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Abstract
Let F be a family of convex sets in Rd , which are colored with d + 1 colors. We say
thatF satisfies the Colorful Helly Property if every rainbow selection of d+1 sets, one
set from each color class, has a non-empty common intersection. The Colorful Helly
Theorem of Lovász states that for any such colorful family F there is a color class
Fi ⊂ F , for 1 ≤ i ≤ d + 1, whose sets have a non-empty intersection. We establish
further consequences of the Colorful Helly hypothesis. In particular, we show that for
each dimension d ≥ 2 there exist numbers f (d) and g(d)with the following property:
either one can find an additional color class whose sets can be pierced by f (d) points,
or all the sets in F can be crossed by g(d) lines.
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1 Introduction

1.1 Helly-Type Theorems

Let F be a finite family of convex sets in Rd . We say that a collection X of geometric
objects (e.g., points, lines, or k-flats—k-dimensional affine subspaces of Rd ) is a
transversal to F , or that F can be pierced or crossed by X , if each set of F is
intersected by some member of X . For an integer j we use the symbol

(F
j

)
to denote

the collection of subfamilies of F of size j .
The 1913 theorem of Helly [16] states that a finite family F of convex sets has a

non-empty intersection (i.e., F can be pierced by a single point) if and only if each of
its subsets F ′ ⊂ F of size at most d + 1 can be pierced by a point.

In the past 50years Geometric Transversal Theory has been preoccupied with the
following questions (see e.g. [5,12–14,22]):

• Does Helly’s Theorem generalize to transversals by k-flats, for 1 ≤ k ≤ d − 1?
• Given that a significant fraction of the (d+1)-tuplesF ′ ∈ ( F

d+1

)
have a non-empty

intersection, can F , or at least some fixed fraction of its members, be pierced by
constantly many points?

The first question has been settled to the negative already for k = 1. For instance,
Santaló [21] and Danzer [11] observed that for any n ≥ 3 there are families F of
n convex sets in R

2 such that any n − 1 of the sets can be crossed by a single line
transversal while no such transversal exists for F . Nevertheless, Alon and Kalai [2]
show that the following almost-Helly property holds for k = d − 1: if every d + 1 (or
fewer) of the sets of F can be crossed by a hyperplane, then F admits a transversal
by h hyperplanes, where the number h = h(d) depends only on the dimension d.

While the properties of hyperplane transversals largely resemble those of point
transversals, this is not the case for transversals by k-flats of intermediate dimensions
1 ≤ k ≤ d − 2. For example, Alon et al. [3] showed that for every integers d ≥ 3,m
and n0 ≥ m + 4 there is a family of at least n0 convex sets such that any m of the sets
can be crossed by a line but no m + 4 of them can; this phenomenon can be largely
attributed to the complex topological structure of the space of transversal k-flats.

The second question gave rise to a plethora of inter-related results in discrete geom-
etry and topological combinatorics.

Theorem 1.1 (Fractional Helly’s Theorem) For any d ≥ 1 and α > 0 there is a
number β = β(α, d) > 0 with the following property: for every finite family F of
convex sets in R

d such that at least α
( |F |
d+1

)
of the (d + 1)-subsets F ′ ∈ ( F

d+1

)
have

non-empty intersection, there is a point which pierces at least β|F | of the sets of F .

Theorem 1.1 was proved by Katchalski and Liu [18] and it is one of the key ingre-
dients in the proof of the so-called Hadwiger–Debrunner (p, q)-Conjecture [15] by
Alon and Kleitman [4].

Definition 1.2 We say that a family of convex sets has the (p, q)-property, for p ≥ q,

if for any p-subset F ′ ∈ (F
p

)
there is a q-subset F ′′ ∈ (F ′

q

)
with non-empty common

intersection
⋂

F ′′ �= ∅.
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Theorem 1.3 (The (p, q)-theorem [4]) For any d ≥ 1 and p ≥ q ≥ d + 1 there is
a number P = P(p, q, d) with the following property: any finite family F of convex
sets in Rd with the (p, q)-property can be pierced by P points.

The proof of Theorem 1.3 combines Theorem 1.1 with the following result of
independent interest.

Theorem 1.4 (Weak ε-net for points [1]) For any dimension d ≥ 1 and ε > 0 there is
W = W (ε, d)with the following property: for every finite (multi-)set P of points inRd

one can find W points inRd that pierce every convex set A ⊆ R
d with |A∩ P| ≥ ε|P|.

Understanding the asymptotic behaviour ofW (ε, d) is one of the most challenging
open problems in discrete geometry [19, Chap. 10]; see [9,10,20] for the best known
bounds.

The starting point of our investigation is the Colorful Helly Theorem of László
Lovász, first stated in [7],which concerns the scenario inwhich the intersecting (d+1)-
tuples form a complete (d + 1)-partite hypergraph.

Definition 1.5 We say that a finite family of convex sets F is k-colored if each set
K ∈ F is colored with (at least) one of k distinct colors. The k-coloring of F can be
expressed by writing F as a union of k color classes F1 ∪F2 ∪ · · · ∪Fk, where each
class Fi consists of the sets with color i ∈ [k]. We say that the k-colored family F ,

with color classes F1, . . . ,Fk , has the Colorful Helly property, or CH(F1, . . . ,Fk)

if every rainbow selection Ki ∈ Fi , for 1 ≤ i ≤ k, has non-empty intersection⋂k
i=1 Ki �= ∅.

Theorem 1.6 (Colorful Helly’s Theorem) LetF be a (d+1)-colored family of convex
sets in R

d , with color classes F1, . . . ,Fd+1. Then CH(F1, . . . ,Fd+1) implies that
there is a color class Fi with non-empty intersection

⋂
Fi �= ∅.

Notice that Theorem 1.6 says nothing about transversals to the remaining d color
classes F j , with j ∈ [d + 1] \ {i}. The primary goal of this paper is to gain a deeper
understanding of the transversals to all of the color classes Fi in a (d + 1)-colored
family F that satisfies CH.

Theorem 1.6 is in close relation, via point-hyperplane duality, with the colorful
version of the Carathéodory theorem due to Bárány [7]. Holmsen et al. [17] and
independently Arocha et al. [6] recently established the following strengthening of
Bárány’s result:

Theorem 1.7 (Very Colorful Carathéodory Theorem) Let P be a finite set of points in
R
d colored with d + 1 colors. If every (d + 1)-colorful subset of P is separated from

the origin, then there exist two colors such that the subset of all points of these colors
is separated from the origin.

Unfortunately, there is no Very Colorful Helly Theorem which guarantees that a
second color class can be pierced with few points, as is illustrated by the following
example (see Fig. 1). Let Fd+1 = {Rd} and, for each 1 ≤ i ≤ d let Fi be a collection
of hyperplanes orthogonal to the xi -axis. Then Fd+1 is the only class that has a point
transversal, moreover, each of the remaining classes may need an arbitrarily large
number of points in order to be pierced. Note, though, that one can cross all the sets
of

⋃d+1
i=1 Fi by a single line.
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Fig. 1 Optimality of the Colorful Helly Theorem in R
3. For each 1 ≤ i ≤ 3 the family Fi consists of

xi -orthogonal planes

1.2 Our Results

Our main result suggests that, in a sense, the scenario in Fig. 1 is the only possible
unless an additional color class can be pierced by few points.

Theorem 1.8 For each dimension d ≥ 2 there exist numbers f (d) and g(d) with the
following property. Let F be a finite (d + 1)-colored family of convex sets in Rd (with
color classes F1, . . . ,Fd+1) that satisfies CH(F1, . . . ,Fd+1). Let i ∈ [d + 1] be a
color whose class Fi has a non-empty intersection (by Theorem1.6). Then one of the
following statements must also hold:

(1) an additional color classF j , for j ∈ [d +1] \ {i}, can be pierced by f (d) points,
or

(2) the entire family F can be crossed by g(d) lines.

Theorem 1.8 is equivalent to the following statement concerning d-colored families
of convex sets.

Theorem 1.9 For each dimension d ≥ 2 there exist numbers f ′(d) and g′(d) with
the following property. Let F be a finite d-colored family of convex sets in R

d , with
color classes F1, . . . ,Fd , that satisfies CH(F1, . . . ,Fd). Then one of the following
statements holds:

(1) there is a color class F j , for j ∈ [d], that can be pierced by f ′(d) points, or
(2) the entire family F can be crossed by g′(d) lines.

Theorem 1.8 immediately follows from Theorem 1.9 by setting f (d) = f ′(d)

and g(d) = g′(d) + 1. For the other direction, by letting Fd+1 = {Rd} we can set
f ′(d) = f (d) and g′(d) = g(d).

Notice that in the d-colored scenario of Theorem 1.9 one can use Theorem 1.6
to obtain one color class Fi that can be crossed by a single line (through a generic
projection of Fd to R

d−1). The main strength of Theorem 1.9 is that it shows a
complementary relation between transversals to multiple colors Fi , for i ∈ [d]. This
relation can be further generalized as follows.
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Theorem 1.10 For all 1 ≤ i ≤ d there exist numbers f (i, d) and g(i, d) with the
following property. Let F be a finite (d + 1)-colored family of convex sets in R

d that
satisfies CH(F1, . . . ,Fd+1). Then there exist k ∈ [d] and a relabeling of the color
classes F1, . . . ,Fd+1 of F such that

(1)
⋃

1≤ j≤k F j can be pierced by f (k, d) points, and
(2)

⋃
k< j≤d+1 F j can be crossed by g(k, d) k-flats.

In other words, Theorem 1.10 characterizes the families of sets with the Colorful
Helly Property up to their transversal structure by flats.

This paper is organized as follows. In Sect. 2 we prove our main technical results—
Theorems 1.9 and 1.10. To this end, we establish a series of claims of independent
interest that concern 2-colored families of convex sets. Despite the apparent weakness
of the 2-colored hypothesis in dimension higher than 2, these results provide all the
essential ingredients for our analysis. Theorem 1.9 is finally established by repeatedly
invoking a so-called “Step-Down” Lemma which provides a crucial relation between
k-flat and (k − 1)-flat transversals of families with the Colorful Helly Property, for all
1 ≤ k ≤ d − 1.

The proof of the “Step-Down” Lemma is deferred to Sect. 3, and it is based on a
careful adaptation of the machinery of Alon and Kleitman [4] and Alon and Kalai [2],
to families of convex sets whose intersection graph is complete bi-partite.

Section 4 is devoted to constructing a lower bound for g′ in Theorem 1.9. Our
example implies that, independently of the value given to f ′(d), g′(d) ≥ ⌈ d+1

2

⌉
.

Finally, in Sect. 5 we conclude the paper with several intriguing questions for future
study.

2 Proofs of Theorems 1.9 and 1.10

A crucial ingredient of our proof is the following claim which concerns 2-colored
families.

Lemma 2.1 Let A and B be families of convex sets in R
d such that A ∩ B �= ∅ for

every A ∈ A and B ∈ B. Then either

(1)
⋂

A �= ∅, or
(2) B can be crossed by d hyperplanes.

One can establish Theorem 1.9 in dimension d = 2 (with f ′(2) = 1 and g′(2) ≤ 4)
by applying Lemma 2.1 twice. The weaker transversal guarantee of Lemma 2.1 in
higher dimension d ≥ 3 (namely, crossing by few hyperplanes instead of few lines)
is due to the weaker, 2-colored hypothesis.

Proof Assume that (1) does not hold. Then by Helly’s theorem there are convex sets
Ai ∈ A, for 1 ≤ i ≤ d + 1, with empty intersection. By a standard argument (see
e.g. [8, Theorem 7.1]), there exist d + 1 halfspaces Hi ⊇ Ai with empty intersection.
Let �i be the bounding hyperplane of Hi . We claim that the union of the first d
hyperplanes �i (for i = 1, . . . , d) must meet all the sets from B. See Fig. 2 for an
illustration in R2.
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Fig. 2 Proof of Lemma 2.1. We have A1, A2, A3 ∈ A and B ∈ B. Since A1 ∩ A2 ∩ A3 = ∅, we have
halfspaces Hi ⊃ Ai , for 1 ≤ i ≤ 3, such that

⋂n
i=1 Hi = ∅. Hence, the set B ∈ B must cross at least one

of the respective bounding lines �1 and �2 of H1 and H2 to meet the sets A1, A2 and A3

Indeed, consider the arrangement of �1, . . . ,�d and suppose that a set B ∈ B

does not intersect any of the hyperplanes �i . Then B must be completely contained
in an open cell σ of their arrangement. Since B intersects each of the sets Ai , for
1 ≤ i ≤ d,we obtain σ = ⋂d

i=1 Hi .However, then B cannot intersect Ad+1 ⊂ Hd+1,

since H1 ∩ · · · ∩ Hd+1 = ∅. This contradiction implies (2). ��
Both Theorems 1.9 and 1.10 are established by iterating the following more refined

variant of Lemma 2.1.

Lemma 2.2 (“Step-Down”Lemma)For any 1 ≤ k ≤ d andm ≥ 1 there exist numbers
F(m, k, d) and G(m, k, d) with the following property.

Let A and B be finite families of convex sets in R
d such that the family

I(A,B) := {A ∩ B | A ∈ A, B ∈ B}

can be crossed by m k-flats. Then one of the following conditions is satisfied:

(1) A can be pierced by F(m, k, d) points, or
(2) B can be crossed by G(m, k, d) (k − 1)-flats.

Notice that the hypothesis of Lemma 2.2 implies, in particular, that every two sets
A ∈ A, B ∈ B intersect. Thus, Lemma 2.1 deals with the special case of Lemma 2.2
in which k = d, yielding F(1, d, d) = 1 and G(1, d, d) ≤ d.

We defer the somewhat complex proof of Lemma 2.2 to Sect. 3. It combines the
standard duality relation between transversal and packing numbers of hypergraphs
with a “hyperplane” variant of Theorem 1.4, due to Alon and Kalai [2], in which we
are given a collection of hyperplanes H and seek to find a small hyperplane transversal
to all the convex sets that are crossed by a fixed fraction of the hyperplanes of H .

We are now ready to establish Theorem 1.9.
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Proof of Theorem 1.9 Let F be a d-colored family that satisfies CH(F1, . . . ,Fd) and
does not satisfy conclusion 1. Since the labeling of the color classes F1, . . . ,Fd is
arbitrary, it suffices to show that the last family Fd can be crossed by few lines.

The underlying idea of our analysis is as follows. We apply the “Step-Down”
Lemma 2.2 d − 1 times. In the i th iteration (for 1 ≤ i ≤ d − 1) we deal with a
(d − i + 1)-colored and essentially (d − i + 1)-dimensional scenario in which the
family of all the (d − i + 1)-wise intersections

I(Fi , . . . ,Fd) :=
⎧
⎨

⎩

d⋂

j=i

A j
∣∣ A j ∈ F j

⎫
⎬

⎭

can be crossed by only M = M(i, d) copies of Rd−i+1 within R
d . Unless Fi can be

pierced by F(M, i, d) points, the “Step-Down” Lemma can be used to further reduce
the intrinsic “transversal dimension” of the remaining sets Fi+1, . . . ,Fd to d − i .

For reasons that will become evident shortly, we set

M(i, d) :=
⎧
⎨

⎩

1 for i = 1,
d for i = 2,
G(M(i − 1, d), d − i + 2, d) for 3 ≤ i ≤ d − 1.

For i = 1, the condition that I(F1, . . . ,Fd) is crossed by R
d is equivalent

to the CH(F1, . . . ,Fd) hypothesis. Notice that the families A := F1 and B :=
I(F2, . . . ,Fd) satisfy the hypothesis of Lemma 2.1. Therefore, unless F1 can be
pierced by F(1, d, d) = 1 points, the family I(F2, . . . ,Fd) can be crossed by
M(2, d) = d hyperplanes.

Let us nowfix 2 ≤ i ≤ d−1 and assume thatI(Fi , . . . ,Fd) can be crossed byM =
M(i, d) (d − i + 1)-flats. Note that the families A := Fi and B := I(Fi+1, . . . ,Fd)

satisfy the 2-colored hypothesis of Lemma 2.2. Therefore, given that Fi cannot be
pierced by F(M, d−i+1, d) points, the other family I(Fi+1, . . . ,Fd) can be crossed
by M(i + 1, d) = G(M, d − i + 1, d) (d − i)-flats.

Assuming neither of the families Fi , for 1 ≤ i ≤ d − 1, can be pierced by
F(M(i, d), d − i + 1, d) points, by the end of the (d − 1)st iteration we can cross the
last color class Fd by G(M(d − 1, d), 2, d) lines.

This proves Theorem 1.9 with

f ′(d) = max{F(M(i, d), d − i + 1, d) | 1 ≤ i ≤ d − 1}, and

g′(d) = d · G(M(d − 1, d), 2, d). ��
Remark 2.3 In the proof of Theorem 1.9, the value of g′(d) can be further improved
to

g′(d) = (d − 1) · G(M(d − 1, d), 2, d) + 1
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by observing that at least one of the families F1, . . . ,Fd can be crossed by a single
line. To this end, we project F in a generic direction �ν and apply Theorem 1.6 to the
resulting d-colored family F(�ν) = F1(�ν) ∪ · · · ∪ Fd(�ν) within R

d−1. This yields
an intersecting color class Fi (�ν) within R

d−1 and, therefore, a �ν-parallel line which
crosses the respective color class Fi .

Proof of Theorem 1.10 The theorem is obviously true for d = 1 (with f (1, 1) = 1,
g(1, 1) = 1). Assume with no loss of generality that the last color class Fd+1 can be
pierced by a point (in accordance with Theorem 1.6). We adopt the notation of the
previous proof while dealing with the remaining color classes F1, . . . ,Fd .

Let l be the size of the largest sequence j1, j2, . . . , jl such that no class F ji can
be pierced by F(M(l − 1, d), d − l + 2, d) points. Let F ′ be the relabeling of F
whose first l color classes satisfy F ′

i = F ji , for 1 ≤ i ≤ l. By following the first
l − 1 iterations of the proof of Theorem 1.9, we obtain that F ′

l = F jl can be crossed
by G(M(l − 1, d), d − l + 2, d) (d − l + 1)-flats. By reordering of j1, . . . , jl , this
establishes the claim of Theorem 1.10 for F with

k = d − l + 1,

f (k, d) = (k − 1) · F(M(d − k, d), k + 1, d) + 1, and

g(k, d) = (d − k + 1) · G(M(d − k, d), k + 1, d),

where the second equality also uses that one of the color classes admits a transversal
by a single point due to Theorem 1.6. ��

3 Proof of the “Step-Down” Lemma

We develop a bi-partite variant of the machinery that was used by Alon and Kleitman
[4] to establish the (p, q)-Conjecture (Theorem 1.3). This method was extended by
Alon and Kalai [2] to obtain an analogous result for hyperplane transversals.

3.1 From Piercing to Packing Numbers

The crucial ingredient of Alon–Kleitman approach was a duality relation between
transversal (or piercing), and packing (or matching) numbers of hypergraphs.

Definition 3.1 Let G = (V, E) be a hypergraph, where V is a finite set of elements and
E is a family of subsets of V. The elements of V are called vertices, and the sets of E
are called edges.

A subset A ⊂ V is a transversal for G if it intersects every edge S ∈ E (i.e.,
A ∩ S �= ∅ for each S ∈ E). The transversal number τ(G) of G is the size |A| of the
smallest such transversal A.

A non-negative function f : V → R is a fractional transversal for G if it satisfies∑
x∈S f (x) ≥ 1 for every edge S ∈ E . The fractional transversal number τ ∗(G) of G

is the total “weight”
∑

x∈V f (x) of the “lightest” fractional transversal f of G (that
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is, it is the smallest possible value
∑

x∈V f (x) that can be attained by a fractional
transversal f ).

A subset of edges E ′ ⊆ E is called a b-packing (or b-matching) for G if every vertex
x ∈ V belongs to at most b edges of E ′. The b-packing number νb(G) of G is the size
|E ′| of the largest such b-matching E ′.

A non-negative function g : E → R is a fractional packing for G if it satisfies

∑

S∈E :x∈S
g(S) ≤ 1

for every x ∈ V. The fractional packing number ν∗(G) of G is the total “weight”∑
S∈E g(S) of the “heaviest” fractional packing g of G (that is, it is the largest possible

value
∑

S∈E g(S) that can be attained by a fractional packing g).
A standard use of Linear Programming duality [2–4] yields the following relation

between transversal and packing numbers of G.

Theorem 3.2 We have

νb(G)/b ≤ ν∗(G) = τ ∗(G) ≤ τ(G)

for every hypergraph G and b ≥ 1.

The proof of Theorem 1.3 by Alon and Kleitman [4] combines the following key
elements:

• An abstract hypergraph G0(F), whose edges correspond to the sets of F , is con-
structed. Each vertex of G0(F) is a point that pierces some sub-family F ′ ⊂ F .

(To keep the vertex set finite, we have one vertex for eachF ′ ⊂ F with non-empty
intersection

⋂
F ′ �= ∅.)

• The fractional packing number ν∗(G0(F)) = τ ∗(G0(F)) is bounded from above
using a suitable fractional Helly-type result (Theorem 1.1).

• The fractional transversal for G0(F) is converted to an integral one using a weak
ε-net result for point transversals [1].

3.1.1 Overview

As we cast the 2-colored setup of the “Step-Down” Lemma into the above abstract
framework, several fundamental challenges are to be addressed.

Aswe seek a relation between the transversal numbers ofA andB,wemaintain two
hypergraphsG0(A) andGk−1(B),where the former (resp., latter) hypergraph describes
partial point (resp., (k − 1)-flat) transversals toA (resp.,B). To show that at least one
of G0(A) and Gk−1(B) has a bounded fractional packing number, we need a suitable
fractional Helly-type result which is conveniently provided by the fractional variant
of our 2-colored Lemma 2.1. Finally, to convert a fractional transversal for Gk−1(B)

into an integral one, we need a small-size weak ε-net construction for (k − 1)-flats.
Unfortunately, no Helly-type results and no weak ε-net constructions are known for

transversals by general (k−1)-flats inRd , unless k = 1 [4] or k = d [2]. Note though
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that, in the scenario of Lemma 2.2, the pairwise intersections I(A,B) are assumed to
“occur” within few k-dimensional flats of Rd . We can therefore invoke the fractional
variant of Lemma 2.1 in dimension k and similarly apply the weak ε-net construction
of Alon and Kalai [2] for hyperplanes in Rk .

3.2 Bounding the Fractional Packing Number

Let A and B be families of convex sets that satisfy the hypothesis of Lemma 2.2.
That is, the family I(A,B) of pairwise intersections can be crossed by m k-flats
	1, . . . , 	m .

3.2.1 The HypergraphsG0(A) andGk−1(B)

Belowwe define the abstract hypergraphs G0(A) and Gk−1(B)which describe, respec-
tively, partial point transversals to A, and partial transversals by (k − 1)-flats to B.

The hypergraph G0(A) = (VA, EA) is constructed analogously to the one of Alon
and Kleitman [4]: for every subfamily A′ ⊂ A with

⋂
A′ �= ∅ we add a point

xA′ ∈ ⋂
A′ to VA, and for every convex set A ∈ F we add the edge eA := {xA′ |⋂

A′ �= ∅, A ∈ A′} to EA.

The definition of Gk−1(B) = (VB, EB) is somewhat more involved: for every
subfamily B′ ⊂ B that can be crossed by a (k − 1)-flat within

⋃m
i=1 	i , we add one

such (k − 1)-flat σB′ ⊂ ⋃m
i=1 	i to VB. Accordingly, each B ∈ B yields the edge

eB := {σB′ | B ∈ B′} ∈ EB.

To show that at least one of the hypergraphs G0(A) or Gk−1(B) has a bounded
fractional packing number, we use the following fractional variant of our 2-colored
Lemma 2.1.

Lemma 3.3 (Fractional 2-colored Lemma) For every 0 < α ≤ 1 and d ≥ 1 there
exist γ = γ (α, d) and λ = λ(α, d) with the following property. Let A and B be finite
(multi-)families of convex sets in R

d such that A ∩ B �= ∅ holds for at least α|A||B|
of the pairs A ∈ A and B ∈ B. Then either

(1) one can pierce at least γ |A| members of A by a single point, or
(2) one can cross at least λ|B| members of B by a single hyperplane.

Proof We establish the lemma with

λ := αd+2

4d · 3d+1 and γ := min
(
β(dλ, d),

α

6d

)
,

where the function β(·, ·) is defined as in the Fractional Helly Theorem 1.1. The
reasons behind this choice will become evident during the proof.

We may assume |A| ≥ 6d
α

, for otherwise γ |A| ≤ 1 and the result follows immedi-
ately.
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For a subset A′ ∈ ( A
d+1

)
, and B ∈ B, we say that (A′, B) is a special pair if B

intersects every set in A′; in other words, A′ and B form a star in the bipartite graph
that represents pairwise intersections between the elements of A and B.

Let T denote the set of all the special pairs (A′, B) as above. We first establish a
lower bound for the cardinality of T . To this end, we claim that there are at least α

2 |B|
heavy elements B of B each of which intersects with at least α

2 |A| elements of A.

Indeed, otherwise we contradict the hypothesis as the number of pairwise intersections
would be fewer than

|A|
(α

2
|B|

)
+

(α

2
|A|

)
|B| = α|A||B|.

Let a = ⌈
α
2 |A|⌉ and b = ⌈

α
2 |B|⌉.The discussion above shows that there are at least

b heavy elements, each of which appears in at least
( a
d+1

)
special pairs. Therefore:

|T | ≥ b

(
a

d + 1

)
≥

(α

2
|B|

) (α

3

)d+1
( |A|
d + 1

)
= 2dλ|B|

( |A|
d + 1

)
. (3.1)

The second inequality is obtained as follows, where we use |A| ≥ 6d
α

at the end:

( a
d+1

)

( |A|
d+1

) = a

|A| · a − 1

|A| − 1
· · · a − d

|A| − d
≥

(
a − d

|A| − d

)d+1

≥
( α

2 |A| − d

|A| − d

)d+1

≥
(α

3

)d+1
.

Now, consider the subdivision T = T1 � T2:

T1 :=
{
(A′, B) ∈ T

∣∣
⋂

A∈A′
A �= ∅

}
,

T2 :=
{
(A′, B) ∈ T

∣∣
⋂

A∈A′
A = ∅

}
.

If at least dλ
( |A|
d+1

)
of the (d + 1)-subfamilies of A are intersecting, then by the

Fractional Helly Theorem 1.1 we obtain an intersecting subfamily of A of size γ |A|
and we are done. Therefore, we may assume that less than dλ

( |A|
d+1

)
of the (d + 1)-

subfamilies of A are intersecting. Since each of them appears in at most |B| special
pairs of T1, we obtain

|T1| < dλ|B|
( |A|
d + 1

)
. (3.2)

Equations (3.1) and (3.2) imply that |T2| ≥ dλ|B|( |A|
d+1

)
. By the pigeon-hole prin-

ciple there is a non-intersecting (d + 1)-subfamily A0 ⊂ A that appears in at least
dλ|B| special pairs. Let B0 be the family of all the elements B in B which yield such
a special pair (A0, B). Applying Lemma 2.1 to A0 and B0 we get a collection of d
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hyperplanes that cross all the sets inB0.Therefore, again by the pigeon-hole principle,
one of these hyperplanes crosses at least 1

d |B0| ≥ λ|B| of the sets of B. ��
Now we prove the following auxiliary statement.

Claim 3.4 We have that either ν∗(G0(A)) ≤ 1/(γ (1/m, k)) or ν∗(Gk−1(B)) ≤
1/(λ(1/m, k)), where m, G0(A) and Gk−1(B) are as defined above, and the func-
tions γ and λ are defined as in Lemma 3.3.

Proof The fractional packing numbers ν∗(G0(A)) and ν∗(Gk−1(B)) exist as we are
optimizing linear functions over a compact domain. Furthermore, the standard the-
ory of Linear Programming implies that these values may be obtained via a pair of
non-negative rational assignments f : EA → Q and g : EB → Q.1 Given the contra-
positive assumption, the following inequalities hold for all x0 ∈ VA and σ0 ∈ VB:

∑

x0∈e
f (e) < γ (1/m, k)

∑

e∈EA
f (e), (3.3)

∑

σ0∈e
g(e) < λ(1/m, k)

∑

e∈EB
g(e). (3.4)

By scaling f and g, we end up with a pair of integer functions f : EA → Z
+ and

g : EB → Z
+ which still satisfy the inequalities (3.3) and (3.4). By the definition of

G0(A) and Gk−1(B), this yields a pair of multisets Â and B̂ of, respectively, A and
B, such that

(i) no point in R
d crosses more than γ (1/m, k)|Â| members of Â, and

(ii) no (k − 1)-flat within
⋃m

i=1 	i crosses more than λ(1/m, k)|B̂| members of B̂.

By thepigeon-hole principle, oneof the k-flats	i must cross at least (1/m)|I(A,B)|
of the pairwise intersections I(A,B). Applying Lemma 3.3 to the cross-sections
{A ∩ 	i | A ∈ Â} and {B ∩ 	i | B ∈ B̂} within 	i ∼= R

k, and with α := 1/m, yields
the eventual contradiction to the above properties (i) and (ii) of Â and B̂. ��

3.3 Wrap-up

CombiningClaim3.4with Theorem3.2,we obtain that at least one of the graphsG0(A)

and Gk−1(B) has a bounded fractional transversal number, so one of the following
inequalities must hold:

τ ∗(G0(A)) ≤ 1

γ (1/m, k)
, τ ∗(Gk−1(B)) ≤ 1

λ(1/m, k)
.

Analogously to the proof of Claim 3.4, we obtain respectively either a rational
(and not everywhere zero) function f : VA → Q

+ such that every edge e ∈ EA
(representing some set A ∈ A) contains vertices (i.e., points) of total weight

1 This can be attributed to the integer coefficients of the variables { f (e)}e∈EA and {g(e)}e∈EB in the linear
inequalities that “delimit” the domain; see, e.g., [19, Thm. 10.1.1, Chap. 10].
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∑

x∈e
f (x) ≥ γ (1/m, k)

∑

x∈VA

f (x),

or a similar function g : VB → Q
+ such that every edge e ∈ EB contains vertices of

total weight

∑

σ∈e
g(σ ) ≥ λ(1/m, k)

∑

σ∈VB

g(σ ).

Similar to the proof of Claim 3.4, the rational assignments f and g yield either
(i) a multiset of points V̂A ⊂ R

d such that any member A of A contains at least
γ (1/m, k)|V̂A| of these points, or (ii) a multiset V̂B of (k − 1)-flats within

⋃m
i=1 	i

such that any member B of B is crossed by at least λ(1/m, k)|V̂B| of the flats.
In the former case, we use Theorem 1.4 to show that, in case (i), the family A can

be pierced by

F(m, k, d) := W (γ (1/m, k), d)

points.
In the remaining case (ii), we use the following analogue of Theorem 1.4 for

hyperplane transversals, due to Alon and Kalai [2]:

Lemma 3.5 (Weak ε-net for hyperplanes) For any dimension d ≥ 1 and ε > 0 there
is Whpl(ε, d) with the following property: for every finite (multi-)set H of hyperplanes
in R

d one can find Whpl(ε, d) hyperplanes in R
d whose union crosses every convex

set A ⊆ R
d that meets at least ε|H | of the hyperplanes of H .

For each 1 ≤ i ≤ m we apply Lemma 3.5 to construct a weak (λ(1/m, k)/m)-net
with respect to the (k−1)-flats σ ∈ V̂B that are contained in 	i ∼= R

k . It is immediate
to check that the resulting family of at most

G(m, k, d) := m · Whpl

(
λ(1/m, k)

m
, k

)

(k−1)-flats crosses each B ∈ B: since B is crossed by at least λ(1/m, k)|V̂B| (k−1)-
flats of V̂B, and at least (1/m)λ(1/m, k)|V̂B| of such flats must be contained in some
k-flat 	i , then B must be crossed by the corresponding k-dimensional net. �

4 A Lower Bound for Theorem 1.9

Theorem 4.1 For every d ≥ 2 and integer f ≥ 1 there exists a d-colored family
F = F1 � F2 � · · · � Fd in Rd that satisfies CH(F1,F2, . . . ,Fd) and the following
additional properties:

• For every 1 ≤ i ≤ d, one needs at least f points to pierce the color class Fi . (In
other words, τ(G(Fi )) ≥ f .)
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Fig. 3 The planar construction (form = 4). Each triangle Ti has a horizontal topmost side which lies below
all the pairwise intersections of T1, . . . , Ti−1

• At least
⌈ d+1

2

⌉
lines are necessary to cross

⋃
Fi .

We prove the result in the following two subsections. We begin with the case d = 2
which is later used to deal with the general case.

4.1 The Planar Construction

Letm = 2 f and T0 be a triangle in the plane such that its bottom side is parallel to the
x-axis. We first construct m triangles T1, . . . , Tm, each with one horizontal side and
vertices in the relative interiors of the three sides of T0, and such that no three of these
triangles Ti , Tj , Tk for 1 ≤ i < j < k ≤ m have a common intersection. A way to
do this is to construct them recursively: we start with two arbitrary such triangles T1
and T2 and at each step i > 2 we place the horizontal side of Ti sufficiently close to
the horizonal side of T0 so that it avoids all previous pairwise intersections (see Fig.
3). Let the first color class F1 be the resulting family {T1, . . . , Tm}. Clearly we need
at least m/2 = f points to pierce F1.

Let E1, E2, E3 be the three sides of T0. As each set of F1 intersects the relative
interior of each Ei , for 1 ≤ i ≤ 3, we can slightly shrink each Ei away from its
adjacent vertices of T0 while preserving the intersection with every element of F1.

The family F2 will consist of m slightly translated copies of each (previously shrunk)
segment Ei so that they still intersect every triangle inF1 but are still pairwise disjoint.
Note that we need at least 3m > f points to pierce F2.

In order to cross F1 ∪ F2 with lines, we need in particular to cross the interiors of
E1, E2, E3, so at least two lines are needed.

4.2 The General Construction

Set d > 2 and m = 2 f . Let �(d) ⊂ R
d be a d-simplex with vertex set V =

{v1, v2, . . . , vd+1}. For each 1 ≤ i ≤ d − 1, define τi to be the triangle with vertices
{vi , vi+1, vi+2}. As in the planar case, let Ti be a family of m triangles, each with
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Fig. 4 The construction of F̂ (3)—a pair of sets C1 ∈ F̂ (3)
1 and C2 ∈ F̂ (3)

2 are depicted. We have C1 =
conv(τ, v4) andC2 = conv(λ, v1),with τ ∈ T1 and λ ∈ T2. The sets of F̂ (3)

3 are the facets of the bounding

simplex �(3)

vertices in the relative interiors of the three sides of τi , such that no three of them
intersect. Let F̂ (d)

i be the family consisting of the sets

conv ((V \ {vi , vi+1, vi+2}) ∪ τ) ,

with τ ∈ Ti . Let F̂ (d)
d denote the family of all the (d − 1)-dimensional faces (facets)

of �(d); see Fig. 4.
As the resulting d-colored family F̂ (d) = ⋃

F̂ (d)
i can obviously be pierced by

d + 1 points, the convex sets in F̂ have to be suitably shrunk in order to satisfy the
conditions of Theorem 4.1. However, before we describe the actual family F (d), we
establish a key property of the families F̂ (d)

i .

Lemma 4.2 For any selection of Ci ∈ F̂ (d)
i with 1 ≤ i ≤ d we have

(
d−1⋂

i=1

Ci

)

∩ relint(Cd) �= ∅,

where relint(C) denotes the relative interior of C .

Proof We proceed by induction on the dimension d. For d = 2 we define the families
in a similar way as for d > 2. Then, when d = 2, the colored family F̂ (2) is essentially
the same as in the planar case, where by definition each triangle in F̂1 intersects the
relative interiors of the sides of T0 � τ1, which are precisely the elements of F̂2.

Now assume that d > 2 and the statement is true in dimension d − 1. Note that the
cross-sections of F̂ (d)

1 ∪ · · · ∪ F̂ (d)
d−2 with the hyperplane πd−1 spanned by v1, . . . , vd

form the first d−2 color classes F̂ (d−1)
1 ∪· · ·∪F̂ (d−1)

d−2 of the (d−1)-dimensional family

F̂ (d−1) (constructed with respect to �(d−1) = conv(v1, . . . , vd) in πd−1 � R
d−1);
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Fig. 5 Proof of Lemma 4.2.The threemain cases are depicted.Left: in thefirst case,Cd = conv(V \{vd+1}).
Right: Cd = conv(V \ {vd }). Bottom: Cd = conv(V \ {vi }) for 1 ≤ i ≤ d − 2

the last (d − 1)th color F̂ (d−1)
d−1 is composed of all the (d − 2)-dimensional faces of

conv({v1, . . . , vd}). Therefore, by induction, for every (d − 2)-colorful selection of
C1 ∈ F̂ (d)

1 ,C2 ∈ F̂ (d)
2 , . . . ,Cd−1 ∈ F̂ (d)

d−2 and a (d − 2)-simplex σ ∈ bd(�(d−1)) we
obtain

(
d−2⋂

i=1

Ci

)

∩ relint(σ ) �= ∅.

Consider a d-colorful choice Ci ∈ F̂ (d)
i with 1 ≤ i ≤ d. In order to show that

⋂d−1
i=1 Ci intersects the relative interior of Cd , we distinguish between three cases.

In each case, we use the induction hypothesis to pick a pair of points
⋂d−2

i=1 Ci on
different faces of Cd which span an open segment s in the relative interior of Cd . We
then use the definition of Cd−1 to argue that it must intersect s. See Fig. 5.

(1) IfCd = conv(V \{vd+1}), by the induction hypothesis we know that the intersec-
tion

⋂d−2
i=1 Ci has points in the interiors of the facets conv({v1, . . . , vd−2, vd−1})

and conv({v1, . . . , vd−2, vd}) of Cd , say x and y respectively. On the other hand,
since Cd−1 has a point in each edge of the triangle τd−1 = conv(vd−1, vd , vd+1),

it has a point z in the interior of the segment vd−1vd . By definition,Cd−1 contains
the (d − 2)-dimensional simplex C := conv({v1, . . . , vd−2, z}). By continuity
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of the barycentric coordinates, it is easy to verify that C must separate x and y
within the (d − 1)-simplex Cd . Hence, Cd−1 ⊃ C must intersect the segment
s = xy in its interior, which is a point in the relative interior of Cd .

(2) The cases Cd = conv(V \ {vd}) and Cd = conv(V \ {vd−1}) are analo-
gous, so we may assume that we are in the former case. By the induction
hypothesis we know that there is a point of

⋂d−2
i=1 Ci in the relative interior of

conv({v1, . . . , vd−2, vd−1}), say x . Therefore⋂d−2
i=1 Ci also contains the segment

xvd+1, which is contained in the face Cd . We claim that Cd−1 must intersect
the interior of this segment. Indeed, let y be the point of Cd−1 in the segment
vd−1vd+1.ThenCd−1 containsC = conv({v1, . . . , vd−2, y}).This set must inter-
sect the segment s = xvd+1 as desired (for it separates x from vd+1 within Cd ).

(3) Finally, assume that Cd = conv(V \ {vi }) for some 1 ≤ i ≤ d − 2. As in
the previous case, we can find a point of the intersection

⋂d−2
j=1 C j in the inte-

rior of the face conv({v1, . . . , vd} \ {vi }), say x . Now we select points y, z of
Cd−1 in the interiors of the segments vd−1vd+1 and vdvd+1 respectively. The set
conv({y, z, v1, . . . , vd−2} \ {vi }) is contained in Cd−1 and separates x and vd+1.

Therefore Cd−1 intersects s = xvd+1 in its relative interior as before. ��
We are almost done with the construction. In view of Lemma 4.2, we may shrink

all the elements of F̂ (d) away from the (d − 2)-dimensional faces of �(d) in such a
way that they remain convex and the colorful intersections continue to be non-empty.
In this way we obtain the families F (d)

1 , . . . ,F (d)
d−1. To construct the last family F (d)

d ,

we take an additional step: we takem parallel copies of each so that they still intersect
every element of F1 ∪ · · · ∪ Fd−1 but are pairwise disjoint.

By the cut-off procedure, no three sets of the same Fi intersect for i ∈ [d − 1] (as
any such intersection would project to a triple intersection within Ti ). Thus, in order
to pierce any such Fi at least m

2 = f points are needed. To cross F = F1 ∪ · · · ∪ Fd

by lines we also need to cross the relative interiors of the facets of �. No line can
pierce more than two such interiors. Therefore, at least

⌈ d+1
2

⌉
lines are needed. This

concludes the proof of Theorem 4.1.

5 Discussion

We studied families of convex sets which satisfy the Colorful Helly hypothesis. Our
Theorems 1.8 and 1.10 offer complementary relations between the “transversal dimen-
sions” of individual color classes.

We conjecture that an even stronger phenomenon happens:

Conjecture 5.1 For all 1 ≤ k ≤ d there exist numbers h(k, d) with the following
property. For any d-colored familyF of convex sets inRd with CH(F1, . . . ,Fd) there
exist numbers k1, . . . , kd such that

(1)
∑

1≤i≤d ki ≤ d, and
(2) each color class Fi , for i ∈ [d], can be crossed by h(ki , d) ki -flats.

It is easy to check that Conjecture 5.1 is sharp for families of flats. The most
elementary instance of the conjecture arises for d = 3 andF3 = {R3}. The remaining
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two classes F1 and F2 satisfy a 2-colored hypothesis. If one of the classes has a
transversal by few points, then Conjecture 5.1 holds for the families, as the other class
can simply be pierced byR3.Otherwise, by Lemma 2.1 bothF1 andF2 can be pierced
by few planes. Then the validity of Conjecture 5.1 in this case depends on the answer
to the following question:

Problem 5.2 Is it true that for any two families A,B of convex sets in R
3 such that

A∩ B �= ∅ holds for all A ∈ A and B ∈ B, one of the familiesA orB can be crossed
by O(1) lines?

Another intriguing question is what are the “true” values of f ′(d) and g′(d) for
Theorem 1.9 or, more precisely, what is the relation between these parameters? For
example, does the theorem still hold with f ′(d) = 1 and large enough g′(d), as it
happens for d = 2?
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