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Abstract A Euclidean distance matrix D(α) is defined by Di j = (αi − α j )
2, where

α = (α1, . . . , αn) is a real vector. We prove that D(α) cannot be written as a sum
of

[
2
√
n − 2

]
nonnegative rank-one matrices, provided that the coordinates of α are

algebraically independent. As a corollary, we provide an asymptotically optimal sep-
aration between the complexities of quantum and classical communication protocols
computing a given matrix in expectation.

Keywords Nonnegative matrix factorization · Extended formulations of polytopes ·
Positive semidefinite rank · Communication complexity

Mathematics Subject Classification 15A23 · 52B12 · 81P45

1 Introduction

A significant number of recent publications are devoted to the study of different rank
functions of matrices arising from different measures of computational complexity.
Examples of such functions include the nonnegative and positive semidefinite ranks
of a matrix, the classical and quantum communication complexities and many others.

Let A be a real matrix with nonnegative entries. The nonnegative rank of A is the
smallest integer k such that A can be written as a sum of k rank-one nonnegative
matrices. The nonnegative rank arises as a measure of complexity of a linear program
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describing the polytope corresponding to a given matrix [21]. More precisely, the
extension complexity of a polytope is equal to the nonnegative rank of its slack matrix,
see [2,6,7,21]. Another interesting rank function, known as positive semidefinite (or
psd) rank, arises in a similar fashion but from semidefinite descriptions of polytopes
(see [5]). Namely, the psd rank of A is the smallest integer k such that there are two
tuples of real1 positive semidefinite k × k matrices, (B1, . . . , Bn) and (C1, . . . ,Cm),
such that Ai j = tr(BiC j ) for all indices i, j .

The functions introduced above do also have applications in communication com-
plexity. As proved in [4], the value �log2 rank+(A)� is the optimal cost of a classical
randomized communication protocol (with nonnegative outputs) that returns a ran-
dom matrix with expectation equal to A. This result was generalized to the setting
of quantum computation in the paper [6], where �log2 rankpsd(A)� was proven to be
the optimal cost of a quantum communication protocol computing the matrix equal
to A in expectation. We refer the reader to [13] for precise definitions and a detailed
treatment of communication complexity, and we note that the above mentioned rank
functions have applications outside the theory of computation aswell. In particular, the
concept of nonnegative rank is important in statistics (see [12]), data mining (see [14]),
demography and many other contexts (see [3] for details).

2 Our Results

Our paper deals with the family of so-calledEuclidean distance matrices, which are an
interesting source of examples illustrating the behavior of functions mentioned above.
Let α = (α1, . . . , αn) be a real vector with n � 3 and pairwise distinct coordinates.
We define the Euclidean distance matrix as the n×n matrix D(α)whose (i, j)th entry
equals Di j = (αi − α j )

2. Beasley and Laffey [1] showed that the classical rank of the
matrix D(1, 2, . . . , n) equals three and that the nonnegative rank of it gets arbitrarily
large as n goes to infinity. They conjectured that the maximal possible rank of an n×n
Euclidean distance matrix is n, but this conjecture has been refuted in [19]. In the
abstract of [10], Hrubeš asked whether or not rank+ D(α) is O(ln n) for all α ∈ R

n ,
and he gave an affirmative solution of this problem for several specific families of
vectors α ∈ R

n . The general case of the problem remained open, and we are going to
show that the solution is in fact negative. Namely, we will prove that almost all vectors
α ∈ R

n are such that rank+ D(α) grows as a power of n.

Theorem 2.1 If the coordinates of a vector α ∈ R
n are algebraically independent

over Q, then rank+ D(α) � 2
√
n − 2.

Remark 2.2 One can construct a family of n algebraically independent numbers as
bi = exp ai , where a1, . . . , an is a family of real numbers linearly independent over
Q. (This is the famous Lindemann–Weierstrass theorem.)

We can get some other interesting separations as corollaries of Theorem 2.1. In
particular, let us compare the behaviour of the nonnegative and psd ranks. It is a

1 An analogue of this concept corresponding to complex Hermitian positive semidefinite matrices is also
useful, see [15] for details.
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basic result that the former is greater than or equal to the latter, but how large can the
difference be? The entrywise square root of D(α) has rank two, and this quantity is
an upper bound for psd rank as pointed out in [5,22]. Therefore, the above mentioned
result from [1] yields an example of a family of matrices whose psd ranks are bounded
but nonnegative ranks grow logarithmically with the size of a matrix. The fundamental
paper [6] provides a family of n×nmatrices whose nonnegative ranks grow as a power
of n while the psd ranks grow logarithmically. The question of whether this separation
is optimal has been left open. In particular, do there exist matrices with bounded psd
ranks whose nonnegative ranks grow as a power of the size? The problem of separating
the nonnegative and psd ranks has been discussed also in [11], but the abovementioned
question remained open. We get the answer as a corollary of Theorem 2.1.

Corollary 2.3 There is a matrix D ∈ R
n×n such that rankpsd(D) = 2 and

rank+(D) � 2
√
n − 2.

This corollary is also interesting from the point of view of the communication com-
plexity theory. As pointed out above, the logarithms of psd and nonnegative ranks,
respectively, are optimal sizes of quantum and classical communication protocols
computing a given matrix in expectation. Therefore, we get an asymptotically opti-
mal separation between the quantum and classical communication complexities. The
existence of such a separation was an open problem despite the efforts mentioned
in the above paragraph. The corresponding question was explicitly posed in [22] as
Problem 4 in Sect. 5.

Corollary 2.4 There is a nonnegative matrix D ∈ R
2m×2m which can be computed

with a one-bit quantumcommunication protocol but requires�(m) bits to be computed
by a classical randomized protocol in expectation.

The goal of this paper is to prove Theorem 2.1. Our approach is mostly geometric,
and we use a characterization of the nonnegative rank in terms of the classical nested
polytopes problem. Several general results and a description of our technique are
provided in Sect. 3. The proof of Theorem 2.1 is completed in Sect. 4.

3 Our Technique

Our proof of Theorem 2.1 is based on a variation of Yannakakis’ theory connecting the
nonnegative rank and extension complexities of polytopes. It will be more convenient
for us to work with the concept of intersection complexity, which is somewhat dual to
extension complexity, see [17] for details. These quantities are always equal to each
other, and all the results on one of them hold for the other one as well. (However, we do
not use the fact that they are equal in the proof of Theorem 2.1.) Let P ⊂ R

d , Q ⊂ R
n

be polytopes, and let H be a d-dimensional affine subspace in Rn . We say that P is a
slice of Q if P is congruent to Q∩H . The intersection complexity of P , denoted ic(P),
is the smallest integer k such that P is a slice of a polytope with k vertices. Clearly,
an additional assumption requiring H to equal {x ∈ R

n | xd+1 = · · · = xn = 0} does
not cause any loss of generality and leads to an equivalent definition of intersection
complexity.
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We will say that a real vector is stochastic if its entries sum up to one. Now let A be
a nonnegative column-stochastic n×m matrix. That is, we assume that the columns of
A are taken from the standard simplex�n = {x ∈ R

n | x1+· · ·+xn = 1, xi � 0}.We
denote by col(A) the linear subspace ofRn spanned by the columns of A, andwe define
the two polytopes,Pin(A) andPout(A), as follows.We setPout(A) = �n∩col(A), and
we define Pin(A) as the convex hull of the columns of A. The following proposition
appears in [2], and it is widely known in the community; Pashkovich in [18] and Gillis
and Glineur in [8] have obtained similar results.

Proposition 3.1 (See Theorem 1 in [2].) Let A be a nonnegative column-stochastic
n × m matrix. If rank+(A) � r , then there is a polytope P satisfying Pin(A) ⊂ P ⊂
Pout(A) and ic(P) � r .

Nowwe are going to prove a useful lower bound on the intersection complexity of a
polytope. Let P be a polytope inRd ; we denote byQ(P) the field obtained fromQ by
adjoining the coordinates of vertices of P . By trdeg(P) we denote the transcendence
degree of the field extensionQ(P) ⊃ Q. The following results provide a lower bound
for the quantity ic(P) in terms of trdeg(P). These results can be seen as an algebraic
analogue of the corresponding result in [16], which is itself a generalization of a result
in [7].

Lemma 3.2 Let Q ⊂ R
d be a polytope with v vertices, and let l be a rational affine

subspace of Rd (that is, an affine span of several rational points). If P = Q ∩ l and
dim Q = d, dim l = k, then trdeg(P) � d(v − d + k).

Proof Let U = (u1, . . . , uk+1) be a tuple of arbitrary points on l satisfying
dim convU = k. We can find a tuple V = (v1, . . . , vd−k) of d − k vertices of Q
satisfying dim conv U ∪ V = d.

Let V ′ = (v′
1, . . . , v

′
d−k) be a tuple of arbitrary rational points satisfying

dim conv U ∪ V ′ = d. Then there exists a unique affine transformation π send-
ing (U, V ) to (U, V ′). Clearly, π is identical on l, and the polytope π(Q) has
d − k vertices with rational coordinates. We get trdeg(P) � trdeg(π(Q)) �
dv − d(d − k). ��
Theorem 3.3 Let P ⊂ R

k be a polytope. Then ic(P) � 2
√
trdeg(P) − k.

Proof Assume that there is a d-dimensional polytope Q with v vertices such that P
is a slice of Q. By Lemma 3.2, we get trdeg(P) � d(v + k − d). The expression
d(v + k − d) attains its maximum at d = (v + k)/2, so we get 4 trdeg(P) � (v + k)2

or v � 2
√
trdeg(P) − k. ��

We recall that the slack matrix of a polytope P has rows indexed with facets of P
and columns indexed with vertices of P , and its (i, j) entry is the distance from the j th
vertex to the i th facet. Two matrices S1, S2 are called scaling-equivalent if there are
monomial square matrices D1, D2 such that S1 = D1S2D2, and polytopes P1, P2 are
projectively equivalent if they can be obtained from each other by a projective trans-
formation. The following fact is a combination of Corollary 1.5 in [9] and Lemma 20
in [17].
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Proposition 3.4 Polytopes P1, P2 are projectively equivalent if and only if their slack
matrices are scaling-equivalent, and in this case P1, P2 have equal intersection com-
plexities.

4 The Proof

Recall that we assume n � 3. In this section, we use i, j, k as indices of the coordinates
of n-vectors and entries of n × n matrices, and we assume that these indices belong
to Z/nZ. In other words, we will assume that i + 1 stands for 1 if i = n.

Let α = (α1, . . . , αn) be a real vector whose coordinates are algebraically inde-
pendent over Q. The n × n matrix D is defined as Di j = (αi − α j )

2, and our goal is
to prove that rank+(D) � 2

√
n − 2.

Claim 4.1 Let ui ∈ R
n be the vectorwhose kth coordinate equals (αk−αi )(αk−αi+1).

We have rank(D) = 3 and ui ∈ col(D).

Proof We have Dkj = α2
k − 2αkα j + α2

j and (u j )k = α2
k − (α j + α j+1)αk +

α jα j+1, whichmeans that the u j ’s and col(D) are spanned by the vectors (1, . . . , 1)
,
(α1, . . . , αn)


, (α2
1, . . . , α

2
n)


. ��
Let us note that permutations of α lead only to permutations of rows and columns

of D, which do not change the nonnegative rank. Therefore, we can assume that α is
increasing. Also, let us define di as the sum of the entries in the i th column of D; we
define D′ as thematrix obtained from D by dividing every entry Di j by d j . Clearly, the
matrix D′ is column-stochastic and satisfies rank+(D) = rank+(D′). Let us compute
the polytope Pout(D′) as in Proposition 3.1.

Claim 4.2 The polytope Pout(D′) is an n-gon. The vertex vi of Pout(D′) is s−1
i ui ,

where si is the sum of the coordinates of the vector ui as in Claim 4.1.

Proof Since rank(D) = 3, the affine subspace H = col(D′) ∩ {x1 + · · · + xn = 1}
has dimension 2, and we get dimPout(D′) = 2. Therefore, Pout(D′) is a polygon, and
every edge of it is the intersection of H and a facet of �n . We see that Pout(D′) has at
most n edges and, therefore, at most n vertices. The vertices of Pout(D′) are intersec-
tions of H with the ridges of �n ; in other words, the vertices are those nonnegative
vectors in H that have two zero coordinates. By Claim 4.1 the vectors in the assertion
satisfy these properties; so we have identified all the n vertices of Pout(D′). ��
Claim 4.3 The slack matrix of Pout(D′) is scaling-equivalent to (v1| . . . |vn), where
the vi ’s are as in Claim 4.2.

Proof The polygon Pout(D′) is defined by the equalities describing col(D) and the
inequalities xi � 0. In other words, x1 � 0, . . . , xn � 0 are facet-defining inequalities
of Pout(D′), which means that the distance from any point to the i th facet of Pout(D′)
is proportional to the i th coordinate of that point. ��
Claim 4.4 Every edge of Pout(D′) contains a vertex of Pin(D′).
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Proof Note that the i th column of D′ is a vertex of Pin(D′) and has a zero at the
i th coordinate. Since the vertices of Pout(D′) have nonnegative coordinates, the i th
column of D′ should belong to the convex hull of those vertices of Pout(D′) that have
zeros at their i th coordinates. By Claim 4.2, there are only two such vertices, vi and
vi−1, and their convex hull is the edge connecting them. ��
Claim 4.5 Let P be a polygon satisfying Pin(D′) ⊂ P ⊂ Pout(D′). Then any edge
of Pout(D′) contains some vertex of P.
Proof Follows directly from Claim 4.4. ��
Claim 4.6 We define the points wk = (wk1, wk2) ∈ R

2, where k ∈ {1, . . . , n}, and

wk1 = 1

αk
+ 1

αk+1
+ 1

αkαk+1
, wk2 = − 1

αk
− 1

αk+1
+ 1

αkαk+1
.

The polygon W = conv{w1, . . . , wn} is projectively equivalent to Pout(D′).
Proof In view of Proposition 3.4, it suffices to prove that the slack matrices of W and
Pout(D′) can be obtained from each other by the scaling of rows and columns; the
slack matrix of W is scaling-equivalent to the matrix S in which the (i, k)th entry is
the oriented volume of the triangle with vertices wi−1, wi , wk . That is, we have

Sik = det

⎛

⎝
wi−1,1 wi−1,2 1
wi1 wi2 1
wk1 wk2 1

⎞

⎠ ,

and straightforward checking shows that

Sik = 2(αi−1 − αi+1)

αi−1α
2
i αi+1

· 1

αkαk+1
· (αi − αk)(αi − αk+1).

Here, the first multiplier is independent of the column index, the second multiplier
is independent of the row index, so we see that the matrix S can be obtained by
scaling from the matrix S′ defined as S′

ik = (αi − αk)(αi − αk+1). The matrix S′ is
scaling-equivalent to the one in Claim 4.3, so we are done. ��
Claim 4.7 Let hk be a point on the straight line connecting the points wk−1 and wk

as in Claim 4.6. Then αk is algebraic in the coordinates of hk .

Proof The coordinates of hk are λwk−1,1 + μwk1 and λwk−1,2 + μwk2, for some
λ,μ ∈ R+ satisfying λ + μ = 1. The sum and difference of these coordinates both
divided by two are equal, respectively, to

σ1 = 1

αk
·
(

λ

αk−1
+ μ

αk+1

)
, σ2 = λ

αk−1
+ μ

αk+1
+ 1

αk
.

By Vieta’s formulas, one of the roots of the equation t2 − σ2t + σ1 = 0 equals 1/αk

(while the other is λ/αk−1 + μ/αk+1). Therefore, αk is a root of a polynomial whose
coefficients are rational functions of the coordinates of hk . ��
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Claim 4.8 Let P be a polygon satisfying Pin(D′) ⊂ P ⊂ Pout(D′). Then ic(P) �
2
√
n − 2.

Proof According to Claim 4.6, there exists a projective transformation π sending
Pout(D′) to W . Claim 4.5 shows that every edge of W contains some vertex of P ′ =
π(P), and from Claim 4.7 we get that any αk is algebraic over Q(P ′). Since the
αk’s are algebraically independent, we get trdeg(P ′) � n, and Theorem 3.3 implies
ic(P ′) � 2

√
n − 2. Finally, Proposition 3.4 implies ic(P) = ic(P ′), and we get the

desired result. ��
In view of Proposition 3.1, Claim 4.8 completes the proof of Theorem 2.1. There-

fore, we get the lower bound for rank+(D), which allows us to prove all the results
announced in Sect. 1. We note that this bound is still quite far from the best known
upper bound, which is O(n/ ln◦6 n), see [20]. (Here, ln◦6 denotes the sixth itera-
tion of the logarithm.) Proving that there are n × n distance matrices D satisfying
rank+(D) ∈ ω(

√
n) seems to require an essentially new technique, and our approach

does not seem to lead to such an improvement. In particular, it is known [20] that
there are generic n-gons P satisfying ic(P) ∈ O(

√
n), which means that Theorem 3.3

cannot be improved substantially.
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