
Discrete & Computational Geometry (2021) 65:212–226
https://doi.org/10.1007/s00454-019-00089-8

Equality Case in van der Corput’s Inequality and Collisions
in Multiple Lattice Tilings

Gennadiy Averkov1

Received: 20 April 2018 / Revised: 19 February 2019 / Accepted: 29 March 2019 / Published online: 9 April 2019
© Springer Science+Business Media, LLC, part of Springer Nature 2019

Abstract
Van der Corput’s provides the sharp bound vol(C) ≤ m2d on the volume of a d-
dimensional origin-symmetric convex body C that has 2m − 1 points of the integer
lattice in its interior. For m = 1, a characterization of the equality case vol(C) = m2d

is equivalent to the well-known problem of characterizing tilings by translations of
a convex body. It is rather surprising that so far, for m ≥ 2, no characterization of
the equality case has been available, though a hint to the respective characterization
problem can be found in the 1987 monograph of Gruber and Lekkerkerker. We give
an explicit characterization of the equality case for all m ≥ 2. Our result reveals that,
the equality case for m ≥ 2 is more restrictive than for m = 1. We also present
consequences of our characterization in the context of multiple lattice tilings.
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1 Introduction

Wedefine a convex body as a d-dimensional compact convex subset of the vector space
R

d of finite dimension d. ByKd andKd
o we denote the family of convex bodies in Rd

and its subfamily consisting of convex bodies centrally symmetric with respect to the
origin, respectively. A set of the form � := {z1u1 + · · · + zkuk : z1, . . . , zk ∈ Z},
where u1, . . . , uk ∈ R

d are linearly independent, is called a lattice of rank k, while
the k-dimensional volume of {x1u1 + · · · + xkuk : x1, . . . , xk ∈ [0, 1]} is called the
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determinant of� and is denotedbydet(�).A largepart of geometryof numbers studies
properties of Kd and Kd

o related to lattices. For more on the background, we refer to
the monographs [12] and [6]. In the context of this paper, one can fix the underlying
lattice to be the the integer lattice Zd . We will refer to the elements of Zd as lattice
points or lattice vectors. Since every K ∈ Kd

o has a positive odd number of interior
lattice points, Kd

o can be decomposed into disjoint union of families Kd
o (2m − 1),

with m ∈ N, where Kd
o (2m − 1) consists of convex bodies K ∈ Kd

o that have 2m − 1
interior lattice points.

Van der Corput’s inequality is the following useful relation between the volume
and the number of interior lattice points in Kd

o :

vol(C) ≤ m2d for all C ∈ Kd
o (2m − 1). (1)

The special case m = 1, known as the convex body theorem of Minkowski, was used
as a tool in a multitude of contexts ranging from number theory and algebra to integer
optimization. The inequality is sharp, asm2d is themaximumvolume of convex bodies
inKd

o (2m −1). Consider for example the ‘stretched box’ C = [−m, m]×[−1, 1]d−1,
for which themaximum volumem2d is attained. Having a sharp inequality, it is natural
to wonder about a possible characterization of its equality case. It is quite surprising
that the equality case of van der Corput’s inequality has not yet been studied.

Van der Corput’s inequality was used to provide partial solutions to Hensley’s prob-
lem [13] on the determination of the maximum volume in the family Pd(k) of lattice
polytopes with k ∈ N interior lattice points; see [2,3,14,15]. The most refined version
of Hensley’s problem, whose conjectured solution was explicitly stated in [4], asks
about the exact value of the maximum volume and the characterization of the volume
maximizers within Pd(k). A complete solution of Hensley’s problem is currently out
of reach. In [1] it has been demonstrated that van der Corput’s inequality allows to
confirm the conjectured maximum volume within a certain subfamily of Pd(k) that
contains the presumable volume maximizer. Naturally, characterizing volume maxi-
mizers within the mentioned subfamily required the knowledge of the equality case in
van der Corput’s inequality. These kinds of applications have been author’s original
source of motivation.

We also mention that (1) has a discrete counterpart, which has been derived in [9],
and for which the authors of [9] have characterized the equality case. See also [7] for
a related result.

Below we give a short summary of what has been known about the equality case
of (1). With each A ⊆ R

d , one can associate the family

T (A) := {A + z : z ∈ Z
d}

of translations of A by the vectors of the integer lattice. For K ∈ Kd , the family T (K )

is called an m-fold tiling if each x ∈ R
d is an element of exactly m members of T (K )

unless x is in the boundary of one of the members. Gruber and Lekkerkerker [12,
§12.1] observed that, if the equality in (1) is attained, then T

( 1
2C

)
is an m-fold tiling.

This provides a connection to the theory of m-fold tilings by lattice translations of
convex bodies.
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Fig. 1 Example of an extremal convex body and the respective one-fold tiling

For m = 1, it is known that T (K ), with K ∈ Kd
o , is a one-fold tiling, then C = 2K

belongs toKd
o (1) and attains equality in (1). Thus, studying the equality case of (1) for

m = 1 is equivalent to studyingone-fold tilings by translations of a centrally symmetric
convex body. Over the years, strong results on one-fold translative tilings have been
discovered, both for general and concrete dimensions; see [12, §12] and [11, Ch. 32].
One of the key results is the Theorem of Venkov, Alexandrov and McMullen, which
provides a characterization of convex bodies that tile space by (lattice) translations;
see [11, §32.2].

In contrast to the case m = 1, for m ≥ 2, m-fold lattice tilings corresponding to the
equality case in (1) turn out to be very special representatives in the large family of
arbitrary m-fold lattice tilings by convex bodies. We refer to [5,10,18–20] for results
on the structure of multiple tilings with convex bodies by (lattice) translations.

Following Gruber and Lekkerkerker [12, §12.1], we call a setC ∈ Kd
o (1) satisfying

vol(C) = 2d extremal (see also Fig. 1 for an example). Our main result is a charac-
terization of the equality case in (1) for d ≥ 2 and m ≥ 2 in terms of extremal bodies.
For d = 1 the characterization is trivial: the segment [−m, m] is the only volume
maximizer in K1

o(2m − 1). One can thus focus on dimensions d ≥ 2. Given d ≥ 2, a
set B ⊆ R

d−1 and functions f , g : Rd−1 → R, we introduce the set

L(B, f , g) := {(y, t) ∈ B × R : f (y) ≤ t ≤ g(y)} .

A map φ : Rd → R
d is called unimodular transformation if φ is an affine transfor-

mation satisfying φ(Zd) = Z
d . For C ∈ Kd

o and B ∈ Kd−1
o , we say that K is a

cylindrical m-lifting of B if C = φ(L(B, a − m, a + m)) for some linear unimodular
transformation φ : Rd → R

d and a linear function a : Rd−1 → R.

Theorem 1.1 Let d, m ∈ N and d, m ≥ 2. Then a convex body C ∈ Kd
o (2m − 1)

satisfies vol(C) = m2d if and only if C is a cylindrical m-lifting of a (d − 1)-
dimensional extremal convex body. (See also Fig. 2 for an illustration in dimension
two.)

It is known that a d-dimensional extremal convex body is a polytope with at most
2d+1 − 2 facets (see [11, Prop. 32.4, p. 470] and [12, §12.3, Thm. 6]). This result
and Theorem 1.1 imply that convex bodies C ∈ Kd−1

o (2m − 1) attaining equality
vol(C) = m2d are prisms with at most 2d facets.

We present several further consequences of Theorem 1.1. For a family T (K ), with
K ∈ Kd , one can look at members of T (K ) ‘colliding’ with K . Formally, we say
that z ∈ Z

d \ {o} is a collision vector of T (K ) if the interiors of K and K + z have
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o

Fig. 2 Example of L(B, a − m, a + m) for d = 2, m = 2, B = [−1, 1] and a(y) = 1
2 y

a non-empty intersection. The number of collision vectors is even, as they come in
pairs ±z. The set of collision vectors can be described as the set of all non-zero lattice
vectors in the interior of K − K . The following corollary interprets van der Corput’s
inequality and Theorem 1.1 in the context of m-fold lattice tilings:

Corollary 1.2 Let T (K ), with K ∈ Kd , be an m-fold lattice tiling with m ≥ 2 having
2N collision vectors. Then the following hold:

(a) One has m ≤ N + 1.
(b) The equality m = N + 1 is attained if and only if a translation of 2K is a

cylindrical m-lifting of a (d − 1)-dimensional extremal convex body.

One of the challenges in the theory of multiple tilings is to provide a classification
of multiple tilings by translations of convex sets with a given multiplicity m; see
Question 2 in [10, §7]. Even if both m and d are fixed and the underlying tiling is a
tiling T (K ) by lattice translations, this classification problem is largely open for most
choices of m and d. Corollary 1.2 (a) indicates that the number of the collision vectors
controls the multiplicity. In view of this, it also makes sense to consider a refined
problem of classification of multiple lattice tilings T (K ) by their number of collision
vectors. Our next corollary establishes properties of multiple lattice tilings T (K )with
up to four collision vectors.

If, for an m-fold tiling T (K ) with K ∈ Kd , there exists a sub-lattice � of Zd such
that {K + z : z ∈ �} is a one-fold tiling, then we say that T (K ) is a replication of
the one-fold tiling {K + z : z ∈ �}. If this is the case, then T (K ) can be split into m
translated copies of the one-fold tiling {K + z : z ∈ �}. In fact, since det(�) = m, the
quotient groupZd/� hasm elements.We can thus choose v1, . . . , vm ∈ Z

d withZd =
{v1, . . . , vm} + �. With this choice, Zd can be split into m translations vi + � of �.
Correspondingly, T (K ) is split into m one-fold tilings Ti := {K + z : z ∈ vi + �}.
Corollary 1.3 Let m ∈ N and K ∈ Kd and let T (K ) be an m-fold tiling with at most
four collision vectors. Then T (K ) is a replication of a one-fold lattice tiling. (See also
Fig. 3 for an illustration.)

It would be interesting to determine the largest value N∗ ∈ N with the property
that every m-fold tiling T (K ), with K ∈ Kd , that has at most 2N∗ collision vectors is
a replication of a one-fold lattice tiling. According to Corollary 1.3, one has N∗ ≥ 2.
On the other hand, one can show N∗ < 10 using the following example from [10,
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K

T (K )

=

T1

∪

T2

K

T (K )

=

T1

∪
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K

T (K )

=

T1

∪

T2

Fig. 3 Three examples in dimension two, illustrating Corollary 1.3

§1]. Consider the octagon K obtained as the convex hull of {0, 1, 2, 3}2 \ {0, 3}2. The
family T (K ) is a seven-fold tiling with 20 collision vectors; see also Fig. 4. It was
mentioned above that every d-dimensional convex body tiling the space by translations
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K − K

Fig. 4 For the octagon K given as the convex hull of {0, 1, 2, 3}2 \ {0, 3}2, the family T (K ) is a seven-fold
tiling. This can be seen by decomposing K into seven non-overlapping sets K1, . . . , K7 with T (Ki ) being a
one-fold tiling, for each i ∈ {1, . . . , 7}. Collision vectors can be described as non-zero points in the interior
of K − K . This allows to check that T (K ) has 20 collision vectors

is a polytope with at most 2d+1 − 2 facets. Thus, there exists no octagon tiling the
plane by translations. This shows that T (K ) is not a replication of a one-fold tiling
and implies N∗ < 10.

The paper is organized as follows. Section 2 contains notation and terminology
along with a few basic observations. In Sect. 3, we revise the proof of van der Corput’s
inequality in order to add some necessary refinements. Section 4 contains the proof of
Theorem 1.1 and the corollaries.

2 Preliminaries

LetN := {1, 2, 3, . . .} be the set of natural numbers and let d ∈ N. The cardinality of a
set X is denoted by |X |. We define the dimension dim(X) of X ⊆ R

d as the dimension
of the affine hull of X . Let o denote the origin and e1, . . . , ed the standard basis ofRd .
A set X ⊆ R

d is called o-symmetric if, for every x ∈ X , the point −x also belongs to
X . The interior and closure of X ⊆ R

d are denoted by int(X) and cl(X), respectively.
For A ⊆ R

d , we denote by 1A : Rd → R the characteristic function of A, which
is given by

1A(x) :=
{
1 for x ∈ A,

0 for x ∈ R
d \ A.

For X , Y ⊆ R
d and α ∈ R, we use the notation

X + Y := {x + y : x ∈ X, y ∈ Y } ,

X − Y := {x − y : x ∈ X, y ∈ Y } ,

αX := {αx : x ∈ X}.

A set X ⊆ R
d is called an arithmetic progression if, for some k ∈ N, the set X is

the image of {1, . . . , k} under an affine transformation φ : R → R
d . By vol we denote

the volume, that is, the Lebesgue measure onRd , scaled so that vol([0, 1]d) = 1. A set
K ⊆ R

d is called a convex body if K is a compact convex set with non-empty interior.
By Kd and Kd

o we denote the family of all convex bodies in R
d and all o-symmetric

convex bodies in R
d , respectively. For basic information on convex sets and convex

polytopes we refer to [11,16]. Observe that one has
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cl(int(K )) = K for every K ∈ Kd (2)

and

int(A + B) = int(A) + B = A + int(B)

= int(A) + int(B) for all A, B ∈ Kd . (3)

For d ≥ 2, we will use the projection π : Rd → R
d−1 onto the first d − 1 compo-

nents:

π(x1, . . . , xd) := (x1, . . . , xd−1).

For K ∈ Kd and y ∈ π(K ) we introduce

IK (y) := {t ∈ R : (y, t) ∈ K },
fK (y) := length of IK (y).

In other words, {y} × IK (y) is the intersection of K and the vertical line {y} ×R and
fK (y) is the length of this intersection.
For m ∈ N, a family T of subsets ofRd is called: an m-fold packing if each x ∈ R

d

is in at mostm sets of the family {int(K ) : K ∈ T }, anm-fold covering if each x ∈ R
d

is in at least m sets of the family T , and an m-fold tiling if T is both an m-fold packing
and an m-fold covering. If T is an m-fold tiling for some choice of m ∈ N, we say
that T is a multiple tiling and call m the multiplicity of T .

We refer to the elements of Zd as lattice vectors or lattice points. For A ⊆ R
d , we

introduce the family

T (A) := {A + z : z ∈ Z
d}

of all translations of A by lattice vectors. With T (A) we associate the multiplicity
function mult(A, · ) : Rd → R that counts how many elements of T (A) contain a
given point x ∈ R

d . Formally, mult(A, x) can be expressed as follows:

mult(A, x) := ∣∣{z ∈ Z
d : x ∈ A + z}∣∣ (4)

= |A ∩ (x + Z
d)| (5)

=
∑

z∈Zd

1A(x + z). (6)

It is clear that mult(A, x) is Z
d -periodic in x . For K ∈ Kd , the family T (K ) is

an m-fold covering if and only if mult(K , x) ≥ m for all x ∈ R
d and T (K ) is an

m-fold packing if and only if mult(int(K ), x) ≤ m for all x ∈ R
d . We say that

z ∈ Z
d \ {o} is a collision vector of T (K ) if int(K ) ∩ (int(K ) + z) 	= ∅. Collision

vectors describe which pairs of the family T (K ) overlap. In view of (3), the set of all
collision vectors of T (K ) can be represented as int(K − K )∩Z

d \ {o}; see also Fig. 5
for an illustration.
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o

K

− K

K − K

Fig. 5 For the pentagon K with the vertices (0, 0), (1, 1), (1, 2), (0, 2), (−1, 1), the family T (K ) has
six collision vectors ±(1, 0), ±(1, 1), ±(0, 1). The figure depicts the collision vectors as non-zero lattice
vectors in int(K − K ) and illustrates the respective collisions among members of T (K )

3 Van der Corput’s Inequality and Refinements

This section presents several basic results from the geometry of numbers in a revised
and refined form. While the content of this section is mostly not new, the presentation
and proofs are somewhat different from the standard reference books [12] and [6].
For reader’s convenience, we give a self-contained presentation. While several of the
presented results are known to hold for sets which are not necessarily convex, we
prefer to keep the focus on the family of convex sets.

We use the approach of Uhrin [17], who showed that van der Corput’s inequality
can be deduced from bounds on the cardinality of the difference set:

Theorem 3.1 (Difference-set inequality and its equality case; [8, (2.4)]) Let X ⊆ R
d

be a non-empty finite set. Then |X−X | ≥ 2|X |−1, and the equality |X−X | = 2|X |−1
is attained if and only if X is an arithmetic progression.

Lemma 3.2 Let A ⊆ R
d be a d-dimensional bounded convex set. Then

vol(A) =
∫

[0,1]d
mult(A, x) d x .

Proof

vol(A) =
∫

Rd
1A(x) d x

=
∑

z∈Zd

∫

[0,1]d
1A(x + z) d x (by tiling R

d into translates of [0, 1]d)

=
∫

[0,1]d

∑

z∈Zd

1A(x + z) d x
(
exchanging the order of

∑
and

∫ )

=
∫

[0,1]d
mult(A, x) d x (using (6)). ��
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Theorem 3.3 (On collision vectors and m-fold packings) Let K ∈ Kd . Consider the
set Z := int(K − K ) ∩ Z

d \ {o} of the collision vectors of the family T (K ). Then
T (K ) is an m-fold packing with m = 1

2 |Z | + 1, when Z is arbitrary, and m = 1
2 |Z |,

when dim(Z) ≥ 2.

Proof Let A := int(K ). For x ∈ R
d , we introduce the set Ax := A ∩ (x + Z

d). In
view of (5), one has mult(A, x) = |Ax |. Since Ax is a subset of both A and x +Z

d , the
difference set Ax −Ax is a subset of A−A = int(K −K ) and (x+Z

d)−(x+Z
d) = Z

d .
This yields the inclusion

Ax − Ax ⊆ Z ∪ {o}. (7)

Hence

mult(A, x) = |Ax | (by (5))

≤ 1

2
(|Ax − Ax | + 1) (by Theorem 3.1)

≤ 1

2
|Z | + 1 (by (7)).

We have verified the assertion for an arbitrary Z . In the case dim(Z) ≥ 2, we need
to check the stronger inequality mult(A, x) ≤ 1

2 |Z |. If Ax = ∅, the latter inequality
holds. If Ax is non-empty and is not an arithmetic progression, Theorem 3.1 yields
the strict inequality |Ax − Ax | > 2|Ax | − 1. Both the left and the right hand side of
the latter strict inequality are odd numbers. Thus, the inequality can be reformulated
as |Ax − Ax | ≥ 2|Ax | + 1. This implies

mult(A, x) = |Ax | ≤ 1

2
(|Ax − Ax | − 1) ≤ 1

2
|Z |.

In the case when Ax is an arithmetic progression, we have dim(Ax − Ax ) = 1. Since
both Ax − Ax and Z are o-symmetric with dim(Ax − Ax ) = 1 and dim(Z) ≥ 2,
we conclude that Z contains a pair of points symmetric with respect to the origin that
are not in Ax − Ax . Furthermore, since Ax is an arithmetic progression, we have the
equality |Ax | = 1

2 (|Ax − Ax | + 1). The above observations imply

mult(A, x) = |Ax | = 1

2
(|Ax − Ax | + 1) ≤ 1

2
|Z |. ��

Proposition 3.4 Let m ∈ N and K ∈ Kd . Then the following hold:

(a) vol(K ) ≤ m if T (K ) is an m-fold packing.
(b) vol(K ) ≥ m if T (K ) is an m-fold covering.
(c) vol(K ) = m if T (K ) is an m-fold tiling.
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Proof (a) If T (K ) is an m-fold packing, then using Lemma 3.2 we get

vol(K ) = vol(int(K )) =
∫

[0,1]d
mult(int(K ), x)︸ ︷︷ ︸

≤m

d x ≤ m.

(b) Analogously, if T (K ) is an m-fold covering, then using Lemma 3.2 we get

vol(K ) =
∫

[0,1]d
mult(K , x)︸ ︷︷ ︸

≥m

d x ≥ m.

Assertion (c) is a direct consequence of (a) and (b). ��
Theorem 3.6 below is a simple characterization of m-fold tilings. In the proof of

the characterization, we use the following lemma.

Lemma 3.5 Let A ⊆ R
d be bounded and let x∗ ∈ R

d . Then for some open set U
containing x∗ the following hold:

(a) If A is open, then mult(A, x) ≥ mult(A, x∗) holds for every x ∈ U.
(b) If A is closed, then mult(A, x) ≤ mult(A, x∗) holds for every x ∈ U.

Proof Since A is bounded, only finitely many members of T (A) contain x∗. Hence,
if A is open, one can choose U := ⋂ {A + z : z ∈ Z

d , x∗ ∈ A + z}.
Assume now that A is closed. We fix an arbitrary open bounded neighborhood W

of x∗. Since A is bounded, only finitely many members of T (A) have a non-empty
intersection with W . Hence U := W \ ⋃ {A + z : z ∈ Z

d , x∗ /∈ A + z} is an open
neighborhood of x∗. By construction, mult(A, x) ≤ mult(A, x∗) holds for all x ∈ U .
This shows that (b) is true. ��
Theorem 3.6 Let m ∈ N and K ∈ Kd . Then the following conditions are equivalent:

(i) T (K ) is an m-fold packing with vol(K ) = m.
(ii) T (K ) is an m-fold covering with vol(K ) = m.
(iii) T (K ) is an m-fold tiling.

Proof (i)⇒ (ii): Assume (i) is true. If T (K ) is not anm-fold covering, then there exists
x∗ such that mult(K , x∗) ≤ m − 1. By Lemma 3.5 (b), mult(K , x) ≤ m − 1 holds
for all x in an open neighborhood U of x∗. We fix z ∈ Z

d such that [0, 1]d + z and U
have a non-empty intersection. Fix a non-empty open subset W ⊆ [0, 1]d ∩ (U − z).
In view of the Z

d -periodicity of mult(K , · ), we have mult(K , x) ≤ m − 1 for all
x ∈ W . Hence

vol(K ) =
∫

[0,1]d
mult(int(K ), x) d x (by Lemma 3.2)

=
∫

W
mult(int(K ), x)
︸ ︷︷ ︸

≤m−1

d x +
∫

[0,1]d\W
mult(int(K ), x)
︸ ︷︷ ︸

≤m

d x (decomposing [0, 1]d )

≤ (m − 1) vol(W ) + m(1 − vol(W ))

= m − vol(W ).

123



222 Discrete & Computational Geometry (2021) 65:212–226

We obtain the inequality vol(K ) < m, contradicting vol(K ) = m. This shows that (i)
implies (ii).

(ii) ⇒ (i): Assume (ii) is true. Let A := int(K ). If T (K ) is not an m-fold packing,
then there exists x∗ withmult(A, x∗) ≥ m+1. By Lemma 3.5 (a), mult(A, x) ≥ m+1
holds for all x in an open neighborhood U of x∗. Since the function mult(A, · ) is Zd -
periodic, analogously to the proof of the implication (i)⇒ (ii), one can fix a non-empty
open set W ⊆ [0, 1]d with mult(A, x) ≥ m + 1 of every x ∈ W . We get

vol(K ) =
∫

[0,1]d
mult(K , x) d x (by Lemma 3.2)

=
∫

W
mult(K , x)︸ ︷︷ ︸

≥m+1

d x +
∫

[0,1]d\W
mult(K , x)︸ ︷︷ ︸

≥m

d x (decomposing [0, 1]d)

≥ (m + 1) vol(W ) + m(1 − vol(W ))

= vol(W ) + m.

We obtain vol(K ) > m, contradicting vol(K ) = m. Thus, (ii) implies (i).
It remains to check the equivalence of (iii) and the other two conditions. By Propo-

sition 3.4 (c), condition (iii) implies both (i) and (ii). Furthermore, if (i) or (ii) is true,
then due to their equivalence, both of them are true. But then (iii) is also true. ��
Theorem 3.7 (Van der Corput’s inequality and refinements) Let m ∈ N and C ∈
Kd

o (2m − 1). Then the following hold:

(a) vol(C) ≤ m2d .

(b) vol(C) ≤ (m − 1)2d , if dim(Zd ∩ int(C)) ≥ 2.
(c) vol(C) = m2d holds if and only if T

( 1
2C

)
is an m-fold tiling.

Proof The collision vectors of the family T
( 1
2C

)
are the vectors in int(C) ∩Z

d \ {o}.
Hence, T

( 1
2C

)
has 2(m−1) collision vectors. Assertion (a) and (b) follow by applying

Theorem 3.3 and then Proposition 3.4 (a) to the family T
( 1
2C

)
.

It remains to verify (c). If T
( 1
2C

)
is an m-fold tiling, then vol(C) = m2d follows

directly from Proposition 3.4 (c). Conversely, if vol(C) = m2d , then the equivalence
(i)⇔ (iii) of Theorem 3.6 applied to the family T

( 1
2C

)
yields that T

( 1
2C

)
is anm-fold

tiling. ��

4 Proofs of Theorem 1.1 and Its Consequences

Lemma 4.1 Let m ∈ N and m ≥ 2 and let T (K ), with K ∈ Kd , be an m-fold covering
with the property that all collision vectors are multiples of ed . Then fK (y) ≥ m holds
for every y ∈ int(π(K )).

Proof Fix y ∈ int(π(K )). Assume, to the contrary, that fK (y) < m. Let a and b, with
a < b, be the endpoints of the segment IK (y). Since the length of IK (y) is strictly
less than m, there exists t satisfying a < t < b, t − a < 1 and b − t < m − 1. With
this choice of t , one has |IK (y) ∩ (t + Z)| = 1 + �b − t� ≤ m − 1.
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We show that, for the point x := (y, t) ∈ int(K ), one has mult(K , x) ≤ m −1. For
this, consider an arbitrary z ∈ Z

d \ {o} such that x ∈ K + z. We have z ∈ x − K ⊆
int(K )− K . By (3), int(K )− K = int(K − K ). Thus z is a collision vector. Hence, z is
a multiple of ed and we can represent it as z = (o, s) with s ∈ Z \ {0}. Reformulating
x ∈ K +z as x−z ∈ K , and using x = (y, t) and z = (o, s), we arrive at t−s ∈ IK (y).
Thus, t − s ∈ (IK (y) ∩ (t +Z)) \ {t}. Hence, t − s takes one of at most m − 2 values
in IK (y)∩ (t +Z) \ {t}. Consequently, apart from K , the point x lies in at most m − 2
other members of T (K ). This shows mult(K , x) ≤ m − 1. The latter contradicts the
assumption that T (K ) is an m-fold covering. ��
Lemma 4.2 Let m ∈ N, let K ⊆ R

d be a convex body such that T (K ) is an m-fold
packing. Then fK (y) ≤ m for every y ∈ int(π(K )).

Proof Fix y ∈ int(π(K )). Let a and b, with a < b, be the endpoints of IK (y). Assume,
fK (y) ≤ m is not true. Then b − a > m. Choosing t ∈ (a, b) sufficiently close to
a, we ensure that the set (a, b) ∩ (t + Z) contains the m + 1 values t, . . . , t + m.
Setting x := (y, t), we get x + ied ∈ int(K ) for i ∈ {0, . . . , m}. Thus, in view of (5),
mult(int(K ), x) ≥ m + 1. This is a contradiction to the assumption that T (K ) is an
m-fold packing. ��
Lemma 4.3 Let C ∈ Kd

o and let B := π(C). Assume that one has fC (y) = 2λ for
every y ∈ int(B) and some constant λ > 0. Then C = L(B, a − λ, a + λ) for some
linear function a : Rd−1 → R.

Proof In view of (2), it suffices to verify the equality int(C) = int(L(B, a −λ, a +λ))

for the interiors. Note also that

int(C) = {
(y, t) : y ∈ int(B), t ∈ int(IK (y))

}
,

int(L(B, a − λ, a + λ)) = {
(y, t) : y ∈ int(B), a(y) − λ < t < a(y) + λ

}
.

Since fC (o) = 2λ and C is o-symmetric, λed and −λed are boundary points of
C . Fix a hyperplane H supporting C at λed . The hyperplane H can be described
as the set of all (y, t) ∈ R

d satisfying t = a(y) + λ, for some linear function a.
By the o-symmetry of C , the hyperplane −H supports C at −λed . The hyperplane
−H is the set of all (y, t) ∈ R

d satisfying t = a(y) − λ. It follows that IK (y) ⊆
[a(y)−λ, a(y)+λ] for every y ∈ int(B). Furthermore, since [a(y)−λ, a(y)+λ] and
IK (y) both have length 2λ, we even have the equality IK (y) = [a(y) − λ, a(y) + λ]
for every y ∈ int(B). The latter implies int(C) = int(L(B, a − λ, a + λ)) and by this
C = L(B, a − λ, a + λ). ��
Proof of Theorem 1.1 We first prove the sufficiency. Assume that C is the image of
L(B, a − m, a + m) under a linear unimodular transformation φ, where B ∈ Kd

o (1)
is extremal and a : Rd−1 → R is a linear function. Taking into account the fact that
unimodular transformations preserve the volume, we get vol(C) = vol(L(B, a −
m, a + m)). The volume of L(B, a − m, a + m) can be computed by integration:

vol(L(B, a − m, a + m)) =
∫

B
(a(y) + m) − (a(y) − m)) d y = 2m vol(B). (8)
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Since B is a (d − 1)-dimensional extremal body, vol(B) = 2d−1, and we arrive at
vol(C) = m2d .

To prove the converse implication, assume vol(C) = m2d . Consider the family
T

( 1
2C

)
. In view of Theorem 3.7 (b), dim(Zd ∩ int(C)) = 1. Changing coordinates

by a linear unimodular transformations, we assume that all vectors in Zd ∩ int(C) are
multiples of ed . This means that Zd ∩ int(C) consists of the 2m − 1 vectors of the
form ied with i ∈ {−m + 1, . . . , m − 1}. We fix B = π(C). By Theorem 3.7 (c), the
equality vol(C) = m2d implies thatT

( 1
2C

)
is anm-fold tiling.ByLemmas4.1 and4.2,

f 1
2C (y) = m holds for every y ∈ int

( 1
2 B

)
. The latter can be formulated as the equality

fC (y) = 2m for every y ∈ int(B). By Lemma 4.3, equality C = L(B, a − m, a + m)

holds for some linear function a : Rd−1 → R. It remains to show that B is extremal. In
view of (8), equalities vol(C) = m2d and C = L(B, a − m, a + m) imply vol(B) =
2d−1. If B ∈ Kd−1

o (1) was not true, then int(B) would contain a point z ∈ Z
d \ {o}.

The segment IB(z) has length 2m > 1. Consequently, int(IB(z)) contains an integer
value s. We have thus constructed the non-zero lattice vector (z, s) ∈ int(C), which is
not a multiple of ed . This is a contradiction. Thus, B ∈ Kd−1

o (1) and vol(B) = 2d−1,
which means that B is extremal. ��
Proof of Corollary 1.2 A result of Gravin et al. [10, Thm. 1.1] implies that K is a cen-
trally symmetric. So, without loss of generality we can assume that K is o-symmetric.
(a) The interior of 2K contains 2N + 1 lattice points. We thus get

m2d = vol(2K ) (by Proposition 3.4(c))

≤ (N + 1) 2d (by van der Corput’s inequality),

which yields m ≤ N + 1.
(b) The characterization of the equality case m = N + 1 is a straightforward

consequence of Theorem 1.1 applied to C = 2K . ��
Lemma 4.4 Let m ∈ N. Let � ⊆ R

d be a lattice of rank d, let K ∈ Kd and consider
the family T := {K + z : z ∈ �}. Then T is an m-fold tiling if and only if T is an
m-fold packing with vol(K ) = m det(�).

Proof The equivalence (i) ⇔ (iii) of Theorem 3.6 is the special case � = Z
d of

this assertion. The general assertion for an � can be reduced to this special case by
applying a linear transformation that sends � to Zd . ��
Lemma 4.5 Let m ∈ N and let T (K ), with K ∈ Kd , be an m-fold tiling, for which the
set of collision vectors is non-empty. Then m ≥ 2.

Proof We fix any collision vector z. Clearly, mult(int(K ), x) ≥ 2 for every x ∈
int(K ) ∩ (int(K ) + z), where the intersection of int(K ) and int(K ) + z is non-empty.
Hence, m ≥ 2. ��
Lemma 4.6 Let m ∈ N and let C ∈ Kd

o be a cylindrical m-lifting of a (d − 1)-
dimensional extremal body. Then m-fold tiling T

( 1
2C

)
is a replication of a one-fold

tiling.
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Proof Without loss of generality we can assume that C = L(B, a − m, a + m) for
some extremal body B ∈ Kd−1

o (1) and a linear function a : Rd−1 → R. The set( 1
2 B

) × R can be decomposed into sets 1
2C + imed , with i ∈ Z, that have disjoint

interiors. Since B is extremal, T
( 1
2C

)
is a one-fold tiling. This implies that T ( 12C) is

a replication of the one-fold tiling
{ 1
2C + z : z ∈ �

}
with � = Z

d−1 × mZ. ��

Proof of Corollary 1.3 As in the proof of Corollary 1.2, without loss of generality we
can assume that K is o-symmetric.

If N = 0, then Corollary 1.2 (a) yields m = 1. For one-fold tilings, the assertion
is trivial. If N = 1, then Corollary 1.2 (a) yields m ≤ 2, while Lemma 4.5 yields
m ≥ 2. Thus, m = 2 and N = 1, which means that the equality m = N + 1 holds.
By Corollary 1.2 (b), 2K is a cylindrical m-lifting of a (d − 1)-dimensional extremal
convex body. Applying Lemma 4.6, we get the desired assertion.

If N = 2, then Corollary 1.2 (a) yields m ≤ 3, while Lemma 4.5 yields m ≥ 2.
Thus, we end up with two cases N = 2, m = 2 and N = 2, m = 3. For N = 2,
m = 3, the equality m = N + 1 holds, and so we can argue similarly to the case
N = 1, m = 2 to verify the assertion.

It remains to consider the case N = 2, m = 2. We first show that the four collision
vectors of T (K ) are not collinear. The set of all collision vectors can be expressed as
Z := int(2K )∩Z

d \{o}. Since |Z | ≤ 4, this shows that the convex hull P of Z is either
a o-symmetric segment, with P ∩Z

d consisting of the four collinear collision vectors
and the origin, or a o-symmetric parallelogram, with P ∩ Z

d consisting of the four
vertices of P and the origin. If P is a segment, we can assume that P has endpoints
±2ed . Since T (K ) is a two-fold tiling, Lemmas 4.1 and 4.2 imply that fK (y) = 2
holds for every y ∈ int(π(K )). Lemma4.3 shows that K = L(B, a−1, a+1) for some
linear function a : Rd−1 → R and B = π(C). The equality K = L(B, a − 1, a + 1)
contradicts the the fact 2ed is a collision vector of K , because L(B, a − 1, a + 1) and
L(B, a −1, a +1)+2ed = L(B, a +1, a +3) do not have interior points in common.
We have thus verified that P is not a segment.

Consequently, P is a parallelogram and, changing coordinates by a linear unimod-
ular transformations, we can assume ±e1,±e2 are the vertices of P . Consider the
sub-lattice � := {(z1, . . . , zd) ∈ Z

d : z1 + · · · + zd even} of Zd . It is easy to check
that det(�) = 2. Since ±e1 and ±e2 are not in �, we see that {K + z : z ∈ �} is
a packing. On the other hand, T (K ) is a two-fold tiling, and so vol(K ) = 2 holds,
by Proposition 3.4 (c). Thus, {K + z : z ∈ �} is a packing with vol(K ) = det(�).
Lemma 4.4 implies that {K + z : z ∈ �} is a one-fold tiling. ��
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