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Abstract
We construct refined tropical enumerative genus zero invariants of toric surfaces that
specialize to the tropical descendant genus zero invariants introduced byMarkwig and
Rau when the quantum parameter tends to 1. In the case of trivalent tropical curves
our invariants turn to be the Göttsche–Schroeter refined broccoli invariants. We show
that this is the only possible refinement of the Markwig–Rau descendant invariants
that generalizes the Göttsche–Schroeter refined broccoli invariants. We discuss also
the computational aspect (a lattice path algorithm) and exhibit some examples.

Keywords Tropical curves · Tropical enumerative geometry · Gromov–Witten
invariants · Tropical descendant invariants · Moduli spaces of tropical curves

Mathematics Subject Classification 14N10 · 14T05

1 Introduction

Starting from Mikhalkin’s foundational work [14] tropical geometry has served as an
ultimate tool to solve important enumerative problems. Later it has become clear that
tropical geometry provides new insights to various problems of “classical” geometry.
The present work has been inspired by two such phenomena. One is that the genus zero
descendant invariants of the plane and other toric surfaces, defined as integrals over
the moduli spaces of stable maps of rational curves, can be computed via enumeration
of certain plane tropical curves [12]. Another exciting phenomenon is the existence of
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refined tropical enumerative invariants, i.e., tropical enumerative invariants depending
on a parameter [2,7,9]. We will comment on this in more detail.

Block and Göttsche [2] defined a refined multiplicity of a plane trivalent tropical
curve being a symmetric Laurent polynomial in one variable y1/2. They showed that,
for y = 1, its value is the Mikhalkin multiplicity as introduced in [14, Def. 4.15]
and, for y = − 1, its value is the Welschinger multiplicity as introduced in [14,
Def. 7.19]. Notice that, under appropriate conditions, enumeration of plane trivalent
tropical curves with Mikhalkin and Welschinger multiplicities gives Gromov–Witten
and Welschinger invariants of toric del Pezzo surfaces, respectively (see [14, Thms. 1
and 6]). In general, the enumerative meaning of the refined count remains in question,
though in certain cases it is related to the quantization of real plane curves in the sense
of [16].

Itenberg and Mikhalkin [9] showed that the total refined multiplicity of the plane
tropical curves having given degree and genus and passing through an appropriate
number of generic points in the plane does not depend on the choice of the point
constraints. This is a generalization of the invariance of the count of tropical curves
of given degree and genus with Mikhalkin and Welschinger multiplicities established
earlier in [4, Thm. 4.8] and [8, Thm. 1].

Göttsche and Schroeter [7] advanced further and introduced another refined tropical
invariant of genus zero, which, for y = − 1 specializes to the so-called broccoli
invariant (see [6]) and, for y = 1 specializes to the genus zero tropical descendant
invariant 〈τ0(2)n0τ1(2)n1〉� of a toric surface associated to a convex lattice polygon
� as introduced in [12].

The main result of this paper is a construction of a refinement of an arbitrary
genus zero tropical descendant invariant

〈∏
k≥0 τk(2)nk

〉
�
. We present such a refined

invariant in Theorem 3.1, Sect. 3.2. The construction is inductive with the Göttsche–
Schroeter invariants as the base, while in the induction step, we replace the vertices
of valency > 3 with trees having vertices of smaller valency. In Sect. 3.5, we show
that the combinatorial type of trees used in the induction step does not matter, and one
always obtains the same refined invariant, which generalizes the Block–Göttsche and
Göttsche–Schroeter invariants.

Similarly to the Block–Göttsche and Göttsche–Schroeter invariants our invariant
counts certain rational plane tropical curves through a generic configuration of points,
and each curve is counted with a refined multiplicity equal to the product of multi-
plicities of vertices (normalized by the automorphisms). This property allows one to
use combinatorial computational tools like the “lattice path algorithm”. In Appendix
to this paper, we indicate how to modify the Markwig–Rau lattice path algorithm
[12, Sect. 9] in order to compute our refined invariant and provide an example of
computation.

Another refined tropical count related to descendant Gromov–Witten invariants has
been suggested in [11]. The tropical objects counted there are plane tropical disks (i.e.,
halves of tropical curves) which have only trivalent vertices equipped with the refined
Block–Göttschemultiplicities. In turn, we consider the entire tropical curves admitting
multi-valent marked vertices, and the main novelty of our work is the definition of
refined multiplicities of marked vertices of any valency.
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We remark that our invariant is not in general a Laurent polynomial in y (or even
in y1/2) if we allow marked vertices of valency > 3, but it may have poles at y = 0
and y = − 1. We estimate the order of the pole at y = − 1 in Proposition 3.4 (Sect.
3.2) and show that our upper bound is sharp (Sect. 4).

An interesting question is how to extend the definition of tropical descendant invari-
ants and their refinements to curves of positive genus. The particular case of genus one
curves with at most trivalent marked vertices has been settled in [18]. Another perspec-
tive question is whether the refined tropical descendant invariant can be interpreted
via Mikhalkin’s quantization of algebraic curves [16].

2 PlaneMarked Rational Tropical Curves

We shortly recall some basic definitions concerning plane rational tropical curves,
adapted to our setting (for details, see [4,5,12–14,17] and especially [3]).

2.1 Plane Rational Tropical Curves

Under an n-marked plane rational tropical curve we understand a triple (�, p, h),
where

• � is a finite connected metric tree without vertices of valency ≤ 2, whose set
�0 of vertices is nonempty, and the set of edges �1 contains a subset �1∞ �= ∅
consisting of edges isometric to [0,∞) (called ends), while �1 \ �1∞ consists of
edges isometric to compact segments in R (called finite edges);

• h : � → R
2 is a proper continuous map such that h is nonconstant, affine-integral

on each edge of� in the length coordinate (i.e., given by (x, y) = (a, b)t+(x0, y0)
with (a, b) ∈ Z

2 \ {0} and t being the length coordinate on the considered edge)
and, at each vertex V of �, the balancing condition holds

∑

E∈�1

V∈E

aV (E) = 0, (1)

where aV (E) is the image under the differential D(h|E ) of the unit tangent vector
to E emanating from its endpoint V (called the directing vector of E centered
at V );

• p = (p1, . . . , pn) is a sequence of n points of �.

We call a vertex V ∈ �0 flat if the vectors in the left-hand side of (1) span a
one-dimensional subspace of R2.

Notice that each vector aV (E) can bewritten as aV (E) = mv, wherem is a positive
integer (called the weight of the edge E of (�, p, h)) and v ∈ Z

2 \ {0} is primitive.
The degree of the plane rational tropical curve (�, p, h) is the multiset of vectors

�(�, p, h) = {
aV (E), E ∈ �1∞

}
.

The balancing condition yields that �(�, p, h) is a balanced multiset, i.e.
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∑

b∈�(�, p,h)

b = 0.

We call �(�, p, h) primitive if it contains only primitive vectors, and we call
�(�, p, h) nondegenerate, if SpanR�(�, p, h) = R

2.
With a plane rational tropical curve (�, h) we associate an unparameterized (or

embedded) plane tropical curve in the sense of [13, Sect. 2.1] or [14, Sect. 2], which
we denote T = h∗(�). This is a closed finite rational1 one-dimensional polyhedral
subcomplex of R2 supported at h(�). Its edges are equipped with positive integral
weights as follows: for an edge e of T pick any of its interior points x ∈ e, and define
the weight w(e) of e as the sum of the weights of those edges of �, whose h-images
cover x . It is easy to see that the balancing condition (1) yields the balancing condition
for T at each vertex v ∈ T 0 in the form

∑

v∈e
w(e) · av(e) = 0,

where e ranges over all the edges of T incident to v, and av(e) denotes the primitive
integral vector directing e and emanating from v. The degree �(T ) of T is the multi-
set of vectors w(e) · av(e), where e runs over all unbounded edges of T . If we take
the vectors b ∈ �(T ) in the natural cyclic order, rotate them by π

2 clockwise, and
attach the initial point of each vector to the endpoint of the preceding one, we obtain
a convex lattice polygon P(T ) (denoted also P(�)), called the Newton polygon of T
and of (�, p, h). There is a duality between the edges and vertices of T on one side
and the edges and polygons of a certain (dual) subdivision of P(T ) on the other side,
see [13, Prop. 2.1]. We denote the dual object by D(∗). The weight w(e) of an edge e
of T equals the lattice length of the dual edge D(e) in the above subdivision.

By a combinatorial type of a plane rationalmarked tropical curve (�, p, h)wemean
the combinatorial type of the pair (�, p) enhanced with the collection of directing
vectors aV (E) for all edges E ∈ �1 and vertices V ∈ E .

2.2 Moduli Spaces of Plane Rational Marked Tropical Curves

The moduli spaces of plane rational marked tropical curves are our main objects of
study.Herewe recall some information onmoduli spaces, following [3–5,10,12,14,15]
and adapting notations to our setting.

Under an isomorphism (�, p, h) → (�′, p′, h′) we understand an isometry
ϕ : � → �′, identifying the ordered sequences ϕ : p → p′, and satisfying h = h′ ◦ϕ.
Isomorphism classes of plane rational n-marked tropical curves of degree� are param-
eterized by the moduli space M0,n(R

2,�).
We will also use labeled tropical curves. In this case, we fix a linear order on � and

denote the obtained sequence by �lab. A labeled n-marked plane rational tropical
curve of degree �lab is a triple (�lab, p, h), where (�, p, h) is an n-marked plane
rational tropical curve of degree �, and �lab is the graph � with a linear order on the

1 Here “rational” means “with rational slopes”.
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set of its ends �1∞ such that h equips the i th end of �lab with the i th directing vector
in �lab for all i (cf. [3, Def. 4.1]). Notice that a labeled metric tree �lab does not admit
nontrivial automorphisms. Thus, the moduli spaceMlab

0,n(R
2,�lab) parameterizes just

n-marked plane rational tropical curves of degree �lab. According to Gathmann et
al. [3, Sect. 4, Lem. 4.6 and Prop. 4.7] (see also [5, Lem. 2.1]), the geometry of
M0,n(R

2,�) and Mlab
0,n(R

2,�lab) can be described as follows.

Lemma 2.1 (1) The spaceMlab
0,n(R

2,�lab) can be identified with a polyhedral fan of

pure dimension |�| − 1 + n in some Euclidean space RN . Open cells of this fan
are in bijection with the combinatorial types of the labeled curves (�lab, p, h) ∈
Mlab

0,n(R
2,�lab), while independent parameters are: the coordinates of h(V ) ∈ R

2

for a chosen vertex V ∈ �lab, the lengths of the finite edgeswhose interior is disjoint
from p, and the distances from each marked point pi ∈ p \ �0 to an endpoint of
the edge E ⊃ {pi }. The faces of a cell correspond to the case of vanishing of some
parameters. The top-dimensional cells correspond to � trivalent and p∩�0 = ∅.

(2) The group G of permutations ϕ : �lab → �lab such that ϕ(b) = b for each
b ∈ �lab acts on Mlab

0,n(R
2,�lab), and one has the finite surjective quotient map

π0,n : Mlab
0,n(R

2,�lab) → M0,n(R
2,�).

Furthermore, for any element [(�, p, h)] ∈ M0,n(R
2,�), we have

∣∣π−1
0,n([(�, p, h)])∣∣ = |G|

|Aut(�, p, h)| . (2)

Furthermore, for any sequence n = (nk)k≥0 ∈ Z
∞+ , where Z+ = {m ∈ Z : m ≥ 0}

and n = ∑
k≥0 nk , introduce

M0,n(R
2,�)

=
{
(�, p, h) ∈ M0,n(R

2,�) :
pi ∈ p are interior points of edges for 1 ≤ i ≤ n0,

pi ∈ p are (k + 2)-valent vertices for
∑

j<k

n j < i ≤
∑

j≤k

n j , k ≥ 1
}
.

Denote by M̂0,n(R
2,�) the closure ofM0,n(R

2,�) inM0,n(R
2,�). Respectively,

wehave the labeled analogueMlab
0,n(R

2,�lab) ⊂ M̂ lab
0,n (R2,�lab) ⊂ Mlab

0,n(R
2,�lab).

The following statement is straightforward from Lemma 2.1.

Lemma 2.2 The space M̂ lab
0,n (R2,�lab) is either empty, or is a finite polyhedral fan of

pure dimension |�|−1+∑
k≥0(1−k)nk. Its open top-dimensional cells parameterize

tropical curves (�lab, p, h)with�\ p trivalent and p∩�0 consistingof exactly
∑

i≥1 ni
points among which ni points are (i + 2)-valent vertices of � for all i ≥ 1. The space
M̂0,n(R

2,�) is the quotient of M̂ lab
0,n (R2,�lab) by the action of the group G.
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Introduce the evaluation maps

Ev : M̂ lab
0,n (R2,�lab) → M̂0,n(R

2,�) → R
2n, Ev(�, p, h) = h( p).

Suppose that a sequence n = (nk)k≥0 ∈ Z
∞+ satisfies dim M̂ lab

0,n (R2,�lab) = 2n, that
is, ∑

k≥0

(k + 1)nk = |�| − 1,
∑

k≥0

nk = n. (3)

Denote by Me,lab
0,n (R2,�lab), resp., Me

0,n(R
2,�), the union of those open cells of

dimension 2n = |�| − 1 + ∑
k≥0(1 − k)nk inMlab

0,n(R
2,�lab), resp.,M0,n(R

2,�),

whose Ev-images have dimension 2n, and by M̂ e,lab
0,n (R2,�lab), resp., M̂ e

0,n(R
2,�),

the closure inMlab
0,n(R

2,�lab), resp., M̂0,n(R
2,�). By Eve we denote the restriction

of Ev to M̂ e,lab
0,n (R2,�lab) and M̂ e

0,n(R
2,�).

Let us recall the regularity notion due to Mikhalkin [14, Sects. 2.6 and 4.5]. We say
that a curve (�, p, h) is regular, if each component K of the set � \ p is regular, that
is, K is trivalent, has no flat vertices and contains exactly one unbounded edge. The
following statement is a reformulation of [14, Lems. 4.20 and 4.22].

Lemma 2.3 Let a component K of � \ p for some plane rational tropical curve
(�, p, h) be regular. Then the following hold:

(1) The edges of the closure K ⊂ � admit a unique orientation (called the regular
orientation) such that the marked points are sources, the unbounded edges are
oriented towards infinity, and each vertex of K is incident to exactly two incoming
edges.

(2) Denote by (�K , pK , hK ) the plane rational tropical curve, where pK = p∩ K,
and �K is obtained from K by extending each edge incident to a marked point
to an unbounded edge, while hK linearly extends h beyond the marked points.
Put �K = deg(�K , pK , hK ) and n′ = | pK |. Then the map

Ev : M0,n′(R2,�K ) → R
2n′

defines a linear isomorphism of the germ2 ofM0,n′(R2,�K ) at [(�K , pK , hK )]
onto a germ of R2n′

at hK ( pK ).

Lemma 2.3 has an interesting consequence for us:

Lemma 2.4 For an arbitrary nondegenerate balanced multiset � ⊂ Z
2 \ {0} and a

sequence n = (ni )i≥0 ∈ Z
∞+ satisfying (3), the moduli space Me

0,n(R
2,�) contains

an element represented by a regular curve (�, p, h). Moreover, the induced embedded
plane tropical curve T = h∗(�) is dual to a subdivision of the Newton polygon
P(�) into n0 + 2

∑
i≥1 ni − 1 nondegenerate convex polygons, obtained by drawing

n0 + 2
∑

i≥1 ni − 2 chords that join certain pairs of integral points in ∂P(�) and do
not intersect each other in their interior points.

2 Here and further on, under the germ we understand a sufficiently small Euclidean neighborhood of the
central element.
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It follows that the moduli spaces Me
0,n(R

2,�) ⊂ M0,n(R
2,�) are nonempty,

which strengthens the second assertion of Lemma 2.2.

Proof of Lemma 2.4 Suppose that there exists a regular element [(�, p, h)] ∈
M0,n(R

2,�). Then, by Lemma 2.3, it belongs toMe
0,n(R

2,�). Furthermore, denote
by m1 the number of the unmarked trivalent vertices of such a curve (�, p, h). Com-
paring the Euler characteristic χ(�) = 1, the number |�1|, and formula (3), we obtain

m1 =
∑

i≥0

ni − 1. (4)

We construct the curve (�, p, h) asserted in the lemma using the ideas of [9, Prop.
2.10], where the case of n = (n0, 0, 0, . . .) was considered.

The boundary of theNewton polygon P(�) can be represented as the union of cycli-
cally ordered integral segments [vk, vk+1], k = 0, . . . , |�| − 1, v|�| = v0, obtained
by rotating the vectors ak ∈ �, k = 0, . . . , |�| − 1, by π

2 clockwise (see Sect. 2.1).
The set V = {v0, . . . , v|�|−1} includes all the vertices of P(�).

We prove the lemma by induction on
∑

i≥1 ni . For the base of induction, suppose
that ni = 0 for all i ≥ 1. Then there exists a subdivision of P(�) into m1 (nondegen-
erate) triangles obtained by drawingm1−1 chords joining some pairs of points inV so
that no two chords intersect in their interior points. This is easily derived by induction
on |�|: if |�| ≥ 4, then there exist two non-collinear segments [vi−1, vi ], [vi , vi+1]
such that [vi−1, vi+1] �⊂ ∂�. The obtained triangulation is convex, i.e., lifts to a graph
of a convex piecewise-linear function ν : P(�) → R, and hence, the subdivision is
dual to a plane tropical curve T , which is an embedded trivalent tree. Picking a marked
point on all but one ends of T , we obtain a regular tropical curve as desired.

For the induction step suppose that nk > 0 for some k ≥ 1. If |�| = k + 2, then �

has one (k+2)-valent marked vertex and |�| = k+2 ends incident to it. The tropical
curve T = h∗(�) is dual to the entire polygon P(�). If |�| = k + 3, then formulas
(3) and (4) imply that n0 = nk = 1, ni = 0, i �= 0, k, and m1 = 1. As noticed in
the preceding paragraph, there exist two non-collinear segments [vi−1, vi ], [vi , vi+1]
such that [vi−1, vi+1] �⊂ ∂�. The chord [vi−1, vi+1] defines the required subdivision
of P(�), while the corresponding curve (�, p, h) has a marked (k + 2)-valent vertex
joined by a bounded edge orthogonal to the above chord with an unmarked trivalent
vertex, and an extra marked point is chosen in one of the ends incident to the unmarked
vertex. In the remaining case |�| ≥ k + 4, we have m1 ≥ 1 by formulas (3) and (4).
We claim that there exists 0 ≤ i ≤ |�| − 1 such that the chord [vi , vi+k+1] is not
contained in ∂P(�). Indeed, otherwise, either all points vi , . . . , vi+k+1 lie on one
line, or all points vi+k+1, . . . , vi lie on one line (here we follow the cyclic order in
V), and this holds for all i = 0, . . . , |�| − 1, which is only possible when all points
v0, . . . , v|�|−1 lie on one line, contrary to the assumption that� is nondegenerate. For
a similar reason, at least one of the chords [vi , vi+k+2], [vi−1, vi+k+1] is not contained
in ∂P(�). If, for instance, [vi , vi+k+2] �⊂ ∂P(�), then we obtain the polygons (see
Fig. 1a):
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(b)(a)

∗

•

vi vi+k+1

vi+k+2P

P

, p , h )

, p , h )

Fig. 1 Proof of Lemma 2.4

• P ′ = conv(vi+k+2, vi+k+3, . . . , vi ) = P(�′), where the nondegenerate, balanced
multiset �′ consists of the vectors a j ∈ �, j /∈ {i, . . . , i + k + 1}, and the vector
a′ = ai + · · · + ai+k+1;

• P ′′ = conv(vi , vi+1, . . . , vi+k+2) = P(�′′), where the nondegenerate, balanced
multiset �′′ consists of the vectors ai , . . . , ai+k+1 ∈ � and the vector −a′.

Let n′ = (n′
i )i≥0, n′

k = nk −1, n′
i = ni , i �= k. Since�′ and n′ satisfy (3), and

∑
n′
i <∑

ni , by induction assumption we get a curve (�′, p′, h′) ∈ Me
0,n′(R2,�′)matching

the requirements of the lemma. We also get a plane tropical curve (�′′, p′′, h′′) of
degree �′′, having a marked (k + 2)-valent vertex and an unmarked trivalent vertex,
and associated with the subdivision of P ′′ by the chord [vi , vi+k+1]. Finally, we obtain
the desired element [(�, p, h)] ∈ Me

0,n(R
2,�) by gluing the curves (�′, p′, h′) and

(�′′, p′′, h′′) along their ends directed by the vectors a′ and −a′, respectively (see
Fig. 1b). ��

The next statement provides a geometric background for the proof of the invariance
of the refined enumeration of tropical curves introduced in the present paper. It is very
similar to considerations in [12, Sects. 3 and 4].

Proposition 2.5 Let � ⊂ Z
2 \ {0} be a nondegenerate balanced multiset, and let

a sequence n = (nk)k≥0 ∈ Z
∞+ satisfy (3). Then the target space of the map

Eve : M̂ e,lab
0,n (R2,�lab) → R

2n splits into the disjoint union

R
2n = X2n ∪ X2n−1 ∪ X2n−2,

where

(1) X2n is the union of finitely many open polyhedra of dimension 2n, and, for each
element x ∈ X2n, its preimage (Eve)−1(x) is finite; furthermore, each curve
(�lab, p, h) ∈ (Eve)−1(x) belongs toMlab

0,n(R
2,�lab) and is regular;

(2) X2n−1 is the union of finitely many (relatively) open polyhedra of dimension
2n − 1, and, for each point x ∈ X2n−1, its preimage (Eve)−1(x) is finite;
furthermore, each curve (�lab, p, h) ∈ (Eve)−1(x) is as follows:

(2i) either (�, p, h) is as in item (1);
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(2ii) or (�lab, p, h) ∈ Mlab
0,n(R

2,�lab), and all but one components of the set
� \ p are regular, while the remaining component has one unbounded edge,
one four-valent vertex, and the rest of vertices are trivalent;

(2iii) or (�lab, p, h) ∈ Mlab
0,n′(R2,�lab), where n′ = (n′

i )i≥0 ∈ Z
∞+ , and there

exists k ≥ 0 such that nk > 0, n′
k = nk − 1, n′

k+1 = nk+1 + 1, and n′
i = ni

for all i �= k, k +1; furthermore, all but one components of the set � \ p are
regular, while the remaining component is bounded, trivalent, and incident
to one of the (k + 3)-valent marked vertices;

(3) X2n−2 is a closed finite polyhedral complex of dimension ≤ 2n − 2.

Proof Define

X2n = R
2n \ Eve

(
M̂ e,lab

0,n (R2,�lab) \ Me,lab
0,n (R2,�lab)

)
.

Now, letM2n−1 be the union of those (2n−1)-dimensional cells ofM̂ e,lab
0,n (R2,�lab)\

Me,lab
0,n (R2,�lab), which are injectively projected into R2n by Eve. Then define

X2n−1 = Eve(M2n−1) \ Eve
(
M̂ e,lab

0,n (R2,�lab) \ (Me,lab
0,n (R2,�lab) ∪ M2n−1)

)
,

X2n−2 = Eve
(
M̂ e,lab

0,n (R2,�lab) \ (Me,lab
0,n (R2,�lab) ∪ M2n−1)

)
.

So, claim (3) follows by construction.
The finiteness of (Eve)−1(x) for each x ∈ X2n ∪ X2n−1 follows from Lemma 2.2

and the fact that the cells ofMe,lab
0,n (R2,�lab)∪M2n−1 are injectivelymapped intoR2n .

Let us show the regularity of any curve (�lab, p, h) ∈ (Eve)−1(x), x ∈ X2n .
Note that no component γ of � \ p is bounded. Indeed, otherwise, it would yield a
constraint to the position of the images of themarked points on ∂γ , that is, the image of
the corresponding 2n-cell ofMe

0,n(R
2,�)would be of dimension< 2n (cf. [14, Lem.

4.20]). Since the number of connected components of�\ p is 1+∑
k≥0(k+1)nk = |�|

(see (3)), we derive from the above observation that each component of � \ p contains
exactly one unbounded edge. Notice that there are no flat unmarked vertices: indeed,
otherwise, contrary to the finiteness of (Eve)−1(x) we would obtain a one-parameter
family inside (Eve)−1(x)when varying the position of such a flat vertex along the line
containing the images of its incident edges. Finally, all components of � \ p must be
trivalent due to the condition of maximal-dimensional image (cf. [14, Prop. 2.23]).

For claim (2), note that by construction, elements of any (2n − 1)-cell of
M̂ e,lab

0,n (R2,�lab) are degenerations of elements of some 2n-cell. Hence, they appear

via either moving one of the marked points outside �0 to a vertex of �, or contracting
exactly one bounded edge. In the former case, we fit the situation (2iii) with k = 0. In
the latter case, either a marked vertex collates with an unmarked, trivalent one, which
fits the situation (2iii) with some k > 0, or two unmarked trivalent vertices collate, that
is, conditions of (2ii) are satisfied. Note also that, in item (2ii), the regular orientation
on the complement to the marked points for elements of the 2n-cell that degenerate to
the considered curve (�lab, p, h), induces an orientation on the edges of the special
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component of � \ p such that three edges incident to the unmarked four-valent vertex
are incoming and one is outgoing. ��

3 Refined Count of Plane Rational Marked Tropical Curves

Throughout this section, we fix a standard basis in R
2, and for any a = (a1, a2),

b = (b1, b2) ∈ R
2, set a ∧ b = det

( a1 a2
b1 b2

)
. We also set

[α]−y = yα/2 − y−α/2

y1/2 − y−1/2 , [α]+y = yα/2 + y−α/2

y1/2 + y−1/2 , for all α ∈ R, (5)

y being a formal parameter.

3.1 RefinedMultiplicity of a Plane Rational Marked Tropical Curve

Let us be given a nondegenerate, balanced multiset � ⊂ Z
2 \ {0} and its linearly

ordered form �lab, a positive integer n and a sequence n = (nk)k≥0 ∈ Z
∞+ satisfying

(3). Let (�, p, h) ∈ Me
0,n(R

2,�) be regular, and let (� lab, p, h) ∈ Me,lab
0,n (R2,�) be

one of the labeled preimages of (�, p, h). We start with defining a refined multiplicity
RMy(�, p, h, V ) (depending on a formal parameter y) for each vertex V ∈ �0.

(1) Refined multiplicity of a trivalent vertex. Suppose that V ∈ �0 is trivalent and
choose two distinct edges E1, E2 ∈ �1 incident to V . Define theMikhalkinmultiplicity
of the vertex V by (cf. [14, Def. 2.16])

μ(�, h, V ) = |aV (E1) ∧ aV (E2)|. (6)

Due to the balancing condition (1), this number does not depend on the choice of
the pair of edges incident to V and, in fact, is equal to the lattice area of the triangle
D(h(V )), dual to the vertex h(V ) of the embedded plane tropical curve T = h∗(�).
Following [2,7], we define

RMy(�, p, h, V ) =
{ [μ(�, h, V )]+y , if V ∈ p,

[μ(�, h, V )]−y , if V /∈ p.
(7)

(2) Refined multiplicity of a marked vertex of valency ≥ 4. For any balanced
sequence

A = (ai )i=1,...,m, m ≥ 2, ai ∈ R
2, i = 1, . . . ,m,

m∑

i=1

ai = 0,

we will recursively define an expression θy(A) containing a formal parameter y.
If m = 2, we set θy(A) = 1. If m = 3, we set θy(A) = [|a1 ∧ a2|]+y . Note that, due

to the balancing condition, this definition does not depend on the choice of order in the
sequence A. Furthermore, it holds that θy(A) = RMy(�, p, h, V )when V ∈ �0∩ p is
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trivalent, and ai = aV (Ei ), i = 1, 2, 3, with E1, E2, E3 being the edges of � incident
to V .

If m ≥ 4, then, for each pair 1 ≤ i < j ≤ m, we form the two balanced sequences

• A′
i j consisting of the vectors ak , 1 ≤ k ≤ m, k �= i, j , and one more vector

ai j := ai + a j ,
• A′′

i j = (ai , a j ,−ai j ).

Then we set
θy(A) =

∑

1≤i< j≤m

θy(A
′
i j ) · θy(A

′′
i j ). (8)

It is easy to see that θy(A) does not depend on the choice of the order in A. At last,
observe that θy(A) can be written as the sum over all plane rational trivalent tropical
curves of degree A counted with multiplicity proportional to the product of the factors
[μ(V )]+y over all trivalent vertices V of a given curve.

Now, given a vertex V ∈ �0 ∩ p of valency m and somehow ordered edges
E1, . . . , Em of � incident to V , we define

RMy(�, p, h, V ) = θy(�V ), �V = (aV (Ei ))i=1,...,m . (9)

Finally, put

RMy(�
lab, p, h) =

∏

V∈�0

RMy(�, p, h, V ), RMy(�, p, h) = RMy(�
lab, p, h)

|Aut(�, p, h)| .

(10)

3.2 Invariance of the Refined Count

Theorem 3.1 Let � ⊂ Z
2 \ {0} be a nondegenerate balanced multiset, a sequence

n = (nk)k≥0 ∈ Z
∞+ satisfy (3), and the set X2n ⊂ R

2n be as in Proposition 2.5. Then
the expression

RDy(�, n, x) =
∑

(�, p,h)∈Me
0,n(R

2,�)

h( p)=x

RMy(�, p, h) (11)

does not depend on the choice of x ∈ X2n.

The proof is presented in Sects. 3.3 and 3.4.

Remark 3.2 Note that the invariant RDy is an extension of other known refined invari-
ants:

• if n = (n0, 0, . . .), i.e., nk = 0 for all k ≥ 1, then RDy(�, n) coincides with the
genus zero Block–Göttsche refined invariant [2];

• if n=(n0, n1, 0, . . .), i.e., nk =0 for all k≥2, and all the vectors in� are primitive,
then RDy(�, n) coincides with the Göttsche–Schroeter refined invariant [7].
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The invariantRDy(�, n) provides a refinement of the tropical descendant invariants
as introduced in [12]. Namely, introduce the normalized refined descendant invariant

NRDy(�, n) =
∏

k≥1

[
3 · 2k+1

(k + 2)!(k + 1)!
]nk

· RDy(�, n).

Lemma 3.3 Given a nondegenerate balanced multiset � ⊂ Z
2 \ {0} and a sequence

n = (nk)k≥0 ∈ Z
∞+ satisfying (3), we have

lim
y→1

NRDy(�, n) =
〈
∏

k≥0

τk(2)
nk

〉

�

. (12)

Proof Along [12, Thm. 8.4], the tropical descendant invariant
〈∏

k≥0 τk(2)nk
〉
�
can be

computed by counting rational marked tropical curves in (Eve)−1(x) ⊂ Me
0,n(R

2,�)

with the multiplicities

ω(�, p, h) = 1

|Aut(�, p, h)|
∏

V∈�0\ p
μ(�, h, V ).

On the other hand, for a trivalent vertex V of � with μ = μ(�, h, V ), we have

lim
y→1

RMy(�, p, h, V ) = lim
y→1

yμ/2 − y−μ/2

y1/2 − y−1/2 = μ = μ(�, h, V ),

if V is unmarked, and

lim
y→1

RMy(�, p, h, V ) = lim
y→1

yμ/2 + y−μ/2

y1/2 + y−1/2 = 1,

if V is marked. If V is a four-valent marked vertex, then formula (8) yields six sum-
mands, each one equal to 1, and hence by (9), RM1(�, p, h, V ) = 6 = 4! 3!/(3 · 23).
Then we inductively apply formula (8) and obtain for any marked vertex of valency
k + 2,

lim
y→1

RMy(�
lab, p, h, V ) = (k + 2)!(k + 1)!

3 · 2k+1 , k ≥ 2.

Thus, (12) follows. ��
The invariant RDy(�, n) is often a rational function of y:

Proposition 3.4 Given a nondegenerate balanced multiset � ⊂ Z
2 \ 2Z2 and a

sequence n = (nk)k≥0 ∈ Z
∞+ satisfying (3), we have

RDy(�, n) = F(y + y−1)

(y + 2 + y−1)m
, (13)
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where m ≥ 0 and F is a (nonzero) polynomial of degree

deg F = pa(P(�)) + |∂P(�) ∩ Z
2| − |�|

2
+ m,

where pa(P(�)) is the number of interior integral points of theNewton polygon P(�).
Furthermore,

m ≤
∑

k≥1

k(n2k + n2k+1). (14)

Proof To show thatRDy(�, n) is a (rational) function of y, wemove y around the circle
Sc = {|y| = c}, 0 < c � 1, and check that the value of RDy(�, n) does not change
sign. Indeed, notice that the recursion (8) yields that RDy(�, n) can be expressed as
the sum of multiplicities of finitely many trivalent rational tropical curves (�(3), h(3))

of degree �, and each multiplicity is of the form s
∏

V∈�0
(3)

[μ(�(3), h(3), V )]±y with

some s ∈ Q. The factor [μ(�(3), h(3), V )]±y changes its sign as y travels along Sc iff
μ(�(3), h(3), V ) is even. Thus, the claim comes from the statement of [9, Prop. 2.3 (4)]:
if � does not contain even vectors, then the number of vertices of �(3) with even
μ(�(3), h(3), V ) is even.

To compute the denominator of the function RDy(�, n), we consider the summand
� = s

∏
V∈�0

(3)
[μ(�(3), h(3), V )]±y that appears in the expression of the preceding

paragraph. Note that yμ/2− y−μ/2 is always divisible by y1/2− y−1/2 and, in addition,
is divisible by y1/2 + y−1/2 as μ is even, and yμ/2 + y−μ/2 is divisible by y1/2 +
y−1/2 if μ is odd. Hence, either the denominator in � cancels out, or is equal to
(y1/2 + y−1/2)m

′−m′′
, where m′, resp. m′′, is the number of marked, resp. unmarked,

vertices V ∈ �0
(3) with even value μ(�(3), h(3), V ). As observed in the preceding

paragraph, the number m′ + m′′ is even, and hence the denominator of � takes form
(y1/2 + y−1/2)2m = (y + 2 + y−1)m with an integer m.

Formula for deg F is similar to that in [9, Prop. 2.10]. For a summand � =
s
∏

V∈�0
(3)

[μ(�(3), h(3), V )]±y as above, the difference between the top exponents of y

in the nominator and denominator equals

1

2

∑

V∈�0
(3)

(μ(�(3), h(3), V ) − 1) = 1

2

∑

V∈�0
(3)

μ(�(3), h(3), V ) − |�|
2

+ 1.

Taking into account the geometric meaning of μ(�(3), h(3), V ), we obtain that the
latter expression takes its maximal value for the summands associated with the curve
(�, p, h) from Lemma 2.4, for which the trivalent trees are obtained by a further
subdivision of P(�) by chords into |�|− 3 triangles. Hence, the considered maximal
value is

Area(P(�)) − |�|
2

+ 1
Pick’s formula= pa(P(�)) + |∂P(�) ∩ Z

2| − |�|
2

.

To establish the bound (14), we again consider the formula RDy(�, n) =∑
(�(3),h(3))

s
∏

V∈�0
(3)

[μ(�(3), h(3), V )]±y , representing the invariant via the sum over
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trivalent curves (�(3), h(3)). The number of factors of type [μ(�(3), h(3), V )]+y then

equals
∑

k≥1 knk , which yields (y1/2 + y−1/2)
∑

k≥1 knk in the denominator. We shall

show that (y1/2 + y−1/2)
∑

k≥1 n2k+1 divides the nominator, and thus derive (14).
Consider a marked vertex of odd valency and a trivalent tree that appears in the

computation of the refined multiplicity of that vertex via recursion (8). The following
holds: if Mikhalkin multiplicities of all the trivalent vertices in the tree are even, then
the original marked vertex is incident to an edge of an even weight.We leave this claim
as an easy exercise for the reader. Following the ideas from [18, Proof of Prop. 4.2] and
[7, Proof of Lem. 3.12], we introduce a subgraph �even ⊂ � including all the edges of
even weight and their endpoints. Now, if V is a marked vertex of odd valency, which
does not belong to �even, then in each trivalent tree associated with V , there is a vertex
of odd Mikhalkin multiplicity. On the other hand, the closure of each component K
of �even \ p contains at least as many unmarked vertices of � as the marked ones.
Indeed, such a closure K is a tree with univalent and unmarked trivalent vertices. By
the Euler characteristic formula, the number of trivalent vertices equals the number of
univalent vertices minus 2. By the regularity condition, there is an unmarked univalent
vertex, and hence the number of unmarked vertices is at least the number of marked
ones. Notice that the unmarked vertices of K are, in fact, unmarked trivalent vertices
of � of even Mikhalkin multiplicities (the edges of K all are finite, since the ends of
� have odd weights by the hypotheses of the lemma). It follows that each of the latter
vertices provides a factor y1/2 + y−1/2 in the nominator, which finally yields at least∑

k≥1 n2k+1 factors y1/2 + y−1/2 in the nominator of RDy(�, n), and we are done. ��

In general, the denominator in formula (13) is unavoidable, and the bound (14) is
sometimes sharp as one can see in the examples of Corollary 4.3 in Sect. 4.

3.3 Proof of the Invariance: Preliminaries

It will be convenient to consider labeled tropical curves. In view of formulas (2) and
(10), the invariance ofRDy(�, n, x) is equivalent to the invariance of RDlab

y (�, n, x).
So, we choose two generic configurations x(0), x(1) ∈ X2n ⊂ R

2n . By the dimen-
sion reason, there exists a continuous path x(t) ∈ R

2n , 0 ≤ t ≤ 1, that joins the chosen
configurations, avoids X2n−2, but may finitely many times hit (2n − 1)-dimensional
cells of X2n−1, which may cause changes in the structure of (Eve)−1(x(t)). We
shall consider all possible wall-crossing phenomena and verify the constancy of
RDlab

y (�, n, x(t)) (as a function of t) in the in these events. To relax notations
we simply denote labeled tropical curves by � or � and write RDlab

y (x(t)) for
RDlab

y (�, n, x(t)).
Let x(t∗) be generic in a (2n − 1)-dimensional cell of X2n−1. Denote by H0

the germ of this cell at x(t∗) and by H+, H− ⊂ R
2n the germs of the halfspaces

with common boundary H0. Let C∗ = (�, p, h) ∈ (Eve)−1(x(t∗)) be as described in
Proposition 2.5 (2), and let F0 ⊂ M̂ e,lab

0,n (R2,�) be the germ atC∗ of the (2n−1)-cell

projected by Eve onto H0. We shall analyze the 2n-cells of M̂ e,lab
0,n (R2,�) attached
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to F0, their projections onto H+, H−, and prove the constancy of RDlab
y (x(t)), t ∈

(t∗ − ε, t∗ + ε), 0 < ε � 1.
In the case of Proposition 2.5 (2i), the curve C∗ deforms keeping its combinatorics

as t ∈ (t∗ − ε, t∗ + ε), and hence this deformation does not affect the contribution to
RDlab

y (x(t)).
In the case of Proposition 2.5 (2ii), in the deformation of the curve C∗ when t ∈

(t∗ − ε, t∗ + ε) the multiplicative contributions of the marked and the unmarked
trivalent vertices to the refined multiplicity of the current curve do not change, and
one has only to study the deformation of a neighborhood of the unmarked four-valent
vertex. The proof of the constancy of RDlab

y (x(t)) in this situation can be found in [9,
Thm. 1 and pp. 5314–5316] or in [18, Sect. 4.2].

3.4 Proof of the Invariance: Collision of Marked and UnmarkedVertices

The remaining task is to show the invariance when crossing the wall described in
Proposition 2.5 (2iii).

(1) Preparation. Let C∗ = (�, p, h) ∈ (Eve)−1(x(t∗)), where x(t∗) ∈ X2n−1,
satisfy the conditions of Proposition 2.5 (2iii). That is � has a (k + 3)-valent vertex
V ∈ �0 ∩ p, and C∗ is the limit of one or several families (which we call C∗-families)
(�(t), p(t), h(t)) ∈ (Eve)−1(x(t)), where either t ∈ (t∗, t∗ + ε), or t ∈ (t∗ − ε, t∗),
and such that the edge joining some (k + 2)-valent vertex V (t) ∈ �(t)0 ∩ p(t) and a
trivalent vertexW (t) ∈ �(t)0 \ p(t) collapses as t → t∗, while limt→t∗ h(t)(V (t)) =
limt→t∗ h(t)(W (t)) = h(V ).

Observe that the orientation of the edges of � incident to V , which is induced
by the regular orientation of a C∗-family, is as follows: one edge (which we denote
E0) is oriented towards V , and the remaining edges (which we denote E1, . . . , Ek+2)
are oriented outwards; moreover, the edge E0 is the same for all C∗-families, since
it is distinguished by the property to be a part of the unique bounded component
of the complement � \ p. Note also, that in each C∗-family (�(t), p(t), h(t)), the
corresponding edge E0(t) is incident to the unmarked trivalent vertex W (t).

Without loss of generality, we can suppose that, for each C∗-family, the image
h(t)(E0(t)) stays on the same fixed line L , while h(t)(V (t)) moves along a segment
transversally intersecting L at the point h(V ). Let U be a small (Euclidean) neigh-
borhood of V in �. It follows from Lemma 2.3, that for each small deformation of
the fragment (�, p, h)|U that keeps the image of the deformed edge E0 on the line L ,
there exists a unique extension up to a deformation of the entire curve C∗ such that
the images of all marked points but V stay fixed and the combinatorial type of the
part (�, p, h)|�\U does not change. In view of the first formula in (10), to prove the
constancy of RDlab

y (x(t)), t ∈ (t∗ − ε, t∗ + ε), it is enough to consider only defor-
mations of the fragment (�, p, h)|U . Equivalently, we can assume that � consists of
the unique (k + 3)-valent vertex V and edges E0, . . . , Ek+2 incident to V , while p
includes V and one more marked point on the edge E0.

(2) The cases k = 0 and k = 1. In this situation, the required statements were
proved in [9, Thm. 1] and [7], respectively. We provide details for completeness.
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Fig. 2 Degeneration as in Proposition 2.5 (2iii) with k = 0
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Fig. 3 Degeneration as in Proposition 2.5 (2iii) with k = 1

If k = 0, the deformation ofC∗ in M̂ e,lab
0,n (R2,�) is presented in Fig. 2. It immedi-

ately follows from (7) that such a bifurcation does not affect the value of RM lab
y (x(t)),

t ∈ (t∗ − ε, t∗ + ε).
Let k = 1. Suppose that the h-images of the four edges incident to V lie of four

distinct lines in R
2. Then C∗ admits three types of deformations that correspond to

three types of splitting of the four-valent vertex into a pair of trivalent vertices (see
Fig. 3). We have to study two cases according as the edge h(E0) is dual to a side of the
parallelogram inscribed into the quadrangle or not (see Fig. 3a, b, where the edge dual
to h(E0) is labeled by asterisk, and the triangles dual to themarked trivalent vertices are
shown by fat lines). Thus, (in the notations of Sect. 3.3) the three top-dimensional cells
F1, F2, F3 of M̂ e,lab

0,n (R2,�) attached to F0, project onto H+ or onto H− according

as the moving point x (t)
2 belongs to R

2+ or R2−. In the notation of Sect. 3.1, for the
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Mikhalkin multiplicities of the trivalent vertices (see Fig. 3a, b), we have the following
additional geometric relations that can be derived from the balancing condition or by
elementary geometry tools (cf. relations in [7, Items (B) and (C) in p. 25])

{
μ3 = μ1 + μ5, in Fig. 3a,

μ1 = μ4 + μ6, in Fig. 3b.
(15)

The constancy of RDlab
y (x(t)), t ∈ (t∗ − ε, t∗ + ε), reduces to the relation

(zμ3 − z−μ3)(zμ4 + z−μ4) = (zμ1 − z−μ1)(zμ2 + z−μ2) + (zμ5 − z−μ5)(zμ6 + z−μ6)

(16)
in case of Fig. 3a, and to the relation

(zμ1 − z−μ1)(zμ2 + z−μ2) = (zμ3 + z−μ3)(zμ4 − z−μ4) + (zμ5 + z−μ5)(zμ6 − z−μ6)

(17)
in case of Fig. 3b. Both the above equalities immediately follow from the elementary
geometric facts

μ1 + μ2 = μ3 + μ4, μ1 − μ2 = μ6 − μ5, μ3 − μ4 = μ5 + μ6,

and formulas (15).
The case when some two edges incident to V are mapped to the same line inR2 (in

Fig. 3 this means that the quadrangle turns into a trapeze or a parallelogram), can be
treated in the same manner. One can also regard this case as a limit of the general case
considered above and derive the required invariance from the continuous dependence
in the variables μ1, . . . , μ6 of the expressions in (16) and (17).

(3) The case of arbitrary k ≥ 1. Let A = {a0, . . . , ak+2} be the multiset of the
vectors

ai := aV (Ei ), i = 0, . . . , k + 2.

Introduce new vectors

a I =
∑

i∈I
ai for any subset I ⊂ {0, 1, . . . , k + 2},

and multisets

AI = {a j , 0 ≤ j ≤ k + 2, j /∈ I } ∪ {a I } for any subset I ⊂ {0, 1, . . . , k + 2},
AI ,J = {a j , 0 ≤ j ≤ k + 2, j /∈ I ∪ J } ∪ {a I , aJ }

for any disjoint subsets I , J ⊂ {0, 1, . . . , k + 2}.

The C∗-families bijectively correspond to the vectors ai , 1 ≤ i ≤ k + 2, satisfying
a0 ∧ ai �= 0, so that, in the deformation along the family (�i (t), pi (t), hi (t)), the
vertex V splits into an unmarked trivalent vertex Wi (t) ∈ L , incident to two ends
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directed by the vectors a0, ai , and a marked (k + 1)-valent vertex Vi (t). Since the
position of Vi (t) with respect to the line L is determined by sign(a0 ∧ ai ), we can
write the required constancy relation in the form

k+2∑

i=1

[a0 ∧ ai ]−y · RMy(�i (t), pi (t), hi (t), Vi (t)) = 0

(for any t �= t∗ sufficiently close to t∗), or, equivalently (see formula (9)),

k+2∑

i=1

[a0 ∧ ai ]−y · θy(A{0,i}) = 0. (18)

We shall prove relation (18) in a greater generality, assuming only that
∑k+2

i=0 ai = 0,
and we shall use the induction on k ≥ 1.

For k = 1, relation (18) reduces to one of the equalities (16) or (17) proved above.
So, assume that k ≥ 2. Since |A{i, j}| = k+2 < k+3 = |A|, the induction assumption
yields

∑

1≤s≤k+2
s �=i, j

([a0 ∧ as]−y · θy(A{i, j},{0,s})
) + [a0 ∧ a{i, j}]−y · θy(A{0,i, j}) = 0. (19)

Multiplying (19) by = [ai ∧ a j ]+y , we obtain
∑

1≤s≤k+2
s �=i, j

([a0 ∧ as]−y · [ai ∧ a j ]+y · θy(A{i, j},{0,s})
)

+ [a0 ∧ a{i, j}]−y · [ai ∧ a j ]+y · θy(A{0,i, j}) = 0. (20)

Now, for the multiset
{
a0, ai , a j ,−a{0,i, j}

}
, the induction base yields

[a0 ∧ ai ]−y · [a j ∧ a{0,i, j}]+y + [a0 ∧ a j ]−y · [ai ∧ a{0,i, j}]+y
− [a0 ∧ a{0,i, j}]−y · [ai ∧ a j ]+y = 0,

which after multiplication by θy(A{0,i, j}) turns into

[a0 ∧ ai ]−y · [a j ∧ a{0,i, j}]+y · θy(A{0,i, j})
+ [a0 ∧ a j ]−y · [ai ∧ a{0,i, j}]+y · θy(A{0,i, j})
− [a0 ∧ a{0,i, j}]−y · [ai ∧ a j ]+y · θy(A{0,i, j}) = 0. (21)

We sum up relations (20) and (21), observing that the last summands in their left-hand
side cancel out in view of a0 ∧ a{0,i, j} = a0 ∧ a{i, j}. Then we sum up the resulting
equalities for all pairs (i, j) such that 1 ≤ i < j ≤ k + 2 and obtain the following:
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0 =
∑

1≤i< j≤k+2

∑

1≤s≤k+2
s �=i, j

[a0 ∧ as]−y · [ai ∧ a j ]+y · θy(A{i, j},{0,s})

+
∑

1≤i< j≤k+2

(
[a0 ∧ ai ]−y · [a j ∧ a{0,i, j}]+y

+[a0 ∧ a j ]−y · [ai ∧ a{0,i, j}]+y
)
θy(A{0,i, j})

=
k+2∑

s=1

(
[a0 ∧ as]−y ·

∑

1≤i< j≤k+2
i, j �=s

[ai ∧ a j ]+y · θy(A{0,i, j})
)

+
k+2∑

s=1

(
[a0 ∧ as]−y ·

∑

s< j≤k+2

[a j ∧ a{0,s}]+y · θy(A{0,s, j})
)

+
k+2∑

s=1

(
[a0 ∧ as]−y ·

∑

1≤i<s

[ai ∧ a{0,s}]+y · θy(A{0,s,i})
)

=
k+2∑

s=1

[a0 ∧ as]−y ·
( ∑

1≤i< j≤k+2
i, j �=s

[ai ∧ a j ]+y · θy(A{i, j},{0,s})

+
∑

1≤i≤k+2
i �=s

[ai ∧ a{0,s}]+y · θy(A{0,s,i})
)

.

It remains to notice that by definition (8), the expression in the parentheses equals
θy(A{0,s}). ��

3.5 On the Uniqueness of the Refinement

The summands in the right-hand side of the recursion (8) are enumerated by splittings
of a tree with a unique (k + 2)-valent vertex into trees with a (k + 1)-valent vertex
and a trivalent vertex. One, however, can use a recursion based on splittings into trees
of other type (for instance, into trees having two trivalent vertices and a k-valent
vertex etc.). Iterating such a recursion, we finally end up with the sum of the form∑

α

(
cα

∑
T μy(T )

)
, where α runs over the set of combinatorial types of trivalent trees

with k + 2 leaves, T ranges over all possible labelings of the leaves of a fixed tree of
type α by elements of the sequence A, andμy(T ) is the product of the factors [μ(V )]+y
over all the vertices of T .

We intend to show that any such definition leads to a refined invariant that differs
from RDy(�, n) by a constant multiplicative factor depending only on combinatorics
of splittings used in the recursion. In this sense we speak of the uniqueness of the
refinement of rational descendant tropical invariants.

Let � be a balanced sequence of m ≥ 3 vectors in R
2. Let α be a trivalent tree

with m leaves, Leaf(α) the set of its leaves, α0 the set of its trivalent vertices. Let
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ϕ : Leaf(α) → � be a bijection. It is easy to show that there exists a unique map
ψϕ : Fl(α) → R

2, where Fl(α) is the set of pairs (V , E) with V ∈ α0 and E an edge
incident to V , such that

• if E ∈ Leaf(α) then ψϕ(V , E) = ϕ(E),
• if E is incident to two vertices V1, V2 ∈ α0, then ψϕ(V1, E) + ψϕ(V2, E) = 0,
• for any vertex V ∈ α0 and E1, E2, E3 edges of α incident to V ,

ψϕ(V , E1) + ψϕ(V , E2) + ψϕ(V , E3) = 0.

Denote the triple of vectors in the latter relation by �α,ϕ(V ). Define

θy,α(�) =
∑

ϕ

∏

V∈α0

θy(�α,ϕ(V )), (22)

where ϕ ranges over all bijections Leaf(α) → �.

Lemma 3.5 For any m ≥ 3, any balanced sequence � of m vectors in R
2, and any

trivalent trees α, β with m leaves, one has θy,α(�) = θy,β(�).

Proof Introduce the following notation: for any sequence of vectors b1, . . . , br (r ≥ 2)
and a permutation σ ∈ Sr , put σ�(b1, . . . , br ) = ∑

1≤i< j≤r bσ(i) ∧ bσ( j).
Given a trivalent tree α with m leaves, for any a ∈ � and any E ∈ Leaf(α), define

θy,α(�, a, E) =
∑

ϕ(E)=a

∏

V∈α0

θy(�α,ϕ(V )), (23)

where ϕ ranges over all bijections Leaf(α) → � satisfying ϕ(E) = a. In view of the
relations

θy,α(�) =
∑

a∈�

θy,α(�, a, E) for all E ∈ Leaf(α), (24)

the following claim completes the proof of the lemma: For any a ∈ � and E ∈
Leaf(α), the following holds:

θz2,α(�, a, E) = 2m−2

(z + z−1)m−2

∑

σ∈Sm−1

zσ�(�\{a}), (25)

where the right-hand side depends neither on the choice of E nor on the combinatorial
type of α.

We prove formula (25) by induction on m. For m = 3, formula (25) immediately
follows from (23). Suppose that m ≥ 4. If E is incident to a trivalent vertex together
with another edge E ′ ∈ Leaf(α), then by definition (23), we obtain

θz2,α(�, a, E) =
∑

b∈�\{a}

za∧b + zb∧a

z + z−1 · θz2,γ (�̃, a + b, Ẽ),
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where the trivalent tree γ withm−1 leaves is obtained from α by removing the leaves
E, E ′, the sequence �̃ is obtained from � by removing a and b and adding the vector
a + b (say, as the last vector), and Ẽ ∈ Leaf(γ ) is the third edge of α incident to V .
Using the induction assumption, we obtain

θz2,α(�, a, E) =
∑

b∈�\{a}

za∧b + zb∧a

z + z−1 · 2m−3

(z + z−1)m−3

∑

σ∈Sm−2

zσ�(�\{a,b})

= 2m−3

(z + z−1)m−2

∑

b∈�\{a}

∑

σ∈Sm−2

(
za∧b+σ�(�\{a,b} + zb∧a+σ�(�\{a,b}).

(26)
Since a = −b − ∑

c∈�\{a,b} c, the exponents of z in the latter expression turn into

a ∧ b + σ�(� \ {a, b}) =
∑

c∈�\{a,b}
b ∧ c+ σ�(� \ {a, b}) = σ b�(� \ {a}),

b ∧ a + σ�(� \ {a, b}) =
∑

c∈�\{a,b}
c∧ a + σ�(� \ {a, b}) = σb�(� \ {a}),

where permutations σ b, σb of � \ {a} are obtained from σ by sending b to the first or
to the last place, respectively. It follows that, when b ranges over all vectors of �\ {a}
and σ ranges over all permutations of � \ {a, b}, the permutations σ b and σb twice
run over all permutations of � \ {a}, and hence (26) yields the required relation (25).

Let E be the only leaf incident to a vertex V ∈ α0. Removing E from α, we
obtain two trees α1, α2 sharing the vertex V , with m1 and m2 leaves, respectively,
where m1,m2 ≥ 3 and m1 + m2 = m + 1. Denote by E1, E2 the leaves of α1, α2,
respectively, incident to V . Hence

θz2,α(�, a, E)

=
∑

I1∪I2=�\{a}
I1∩I2=∅

|I1|=m1−1, |I2|=m2−1

zb1∧b2 + zb2∧b1

z + z−1 · θy,α1(�1, b1, E1) · θy,α2(�2, b2, E2),

where

bi = −
∑

b∈Ii
b, �i = Ii ∪ {bi }, i = 1, 2.

Since m1,m2 < m, we apply the induction assumption and obtain

θz2,α(�, a, E) =
∑

I1∪I2=�\{a}
I1∩I2=∅

|I1|=m1−1, |I2|=m2−1

zb1∧b2 + zb2∧b1

z + z−1 · 2m−3

(z + z−1)m−3
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·
∑

σ1∈Sm1−1

zσ1�(I1) ·
∑

σ2∈Sm2−1

zσ2�(I2)

= 2m−3

(z + z−1)m−2

×
∑

I1∪I2=�\{a}
I1∩I2=∅

|I1|=m1−1, |I2|=m2−1

∑

σ1∈Sm1−1
σ2∈Sm2−1

(
zb1∧b2+σ1�(I1)+σ2�(I2) + zb2∧b1+σ1�(I1)+σ2�(I2)

)
.

Since b1 = −∑
b∈I1 b and b2 = −∑

c∈I2 c, we get

b1 ∧ b2 + σ1�(I1) + σ2�(I2) = σ12�(� \ {a}),

b2 ∧ b1 + σ1�(I1) + σ2�(I2) = σ21�(� \ {a}),

where σ12, resp. σ21, is a permutation of � \ {a} obtained from σ1, σ2 by setting the
elements of I1 before I2, resp. after I2. It follows that each of the permutations σ12
and σ21 ranges over the whole group of permutations of � \ {a}, which finally yields
formula (25). ��

4 Examples

In this section we calculate the invariant RM lab
y (�) in a series of examples, in which

the upper bound (14) to the degree of the denominator is sharp. The first example is
degenerate and plays an auxiliary role.

Lemma 4.1 Let m1, . . . ,mr be positive integers, where r ≥ 2, andm = m1+· · ·+mr .
Set �0

r = {(m1, 0), . . . , (mr , 0), (−a, 0)} and nr = (nk)k≥0 such that nr−1 = 1,
nk = 0, k �= r −1 (i.e., consider tropical curves with a marked (r +1)-valent vertex).
Then

RDlab
y (�0

r , nr ) = r ! · (r + 1)!
6(y1/2 + y−1/2)r−1 .

Proof The formula evidently holds for r = 2, and it can be proved by induction on r
using the recursive formula

RDlab
y (�0

r , nr ) =
(
r + 1

2

)
· 2

y1/2 + y−1/2 · RDlab
y (�0

r−1, nr−1)

that immediately follows from (8) and (9). ��
The next example deals with a nondegenerate Newton triangle.
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m1

m2

...

mr

mr−1

Fig. 4 Newton polygon P
(
�h
m1...mr

)

Lemma 4.2 Let h and m1, . . . ,mr be positive integers, where r ≥ 2, and m = m1 +
· · · + mr . Set

�h
m1...mr

= {(m1, 0), . . . , (mr , 0), (−1,−h), (1 − m, h)} (cf. Fig. 4).

Then

RDlab
y

(
�h

m1...mr
, nr

) = (r + 2)!
12 · (y1/2 + y−1/2)r

×
∑

I

(r − |I |)! · |I |! ·
{
yh(m/2−∑

i∈I mi ) + yh(
∑

i∈I mi−m/2)
}

,

(27)

where the sum runs over all subsets I ⊂ {1, 2, . . . , r}.
Proof Formula (9) yields the relation

RDlab
y

(
�h

m1...mr
, nr

) =
{
ymh/2 + y−mh/2

}
· RDlab

y (�0
r , nr )

+ 2
r∑

i=1

ymi h/2 + y−mi h/2

y1/2 + y−1/2 · RDlab
y

(
�h

m1...m̂i ...mr
, nr−1

)

+
∑

i �= j

2

y1/2 + y−1/2 · RDlab
y

(
�h

m1...m̂i ...m̂ j ...mr ,mi+m j
, er−1

)

(28)
that corresponds to the three types of splittings shown in Fig. 5. A routine induction
on r , skipped here for brevity, completes the proof. ��
Corollary 4.3 (1) Let, in the notation of Lemma 4.2, r = 2k ≥ 2, m1 = · · · = m2k =

1, and h = 2. Then

RDlab
y (R2,�2

2k×1) = (2k)! · (2k + 2)!
6

· y
2k + y2k−2 + · · · + y2−2k + y−2k

(y + 2 + y−1)k
.

(29)
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mi

m1

m2

...

mr

mr−1

mi

m1

m2

...

mi

...

mr

m1

...

mi

...

m j

...

mr

mi + m j mi

m j

Fig. 5 Splittings in formula (28)

(2) Let, in the notation of Lemma 4.2, r = 2k + 1 ≥ 3, m1 = · · · = m2k+1 = 1, and
h > 1 satisfy gcd(h, 2k) = 1. Then

RDlab
y (R2,�h

(2k+1)×1) = (2k + 3)! · (2k + 1)!
6(y + 2 + y−1)k

·
h−1∑

i=0

(−1)i y(h−1)/2−i ·
k∑

i=−k

yhi .

(30)

This is a consequence of formula (27). Note that the bound (14) to the degree
of denominators of refined descendant invariants turns into an equality under the
hypotheses ofCorollary 4.3, since the denominator in formulas (29) and (30) is coprime
to other terms.

Appendix: Lattice Path Algorithm

In [14] Mikhalkin proved that the Gromov–Witten invariants of toric surfaces can be
computed by summing up multiplicities of finitely many specific trivalent plane trop-
ical curves with marked points on edges, and he suggested a combinatorial algorithm
(so-called lattice path algorithm), which associated the counted tropical curves with
certain subdivisions of the given Newton polygon into convex lattice polygons, while
the Mikhalkin multiplicity of a tropical curve in count appeared to be the product
of multiplicities of the pieces of the corresponding subdivision. Markwig and Rau
[12, Sect. 9] generalized this algorithm to computation of descendant rational tropical
Gromov–Witten invariants: now replacing rational plane tropical curves with marked
points on edges and at vertices by suitable subdivisions of the Newton polygon and
computing themultiplicity of each curve as the product ofmultiplicities of the elements
of the corresponding subdivision. The same algorithm applieswell for the computation
of our refined descendant invariant, since we enumerate the same collection of rational
marked tropical curves and our refined multiplicity is also the product of multiplicities
of the vertices.

For the background of the algorithm we refer to [12, Sect. 9]. Here we just describe
it and explain how to compute the refined descendant invariant. As illustration, we
consider the example studied in [12, Ex. 9.28].
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Let� ⊂ Z
2 \{0} be a nondegenerate balanced multiset. Let λ : R2 → R be a linear

functional injective on Z
2. Orient each line λ = const so that after the clockwise

rotation by π
2 it becomes λ-ordered. Fix the linear λ-order on the set P(� ∩ Z

2)

denoted by ≺. Denote by qmin and qmax the minimal and the maximal points in P(�).
A lattice λ-path of length m in P(�) is a broken line with vertices q0 ≺ q1 ≺
· · · ≺ qm such that q0 = qmin, qm = qmax. Each lattice λ-path γ divides the strip
� = {λ(qmin) ≤ λ(x, y) ≤ λ(qmax)} into two parts, whose closures we denote
�+(γ ) and �−(γ ) in accordance with the orientation of the lines λ = const. The
algorithm consists of the three procedures:

(A) construction of the initial data, two lattice λ-paths, γ +
0 , γ −

0 in P(�) such that
γ −
0 ⊂ �−(γ +

0 ) and γ +
0 ⊂ �+(γ −

0 );
(B) subdivision of the domains �+(γ +

0 ) ∩ P(�) and �−(γ −
0 ) ∩ P(�) into lattice

triangles and parallelograms;
(C) computation of the refined weight of each admissible subdivision resulting from

the two preceding procedures and summing up over all these subdivisions.

For the procedure (A), take any sequence m1,m2, . . . ,mn ≥ 2, in which any value
m ≥ 2 is attained exactly nm−2 times, and take arbitrary partitions

mi = m′
i + m′′

i such that m′
i ,m

′′
i ≥ 1, i = 1, . . . , n.

Then take two latticeλ-paths γ +
0 , having

∑
i m

′
i+1 vertices, and γ −

0 , having
∑

i m
′′
i +1

vertices, and such that

• γ −
0 ⊂ �−(γ +

0 ), γ +
0 ⊂ �+(γ −

0 ),
• for each k = 1, . . . , n − 1, the vertex v+

s′(k) of γ +
0 coincides with the vertex v−

s′′(k)
of γ −

0 , where s′(k) = ∑
i≤k m

′
i and s′′(k) = ∑

i≤k m
′′
i ,• for each k = 1, . . . , n, the convex hull Qk (called a rag rug element in [12])

of the vertices v+
i , s

′(k − 1) ≤ i ≤ s′(k), of γ +
0 together with the vertices v−

i ,
s′′(k − 1) ≤ i ≤ s′′(k), of γ −

0 is such that all the aforementioned vertices belong
to ∂Qk .

The procedure (B) is the same as in [14, Sect. 7.2]. It produces two sequences of
lattice λ-paths, γ +

k , k ≥ 0, and γ −
k , k ≥ 0. Given a lattice λ-path γ +

k , resp. γ −
k , with

vertices q0 ≺ q1 ≺ · · · ≺ qm , we take

j = min
{
1 ≤ i < m, [qi−1, qi+1] ⊂ �+(γ +

k ), qi /∈ [qi−1, qi+1]
}
,

resp.

j = min
{
1 ≤ i < m, [qi−1, qi+1] ⊂ �−(γ −

k ), qi /∈ [qi−1, qi+1]
}
.

If such j does not exist, we say that the path γ +
k , resp. γ −

k , is terminal. If such j exists,
we define the lattice λ-path γk+1 (resp. γ

−
k+1)

• either by the sequence of vertices q0, . . . , q j−1, q j+1, . . . , qm ; in this case we
include the triangle conv(q j−1, q j , q j+1) into the set of tiles of the constructed
subdivision,
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• or by the sequence q0, . . . , q j−1, q ′
j , q j+1, . . . , qm , where conv(q j−1, q jq ′

j , q j+1)

is a parallelogram, provided that q ′
j ∈ P(�); in this case we include the parallel-

ogram conv(q j−1, q jq ′
j , q j+1) into the set of tiles of the constructed subdivision

of P(�).

Let γ +
k and γ −

l be terminal.We say that the obtained subdivision of P(�) is admissible
if γ +

k ∪ γ −
l = ∂P(�), and it meets

• the degree condition: the segments of γ +
k and γ −

l , being rotated by π
2 and oriented

as exterior normal vectors to ∂P(�), form the entire multiset �, and
• the connectedness condition of the following dual graph G: each rag rug element

Qi , 1 ≤ i ≤ n, and each triangle in �+(γ +
0 ) ∪ �−(γ −

0 ) corresponds to a vertex
of G, each parallelogram corresponds to two vertices that are associated with two
pairs of parallel sides; two vertices, coming from polygons in �+(γ +

0 ) (resp.,
�−(γ −

0 )) are joined by an arc if the corresponding polygons share a common
side, a vertex corresponding to Qi and a vertex corresponding to a polygon in
�+(γ +

0 ) (resp., �−(γ −
0 )) are joined by an arc if γ +

0 (resp., γ −
0 ) and the polygon

share a segment.

The refinedmultiplicity of an admissible subdivision is of the form Z1Z2/Z3. Here,
Z1 is the product of the factors [ν]−y over all triangles in �+(γ +

0 ) ∪ �−(γ −
0 ) that are

[ν]−y , where ν is the lattice area of the triangle. The term Z2 is the product of the
refined multiplicities of all rag rug elements: if

Qk = conv
({v′

i }s′(k−1)≤i≤s′(k), {v′′
i }s′′(k−1)≤i≤s′′(k)

)
,

webuild amultiset of vectors�k obtained from the segments [v′
i , v

′
i+1], s′(k−1) ≤ i <

s′(k), rotated by π
2 and oriented towards �+(γ +

0 ), and from the segments [v′′
i , v

′′
i+1],

s′′(k − 1) ≤ i < s′′(k), rotated by π
2 and oriented towards �−(γ −

0 ), and we set the
refined multiplicity of Qk to be θy(�k). At last, Z3 is the product of orders of the
automorphisms groups of �1, . . . ,�n . The invariant RDy(�, n) equals the sum of
the refined multiplicities of all the admissible subdivisions resulting from the above
algorithm.

Example Let us compute the refined descendant invariant for the case

� = {3 × (1, 1), 3 × (0,−1), 3 × (−1, 0)} , n = (2, 0, 2, 0, 0, . . .),

considered in [12, Ex. 9.28]. Here, n = 4, and we choose the sequence (m1,m2,

m3,m4) = (4, 2, 4, 2), and the functional λ(x, y) = x − ξ y with 0 < ξ � 1. These
data define

P(�) = conv((0, 0), (3, 0), (0, 3)), qmin = (0, 3), qmax = (3, 0).
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(1,1,1)
(3)

(2)

type 1

(1,1)

type 2

(1,1)

type 3

(1,1) (1,1)

(1,1)
type 4

(1,1) (1,1)

(1,1)
(1,1)

type 5

(1,1) (1,1)

type 6

Fig. 6 Lattice path algorithm

(2)

A B

(1,1)

C D

(1,1)(1,1)

E

(3)(1,1,1)

Fig. 7 Rag rug elements

It is shown in [12, Ex. 9.28] that there are 11 admissible subdivisions, and they are
presented in Fig. 6. The fat lines designate the λ-paths γ +

0 and γ −
0 ; the meaning

of labels in parentheses we illustrate by an example: in figure marked “type 1”, the
segment [(0, 3), (0, 0)] lies both, on γ +

0 and γ −
0 , while in γ +

0 it covers just one segment
and in γ −

0 three segments of length 1. Each of the figures marked “type 1”, “type 2”,
“type 3” represents one admissible subdivision, each of the figures marked “type 4”
and “type 6” represents two admissible subdivisions obtained by cutting the trapeze
into a triangle and a parallelogram, and, finally, figure marked “type 5” represents four
admissible subdivisions obtained by cutting each of the two trapezes into a triangle and
a parallelogram (in fact, for each of these three types, different admissible subdivisions
correspond to the same isomorphism class of plane marked rational tropical curves).
Various type of rag rugs elements occurring in the admissible subdivisions are shown
in Fig. 7.

The refined multiplicities of the admissible subdivision are (for types 4, 5, and 6
we sum up the multiplicities over all obtained subdivisions):
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(1) θy(�E ) · [3]−y · [2]−y · [1]−y · θy(�A) · 1

3! = 16 · y
2 + 2y + 3 + 2y−1 + y−2

y + 2 + y−1

(2) θy(�B) · θy(�C ) · ([1]−y )3 · 1

2! = 16 · y
2 + 5y + 6 + 5y−1 + y−2

(y + 2 + y−1)2

(3) θy(�B) · θy(�C ) · ([1]−y )3 · 1

2! = 16 · y
2 + 5y + 6 + 5y−1 + y−2

(y + 2 + y−1)2

(4) θy(�D) · θy(�C ) · ([1]−y )3 · 1

(2!)2 = 48 · y + 1 + y−1

(y + 2 + y−1)2

(5) (θy(�D))2 · ([1]−y )3 · 1

(2!)2 = 144

(y + 2 + y−1)2

(6) θy(�D) · θy(�B) · ([1]−y )3 · 1

2! = 48 · y + 4 + y−1

(y + 2 + y−1)2

Finally,

RDy(�, n) = 16 · y
3 + 6y2 + 24y + 46 + 24y−1 + 6y−2 + y−3

(y + 2 + y−1)2

and

NRDy(�, n) = 1

36
RDy(�, n) = 4

9
· y

3 + 6y2 + 24y + 46 + 24y−1 + 6y−2 + y−3

(y + 2 + y−1)2
.

Notice, that if we substitute y = 1 into the latter expression, we get NRD1(�, n) =
3 in agreement with [12, Ex. 9.28].

Remark A possible generalization of the floor diagram algorithm as in [1] seems to
be more involved, since the refined multiplicities of the floors do not admit reasonable
explicit formulas contrary to the case considered in [1] and corresponding to y = 1.
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