄t , R) = I (̃, R)

and

λ̃ = min
R∈R

λR .

Note that λR , for every R ∈ R, and λ̃ are random variables.
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Lemma 4.5

(i) E[λ̃] ≥ λ∗

4
≥ 1

4k
, and

(ii) Pr[λ̃ > E[λ̃]/2] ≥ 1

7
.

Proof Using Lemmas 4.3 and 4.4 and Corollary 4.2,

E[λ̃] ≥ 1

μ ln 4
E
[ μ∑

t=1

I (x̄t ,�
t )

]
− lnm

μ ln 2
(By Lemma 4.3)

= 1

μ ln 4
E
[ μ∑

t=1

I (t , Rt )

]
− lnm

μ ln 2
(By Lemma 4.4)

≥ 1

μ ln 4
E
[
ln 2

μ∑

t=1

I (∗, Rt ) − ln n

]
− lnm

μ ln 2

(By Corollary 4.2)

= 1

2μ
E
[ μ∑

t=1

I (∗, Rt )

]
− 1

μ ln 4
ln(m2n).

However,

I (∗, Rt ) ≥ min
R∈R

I (∗, R) = λ∗

and

μ = 2

ln 2
k ln(m2n).

Therefore,

E[λ̃] ≥ λ∗

2
− 1

4k
≥ 1

4k

because λ∗ ≥ 1/k. This proves part (i) of the lemma.
We now prove (ii). By (1),

λ̃ = min
R∈R

λR = min
R∈R

I (̃, R) ≤ λ∗.

Also, according to part (i),

E[λ̃] ≥ λ∗

4
.
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Let p = Pr[λ̃ ≤ 1
2 E[λ̃]]. Then

E[λ̃] ≤ p
2
E[λ̃] + λ∗(1 − p) ≤ p

2
E[λ̃] + 4E[λ̃](1 − p),

and we obtain p ≤ 6/7. This proves part (ii) of the lemma. ��
Lemma 4.5 implies that, with constant probability, λ̃ > 1

8k , i.e., every range is
1
8k -heavy with respect to ̃. Thus, the algorithm indeed returns a hitting set of �.

Fast implementation and running time We perform two preprocessing steps to
expedite the algorithm. In the first preprocessing step, as in Sect. 3, we compute a
1
k -net Q0 of �, set X = X \Q0 and R = {R | R ∩Q0 = ∅}, i.e., remove the ranges hit
by Q0. In the second preprocessing step, we choose a set Q1 ⊆ X of O(k) points so
that any point in X \ Q1 intersects at most m/k ranges of {R | R ∩ Q1 = ∅}. Since �

has a hitting set of size at most k, such a set Q1 always exists. We now set X = X \Q1,
R = {R | R ∩ Q1 = ∅}. After the preprocessing, each point of X lies in at most
m/k ranges, and each range of R contains at most n/k points. The algorithm returns
Q0 ∪ Q1 ∪ Q as the hitting set of �.

For this algorithm, we need the net finder of (P1), the range-reporting data structure
of (P3) and two other procedures:

(P4) A dual range-reporting data structure that reports all s ranges containing a query
point in O(τ (m) + s) time, and that can be constructed in O(mτ(m)) time.

(P5) An algorithm that performs the second preprocessing step in ϕ(N ) time.

Finally, we build a balanced binary search tree TX on X and another one TR on R

so that the weights of a point in X and of a range in R can be updated in O(log n) and
O(logm) time, respectively, and so that a random element of X or R can be chosen
within the same time; see e.g. [3].

In round i , we report all points of Ri in O(τ (n) + n/k) time using (P3) and update
theweights of these points in the binary treeTX in O

( n
k log n

)
time. Similarlywe report

the ranges of R that contain x̄i in O(τ (m) + m/k) time using (P4) and update their
weights in TR in O

(m
k logm

)
time. Hence, round i takes O(τ (N ) + k−1N log(N ))

time. Summing over all μ rounds, adding the preprocessing time, the algorithm takes
O(ϕ(N )+k log(N )τ (N )+N log2(N )) = O(ϕ(N )+N log(N )τ (N )) time. Since the
algorithm succeeds with probability at least 1/7, it is repeated O(1) expected times.

We perform backward exponential search on the value of k as follows. Initially, we
set k = n. Given the current value of k, we run the algorithm for �(log N ) times.
If the algorithm returns a hitting set H, we remember H, halve the value of k, and
continue. Otherwise, we stop and return the smallest hitting set remembered. At most
log n values of k are examined during the backward exponential search. If k ≥ κ , the
expected number of times the algorithm is run for a fixed value of k is O(1) because
each iteration returns a valid hitting set with constant probability. If k < cκ/g(κ) for
some constant c, no hitting set of size O(kg(k)) < κ exists, and thus the algorithm
will terminate in�(log N ) iterations. For k ∈ [cκ/g(κ), κ), a hitting set may be found
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at the end of the �(log N ) iterations in the worst case. Thus, the algorithm is repeated
O(log(N ) log(g(κ))) times in the worst case, for this range of k.

Unlike Sect. 3, the weight of points can become quite large and those of ranges
can become quite small, so algebraic complexity of the algorithm can be large if we
store all weights explicitly. One possible method is to scale down all the weights by a
factor of 2 periodically and set the minimumweight to 1, i.e., remove the points whose
weights become less than 1. Ifwe keep the ratio of themaximumandminimumweights
polynomial (e.g., N 4), the approximation of the small weights will have negligible
impact to the correctness analysis. We conclude the following.

Theorem 4.6 Let � = (X,R) be a finite range space with |X| + |R| = N.

(i) Suppose procedures (P1) and (P3)–(P5) exist for �, then an O(g(κ))-
approximate hitting set of � can be computed in expected time
O((ϕ(N ) + Nτ(N ) log N ) log N log(g(κ))), with probability at least 1− 1

N�(1) .

(ii) Suppose procedures (P1) and (P3)–(P5) exist for �⊥, then an O(g(χ))-
approximate set cover of � can be computed in expected time
O((ϕ(N ) + Nτ(N ) log N ) log N log(g(χ))), with probability at least 1− 1

N�(1) .

Remarks (i) The algorithm described here can be viewed as a “kinder and gentler”
version of the greedy algorithm. A point lying in many “uncovered” ranges is likely to
have higher weight and thus higher probability of being chosen. Instead of removing
the ranges containing a chosen point, we simply halve their weights. By the time
algorithm stops, the weight of every range is very small.

(ii) It is worth contrasting this algorithm with the previous one. This one is simpler
and does not require a dynamic data structure for range counting to verify whether a
range is light. Also, this algorithm is slightly faster for some geometric instances with
one less logarithmic factor in the running time. However, it requires a range-reporting
data structure for both � and �⊥, and an additional preprocessing step to compute
Q1 so that no point lies in more than m/k ranges.

(iii) This algorithm falls under the primal-dual framework for solving linear pro-
grams (LPs). A very similar approach was used by Koufogiannakis and Young [31]
to give near-linear-time PTAS for fractional packing and covering LPs. Their running
time depends on the number of non-zero elements in the constraint matrix, which can
be quadratic for geometric covering problems. We achieve near-linear running time
using geometric data structures and careful preprocessing.

5 Fast Algorithms for Geometric Instances

In this section, we show that the algorithms described in Sects. 3 and 4 yield near-
linear hitting-set and set-cover algorithms for a number of geometric range spaces,
for which the required procedures (P1)–(P5) can be performed efficiently. Let X be a
set of n points in R

d and R a set of m geometric shapes such as rectangles, balls, and
simplices. As mentioned in Introduction, we will use R ∈ R to denote a shape as well
as the subset X∩ R. It will be clear from the context which of the two we are referring
to.
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We mainly describe the implementations of the second algorithm, which require
procedures (P1) and (P3)–(P5) and give the desired approximation ratios with high
probability. One can also use the first algorithm, which may add a logarithmic factor
in the running time in some cases, but it always returns a hitting set or set cover with
the approximation ratio stated in the corresponding theorems.

Rectangles in 2D and 3D Let R be a set of m axis-parallel rectangles in R
d for d =

2, 3. Aronov et al. [6] have shown that an ε-net of� of size O((1/ε) log log(1/ε)) can
be constructed in O(n logd−1 n) randomized expected time, thus g(κ) = log log(κ)

and ϕ(N ) = O(N logd−1 N ) in procedure (P1).
For the range reporting data structure in (P3), we construct a d-dimensional range

tree on X in O(n logd−1 n) time and a range reporting query can be answered in
O(logd−1 n + s) time, where s is the output size. For (P4), we need a dual range-
reporting data structure that reports all rectangles of R containing a query point. This
can be done in O(logd−1m+ s) time, where s is the output size, after O(m logd−1 m)

preprocessing [15]. Hence, τ(N ) = O(logd−1 N ).
Finally, we also need an algorithm for (P5) that computes a set Q1 of O(k) points

so that no point in X \Q1 lies in more than m/k rectangles of {R ∈ R | R ∩Q1 = ∅}.
This can be accomplished using a d-dimensional segment tree on R, which can be
constructed in O(m logd m) time. For each point p ∈ X, the segment tree is queried in
O(logd m) time to check whether p lies in more than m/k rectangles of R. If so, we
add p to Q1 and delete all the rectangles of R that contain p from the segment tree.
Obviously, at most k points are reported, and the time spent is ϕ(N ) = O(N logd N ).3

Plugging the bounds of τ(·), g(·) and ϕ(·) in Theorem 4.6, we obtain the following.

Theorem 5.1 Let X be a set of n points in R
d and R a set of m rectangles in R

d , for
d = 2, 3, with |X| + |R| = N. An O(log log κ)-approximate hitting set of (X,R) can
be computed in O(N logd+1 N log log log κ) expected time, with probability at least
1 − 1

N�(1) .

For the set-cover problem, an ε-net of�⊥ required in (P1) can be computed simply
by choosing a random sample of size O

( 1
ε
log 1

ε

)
, with probability at least 1/2 [30].

Pach andTardos [40] showed that the size of ε-net for�⊥, even ford = 2, is�
( 1

ε
log 1

ε

)

in the worst case. The procedures (P3) and (P4) remain the same as (P4) and (P3) in
the hitting-set case. The set Q1 ⊆ R in procedure (P5) can be computed in a similar
way, except that a d-dimensional range tree, instead of a segment tree, is used. The
running time is ϕ(N ) = O(N logd N ). Hence, we obtain the following.

Theorem 5.2 LetX be a set of points inR
d andR a set of rectangles inR

d , for d = 2, 3,
with |X| + |R| = N. An O(logχ)-approximate set cover of (X,R) can be computed
in O(N logd+1 N log logχ) expected time, with probability at least 1 − 1

N�(1) .

3 Using a sweep-plane technique, the running time of the algorithm for (P5) can be improved by a loga-
rithmic factor. However, since this step is not the bottleneck, we use the above approach, which is simpler.
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Halfspaces in 3D anddisks in 2D Let X be a set of n points andR a set ofm halfspaces
in R

3. Building on the algorithm by Matoušek [36], Chan and Tsakalidis [14] have
described an O

(
n log 1

ε

)
-time deterministic algorithm to compute an ε-net of size

O(1/ε) for the range space� = (X,R). Therefore g(·) = 1 and ϕ(N ) = O(N log N )

in (P1).
Using the data structure by Afshani and Chan [1], the halfspace range-reporting

query in (P3) can be answered in O(log n + s) time, after O(n log n) expected-time
preprocessing. By duality transform, the dual range-reporting query in (P4) can be
answered using the same data structure in O(logm + s) time, after O(m logm) pre-
processing. Hence τ(n) = O(log n).

We describe an algorithm for computing Q1 in the preprocessing step of the sec-
ond algorithm. The algorithm is based on constructing shallow cuttings of a set of
hyperplanes, defined by Matoušek [36]. Given parameters �, r ∈ [1, n], an �-shallow
1
r -cutting of a collectionH of n hyperplanes inR

d is a set of interior-disjoint simplices
such that the interior of every simplex intersects at most n

r hyperplanes ofH, and the
union of the simplices cover all points that lie above � or fewer hyperplanes inH.

The algorithm works in �log k� rounds.4 At the beginning of round i , we have a
set Xi ⊆ X of points and a subset Ri ⊆ R of halfspaces. Initially, in round 0, Xi = X
and Ri = R. The maximum depth of a point in Xi is at most �i = |Ri−1|/2i . We
set ri = 2i+1 and compute a �i -shallow (1/ri )-cutting �i of the halfspaces of Ri ;
|�i | = O(2i ). Since the maximum depth of a point of Xi is �i , each point of Xi
lies in a simplex of �i . For each simplex � ∈ �i , if Xi ∩ � 
= ∅, we choose one
point from � and add it to Q1. Let Pi be the set of points chosen in round i , and let
Ri = {R | R ∩ Pi 
= ∅}. We set Xi+1 = Xi \ Pi and Ri+1 = Ri \ Ri . Since each
simplex� ∈ �i intersects the boundary of at most |Ri |/2i+1 halfspaces, which are the
only possible halfspaces remaining in Ri+1 that can cover points in �, the maximum
depth of a point in Xi+1 is |Ri |/2i+1 ≤ m/2i+1 in Ri+1.

By construction, |Q1| = ∑
i O(2i ) = O(k). We now analyze the running time

of the above algorithm. Using the algorithm by Chan and Tsakalidis [14], �i can
be computed in O(|Ri | log ri ) = O(m · i) time. A property of their algorithm is
that each cell in �i is a semi-bounded vertical prism that is unbounded from below
and whose boundary consists of vertical walls and a top triangle. Furthermore, the
upper boundary of these prisms forms an xy-monotone triangulated surface. The xy-
projection of the upper boundary is a triangulation �∗

i of R
2. By preprocessing �∗

i for
planar point-location queries (see e.g. [22]), in time O(ri log ri ), we can determine
in O(log ri ) = O(i) time whether a query point q ∈ R

3 lies in a prism of �i , and
also the prism of �i that contains q if the answer is yes. Thus, Pi can be computed
by going through every point q ∈ Xi and adding q to Pi if it is the first point visited
in some simplex of �i . The time for computing Pi is O(m · i + n · i). Finally, Ri

is computed using |Ri | range-emptiness queries on Pi , each taking O(log |Ri |) time.
Therefore, summing over all �log k� rounds, the expected time for computing Q1 is
O(N log2 N ).

Lemma 5.3 A set Q1 of size O(k) required by (P5) can be computed in O(N log2 N )

time.

4 Recall that k is an integer satisfying k/2 < κ ≤ k.

123



Discrete & Computational Geometry (2020) 63:460–482 477

Hence ϕ(N ) = O(N log2 N ) in (P5). Using the duality transform, the set-cover
problem in the primal space becomes the hitting-set problem in the dual space. Plug-
ging the bounds in Theorem 4.6, we obtain the following.

Theorem 5.4 Let X be a set of points in R
3 and R a set of halfspaces in R

3, with
|X|+|R| = N. An O(1)-approximate hitting set or set cover of (X,R) can be computed
in O(N log3 N ) expected time, with probability at least 1 − 1

N�(1) .

By a standard lifting transform [22], we have the following result for disks in R
2.

Corollary 5.5 Let X be a set of points in R
2 and R a set of disks in R

2, with |X| +
|R| = N. An O(1)-approximate hitting set or set cover of (X,R) can be computed in
O(N log3 N ) expected time, with probability at least 1 − 1

N�(1) .

Fat triangles Let X ⊆ R
2 be a set of n points and R a set of α-fat triangles in R

2, for
some constant α ≥ 1, i.e., the aspect ratio of every triangle in R is at most α. It is well
known that � = (X,R) has constant VC-dimension and by the ε-net theorem [30],
an ε-net of � in procedure (P1) can be obtained by randomly sampling O

( 1
ε
log 1

ε

)

points from X. A range-reporting query (P3) for � can be answered in O(log3 n + s)
time, after O(n log3 n) preprocessing [43, Sect. 4.5], and a dual range-reporting query
(P4) for � can also be answered in O(log3m + s) time [2]. The set Q1 in (P5) for
� can be computed using the same method as that for 3D halfspaces described in
Lemma 5.3. We use the results in [3, Lems. 2.1 and 2.2] for computing the shallow
cutting and point location data structure, and the running time is O(N log3 N log∗ N )

using the improved bound on the union of fat triangles [5]. Thus, g(1/ε) = log(1/ε),
τ(N ) = O(log3 N ), ϕ(N ) = O(N log3 N log∗ N ), and we obtain the following.

Theorem 5.6 Let X be a set of points in R
2 and R a set of α-fat triangles, with

|X| + |R| = N. An O(log κ)-approximate hitting set of (X,R) can be computed
in O(N log5 N log log κ) expected time, with probability at least 1 − 1

N�(1) .

For the set cover problem, an ε-net is computed by randomly sampling O
( 1

ε
log 1

ε

)

triangles from R, since the dual range space �⊥ also has constant VC-dimension.
Next, we describe an algorithm for computing Q1 ⊆ R for �⊥, i.e., each range

in R \ Q1 contains at most n/k points of X \ ⋃
R∈Q1

R. Q1 is constructed in �log2 k�
steps. At the beginning of step i , we have a set Ri ⊆ R of triangles and a set Xi ⊆ X
of points such that for any � ∈ Ri , |� ∩ Xi | ≤ n

2i−1 . Initially, for i = 1, X1 = X and

R1 = R. Step i chooses a subset Ti ⊆ Ri of O(2i ) triangles such that each triangle of
Ti contains �

( n
2i

)
points of Xi , and no triangle of Ri+1 = Ri \ Ti contains more than

n
2i
points of Xi+1 = Xi \⋃

�∈Ti �. We construct a (9/8)-approximate range-counting
data structure on Xi with respect to triangles in R. That is, for a triangle �, it returns
a value μ� such that

|Xi ∩ �| ≤ μ� ≤ 9

8
|Xi ∩ �|.

123



478 Discrete & Computational Geometry (2020) 63:460–482

Such a data structure can be built in O(n log3 n) time by applying the range-emptiness
data structure [43] as a black-box to the data structure in [7, Sect. 5], and can answer
a query in O(log4 n) time. We also preprocess Xi for range-reporting queries with
respect to R— the data structure can be built in O(n log3 n) time and a query can be
answered in O(log3 n + t) time where t is the output size.

We also maintain a set Yi ⊂ Xi in step i . Initially Yi = ∅, and points will be
added to Yi as step i progresses. We maintain a (9/8)-approximate range counting
data structure on Yi with respect to R. Using the so-called logarithmic method [9] on
the static range-counting data structure mentioned above, a point can be inserted in
O(log4 n) time and a query can be answered in O(log5 n) time.

We are now ready to describe step i . We process the triangles ofRi one by one. For
each � ∈ Ri , we query the two range-counting data structures with �. Suppose they
return μ� and ν� as (9/8)-approximate values of |� ∩ Xi | and |� ∩ Yi |, respectively.
If μ� − ν� ≥ n

2i+1 , we add � to Ti , report � ∩ Xi , and insert each point of � ∩ Xi
to Yi . (Note that a point p may be inserted into Yi multiple times; we keep only one
copy of p in Yi .)

After �log2 k� steps, we return
⋃

Ti as Q1. We now prove the correctness of the
procedure and analyze its running time.

Fix a triangle � ∈ Ri . In what follows, we refer to Yi as the set just before � was
processed. We observe that μ� − ν� ≥ n

2i+1 implies that

|� ∩ (Xi \ Yi )| ≥ n

2i+1 − 1

8
|� ∩ Xi |.

By the invariant maintained by the algorithm, |� ∩ Xi | ≤ n
2i−1 . Therefore

|� ∩ (Xi \ Yi )| ≥ n

2i+1 − n

2i+2 = n

2i+2 .

Hence � contains at least n
2i+2 “new” points of Xi , i.e., the ones that are not already

in Yi . Since all points of � ∩ Xi are inserted into Yi and a point is never deleted from
Yi , we can conclude that |Ti | = O(2i ). Furthermore,

|� ∩ Xi | ≤ n

2i−1 ≤ 8|� ∩ (Xi \ Yi )|.

Summing over all triangles of Ti ,
∑

�∈Ti |� ∩ Xi | = O(n). The total time spent in
reporting � ∩ Xi and adding these points to the data structure is thus O(n log4 n). We
spend O(log5 n) time in computingμ� and ν�. Summing over all triangles ofRi , and
summing over all i ≤ �log2 k�, the total time spent in computing Q1 is O(N log6 N ).

Finally, if � /∈ Ti , i.e., μ� − ν� ≤ n
2i+1 , then

|� ∩ Xi+1| ≤ |� ∩ (Xi \ Yi )| ≤ n

2i+1 + 1

8
|Yi ∩ �| ≤ n

2i+1 + 1

8
· n

2i−1 <
n

2i
.

Therefore, |� ∩ Xi+1| ≤ n
2i
, for all � ∈ Ri+1, as desired.

Hence, after u = �log2 k� steps,

|� ∩ Xu+1| ≤ n

2u
≤ n

k
.
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Putting everything together, we conclude the following:

Theorem 5.7 Let X be a set of points in R
2 and R a set of α-fat triangles, with

|X| + |R| = N. An O(logχ)-approximate set cover of (X,R) can be computed in
O(N log7 N log logχ) expected time, with probability at least 1 − 1

N�(1) .

Remarks Better bounds on the sizes of primal and dual ε-nets exist for fat triangles [6].
We use the simple random-sampling approach to compute an ε-net since it can be done
in near-linear time. With a careful implementation, it might be possible to implement
the ε-net construction algorithms in [6] in near-linear time, in which case the approxi-
mation ratios of the hitting-set and set-cover problems for fat triangles can be improved.

6 Independent Set for Disks

Given a finite range space � = (X,R), an independent set is a subset I ⊆ R of ranges
such that for any R1, R2 ∈ I, R1 ∩ R2 ∩ X = ∅, i.e., any point of X lies in at most one
range of I. The goal is to find a maximum-size independent set (MIS).

The main observation is that, an optimal mixed strategy for Bob in the second
algorithm gives a fractional solution for the independent-set problem. So we proceed
as follows. Suppose we have an integer k such that δ/2 < k ≤ δ, where δ is the size
of an optimal independent set. We set μ = 3k log N and run the second algorithm for
μ rounds. Let F = 〈R1, . . . , Rμ〉 be the sequence of ranges chosen by Bob. Let �̃ be
the distribution of R induced by F, i.e., Pr(R ∼ �̃) is proportional to the number of
times R appears in F. Using Lemmas 4.1, 4.3 and 4.4, we can prove that

E
[
max
x∈X I (x, �̃)

]
≤ 3

k
.

By the Markov inequality, with probability at least 1/2,

max
x∈X I (x, �̃) ≤ 6

k
.

Let yi be the variable corresponding to the range Ri ∈ R. Then by setting yi =
k
6 Pr(Ri ∼ �̃), with probability at least 1/2, we obtain a fractional solution for the
independent-set problem with objective value

∑
yi = k/6. Next, we convert the frac-

tional solution into an integral solution using the approach of Chan and Har-Peled
[13]: we process the ranges ofR in an arbitrary order, and maintain an independent set
I of ranges. A range Ri is processed as follows: if Ri does not contain any of the points
lying in a range of the current I, then Ri is added to I with probability yi . Otherwise,
it is discarded.

Chan and Har-Peled [13] have shown that if R is a set of disks in R2 and the frac-
tional solution has value ν, then the above rounding scheme returns an independent
set of size�(ν)with constant probability. Hence, the set I has size�(k)with constant
probability.

We perform the same preprocessing as in Sect. 4 to compute a set Q of at most
2k/5 points such that in the range space �̄ = (X \ Q, {R ∈ R | R ∩ Q = ∅}), each
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range of �̄ contains O(n/k) points and each point of X \ Q lies in O(m/k) ranges.
Furthermore, one can argue that if � has an independent set of size δ, then �̄ has one
of size at least 3δ/5. Hence, we run the above algorithm on �̄, and the total time for
computing the fractional solution, including preprocessing, is O(N log3 N ).

To convert the fractional solution into an integral one, a dynamic insertion-only
disk-emptiness data structure D is used, which can be implemented by using a static
disk-emptiness data structure [2] with the logarithmicmethod [9]. Initially,D contains
no point. For each range Ri , we perform a disk-emptiness query in D in O(log2 n)

time to determine whether Ri can be added to I; if it is added, every point in Ri is
inserted intoD in O(log2 n) amortized time. The total running time is O(N log2 N ).
Hence, we obtain the following.

Theorem 6.1 LetXbea set of points inR
2 andRa set of disks inR

2, with |X|+|R| = N.
An O(1)-approximate independent set of (X,R) can be computed in O(N log3 N )

expected time, with probability at least 1 − 1
N�(1) .

7 Conclusion

In this paper, we presented two simple, efficient algorithms, based on theMWmethod,
to compute small-size hitting sets and set covers for range spaces with finite VC-
dimension. The first algorithm is Las Vegas and the second one is Monte Carlo.
They yield near-linear time algorithms for many geometric range spaces. Our second
algorithm can be used to compute an O(1)-approximate solution for the (discrete)
maximum independent set problem for disks in near-linear time.

The two algorithms require slightly different data structures, so depending on the
application, one algorithm can be more efficient than the other. One advantage of the
second algorithm is its simplicity. In distributed settings where two parties want to
collaboratively compute nearoptimal hitting-set (or more generally, solve a zero-sum
game), the second algorithm only requires the two parties to exchange the randomly
sampled point/range in each iteration. Suppose each point/range can be represented
by O(1) bits, then the second algorithm needs O(OPT log N ) bits of communication
in total. On the other hand, using the first algorithm, one party eventually needs to
send all the ranges to the other party to determine whether all ranges are ε-heavy, and
thus �(N ) bits of communication is required. We also remark that both algorithms
can achieve (1+ ε) approximations in the fractional solution by updating the weights
by a factor of (1 + ε) or (1 − ε) in each step (see e.g. [31]). However, since the final
step of rounding using epsilon net already loses a constant factor, we chose to double
or halve the weights in each step.

We conclude by mentioning several open problems:

(i) Can our approach be extended to compute a multi-cover of range spaces [17]?
(ii) Is there anO(log logχ)-approximate algorithm for computing the set coverwhen

R is a set of rectangles in R
2?

(iii) Let X be a set of points andR a set of unit squares in R
2. Can a small-size hitting

set of R be maintained under insertion/deletion of points and squares?
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(iv) Is there a fast O(1)-approximate algorithm for the independent set problem
when R is a set of rectangles in R

2. The best known algorithm computes an
O(log log n)-approximate independent set [12].

Acknowledgements The authors thank KameshMunagala for useful discussions and the two reviewers for
their helpful comments.
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