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Abstract Let C1, . . . , Cd+1 ⊂ R
d be d + 1 point sets, each containing the origin in

its convex hull. We call these sets color classes, and we call a sequence p1, . . . , pd+1
with pi ∈ Ci , for i = 1, . . . , d + 1, a colorful choice. The colorful Carathéodory
theorem guarantees the existence of a colorful choice that also contains the origin
in its convex hull. The computational complexity of finding such a colorful choice
(ColorfulCarathéodory) is unknown. This is particularly interesting in the light
of polynomial-time reductions from several related problems, such as computing cen-
terpoints, to ColorfulCarathéodory. We define a novel notion of approximation
that is compatiblewith the polynomial-time reductions toColorfulCarathéodory:
a sequence that contains at most k points from each color class is called a k-colorful
choice. We present an algorithm that for any fixed ε > 0, outputs an �εd�-colorful
choice containing the origin in its convex hull in polynomial time. Furthermore, we
consider a related problem of ColorfulCarathéodory: in the nearest colorful
polytope problem (Ncp), we are given sets C1, . . . , Cn ⊂ R

d that do not necessarily
contain the origin in their convex hulls. The goal is to find a colorful choice whose
convex hull minimizes the distance to the origin. We show that computing a local
optimum for Ncp is PLS-complete, while computing a global optimum is NP-hard.
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1 Introduction

Let P ⊂ R
d be a point set. Carathéodory’s well-known theorem [14, Thm. 1.2.3]

states that the containment of each point in conv(P) can be witnessed by a “small”
subset of P . Moreover, the standard proof of this result is constructive and gives a
polynomial-time algorithm if the coefficients of the original convex combination are
known. In the following, we say that P embraces a point q ∈ R

d or is q-embracing
if and only if q is in the convex hull of P . Similarly, we say P ray-embraces q if and
only if q is in the cone spanned by P .

Theorem 1.1 (Carathéodory’s theorem) Let P = { p1, . . . , pn} ⊂ R
d be a set of n

points.

(Convex version) If P embraces the origin, there is an affinely independent subset
P ′ ⊆ P that embraces the origin.

(Cone version) If P ray-embraces a point b ∈ R
d , there is a linearly independent

subset P ′ ⊆ P that ray-embraces b. �	
As we will discuss in Sect. 2, the standard proof of Theorem 1.1 is constructive and

can be interpreted as a polynomial-time algorithm. Bárány [3] generalized Carathéo-
dory’s theorem by introducing colors: now, multiple point sets embrace the origin, and
we think of these point sets as color classes. Then, there is a sequence of points, one
from each color class, that also embraces the origin. This is called a colorful choice.
See Fig. 1 for an example.

Theorem 1.2 (Colorful Carathéodory’s theorem [3]) Let C1, . . . , Cd+1 ⊂ R
d be

point sets that all embrace the origin. There exists a colorful choice that embraces the
origin.

Fig. 1 The colorful
Carathéodory theorem in two
dimensions: all color classes
embrace the origin and the
marked points form a
0-embracing colorful choice

0
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Fig. 2 Proof of the colorful Carathéodory theorem: if the potential function is larger than 0, it can be
decreased by swapping one point with another point of the same color

Proof Let C , |C | ≤ d + 1, be a colorful choice of C1, . . . , Cd+1. Let �(C) be the
minimum �2-distance between any point in conv(C) and the origin. If �(C) = 0,
then 0 ∈ conv(C), and we are done. Now, assume �(C) > 0. Let c be the point in
conv(C) with minimum �2-distance to the origin. Furthermore, let h− be the open
halfspace that contains the origin and that is bounded by the hyperplane through c
that is orthogonal to c interpreted as a vector. Since c minimizes the distance to the
origin, it is contained in a facet of conv(C). Note that c is not necessarily contained
in the interior of a facet. Theorem 1.1 implies that there is a d-subset F ⊂ C of C
with c ∈ conv(F). Let i× be the color of the point that is missing in F . The halfspace
h− contains the origin, and thus it contains at least one point ci× ∈ Ci× with color
i×. Now, set C ′ = (F ∪ {ci×}). Since conv(C ′) contains c and a point in h−, we have
�(C ′) < �(C). Thus, if �(C) > 0, there is always a way to strictly decrease it.
The situation is depicted in Fig. 2. Because there is only a finite number of colorful
choices, there is a colorful choice C� with �(C�) = 0. �	

The convex version of Theorem 1.1 can be derived directly from Theorem 1.2 by
setting C1 = · · · = Cd+1 = P . There are many different variants and generalizations
of the colorful Carathéodory theorem (see [16]).

We denote with ColorfulCarathéodory the computational problem of finding
a 0-embracing colorful choice under the conditions of Theorem 1.2. Colorful-
Carathéodory is particularly interesting in the light of its applications: let P ⊂ R

d

be a point set. We call a partition of P into r sets P1, . . . , Pr a Tverberg r-partition if
the convex hulls of the Pi have a point in common. By Tverberg’s theorem [29],
there always exists a Tverberg �|P|/(d + 1)�-partition. We denote the computa-
tional problem of finding such a partition by Tverberg. Sarkaria’s proof [26] of
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Tverberg’s theorem can be interpreted as polynomial-time reduction of Tverberg to
ColorfulCarathéodory. Moreover, Tverberg’s theorem directly implies the cen-
terpoint theorem [24] that guarantees the existence of centerpoints, a popular
generalization of the median to higher dimensions. We call a point q ∈ R

d a center-
point for P if any closed halfspace that contains q also contains at least �|P|/(d +1)�
points from P . Consider a Tverberg r -partition P1, . . . , Pr of P for r = �|P|/(d+1)�.
Then any point in

⋂r
i=1 conv(Pi ) �= ∅ is a centerpoint. Hence, the computational

problem of computing centerpoints, Centerpoint, can again be reduced in polyno-
mial time toColorfulCarathéodory. Furthermore, the key argument of Sarkaria’s
proof of Tverberg’s theorem can also be used to prove the colorful Kirchberger the-
orem [2]: given n Tverberg r -partitions T1, . . . , Tn for disjoint d-dimensional point
sets of size n and r = �n/(d + 1)�, a Tverberg r -partition T can be constructed by
taking exactly one point from each Ti and putting it in the set of T with the same
index as in Ti . Again, the proof can be interpreted as a polynomial-time reduction to
ColorfulCarathéodory from ColorfulKirchberger, the computational prob-
lem corresponding to the colorful Kirchberger theorem. We discuss these reductions
in more detail in Sect. 3.1.

In contrast to Carathéodory’s theorem, the complexity of ColorfulCarathéod
ory is still unsettled. Since a solution always exists and can be verified in polynomial-
time, ColorfulCarathéodory is contained in the complexity class total function
NP (TFNP). This already implies thatColorfulCarathéodory is not NP-hard unless
NP = coNP [15, Thm. 2.1], [10, Lem. 4]. In a recent result, Meunier et al. [17]
showed that ColorfulCarathéodory is contained in the intersection of two impor-
tant subclasses of TFNP: polynomial parity argument in a directed graph (PPAD)
and polynomial-time local search (PLS). Moreover, Meunier and Sarrabezolles [18]
have shown that a related problem is PPAD-complete: given d + 1 pairs of points
P1, . . . , Pd+1 ∈ Q

d and a colorful choice that embraces the origin, find another
colorful choice that embraces the origin. Complementary to this result, we show in
Sect. 5 that a related problem is PLS-complete, the nearest colorful polytope problem
(Ncp): given n color classes C1, . . . , Cn , find a colorful choice whose distance to the
origin cannot be decreased by swapping one point with another point of the same
color. This problem is motivated by Bárány’s proof of Theorem 1.2. Furthermore, we
show that the global search variant of Ncp is NP-hard, which answers a question by
Bárány and Onn [4]. This question was also answered independently by Meunier and
Sarrabezolles [18].

Despite the recent improvements on the upper bounds on the complexity of
ColorfulCarathéodory, a polynomial-time algorithm remains elusive. Hence,
approximation algorithms are of interest. This was first considered by Bárány and
Onn [4] who described how to find a colorful choice whose convex hull is “close”
to the origin under several general position assumptions. We call a set ε-close to the
origin if its convex hull has �2-distance at most ε to 0. Let in the following ε, ρ > 0
be parameters. Given d + 1 sets C1, . . . , Cd+1 ∈ Q

d such that

(i) each Ci , i ∈ [d +1], contains a ball of radius ρ centered at the origin in its convex
hull, and

(ii) all points p ∈ Ci , i ∈ [d + 1], fulfill 1 ≤ ‖ p‖ ≤ 2.
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Then, the algorithm by Bárány and Onn iteratively computes a sequence of colorful
choices such that the �2-distances of their convex hulls to the origin strictly decrease
until a colorful choice that embraces the origin is found. In particular, if stopped earlier,
a colorful choice that is ε-close to 0 can be computed in time poly(L , log(1/ε), 1/ρ)

on the Word-Ram with logarithmic costs. Here, L denotes the length of the bit-
encoding of the input points. Note that if 1/ρ = O(poly(L)), the algorithm actually
finds a colorful choice that embraces the origin in polynomial-time. The Bárány–
Onn algorithm is essentially the algorithm from the proof of the convex version of
Theorem 1.2, and the main contribution is a careful analysis.

In the same spirit, Barman [5] showed that if the points have constant norm, a
colorful choice that is ε-close to the origin can be found in dO(1/ε2)L time, where L
is again the length of the input encoding. The algorithm uses the following approx-
imate version of Carathéodory’s theorem as a main ingredient: let P ⊂ R

d be a
0-embracing point set. Then, for any ε > 0, there exists a subset P ′ ⊆ P of size
cε = O(max p∈P ‖ p‖/ε2) that is ε-close to 0. This immediately implies a simple
brute-force algorithm: let C1, . . . , Cd+1 ⊂ Q

d be point sets with 0 ∈ conv(Ci ), for
i ∈ [d + 1], and assume all points have constant norm. Let further C ⊆ ⋃d+1

i=1 Ci be a
0-embracing colorful choice whose existence is guaranteed by Theorem 1.2. Then, the
approximative version of Carathéodory’s theorem asserts that there is a subsetC ′ ⊆ C
of size cε that is ε-close to the origin. We can now guess C ′ by trying out all

(d+1
cε

)

possibilities for the colors in C ′, and for each color i , we try all |Ci | possibilities of
picking a point with color i . For each choice of C ′, we can check whether it is ε-close
to the origin by solving a convex quadratic program. Solving one convex quadratic
program needs O(poly(d)L) time [11,13]. Hence, assuming that each color class is
of size O(d), we can compute an ε-close colorful choice in dO(1/ε2)L time.

It is desirable to approximate ColorfulCarathéodory in a way that is com-
patible with the polynomial-time reductions to it. Then, good enough approximation
algorithms for ColorfulCarathéodory can be converted to approximation algo-
rithms for Tverberg,Centerpoint, andColorfulKirchberger. Both approxima-
tion algorithms above relax the requirement that the resulting colorful choice embraces
the origin. However, in the polynomial-time reductions from Tverberg, Center-
point, and ColorfulKirchberger to ColorfulCarathéodory, it is crucial that
the colorful choice embrace the origin. If the convex hull is only close to the origin
but does not contain it, the reductions break down, and it is not immediate how to fix
them. On the other hand, allowing multiple points from each color class has a natural
interpretation in the polynomial-time reductions to ColorfulCarathéodory and
leads to approximation algorithms for the other problems. Let C1, . . . , Cd+1 ⊂ R

d

be point sets that embrace the origin and let k ∈ N be a number. We call a set
C ⊆ ⋃d+1

i=1 Ci a k-colorful choice if it contains at most k points from each Ci . In
Sect. 3.1, we assume an oracle that computes 0-embracing k-colorful choices, and
we give precise bounds on the quality of the approximation algorithms for Tver-
berg, Centerpoint, and ColorfulKirchberger depending on k. We obtain these
bounds by combining this oracle with the polynomial-time reductions. Furthermore,
in Sect. 3, we present an algorithm that computes for any fixed ε > 0, a 0-embracing
�εd�-colorful choice.
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2 Preliminaries: Embracing Equivalent Points

Throughout the paper, vectors or points are set in boldface. The origin is denoted by
0, the canonical basis of Rd is denoted by e1, . . . , ed , and the all-ones vector

∑d
i=1 ei

is denoted by 1. For a set of points P = {
p1, . . . , pn

} ⊂ R
d , we denote by

– span(P) = {∑n
i=1 φi pi | φi ∈ R

}
its linear span and the subspace orthogonal to

span(P) by span(P)⊥ = {
v ∈ R

d | ∀p ∈ span(P) : 〈v, p〉 = 0
}
;

– aff(P) = {∑n
i=1 αi pi | αi ∈ R,

∑n
i=1 αi = 1

}
its affine hull;

– pos(P) = {∑n
i=1 ψi pi | ψi ∈ R+

}
all linear combinations with nonnegative

coefficients. We call pos(P) the positive span of P and we call a combination with
nonnegative coefficients a positive combination;

– conv(P) = {∑n
i=1 λi pi | λi ∈ R+,

∑n
i=1 λi = 1

}
its convex hull;

– dim P the dimension of span(P);

Unless noted otherwise, all algorithms are analyzed in the Real-Ram model of
computation [23, Chap. 1.4].1 We begin with a constructive version of Theorem 1.1.

Lemma 2.1 (Constructive version of Carathéodory’s theorem) Suppose that P ⊂ R
d

is a 0-embracing point set. Given the coefficients of the convex combination of 0 with
the points in P, a 0-embracing affinely independent subset P ′ ⊆ P can be computed
in O(d3|P| + |P|2) time.

Proof The standard proof of Theorem 1.1 is already constructive. We repeat it briefly
before analyzing its running time when interpreted as an algorithm.

Assume P is affinely dependent. Let p1, . . . , pn denote the points in P and let
α1, . . . , αn ∈ R be coefficients of a nontrivial affine dependency, i.e., let

0 = α1 p1 + · · · + αn pn (1)

with
∑n

i=1 αi = 0 and αi > 0 for some i ∈ [n]. Furthermore, because 0 ∈ conv(P),
there are coefficients λ1, . . . , λn ∈ R+ such that

0 = λ1 p1 + · · · + λn pn (2)

and
∑n

i=1 λi = 1. Let c ∈ R be a factor that is to be specified. Scaling (1) by c ∈ R

and subtracting it from (2), we obtain

0 =
n∑

i=1

λi pi − c
n∑

i=1

αi pi =
n∑

i=1

λ′
i pi ,

where λ′
i = λi − cαi . Thus, let i� = argmin

{
λi/αi | i ∈ [n], αi > 0

}
, where ties are

broken arbitrarily, and set c = λi�/αi� . Then,
∑n

i=1 λ′
i pi is a convex combination of

1 Recall that the Real-Ram is the standard model of computational geometry where memory cells store
arbitrary real numbers and operations on them can be performed at unit cost. We emphasize that there is no
known algorithm for solving linear programs that needs a polynomial number of steps on the Real-Ram.
Thus, our algorithms avoid the use of LPs.
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Fig. 3 The blue points
constitute the linearly dependent
set C . The removal of c×
maintains the embrace of the
origin

0
h

conv(C )

c×

conv(C )

0 with the points in P \ { pi�}. Indeed by definition of i�, we have λ′
i = λi − cαi ≥ 0,∑n

i=1 λ′
i = ∑n

i=1(λi − cαi ) = ∑n
i=1 λi = 1, and λ′

i� = 0. A repeated removal of
points until the remaining set is affinely independent implies the statement.

It remains to show the running time. We compute in each iteration a linear depen-
dency by Gaussian elimination in O(d3) time.2 By our assumption, we know the
convex coefficients λ1, . . . , λn and thus, we can find the point pi� ∈ P in O(n) time.
Furthermore, we can compute the new coefficients λ′

i ∈ R+, i ∈ [n] \ {i�}, from
λ1, . . . , λn , the coefficients of the affine dependency, and the index i� in O(n) time.
Hence, one iteration takes O(d3 + n) time and since there are O(n) iterations, the
algorithm needs in total O(d3n + n2) time. �	

In Sect. 3, we present two approximation algorithms that follow the same strategy:
begin with a complete color class and then replace a subset by points from other color
classes while maintaining the property that the origin is embraced. We conclude this
section with the necessary tools to implement the replacement step.

Let C ⊂ R
d be a 0-embracing point set. We say C is minimally 0-embracing if

C \ {c} is not 0-embracing for all points c ∈ C .

Lemma 2.2 Let C ⊂ R
d be an affinely independent 0-embracing set. Then, a subset

C ′ of C is linearly dependent if and only if C ′ embraces the origin.

Proof Clearly, all 0-embracing subsets of C must be linearly dependent. Let now C ′
be a linearly dependent subset of C . We need to show that C ′ is 0-embracing. Assume
without loss of generality that C ′ is a proper subset and let c× ∈ C \ C ′ be a missing
point. We prove that the set C = C \ {c×} is 0-embracing. A repeated application of
this argument then implies the statement.

Since C ′ ⊆ C , the set C is linearly dependent. Thus, we can write 0 as a nontrivial
linear combination

∑
c∈C φcc of the points in C , where φc ∈ R, for all c ∈ C .

Furthermore, since C is affinely independent, so is C , and hence
∑

c∈C φc �= 0.
By rescaling the coefficients, we obtain an affine combination of 0. This implies
aff(C) = span(C). Now, becauseC = C\{c×} and becauseC is affinely independent,
the point c× is not contained in the affine hull of C and thus not in the linear span
of C . Then, there exists a hyperplane h that contains span(C) but not c×. See Fig. 3.
Because conv(C) is on one side of h, the intersection h ∩ conv(C) = conv(C) is a
face of conv(C). Since h and conv(C) both contain the origin, the face conv(C) must
contain the origin, too. Hence, C is 0-embracing. �	

2 On the Real-Ram, we need not worry about the bit-complexity of Gaussian elimination.
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Lemma 2.3 Let C ⊂ R
d be a minimally 0-embracing set. Then, the following holds:

(i) C is affinely independent and all proper subsets of C are linearly independent.
(ii) For all c ∈ C, the point −c is ray-embraced by C \ {c}.
In particular, dim C = |C | − 1 and pos(C) = span(C).

Proof If C is affinely dependent, then by Theorem 1.1 there exists a proper subset that
embraces the origin. Thus, C must be affinely independent. Hence, (i) is implied by
Lemma 2.2. Write now C as c1, . . . , cn and let λ1, . . . , λn ∈ R+ be coefficients that
sum to 1 such that 0 = ∑m

i=1 λi ci . Then, −λi ci ∈ pos(C) for all i ∈ [n]. Because
C \ {c} does not embrace the origin for any c ∈ C , we have λi > 0 for i ∈ [n]. This
implies (ii). �	

Using the fact that all proper subsets of a minimally 0-embracing set C are linearly
independent, we show how to compute for each point in the positive span of C the
coefficients of the positive combination.

Lemma 2.4 Let C ⊂ R
d be a minimally 0-embracing set and let q ∈ pos(C) be a

point. Then, we can compute the coefficients of a nontrivial positive combination of q
with the points in C in O(d4) time.

Proof Consider first the case that q = 0. Let c× ∈ C be an arbitrary point and denote
with C = C \ {c×} the remaining points. By Lemma 2.3, −c× is ray-embraced by
C . Thus, the linear system Ax = −c×, where A is the matrix whose columns are the
points from C , has a solution. By Lemma 2.3 (i), the set C is linearly independent and
hence this solution is unique. Thus, we can compute the coefficients ψc ∈ R, c ∈ C ,
such that −c× = ∑

c∈C ψcc in O(d3) time with Gaussian elimination. Moreover,
since the solution is unique, we must have ψc ≥ 0 for all c ∈ C . Set ψc× to 1. Then,
0 = ∑

c∈C ψcc, all coefficients are nonnegative, and not all coefficients are zero.
Consider now the case that q �= 0. We iterate through all c× ∈ C and solve the

linear system L c× : Ax = q, where the columns of A are the points in C \{c×}. Again
by Lemma 2.3 (i), the columns of A are linearly independent and hence the solution
xc× to L c× is unique, if it exists. If xc× ≥ 0, we have found the desired coefficients.
By Theorem 1.1, there exists a proper subset C ′ of C that ray-embraces q and thus
there exists a point c� ∈ C for which xc� ≥ 0. Solving the linear system L c× takes
O(d3) time for each point c× ∈ C with Gaussian elimination, and hence we need
O(d4) time in total until finding the q-embracing subset C \ {c�} together with the
coefficients of the positive combination. �	

We can now combine the previous results to show that given a 0-embracing set,
we can find a minimally 0-embracing subset in polynomial time together with the
coefficients of the convex combination of the origin.

Lemma 2.5 Let C ⊂ R
d be a 0-embracing set of size n. Given the coefficients of the

convex combination of 0 with the points in C, we can find a minimally 0-embracing
subset C ′ ⊆ C and the coefficients of the convex combination of 0 with the points in
C ′ in O(n2 + nd3 + d4) time.
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Fig. 4 An example of
Lemma 2.6. The red points
constitute the minimal
0-embracing set C and the blue
points constitute the set Q that
embraces the origin when
projected onto span(C)⊥. The
point c ∈ C is 0-embracing
equivalent to Q

0 span(C)

Q

Q

c

⊥
⊥

Proof First, we apply Lemma 2.1 to obtain an affinely independent subsetC ′ ofC that
embraces the origin. Then, we iteratively test for each point c ∈ C ′ whether the set
C ′ \ {c} is linearly dependent. If so, we remove c from C ′. After iterating through all
points, the resulting set still embraces the origin by Lemma 2.2 and moreover, since
no proper subset is linearly dependent, it is minimally 0-embracing.

The initial application of Lemma 2.1 needs O(n2 + nd3) time. Then, checking for
one point c ∈ C ′ whetherC ′ \{c} is linearly dependent takes O(d3) timewith Gaussian
elimination. Because C ′ is affinely independent, we have |C ′| ≤ d + 1 and thus the
claimed running time follows. �	

Let now Q ⊂ R
d be a set and let C ⊂ R

d be a 0-embracing set, as before. We say
a subset C ′ of C is 0-embracing equivalent to Q with respect to C if (C \ C ′) ∪ Q
embraces 0. In the following,we show that if Q embraces the originwhen orthogonally
projected onto span(C)⊥, there is always at least one point in C that is 0-embracing
equivalent to Q. See Fig. 4.

Lemma 2.6 Let C ⊂ R
d be a 0-embracing set and let Q be a set whose orthogonal

projection Q⊥ onto span(C)⊥ embraces 0. Then, there exists a point c ∈ C that is
0-embracing equivalent to Q with respect to C. Furthermore, if both C and Q⊥ are
minimally 0-embracing, we can compute c together with the coefficients of the convex
combination of 0 with the points in (C \ {c}) ∪ Q in O(d4) time.

Proof We first prove that there is always a point in C that is 0-embracing equivalent
to Q. After that, we show how to find this point efficiently. We can assume without
loss of generality that C is minimally 0-embracing, since otherwise the statement
holds trivially. Let now q1, . . . , qm ∈ R

d denote the points in Q and write each qi ,
i ∈ [m], as the sum of a vector pi ∈ span(C) and a vector p⊥

i ∈ span(C)⊥. Because Q
projected onto span(C)⊥ is 0-embracing, there are coefficients λ1, . . . , λm ∈ R+ that
sum to 1 such that 0 = ∑m

i=1 λi p⊥
i . Consider the convex combination q = ∑m

i=1 λiqi
of the points in Q with the same coefficients. Since

q =
m∑

i=1

λi
(
pi + p⊥

i

) =
( m∑

i=1

λi pi

)
+
( m∑

i=1

λi p⊥
i

)
=

m∑

i=1

λi pi ,

the point q is contained in span(C). By Lemma 2.3, we have pos(C) = span(C)

and hence −q is ray-embraced by C . Now, the cone version of Theorem 1.1 states
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Fig. 5 An example of
Lemma 2.7. The set C consists
of the vertices of the simplex,
and the two representative points
are with respect to the indicated
partition

0

r2

C1

r1

C2

that there is a linearly independent subset C ′ of C that ray-embraces −q. Because
dim C = |C | − 1 by Lemma 2.3, the set C ′ must be a proper subset. Then, Q is
0-embracing equivalent to all points in C \ C ′ �= ∅.

It remains to show how to find a point in C \ C ′. Recall that we assume that both
C and Q⊥ are minimally 0-embracing, where Q⊥ is the orthogonal projection of Q
onto span(C)⊥. Using the algorithm from Lemma 2.4, we compute the coefficients
of the convex combination of the origin with the points in Q⊥ and hence the point
−q in O(d4) time. Applying Lemma 2.4 again, we can determine the coefficients
of the positive combination of −q with the points in C in O(d4) time. Similar to
the algorithm from Lemma 2.5, we try all (|C | − 1)-subsets of C until we find the
linearly independent subset of C that ray-embraces −q. Since the linear combination
of −q is unique, we thus obtain the minimally (−q)-ray-embracing subset C ′ of C
in O(d4) time. Then, we can choose any point in C \ C ′ as c. Finally, since we know
the coefficients of the convex combination of q with the points in Q and since we can
apply Lemma 2.4 to compute the coefficients of the positive combination of −q with
the points in C ′, we can compute the coefficients of the convex combination of the
origin with the points in C ′ ∪ Q by rescaling appropriately. The algorithm takes in
total O(d4) time, as claimed. �	

Lemma 2.6 by itself does not yet yield a nontrivial approximation algorithm. This
is due to the weak guarantee that only a single point in C is 0-embracing equivalent to
Q. To amplify the number of points that can be replaced, we conclude this section by
showing how to compute a set of representative points R for C . Each representative
point stands for a specific subset ofC such that if a point in R is 0-embracing equivalent
to a set Q with respect to R, then the corresponding subset of C is 0-embracing
equivalent to Q with respect to C . See Fig. 5.

Lemma 2.7 Let C ⊂ R
d be a minimally 0-embracing set and let C1, . . . , Cm be a

partition of C into m ≥ 2 sets with |Ci | ≥ 1, for all i ∈ [m]. Then, we can compute
in O(d4) time a set of points R = {r1, . . . , rm} ⊂ R

d with the following properties:

(i) R is minimally 0-embracing.
(ii) Let Q ⊂ R

d be a set that is 0-embracing equivalent to some point r j ∈ R with
respect to R. Then, Q is 0-embracing equivalent to C j with respect to C.

123



730 Discrete Comput Geom (2018) 60:720–755

We call the points in R representative points for C with respect to the partition
C1, . . . , Cm.

Proof Since C is minimally 0-embracing, we can write 0 as a convex combination∑
c∈C λcc such that all λc are strictly greater than 0 and sum to 1. With the algorithm

from Lemma 2.4, we can compute these coefficients in O(d4) time. For i ∈ [m],
set r i to

∑
c∈Ci

λcc. Clearly, R is 0-embracing. Moreover, for all j ∈ [m], the set
{
r i | i ∈ [m], i �= j

}
is not 0-embracing since otherwise the set

⋃m
i=1, i �= j Ci , a strict

subset of C , is 0-embracing, a contradiction to C being minimally 0-embracing. Let
now Q be a set that is 0-embracing equivalent to some point r j ∈ R with respect to R.
That is, the set Q ∪ (R \ {r j }) embraces the origin. Because r i ∈ pos(Ci ), for i ∈ [m],
then the set Q ∪ (⋃m

i=1, i �= j Ci
)
is 0-embracing as well, and hence Q is 0-embracing

equivalent to C j with respect to C . �	

3 k-Colorful Choices

Lemmas 2.6 and 2.7 give rise to a simple approximation algorithm. Let C1, . . . , Cm ⊂
R

d be m color classes that each embrace the origin, and set k = max
(
d − m +

2,
⌈ d+1

2

⌉)
. Then, the following algorithm recursively computes a 0-embracing k-

colorful choice. First, we prune C1 with Lemma 2.5 and partition it into two sets
C ′, C ′′ of size at most �(d +1)/2�. Using Lemma 2.7, we compute two representative
points r ′, r ′′ for this partition ofC1. Then, we project the remainingm−1 color classes
onto the (d − 1)-dimensional space that is orthogonal to span(r ′, r ′′)⊥, and we recur-
sively compute a 0-embracing k-colorful choice Q with respect to the projections
of C2, . . . , Cm . By Lemmas 2.6 and 2.7, one of the two sets C ′, C ′′, say C ′, is 0-
embracing equivalent to Q with respect to C1. Since Q is a k-colorful choice that does
not contain points from C1 and since |C ′|, |C ′′| ≤ k, the set C ′′ ∪ Q is a 0-embracing
k-colorful choice. The recursion stops once only one color class is left. Then, we are
in dimension d − m + 1. Since d − m + 2 ≤ k, pruning the single remaining color

Algorithm 3.1: Simple Approximation

Input: m sets C1, . . . , Cm ⊂ R
d that each embrace the origin, and for each Ci , i ∈ [m], the

coefficients of the convex combination of 0 with the points in Ci
Output: minimally 0-embracing max

(
d − m + 2,

⌈ d+1
2
⌉)
-colorful choice

1 C ← prune C1 with Lemma 2.5;
2 if m = 1 then return C ;

3 C ′, C ′′ ← partition of C into two sets, each of size at most
⌈ d+1

2
⌉
;

4 Compute representative points r ′, r ′′ for C ′, C ′′;
5 qC2, . . . , qCm ← orthogonal projection of C2, . . . , Cm onto span(r ′, r ′′)⊥;

6 qQ ← recurse(qC2, . . . , qCm);

7 Q ← replace projected points in qQ by original points from
⋃m

i=2 Ci ;
8 Determine which point r× ∈ {r ′, r ′′} is 0-embracing equivalent to Q with Lemma 2.6 and let C× be
the corresponding subset of C ;

9 return (C \ C×) ∪ Q pruned with Lemma 2.5;
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class with Lemma 2.5 results already in a 0-embracing k-colorful choice. For details,
see Algorithm 3.1.

Theorem 3.2 Let C1, . . . , Cm ⊂ R
d be m ≤ d color classes such that Ci is a 0-

embracing set of sizeO(d), for i ∈ [m]. On input C1, . . . , Cm and given the coefficients
of the convex combination of the origin for each set Ci , Algorithm 3.1 computes a 0-
embracing max

(
d − m + 2,

⌈ d+1
2

⌉)
-colorful choice in O(d5) time. In particular, for

m = �d/2� + 1, the algorithm computes a (�d/2� + 1)-colorful choice.

Proof The correctness ofAlgorithm3.1 is a direct consequence ofLemmas2.6 and2.7.
It remains to analyze the running time. In each step of the recursion except for the last
one, we prune two times a set of size O(d) with Lemma 2.5. This needs O(d4) time.
Furthermore, by Lemma 2.7, computing two representative points also takes O(d4)

time. Finally, given the set Q, determining which representative point is 0-embracing
equivalent to Q takes also O(d4) by Lemma 2.6 and using the fact that the recursively
computed solution is minimally embracing. Thus, we need O(d4) time per step of the
recursion and there are O(d) recursion steps in total. The total running time is O(d5).�	

Although nontrivial, the fact that we can take in polynomial time half of the points
from each color class to construct a 0-embracing (�d/2� + 1)-colorful choice may
not be too surprising. In the remainder of this section, we present a generalization of
Algorithm 3.1 that computes 0-embracing �εd�-colorful choices in polynomial time
for any fixed ε > 0. The improved approximation guarantee is achieved by repeatedly
replacing subsets of C with Lemmas 2.6 and 2.7 in each step of the recursion. To
still ensure polynomial running time, we reduce the dimensionality by a constant
fraction in each step of the recursion. Additionally, we slightly worsen the desired
approximation guarantee in each level of the recursion, i.e., if the current recursion
level is j and the dimensionality is d ′, thenwedo not compute an �εd ′�-colorful choice,
but a �(1 − ε/2)− j/2εd ′�-colorful choice. As we will see, this additional “slack” in
the approximation guarantee limits the recursion depth to a constant depending only
on ε.

In more detail, let C1, . . . , Cd+1 ⊂ R
d be d + 1 sets that each embrace the origin,

and let ε > 0 be a parameter. We want to compute an �εd�-colorful choice that
embraces the origin. Set

d j =
⌈(

1 − ε

2

) j
d
⌉

and k j =
⌈
ε
(
1 − ε

2

) j/2
d
⌉
,

for j ∈ N. The sequence d j controls the dimension reduction argument with Lem-
mas 2.6 and 2.7, i.e., in the j th recursion level, the dimensionality of the input will be
d j . The sequence k j defines the approximation guarantee in the j th recursion level.
Note that d0 = d and k0 = �εd�. Assume now we are in recursion level j . That is,
the input consists of d j + 1 color classes C1, . . . , Cd j +1 ⊂ R

d j that each embrace
the origin together with the coefficients of their convex combinations of the origin.
We want to compute a 0-embracing k j -colorful choice. As in the previous algorithm,
we begin by computing a minimal 0-embracing subset C of C1 with Lemma 2.5. If
k j ≥ d j + 1, then C is already a valid approximation. Otherwise, we iteratively trans-
form C into a k j -colorful choice. For this, we repeatedly replace subsets of C with
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points from C2 ∪ · · · ∪ Cd j +1 until it contains at most k j points from each color. This
is done as follows. Set m = d j − d j+1 + 1. In the general situation, C contains points
from several color classes, and we partitionC into sets D1, . . . , Dm by distributing the
points from each color in C equally among these m sets. Then, we compute represen-
tative points r1, . . . , rm for this partition. Let C�

1, . . . , C�
d j+1+1 ∈ {C2, . . . , Cd j +1

}
be

d j+1 + 1 color classes, where we discuss shortly how they are chosen. We recursively
compute a k j+1-colorful choice Q for C�

1, . . . , C�
d j+1+1 that embraces the origin when

projected on U = span(r1, . . . , rm)⊥. Note that dimU = d j − (m − 1) = d j+1 and
hence the dimensionality of the input in recursion level j +1 is d j+1, as desired. Then,
by Lemmas 2.6 and 2.7, at least one representative point r i× and hence at least one of
the sets Di× is 0-embracing equivalent to Q. We set C to (C \ Di×) ∪ Q and prune it
with Lemma 2.5. We repeat these steps until C is a k j -colorful choice.

To ensure progress,m should be smaller than k j so that Di× is guaranteed to contain
a point from each color that appears more than k j times in C . Furthermore, Q should
not contain points with colors that appear “often” in C . We call a color class Ci light
with respect to C if |C ∩ Ci | ≤ k j − k j+1, and heavy, otherwise. For the recursion,
we use only light color classes. A k j+1-colorful choice with light colors can be added
safely to C without increasing any color over the threshold k j . In particular, since we
start with C = C1 and use only light color classes, no other color class can ever occur
more than k j times in C and hence we are finished once the number of points from
C1 is at most k j . Please refer to Algorithm 3.3 for details.

Algorithm 3.3: �εd�-Approximation
Input: recursion depth j ∈ N0 (initially 0), original dimension d ∈ N, approximation parameter

ε > 0, d j + 1 sets C1, . . . , Cd j +1 ⊂ R
d j that each embrace the origin, and for each Ci the

coefficients of the convex combination of 0 with the points in Ci
Output: minimally 0-embracing k j -colorful choice

1 k j ← ⌈
ε
(
1 − ε

2
) j/2 d

⌉
;

2 d j+1 ← ⌈ (
1 − ε

2
) j+1 d

⌉
;

3 m ← d j − d j+1 + 1;
4 C ← prune C1 with Lemma 2.5;
5 while |C ∩ C1| > k j do
6 D1, . . . , Dm ← partition of C s.t. the points from each color class are evenly distributed;
7 Compute representative points r1, . . . , rm for D1, . . . , Dm with Lemma 2.7;
8 Find d j+1 + 1 light color classes C�

1, . . . , C�
d j+1+1 ∈ {C2, . . . , Cd j +1};

9 qC1, . . . , qCd j+1+1 ← orthogonal projection of C�
1, . . . , C�

d j+1+1 onto span(r1, . . . , rm )⊥;

10 qQ ←recurse( j + 1, d, ε, qC1, . . . , qCd j+1+1);

11 Q ← replace projected points in qQ by original points from
⋃d j+1+1

i=1 C�
i ;

12 Determine which point r i× ∈ {r1, . . . , rm } is 0-embracing equivalent to Q with Lemma 2.6;
13 C ← (

C \ Di×
) ∪ Q pruned with Lemma 2.5;

14 return C ;

The next lemma states that for ε fixed, the number of necessary recursions before
a trivial approximation with Lemma 2.5 suffices is constant.

123



Discrete Comput Geom (2018) 60:720–755 733

Lemma 3.4 For any ε = �(d−1/4) there exists a j = �(ε−1 ln ε−1) such that
k j ≥ d j + 1.

Proof Replacing d j with its definition, we obtain

d j + 1 =
⌈(

1 − ε

2

) j
d
⌉

+ 1 ≤
(
1 − ε

2

) j
d + 2. (3)

Using ln
(
1 − ε

2

) ≥ −ε if ε ≤ 1, we have for j ≤ 1
ε
ln d,

(
1 − ε

2

) j
d ≥ e−ε j d ≥ 1. (4)

Furthermore, using that ln
(
1 − ε

2

) ≤ − ε
2 , we have for j ≥ 4

ε
ln 3

ε

3
(
1 − ε

2

) j/2 ≤ 3e−ε j/4 ≤ ε. (5)

Combining (4) and (5) with (3), we get

d j + 1 ≤ 3
(
1 − ε

2

) j
d ≤ ε

(
1 − ε

2

) j/2
d ≤

⌈
ε
(
1 − ε

2

) j/2
d
⌉

= k j .

For d = �(ε−1/4), there is a j with 4
ε
ln 3

ε
≤ j ≤ 1

ε
ln d. The claim follows. �	

Next, we show that if the recursion depth is not too large, then we can always find
enough light color classes.

Lemma 3.5 Let j ∈ N and let C1, . . . , Cd j +1 ⊂ R
d j be d j +1 color classes. Further-

more, let C ⊆ ⋃d j +1
i=1 Ci be a set of size at most d j + 1. For all j = O(ε−1 ln(ε3d)),

there exist d j+1 + 1 light color classes with respect to C.

Proof We recall that a color class Ci , i ∈ [d j + 1], is light with respect to C if
|C ∩ Ci | ≤ k j − k j+1. Then, the number of heavy color classes h is bounded by

h ≤
⌈ d j + 1

k j − k j+1

⌉
≤ 2d j

k j − k j+1
+ 1, (6)

since d j ≥ 1 for all j ∈ N. We can bound the denominator as follows:

k j − k j+1 =
⌈
ε
(
1 − ε

2

) j/2
d
⌉

−
⌈
ε
(
1 − ε

2

)( j+1)/2
d
⌉

≥ ε
(
1 − ε

2

) j/2
d − ε

(
1 − ε

2

)( j+1)/2
d − 1

= ε
(
1 − ε

2

) j/2
d
(
1 −

√

1 − ε

2

)
− 1 ≥ ε2

4

(
1 − ε

2

) j/2
d − 1, (7)
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where we apply 1−
√
1 − ε

2 ≥ ε
4 in the last inequality. Using that ln

(
1− ε

2

) ≥ −ε if

ε ≤ 1, we have for j ≤ 2
ε
ln ε2d

8

1 ≤ ε2

8
e−ε j/2d ≤ ε2

8

(
1 − ε

2

) j/2
d (8)

and hence (7) can be simplified to

k j − k j+1 ≥ ε2

8

(
1 − ε

2

) j/2
d. (9)

Plugging (9) into (6) and using (8), we obtain

h ≤ 2
⌈(
1 − ε

2

) j
d
⌉

ε2

8

(
1 − ε

2

) j/2
d

+ 1 ≤ 2
(
1 − ε

2

) j
d

ε2

8

(
1 − ε

2

) j/2
d

+ 3 = 16

ε2

(
1 − ε

2

) j/2 + 3.

Then, the number � of light color classes is at least

� = d j + 1 − h ≥
⌈(

1 − ε

2

) j
d
⌉

− 16

ε2

(
1 − ε

2

) j/2 − 2

≥
(
1 − ε

2

) j
d
(
1 − 16

ε2
(
1 − ε

2

) j/2
d

− 2
(
1 − ε

2

) j
d

)
. (10)

For j ≤ 2
ε
ln ε3d

128 , using ln
(
1 − ε

2

) ≥ −ε if ε ≤ 1, we have

16

ε2
(
1 − ε

2

) j/2
d

+ 2
(
1 − ε

2

) j
d

≤ 16

ε2e−ε j/2d
+ 2

e−ε j/2d
≤ ε

8
+ ε

8
≤ ε

4

and thus (10) implies

� ≥
(
1 − ε

4

)(
1 − ε

2

) j
d. (11)

For j ≤ 2
ε
ln εd

2 , using ln
(
1 − ε

2

) ≥ −ε if ε ≤ 1, we can bound

ε

4

(
1 − ε

2

) j
d ≥ ε

4
e−ε j/2d ≥ 2. (12)

Combining (12) with (11), we get

� ≥
(
1 − ε

2

) j+1
d + ε

4

(
1 − ε

2

) j
d

≥
(
1 − ε

2

) j+1
d + 2 ≥

⌈(
1 − ε

2

) j+1
d
⌉

+ 1 = d j+1 + 1.

Thus, for j = O(ε−1 ln(ε3d)), there are at least d j+1 + 1 light color classes with
respect to C . �	

123



Discrete Comput Geom (2018) 60:720–755 735

Before we finally prove correctness, we show if the recursion depth j is not too
large, then each set of the partition of C contains at least one point from C1 until C is
a k j -colorful choice. This implies that each iteration of the while-loop decreases the
amount of points from C1 in C .

Lemma 3.6 For all j = O(ε−1 ln(εd)), we have m = d j − d j+1 + 1 ≤ k j + 1.

Proof First, we upper bound m as follows:

m = d j − d j+1 + 1 =
⌈(

1 − ε

2

) j
d
⌉

−
⌈(

1 − ε

2

) j+1
d
⌉

+ 1

≤
(
1 − ε

2

) j
d −

(
1 − ε

2

) j+1
d + 2 = ε

2

(
1 − ε

2

) j
d + 2.

(13)
For j ≤ 2

ε
ln εd

2 ,with ln
(
1− ε

2

) ≥ −ε if ε ≤ 1,we obtain ε
2

(
1− ε

2

) j
d ≥ ε

2e−ε j/2d ≥ 1.
Using this in (13), we get

m ≤ ε
(
1 − ε

2

) j
d + 1 ≤

⌈
ε
(
1 − ε

2

) j
d
⌉

+ 1 = k j + 1,

as desired. �	
Theorem 3.7 Let C1, . . . , Cd+1 ⊂ R

d be d +1 sets such that Ci is a 0-embracing set
of size O(d), for i ∈ [d + 1], and let ε = �(d−1/4) be a parameter. On input 0, d, ε,
C1, . . . , Cd+1, and given the coefficients of the convex combination of the origin with
the points in Ci , for i ∈ [d +1], Algorithm 3.3 computes a 0-embracing �εd�-colorful
choice in dO(ε−1 ln ε−1) time.

Proof We begin by showing that if the algorithm enters the while loop in recursion
level j , it is always possible to find d j+1+1 light color classes and that the projections
qC1, . . . , qCd j+1+1 of these color classes are 0-embracing subsets of Rd j+1 (Line 9). In
otherwords, we show that recursion is possible ifC is not a k j -colorful choice. Assume
now the algorithm enters the while loop in recursion level j . Then, C is a minimally
0-embracing subset of C1 ⊂ R

d j and has size at least k j + 1. In Line 6, we partition
C into m sets D1, . . . , Dm by distributing the points from each color class equally. By
Lemma 3.6, we have m ≤ k j + 1, for j = O(ε−1 ln(εd)), and hence each set Di is
nonempty. Thus, the algorithm from Lemma 2.7 can be applied in Line 7 to compute
the representative points r1, . . . , rm . Moreover dim span(r1, . . . , rm) = m − 1 by
Lemma 2.7 and Lemma 2.3. Thus, dim span(r1, . . . , rm)⊥ = d − m + 1 = d j+1.
Now, Lemma 3.5 guarantees that we can always find d j+1 + 1 light color classes
C�
1, . . . , C�

d j+1+1, if j = O(ε−1 ln ε3d). Because each color class C�
i , i ∈ [d j+1 + 1],

is 0-embracing, so are their orthogonal projections onto span(r1, . . . , rk)
T . Thus,

recursion is possible if j = O(ε−1 ln ε3d). By Lemma 3.4, the recursion depth is
limited to �

(
ε−1 ln ε−1

)
, since then pruning C1 with Lemma 2.5 in Line 4 is already

a 0-embracing k j -colorful choice. In this case, the while loop is never executed. We
conclude that for ε = �(d−1/4), recursion is always possible as long as C is not a
k j -colorful choice.
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Next, we prove that the algorithm computes in recursion level j a 0-embracing
k j -colorful choice. As discussed above, the recursion terminates after O(ε−1 ln ε−1)

steps when the set C from Line 4 is already a 0-embracing k j -colorful choice. If C is
not already a valid approximation, the while loop is executed. In each iteration of the
while loop, C is partitioned into m sets D1, . . . , Dm by distributing the points from
each color equally among the Di . ByLemma 3.6,m ≤ k j +1 for j = O(ε−1 ln εd) and
hence each set Di , i ∈ [m], contains at least one point from C1. Applying Lemmas 2.6
and 2.7, one of these sets, say Di× , is replaced in C by a recursively computed k j+1-
colorful choice Q that is 0-embracing when projected onto span(r1, . . . , rm)⊥. Since
we use in the recursion only light color classes with respect to C , and since C1 is
not a light color class, each iteration of the while loop strictly decreases the number
of points from C1 in C . Moreover, because Q contains only points from light color
classes and since it is a k j+1-colorful choice, (C \ Di×)∪ Q contains at most k j points
from the color classes C2, . . . , Cd j +1. Thus, after O(d) iterations, C is a 0-embracing
k j -colorful choice.

It remains to analyze the running time. The initial computation of C in Line 4 and
each iteration of the while loop except for the recursive call takes O(d4) time. Since
the while loop is executed O(d) times and since the recursion depth is bounded by
O(ε−1 ln ε−1), the total running time of Algorithm 3.3 is dO(ε−1 ln ε−1). �	

3.1 Applications

As discussed in the introduction, the main motivation for k-colorful choices is their
application in polynomial-time reductions to ColorfulCarathéodory. We begin
by presenting the proofs whose interpretation as algorithms results in the polynomial
reductions. Then, we give precise bounds on the quality of the obtained approximation
algorithms for Centerpoint, Tverberg, and ColorfulKirchbergerwhen having
access to an algorithm that on inputd+1 color classesC1, . . . , Cd+1, each0-embracing
and of size at most d +1, computes a 0-embracing k(d)-colorful choice in time W (d).

Theorem 3.8 (Centerpoint theorem [24, Thm. 1]) Let P ⊂ R
d be a point set. Then,

there exists a point q ∈ R
d such that for any halfspace h− with q ∈ h−, we have

|P ∩ h−| ≥ ⌈ |P|
d+1

⌉
. �	

Teng [28, Thm. 8.4] showed that given a point set P ∈ R
d and a candidate center-

point q ∈ R
d , it is coNP-complete to decide whether q is a centerpoint of P , if d is part

of the input. For d = 1, a centerpoint is equivalent to a median of a set of numbers and
hence can be computed in O(|P|) time [6]. Jadhav and Mukhopadhyay [9] showed
that linear time is sufficient even in two dimensions. For d ≥ 3 fixed, the best known
algorithm is by Chan [7] who showed how to compute a point with maximum Tukey
depth, a stronger notion than being a centerpoint, in expected time O(nd−1).

Although it is in general coNP-complete to verify centerpoints, Tverberg parti-
tions serve as polynomial-time checkable certificates for a subset of centerpoints.
In recent years, this property has been exploited algorithmically to derive efficient
approximation algorithms for centerpoints [20,21]. The existence of Tverberg points
is guaranteed by Tverberg’s theorem [29].

123



Discrete Comput Geom (2018) 60:720–755 737

Theorem 3.9 (Tverberg’s theorem [29]) Let P ⊂ R
d be a point set of size n. Then,

there always exists a Tverberg
⌈ |P|

d+1

⌉
-partition for P. Equivalently, let P be of size

(m − 1)(d + 1) + 1, with m ∈ N. Then, there exists a Tverberg m-partition for P.

While Tverberg’s first proof is quite involved, several simplified subsequent
proofs [25,26,30,31] have been published. Here, we present Sarkaria’s proof [26]
with further simplifications by Bárány and Onn [4] and Arocha et al. [2]. The main
tool is the next lemma that establishes a correspondence between the intersection of
convex hulls of low-dimensional point sets and the embrace of the origin of certain
high-dimensional point sets. It was extracted fromSarkaria’s proof byArocha et al. [2].
In the following, we denote with ⊗ the tensor product that maps two points p ∈ R

d ,
q ∈ R

m to the point

p ⊗ q =

⎛

⎜
⎜
⎜
⎝

(q)1 p
(q)2 p

...

(q)m p

⎞

⎟
⎟
⎟
⎠

∈ R
dm,

where (q)i p denotes the vector p scaled by the i th component of q, for i ∈ [m]. Then,
⊗ is bilinear, i.e., for all p1, p2 ∈ R

d , q ∈ R
m , and α1, α2 ∈ R, we have

(α1 p1 + α2 p2) ⊗ q = α1( p1 ⊗ q) + α2( p2 ⊗ q)

and similarly, for all p ∈ R
d , q1, q2 ∈ R

m , and α1, α2 ∈ R, we have

p ⊗ (α1q1 + α2q2) = α1( p ⊗ q1) + α2( p ⊗ q2).

Lemma 3.10 (Sarkaria’s Lemma [26], [2, Lem. 2]) Let P1, . . . , Pm ⊂ R
d be m point

sets and let q1, . . . , qm ⊂ R
m−1 be m vectors with qi = ei for i ∈ [m − 1] and

qm = −1. For i ∈ [m], we define

P̂i =
{(

p
1

)

⊗ qi

∣
∣ p ∈ Pi

}

⊂ R
(d+1)(m−1).

Then, the intersection of the convex hulls
⋂m

i=1 conv
(
Pi
)

is nonempty if and only if
⋃m

i=1 P̂i embraces the origin.

Proof Assume there is a point p� ∈ ⋂m
i=1 conv(Pi ). There exist coefficientsλi, p ∈ R+

that sum to1 such that p� = ∑
p∈Pi

λi, p p. Consider the points p̂i ∈ conv(P̂i ), i ∈ [m],
that we obtain by using the same convex coefficients for the points in P̂i , i.e., set

p̂i =
∑

p∈Pi

λi, p

((
p
1

)

⊗ qi

)

∈ conv(P̂i ).
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We claim that
∑m

i=1 p̂i = 0 and thus 0 ∈ conv
(⋃m

i=1 P̂i
)
. Indeed, we have

m∑

i=1

p̂i =
m∑

i=1

∑

p∈Pi

λi, p

((
p
1

)

⊗ qi

)

=
m∑

i=1

⎛

⎝
∑

p∈Pi

λi, p

(
p
1

)
⎞

⎠⊗ qi =
m∑

i=1

(
p�

1

)

⊗ qi

=
(
p�

1

)

⊗
( m∑

i=1

qi

)
=
(
p�

1

)

⊗ 0 = 0,

using the bilinearity of ⊗.
Assumenow that

⋃m
i=1 P̂i embraces theorigin.Wewant to show that

⋂m
i=1 conv(Pi )

is nonempty. Then, we can express the origin as a convex combination
∑m

i=1
∑

p̂∈P̂i

λi, p̂ p̂ with λi, p̂ ∈ R+ for i ∈ [m] and p̂ ∈ P̂i , and
∑m

i=1
∑

p̂∈P̂i
λi, p̂ = 1. Hence, we

have

0 =
m∑

i=1

∑

p̂∈P̂i

λi, p̂

((
p
1

)

⊗ qi

)

=
m∑

i=1

⎛

⎝
∑

p̂∈P̂i

λi, p̂

(
p
1

)
⎞

⎠⊗ qi ,

again using the bilinearity of ⊗. By the choice of q1, . . . , qm , there is (up to multipli-
cation with a scalar) exactly one linear dependency: 0 = ∑m

i=1 qi . Thus,

∑

p̂∈P̂1

λ1, p̂

(
p
1

)

= · · · =
∑

p̂∈P̂m

λm, p̂

(
p
1

)

=
(
p�

c

)

,

where p� ∈ R
d and c ∈ R. In particular, the last equality implies that

∑

p̂∈P̂1

λ1, p̂ = · · · =
∑

p̂∈P̂m

λm, p̂ = c.

Now, since for all i ∈ [m] and p̂ ∈ P̂i , the coefficient λi, p̂ is nonnegative and since
the sum

∑
i∈[m]

∑
p̂∈P̂i

λi, p̂ is 1, we must have c = 1/m ∈ (0, 1]. Hence, the point
m p� is common to all convex hulls conv(P1), . . . , conv(Pm). �	

Please refer to Fig. 6 for an example of Sarkaria’s lifting argument. Little work is
now left to obtain Tverberg’s theorem fromLemma 3.10 and the colorful Carathéodory
theorem.

Proof of Theorem 3.9 Let P = { p1, . . . , pn} ⊂ R
d be a point set of size n =

(d + 1)(m − 1) + 1 and let P1, . . . , Pm denote m copies of P . For each set Pj ⊂ R
d ,

j ∈ [m], we construct a ((d + 1)(m − 1))-dimensional set P̂j as in Lemma 3.10, i.e.,

P̂j =
{

p̂i, j =
(
pi
1

)

⊗ q j

∣
∣ pi ∈ P

}

⊂ R
(d+1)(m−1) = R

n−1.
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0

p1 p2

p2p1

p̂2
p2
1

1p̂1
p1
1

1

p̂2
p2
1

( 1) p̂1
p1
1

( 1)

1

1

Fig. 6 An example of Sarkaria’s lemma for d = 1 and m = 2. The set P1 consists of the red points and the
set P2 consists of the blue points. Since the convex hulls of P1 and P2 intersect, the lifted points embrace
the origin

For i ∈ [n], we denote with Ĉi ⊆ ⋃m
j=1 P̂j the set of points { p̂i, j | j ∈ [m]} that

correspond to pi ∈ P , and we color these points with color i . For i ∈ [n], note
that Lemma 3.10 applied to m copies of the singleton set { pi } ⊆ P guarantees that
the color class Ĉi ∈ R

n−1 embraces the origin. Hence, we have n color classes
Ĉ1, . . . , Ĉn that embrace the origin in Rn−1. Now, by Theorem 1.2, there is a colorful
choice Ĉ = {ĉ1, . . . , ĉn} ⊆ ⋃n

i=1 Ĉi with ĉi ∈ Ĉi that embraces the origin, too.
Because Ĉ embraces the origin, Lemma 3.10 guarantees that the convex hulls of the

sets Tj = { pi ∈ P | p̂i, j ∈ Ĉ}, j ∈ [m], have a point in common. Moreover, since all
points in

⋃m
j=1 P̂j that correspond to the same point in P have the same color, each

point pi ∈ P appears in exactly one set Tj , j ∈ [m]. Thus, T = {T1, . . . , Tm} is a
Tverberg m-partition of P . �	

Even less effort is required to obtain the colorful Kirchberger theorem from
Lemma 3.10. Let A, B ⊂ R

d be two point sets. Kirchberger’s theorem [12] states
that if for all subsets C ⊂ A ∪ B of size at most d + 2, the sets conv(A ∩ C) and
conv(B ∩ C) have an empty intersection, then conv(A) and conv(B) have an empty
intersection. Arocha et al. [2] presented a generalization based on the colorful Cara-
théodory theorem.3

Theorem 3.11 (Colorful Kirchberger theorem [2, special case of Thm. 3]) Let
C1, . . . , Cn ⊂ R

d be n = (m − 1)(d + 1) + 1 pairwise disjoint color classes and
let Ti = {Ti,1, . . . , Ti,m} denote a Tverberg m-partition for Ci , where i ∈ [n]. Then,
there exists a colorful choice C, |C | = n, such that the family of sets

3 Actually, Arocha et al. present an even stronger result (the “very colorful Kirchberger theorem” [2,
Thm. 3]) using a generalization of the colorful Carathéodory theorem. Here, we consider the weaker version
that can be obtained from Theorem 1.2.
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TC =
{

C ∩
( n⋃

i=1

Ti, j

)∣
∣ j ∈ [m]

}

is a Tverberg m-partition for C.

Proof We lift each Tverberg partition to R
n−1 as in Lemma 3.10: for i ∈ [n] and

j ∈ [m], we denote with T̂i, j the set

T̂i, j =
{(

p
1

)

⊗ q j

∣
∣ p ∈ Ti, j

}

⊂ R
n−1.

By Lemma 3.10 and since each set Ti , i ∈ [n], is a Tverberg partition, the sets
Ĉi = ⋃m

j=1 T̂i, j , i ∈ [n], embrace the origin. We color the points in Ĉi with color i .
Since there are n color classes that embrace the origin in n−1 dimensions, Theorem1.2
guarantees the existence of a colorful choice Ĉ that embraces the origin. For j ∈
[m], let T̂ j = Ĉ ∩ (⋃n

i=1 T̂i, j
)
denote all points from a j th element in a Tverberg

partition in ĈC . Since Ĉ = ⋃m
j=1 T̂ j embraces the origin, Lemma 3.10 implies that

the convex hulls of the sets Tj = {
p ∈ ⋃n

i=1 Pi | ( p1
) ⊗ q j ∈ T̂ j

}
have a nonempty

intersection. Further, since for j ∈ [m], the set T̂ j is a subset of
⋃n

i=1 T̂i, j , we have
Tj ⊂ (⋃n

i=1 Ti, j
)
. Moreover, since all points that correspond to the Tverberg partition

Ti , i ∈ [n], have color i , exactly one of the sets T1, . . . , Tm contains a point from Ci .
The colorful choice C can be obtained by projecting Ĉ down to Rd . �	

We now give precise bounds on the quality and the running time of approximation
algorithms obtained by combining algorithms for k-colorful choiceswith the presented
reductions toColorfulCarathéodory.Unfortunately, the approximationguarantee
of Algorithm 3.3 is tooweak to obtain a nontrivial approximation algorithm for Tver-
berg and therefore also for Centerpoint. On the positive side, it leads to a nontrivial
approximation algorithm for ColorfulKirchberger.

In the following, let A be an algorithm that, when given d + 1 color classes
C1, . . . , Cd+1 ⊂ R

d , each embracing the origin and of size O(d), and for each Ci

the coefficients of the convex combination of the origin, outputs a 0-embracing k(d)-
colorful choice in W (d) time, where k, W : N → N are arbitrary but fixed functions.

Corollary 3.12 Let P ⊂ R
d be a point set of size n and let A be as above. Set

m̃ =
⌈ n

(d + 1)2(k(n − 1) − 1) + d + 1

⌉
= �

(
n

d2k(n − 1)

)

.

Then, a Tverberg m̃-partitionT of P and a point p ∈ ⋂T ∈T conv(T ) can be computed
in O((d2 + m)n2 + W (n − 1)) time.

Proof Set m = �n/(d + 1)�. In the proof of Theorem 3.9, we lift m copies of P with
Lemma 3.10 to R

n−1. Lifting one point needs O(dm) = O(n) time and hence lifting
all m copies takes O(mn2) time. Then, each point pi ∈ R

d from P corresponds to
a color class Ci = {

p̂i, j | j ∈ [m]} ⊂ R
n−1 of size m and a 0-embracing colorful
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choice of C1, . . . , Cn corresponds to the Tverberg partition T = {T1, . . . , Tm} that
we obtain by assigning pi ∈ P to Tj if p̂i, j ∈ C . By construction of the color classes
in the proof of Theorem 3.9, the barycenter of Ci is the origin, for i ∈ [n]. Since
we know then for each color class the coefficients of the convex combination of the
origin, we can applyA to obtain a 0-embracing k(n−1)-colorful choice C̃ ⊆ ⋃n

i=1 Ci

together with the coefficients of the convex combination of the origin with the points
in C̃ . Let T̃ = {

T̃1, . . . , T̃m
}
be a family of subsets of P that we construct as before

by assigning pi to T̃ j if p̂i, j ∈ C̃ . Here, T̃ is a multiset, i.e., we allow T̃i = T̃ j

for i �= j . Since C̃ embraces the origin, Lemma 3.10 guarantees that the intersection⋂m
i=1 conv(T̃i ) is nonempty.Moreover, becausewe know the coefficients of the convex

combination of the origin with the points in C̃ , we can compute in O(dn) time a point
p� ∈ ⋂m

i=1 conv(T̃i ) together with the coefficients of the convex combination of p�

with the points in T̃i for i ∈ [m], as described in the proof of Lemma 3.10.
Now, we construct a Tverberg partition for P out of T̃ by a greedy strategy that

iteratively removes sets from T̃ . Let T̃ ∈ T̃ be some set and remove it from T̃ . Sincewe
know the coefficients of the convex combination of p� with the points in T̃ , Lemma 2.1
can be applied to prune T̃ to a p�-embracing set of size at most d + 1 in O(d3n + n2)

time. Then, for each point p ∈ T̃ , we remove the at most k(n − 1)− 1 other sets from
T̃ that contain p. We continue with the next set in T̃ that has not yet been removed
until T̃ = ∅. Let T � ⊆ T̃ be the family of sets that we obtain by this process. Clearly,
T � is a Tverberg partition and because T � ⊆ T̃ , we have p� ∈ ⋂

T̃ ∈T � conv(T̃ ).
Moreover, for each set T̃i ∈ T �, we remove at most (d + 1)(k(n − 1) − 1) other sets
from T̃ . Thus, the size of the Tverberg partition T � is at least

∣
∣
∣T �

∣
∣
∣ ≥

⌈ m

(d + 1)(k(n − 1) − 1) + 1

⌉
≥
⌈ n

(d + 1)2(k(n − 1) − 1) + d + 1

⌉
.

Constructing the ColorfulCarathéodory instance takes O(mn2) time. Using
A, we need W (n −1) time to compute a k(n −1)-colorful choice C̃ . Pruning every set
of T̃ with Lemma2.1 to atmost d+1 points needsO(m(d3n + n2)) = O((d2 + m)n2)

time. Finally, constructing T � out of T̃ takes O(n2) time with the naive algorithm.
This results in the claimed running time of O((d2 + m)n2 + W (n − 1)). �	

Furthermore, we can use A to approximate ColorfulKirchberger.

Corollary 3.13 LetA be as above and let C1, . . . , Cn ⊂ R
d be n = (m−1)(d+1)+1

pairwise disjoint color classes that are each of size n. Furthermore, for i ∈ [n], let
Ti = {Ti,1, . . . , Ti,m} denote a Tverberg m-partition for Ci . Then, given for each
Tverberg partition Ti , i ∈ [n], a point pi ∈ ⋂m

j=1 conv(Ti, j ), and for all i ∈ [n] and
j ∈ [m], the coefficients of the convex combination of pi with the points in Ti, j , we
can compute inO(n3 + W (n − 1)) time a k(n−1)-colorful choice C ⊆ ⋃n

i=1 Ci such
that

TC =
{

C ∩
( n⋃

i=1

Ti, j

)∣
∣ j ∈ [m]

}

is a Tverberg m-partition for C.
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Proof In the proof of Theorem 3.11, we lift the points
⋃n

i=1 Ci to R
n−1 so that the

set of points Ĉi that corresponds to the color class Ci still embraces the origin, where
i ∈ [n]. Moreover, if Ĉ ′ ⊆ ⋃n

i=1 Ĉi is a 0-embracing colorful choice of the lifted
points, then there is a corresponding colorful choice C ′ with respect to C1, . . . , Cn

such that

TC ′ =
{

C ′ ∩
( n⋃

i=1

Ti, j

)∣
∣ j ∈ [m]

}

is a Tverberg m-partition for C ′. Similarly, a 0-embracing k(n − 1)-colorful choice Ĉ
of the lifted color classes corresponds to a k(n − 1)-colorful choice C with respect to
C1, . . . , Cn such that

TC =
{

C ∩
( n⋃

i=1

Ti, j

)∣
∣ j ∈ [m]

}

is a Tverberg m-partition for C .
Computing the tensor product

( p
1

) ⊗ q, where p ∈ R
d and q ∈ R

m−1, needs
O(dm) = O(n) time and hence lifting the point sets C1, . . . , Cn ⊂ R

d to R
n−1 with

Lemma 3.10 needs O(n3) time in total. Since we know for each Tverberg partition
Ti , i ∈ [n], a point pi ∈ ⋂m

j=1 conv(Ti, j ) together with the coefficients of the convex
combination of pi with the points in Ti, j for j ∈ [m], we can compute in O(n)

time the coefficients of the convex combination of the origin with the points in Ĉi

as described in the proof of Lemma 3.10. Then, A can be applied to compute a 0-
embracing k(n −1)-colorful choice Ĉ with respect to the lifted point sets in W (n −1)
time. Finally, constructing C and TC out of Ĉ needs O(n) time. Hence, the total time
needed is O(n3 + W (n − 1)). �	

Now, given d + 1 color classes C1, . . . , Cd+1 ⊂ R
d that embrace the origin, we

can compute with Algorithm 3.3 an �εd�-colorful choice that embraces the origin
in polynomial time. Combining this with Corollary 3.12, we obtain an algorithm
that computes Tverberg partitions of size O(1) in polynomial time, a trivial result.
However, combining Algorithm 3.3 with Corollary 3.13, we do obtain a nontrivial
approximation algorithm for ColorfulKirchberger: given n = (m −1)(d +1)+1
color classesC1, . . . , Cn , each of size n, and for each color class aTverbergm-partition
Ti = {Ti,1, . . . , Ti,m} together with a point pi ∈ ⋂m

j=1 conv(Ti, j ) and the coefficients
of the convex combination of pi with the points in Ti, j , for all j ∈ [m], we can

compute in nO(ε−1 ln ε−1) time an �εn�-colorful choice C such that

TC =
{

C ∩
( n⋃

i=1

Ti, j

)∣
∣ j ∈ [m]

}

is a Tverberg m-partition for C , where ε > 0 is arbitrary but fixed.
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4 Exact Algorithms for COLORFULCARATHÉODORY

In contrast to the previous sections, we now focus on computing an exact solution for
the convex version of ColorfulCarathéodory. Let C1, . . . , Cd+1 ⊂ Q

d be d + 1
sets that each embrace the origin, and assume all are of size at most d + 1. The naive
algorithm checks for all O(dd+1) possible colorful choices whether they embrace the
origin. This can be further improved by using the following result by Bárány.

Theorem 4.1 ([3, Thm. 2.3]). Let C1, . . . , Cd ⊂ R
d be d sets that all embrace the

origin and let c ∈ R
d be a point. Then, there exist d points c1 ∈ C1, . . . , cd ∈ Cd

such that the set {c, c1, . . . , cd} embraces the origin. �	
In particular, Theorem 4.1 implies that every point c ∈ ⋃d+1

i=1 Ci participates in
some 0-embracing colorful choice and hence we can fix a point from one color class
and check only all O(dd) possibilities of extending it to a colorful choice.

We now consider two related settings that allow for further improvement. We
begin with the simple case in which each color class consists of only two points
(Sect. 4.1). Then, basic linear algebra suffices to compute a 0-embracing colorful
choice in polynomial-time. In Sect. 4.2, we show that many color classes help. Using
an approach similar to the algorithm by Miller and Sheehy for approximating Tver-
berg partitions [20], we present a quasi-polynomial time algorithm that computes a
0-embracing colorful choice when given �(d2 log d) color classes instead of only
d + 1.

4.1 A Simple Special Case

In the following, we assume that |C1| = · · · = |Cd+1| = 2 and let ci,1, ci,2 denote
the two points in Ci , for i ∈ [d + 1]. Clearly, for all i ∈ [d + 1], the point −ci,1
must be contained in the positive span of ci,2. Furthermore, we assume without loss
of generality that all points are different from the origin, as otherwise computing a
0-embracing colorful choice is trivial. Then, the set

{
ci,1 | i ∈ [d + 1]} is linearly

dependent and hence there exist coefficients φ1, . . . , φd+1 ∈ R, not all 0, such that
0 = ∑d+1

i=1 φi ci,1. Now, since −ci,1 ∈ pos(ci,2) for all i ∈ [d + 1], the set C ={
ci,1 | i ∈ [d +1], φi ≥ 0

}∪{ci,2 | i ∈ [d +1], φi < 0
}
embraces the origin, and it is

a colorful choice. Since the computation of the coefficients of the linear dependency
can be carried out in O(d3) time with Gaussian elimination, finding C takes O(d3)

time in total. The following theorem is now immediate.

Theorem 4.2 Let C1, . . . , Cd+1 ⊂ R
d be d + 1 pairs of points that all embrace the

origin. Then, a 0-embracing colorful choice can be computed in O(d3) time.

4.2 Many Colors

In the following, we assume that we are given �(d2 log d) instead of only d + 1 color
classes that all embrace the origin. The algorithm repeatedly combines k-colorful
choices to one 0-embracing �k/2�-colorful choice until a 0-embracing 1-colorful
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choice is obtained. This approach is similar to the Miller–Sheehy approximation algo-
rithm for Tverberg partitions [20], and it leads to an algorithm with total running time
dO(log d).

Lemma 4.3 Let C ′
1, . . . , C ′

d+1 ⊂ R
d be 0-embracing k-colorful choices of size O(d)

such that each color appears in a unique k-colorful choice. Then, given the coefficients
of the convex combination of the origin for each set C ′

i , i ∈ [d + 1], a 0-embracing
�k/2�-colorful choice C ′ can be computed in O(d5) time.

Proof First, we prune each k-colorful choice C ′
i , i ∈ [d + 1], with Lemma 2.5 and

then partition it into two sets C ′
i,1, C ′

i,2 by distributing the points from each color
equally among both sets. Then, we apply the algorithm from Lemma 2.7 to obtain two
representative points r i,1, r i,2 and set Ri = {r i,1, r i,2}. Since the sets R1, . . . , Rd+1
each embrace the origin and consist of only two points, we can compute a 1-colorful
choice R with respect to R1, . . . , Rd+1 with the algorithm from Theorem 4.2. Now,
consider the set C ′ = {

C ′
i, j | r i, j ∈ R

}
. Since R is 0-embracing, so is C ′. Moreover,

because a color j appears only in one of the k-colorful choices, say C ′
i , and since each

set of the partition C ′
i,1, C ′

i,2 contains at most �k/2� points with color j , the set C ′ is
a �k/2�-colorful choice.

Pruning each k-colorful choice with Lemma 2.5 and then computing the two repre-
sentative points per partition takes O(d5) time in total. This dominates the time needed
for the computation of R and thus, we can compute C ′ in O(d5) time. �	

Note that Lemma 4.3 actually implies a second algorithm to compute �(d + 1)/2�-
colorful choices that embrace the origin: let C1, . . . , Cd+1 ⊂ R

d be 0-embracing
color classes and assume the sets have size d + 1. Set C ′

i = Ci in Lemma 4.3, for
i ∈ [d + 1]. Then, C ′

i is trivially a (d + 1)-colorful choice and hence the set C ′ is a
�(d + 1)/2�-colorful choice.

Now,we apply Lemma 4.3 repeatedly until we obtain a 1-colorful choice as follows.
Let C1, . . . , Cn ⊂ Q

d be n = �(d2 log d) color classes such that Ci is 0-embracing
and has size d +1, for i ∈ [n]. We create an array A of size m = �(log d) that initially
contains all n color classes in A[0]. Set c0 = d + 1 and for i ∈ [k], set ci = �ci−1/2�.
Throughout the algorithm, we maintain the invariant that the i th cell contains only
0-embracing ci -colorful choices and that each color appears in at most one set in all
of A. Since c0 = d + 1, the invariant holds in the beginning. We repeatedly improve
k-colorful choices with Lemma 4.3 as follows: let i be the maximum index of a cell in
A that contains at least d + 1 sets C ′

1, . . . , C ′
d+1 and remove them from A[i]. By our

invariant, these sets are 0-embracing ci -colorful choices. Applying Lemma 4.3, we
can combine C ′

1, . . . , C ′
d+1 to one ci+1-colorful choice C ′ that embraces the origin.

We prune it with Lemma 2.5 and check whether it is a 1-colorful choice. If so, we
have found a solution. Otherwise, we add it to A[i + 1]. Furthermore, we check for
colors that appeared in the removed sets C ′

1, . . . , C ′
d+1 but not in C ′ and add the

corresponding color classes back to A[0]. The invariant is maintained since these
colors only appeared in the removed sets. See Algorithm 4.5 for a detailed description
of the algorithm.

We conclude this section by proving the correctness of Algorithm 4.5 and analyzing
its running time.
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Theorem 4.4 Let C1, . . . , Cn ⊂ R
d be n = �(d2 log d) sets such that Ci embraces

the origin and |Ci | = O(d), for i ∈ [n]. Then, given the coefficients of the convex
combination of the origin for each set Ci , i ∈ [n], Algorithm 4.5 computes a 0-
embracing colorful choice in dO(log d) time.

Proof Set m = �log(d + 1)�+ 1. We have already argued that the i th cell of the array
A contains only 0-embracing ci -colorful choices. First, we observe that progress is
always possible, i.e., that it is always possible to find a cell of A that contains at least
d +1 sets: the array has m = �(log d) levels and within each set in A, at most d colors
appear. Thus, for d2m + 1 = �(d2 log d) colors, the pigeonhole principle guarantees
a cell with at least d + 1 sets.

We claim that a combination of d +1 sets in A[m] results in a 0-embracing colorful
choice. Since ci ≤ d+1

2i + 2, the sets in A[m − 1] are 0-embracing 3-colorful choices,
the sets in A[m] are 2-colorful choices and the combination of d + 1 sets in A[m]
gives a 1-colorful choice, as claimed.

Let T (i) denote the time to compute a set at level i . For this, we have to compute
d + 1 sets in level i − 1. Since one application of Lemma 4.3 takes O(d5) time, we
have T (i) = (d + 1)T (i − 1) + O(d5), for i ≥ 1, and T (0) = O(1). This solves to
T (i) = dO(i). At the end, each level i ≥ 1 of A contains at most d + 1 sets, so the
total running time is

∑m+1
i=1 (d + 1)T (i) = ∑m+1

i=1 dO(i) = dO(log d), as claimed. �	

Algorithm 4.5: Exact algorithm for many color classes

Input: color classes C1, . . . , Cn ⊂ R
d and for each set Ci , the coefficients of the convex

combination of 0, where n = �(d2 log d)

1 A ← Array of size m = � (log d);
2 Prune C1, . . . , Cn with Lemma 2.5;
3 A[0] ← {C1, . . . , Cn};
4 while no 0-embracing colorful choice was found do
5 i ← maximum index with |A[i]| ≥ d + 1;
6 Remove d + 1 sets C ′

1, . . . , C ′
d+1 from A[i];

7 C ′ ← combine C ′
1, . . . , C ′

d+1 with Lemma 4.3;

8 Prune C ′ with Lemma 2.5;
9 if C ′ is a colorful choice then

10 return C ′;
11 Add C ′ to A[i + 1];
12 Add all color classes Ci with Ci ∩ (⋃d+1

i=1 C ′
i

) �= ∅ and Ci ∩ C ′ = ∅ to A[0];

5 The Complexity of a Related Problem

We can show that a related problem to ColorfulCarathéodory that is motivated
by Bárány’s original proof [3], the local search nearest colorful polytope problem
(L-Ncp), is PLS-complete. Additionally, by adapting the PLS-completeness proof, we
prove that finding a global optimum for Ncp (G-Ncp) is NP-hard. This answers a
question by Bárány and Onn [4, p. 561]. We note that this question has been answered
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independently by Meunier and Sarrabezolles [18, Thm. 2]. In contrast to the previous
sections, all algorithms in this section are analyzed in theWord-Ramwith logarithmic
costs. This models the number of steps on a Turing machine, as required by the
definition of PLS.

5.1 The Complexity Class PLS

The complexity class polynomial local search (PLS) [1,10,19] captures search prob-
lems that can be solved by a local-improvement algorithm. Each improvement step
can be carried out in polynomial time, but the total number of steps to a local optimum
may be exponential. The existence of a local optimum is guaranteed, as the progress
of the algorithm can be measured by a potential function that strictly decreases with
each improvement step.

More formally, a problem in PLS is a relationR between a set of problem instances
I ⊆ {0, 1}� and a set of candidate solutions S ⊆ {0, 1}� with the following properties:
– The set I is polynomial-time verifiable. Furthermore, there exists an algorithm
that, given an instance I ∈ I and a candidate solution s ∈ S, decides in time
poly(|I |) whether s is valid for I . In the following, we denote with SI ⊆ S the
set of valid candidate solutions for a given instance I .

– There exists a polynomial-time algorithm that on input I ∈ I returns a valid
candidate solution sI ∈ SI . We call sI the standard solution.

– There exists a polynomial-time algorithm that on input I ∈ I and s ∈ SI returns
a set NI,s ⊆ SI of valid candidate solutions for I . We call NI,s the neighborhood
of s.

– There exists a polynomial-time algorithm that on input I ∈ I and s ∈ SI returns
a number cI,s ∈ Q. We call cI,s the cost of s.

We say a candidate solution s ∈ S is a local optimum for an instance I ∈ I if (i)
s ∈ SI ; and (ii) for all s′ ∈ NI,s , we have cI,s ≤ cI,s′ (minimization problem) or cI,s ≥
cI,s′ (maximization problem). The relationR then consists of all pairs (I, s) such that
s is a local optimum for I . This formulation implies a simple algorithm, the standard
algorithm: begin with the standard solution, and repeatedly call the neighborhood-
algorithm to improve the current solution until a local optimum is reached. Although
each iteration takes polynomial time, the total number of iterationsmay be exponential,
the time needed to cycle through all the exponentially many candidate solutions. There
are straightforward examples where this happens. Moreover, there are PLS-problems
for which it is PSPACE-complete to compute the local optimum found by the standard
algorithm [1, Lem. 15].

Each problem instance I of a PLS-problem can be seen as a simple search problem
on a directed graph G I = (V, E). The nodes of G I are the valid candidate solutions
for I , and there is a directed edge from u ∈ SI to v ∈ SI if v ∈ NI,u and cI,v < cI,u

(minimization problem) or cI,v > cI,u (maximization problem). Then, the set of local
optima for I is precisely the set of sinks in G I , i.e., the set of nodes with outdegree 0.
Because the costs induce a topological order on the graph, at least one sink exists.

Since PLS contains relations and not languages, a different concept of reduction
is necessary to define complete problems. We say a PLS problem A is PLS -reducible
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(or just reducible) to a PLS problem B if there exist two polynomial-time computable
functions f A �→B and fB �→A with the following properties. Let IA denote the set of
instances of A and let SA denote the set of candidate solutions of A. Define IB and SB

similarly. The function f A �→B : IA → IB maps problem instances of A to problem
instances of B. The function fB �→A : IA × SB → SA maps candidate solutions of
B to candidate solutions of A such that if sB ∈ SB is a candidate solution of B with(

f A �→B(IA), sB
) ∈ B, then

(
IA, fB �→A(IA, sB)

) ∈ A.4 The existence of these two
functions implies that any polynomial-time algorithm for B yields a polynomial-time
algorithm for A. We say a problem A ∈ PLS is PLS -complete if all problems in PLS

can be PLS-reduced to A. The canonical PLS-complete problem is FLIP [10, Thm. 1]:
given a Boolean circuit of polynomial size with n inputs and m outputs, find an input-
assignment such that the resulting output interpreted as a number in binary cannot be
decreased by flipping one bit in the input. The set of PLS-complete problems includes,
among various local search variants and heuristics for NP-complete problems, the
Lin–Kernighan heuristic for the traveling salesman problem [22], computing stable
configurations in Hopfield neural networks [27, Cor. 5.12], and computing pure Nash
equilibria in congestion games [8, Thm. 3].

5.2 The Local Search Nearest Colorful Polytope Problem

Let C1, . . . , Cm ⊂ Q
d be m color classes that do not necessarily embrace the origin.

For a given set C ′ ⊂ Q
d , let δ(C ′) = min

{‖c‖1 | c ∈ conv(C ′)
}
denote the minimum

�1-norm of a point in conv(C ′). In L-Ncp, we want to find a colorful choice C such
that δ(C) cannot be decreased by swapping a single point with another point of the
same color. In the language of PLS, L-Ncp is defined as follows.

Definition 5.1 L-NCP

Instances. The set of problem instances I consists of all tuples (C1, . . . ,

Cm), where d ∈ N and for i ∈ [m], we have Ci ⊂ Q
d .

Candidate solutions. The set of candidate solutions consists of all setsC ⊂ Q
d , where

d ∈ N. For a fixed instance I = (C1, . . . , Cm) ∈ I, we define
the set of valid candidate solutions SI of I to be the set of all
colorful choices with respect to C1, . . . , Cm .

Cost function. Let s ∈ SI be a colorful choice. Then, the cost cI,s of s with
respect to I is defined as δ(s). We want to minimize the costs.

Neighborhood. Let I ∈ I be an instance and let s ∈ SI be a valid candidate
solution. Then, the set of neighbors NI,s of s consists of all
colorful choices that can be obtained by swapping one point
with another point of the same color in s.

We reduce the PLS-complete problem Max- 2SAT/Flip [27] to L-Ncp. In Max-

2SAT/Flip, we are given a 2-CNF formula, i.e., a Boolean formula in conjunctive
normal form in which each clause consists of at most 2 literals, and for each clause

4 Recall that A and B are relations between problem instances and candidate solutions.
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a weight. The task is to find an assignment such that the weighted sum of unsatisfied
clauses cannot be decreased by flipping a single variable. More formally, Max-

2SAT/Flip is defined as follows.

Definition 5.2 (MAX-2SAT/FLIP)

Instances. The set of instancesI ′ consists of all tuples I = (n, K1, . . . , Km)

such that n ∈ N and for i ∈ [n], the tuple Ki has the form
(wi , Ti , Fi ), where wi ∈ Z and Ti , Fi ⊆ [n] with |Ti ∪ Fi | ≤ 2
for all i ∈ [n]. Then, we identify with Ki the clause K̂i =(∨

j∈Tj
x j
)∨ (∨ j∈Fj

x j
)
with weight wi , and we identify with

I the 2-CNF formula K̂1 ∧ · · · ∧ K̂m with variables x1, . . . , xn .
Candidate solutions. The set of candidate solutions S ′ contains all tuples A =

(v1, . . . , vn), where n ∈ N and vi ∈ {0, 1} for i ∈ [n]. Given
an instance I ∈ I ′ in which n variables x1, . . . , xn appear, we
define the set of valid candidate solutions S ′

I for I as the set of
all n-tuples from S ′. We interpret the i th entry of a tuple A ∈ S ′

I
as an assignment to xi and we denote it with A(xi ).

Cost function. Let I ∈ I ′ be an instance. Then, we define the cost c′
I,s of a

valid candidate solution s ∈ S ′
I as the sum of the weights of all

unsatisfied clauses. We want to minimize the cost.
Neighborhood. Let I ∈ I ′ be an instance and s ∈ S ′

I a tuple of size n. Then,
the set of neighbors N ′

I,s of s consists of all tuples that can be
obtained by replacing the i th entry A(xi ) with 1− A(xi ), where
i ∈ [n].

The following theorem is due to Schäffer and Yannakakis.

Theorem 5.3 [27, Cor. 5.12] Max- 2SAT/Flip is PLS-complete.

We continue with the reduction from Max- 2SAT/Flip to L-Ncp.

Theorem 5.4 L-Ncp is PLS-complete.

Proof Let I ′ = (n, K1, . . . , Kd) ∈ I ′ be an instance of Max- 2SAT/Flip. We con-
struct an instance I ∈ I of L-Ncp in which each colorful choice C encodes an
assignment AC such that the cost cI,C of C equals the cost c′

I ′,AC
.

For each variable xi , we introduce a color class Xi = {xi , xi } consisting of two
points in Q

d that encode whether xi is set to 1 or 0. We assign the j th dimension to
the j th clause and set

(xi ) j =
{

−nw j , if xi = 1 satisfies K̂ j , and

w j , otherwise,

where j ∈ [d]. Similarly, we set

(xi ) j =
{

−nw j , if xi = 0 satisfies K̂ j , and

w j , otherwise,
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where j ∈ [d]. Then, a colorful choiceC of X1, . . . , Xm corresponds to the assignment
AC ∈ S ′

I ′ that sets xi to 1 if xi ∈ C and otherwise to 0. Conversely, an assignment
A ∈ S ′

I ′ can be interpreted directly as a colorful choice C of X1, . . . , Xm .
In the following, we construct an instance of L-Ncp such that the convex hull of a

colorful choice C contains the origin if projected onto the dimensions corresponding
to clauses that are satisfied by AC (and hence do not contribute to the cost of C).
Moreover, if projected onto the subspace corresponding to the unsatisfied clauses,
δ(C) equals the total weight of unsatisfied clauses which then defines completely the
cost of C .

We introduce additional helper color classes to decrease the distance to the origin in
dimensions that correspond to satisfied clauses. In particular, we have for each clause
K̂i , i ∈ [d], a color class Hi = {hi } consisting of a single point, where

(hi ) j =
{

(d + 1)
(
(n + 2) − d

d+1

)
wi , if j = i, and

w j , otherwise,

where j ∈ [d]. The last helper color class Hd+1 = {hd+1} again contains a single
point, but now all coordinates are set to the clause weights, i.e.,

(hd+1) j = w j for j ∈ [d].

See Fig. 7 for an example.
Let now I = (X1, . . . , Xn, H1, . . . , Hd+1) ∈ I denote the constructed L-Ncp

instance. We continue with showing that the cost of a colorful choice equals the cost
of the corresponding assignment by proving the following two inequalities.

(i) for every colorful choice C ∈ SI , the cost are lower bounded by the cost of the
corresponding assignment:

cI,C ≥ c′
I ′,AC

.

(ii) for every colorful choice C ∈ SI , the cost are upper bounded by the cost of the
corresponding assignment:

cI,C ≤ c′
I ′,AC

.

Note that (i) and (ii) directly imply that L-Ncp isPLS-complete. To see this, consider
a local optimum s� ∈ SI of the L-Ncp instance I . By definition, the costs of all other
colorful choices that can be obtained from s� by swapping one point with another
of the same color are greater or equal to cI,s� . Then, the total weight of unsatisfied
clauses by the corresponding assignment As� ∈ S ′

I ′ cannot be decreased by flipping a
variable. Thus, As� is a local minimum of the Max- 2SAT/Flip instance I ′.

(i) Let C ∈ SI be a colorful choice and assume some clause K̂ j is not satisfied by
the corresponding assignment AC ∈ S ′

I ′ . By construction, the j th coordinate of each
point p in C is at least w j . Thus, the j th coordinate of every convex combination of
the points in C is at least w j and hence cI,C ≥ cI ′,AC .
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x1 , x2 = (−9, 6)

x2 , x3 = (3, −18)

x1 , x3 , h3 = (3, 6) h1 = (39, 6)

h2 = (3, 78)

Fig. 7 Construction of the point sets corresponding to theMax- 2SAT/Flip instance
(
x1∨ x2

)∧ (x2 ∨ x3
)

with weights 3 and 6, respectively

(ii) Let C ∈ SI be a colorful choice. In the following, we construct a convex
combination of the points in C that results in a point p whose �1-norm is exactly the
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total weight of unsatisfied clauses in the corresponding assignment AC ∈ S ′
I ′ and thus

cI,C ≤ cI ′,AC . For k = 0, 1, 2, let Sk denote the set of clauses that are satisfied by
exactly k literalswith respect to the assignment AC . As a first step towards constructing
p, we show the existence of an intermediate point in the convex hull of the helper
classes. �	
Lemma 5.5 There is a point h ∈ conv(H1, . . . , Hd+1) whose j th coordinate is (n +
2)w j , if j ∈ S2, and w j , otherwise.

Proof Take h = ∑

i∈S2

1
d+1hi + (

1 − |S2|
d+1

)
hd+1. Then, for j ∈ S0 ∪ S1, we have

(h) j =
∑

i∈S2

1

d + 1
(hi ) j +

(
1 − |S2|

d + 1

)
(hd+1) j

j /∈S2=
∑

i∈S2

1

d + 1
w j +

(
1 − |S2|

d + 1

)
w j = w j .

And for j ∈ S2, we have

(h) j =
∑

i∈S2

1

d + 1
(hi ) j +

(
1 − |S2|

d + 1

)
(hd+1) j

= 1

d + 1
(h j ) j +

∑

i∈S2\{ j}

1

d + 1
(hi ) j +

(
1 − |S2|

d + 1

)
(hd+1) j

=
(
(n + 2) − d

d + 1

)
w j + d

d + 1
w j = (n + 2)w j ,

as desired. �	
Let now l i be the point from Xi in the colorful choice C and consider the point

p = 1

n + 1

( n∑

i=1

l i + h
)
,

where h is the point from Lemma 5.5. We show that ( p) j = w j if j ∈ S0, and
otherwise ( p) j = 0. Let j be a clause index from S0. Since AC does not satisfy K̂ j ,
the j th coordinate of the points l1, . . . , ln is w j . Also, (h) j = w j by Lemma 5.5.
Thus, ( p) j = w j . Consider now some clause index j ∈ S1 and let b ∈ [2] be the
index of the point lb that corresponds to the single literal that satisfies K̂ j . Then, we
have

( p) j =
n∑

i=1

1

n + 1
(l i ) j + 1

n + 1
(h) j

= 1

n + 1
(lb) j +

n∑

i=1,i �=b

1

n + 1
(l i ) j + 1

n + 1
(h) j
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= −n

n + 1
w j + n

n + 1
w j = 0.

Finally, consider some clause index j ∈ S2 and let b1, b2 be the indices of the two
literals that satisfy K̂ j . Then, we obtain

( p) j =
n∑

i=1

1

n + 1
(l i ) j + 1

n + 1
(h) j

= 1

n + 1
(lb1) j + 1

n + 1
(lb2) j +

n∑

i=1,i /∈{b1,b2}

1

n + 1
(l i ) j + 1

n + 1
(h) j

= −2n

n + 1
w j + n − 2

n + 1
w j + n + 2

n + 1
w j = 0,

and thus ‖ p‖1 = cI ′,AC , as claimed. �	

5.3 The Global Search Nearest Colorful Polytope Problem

In the global search variant G-Ncp of the nearest colorful polytope problem, we are
looking for a colorful choice C such that δ(C) is minimum over all possible colorful
choices. The proof of Theorem 5.4 can be adapted easily to reduce 3Sat to G-Ncp.

Theorem 5.6 G-Ncp is np-hard.

Proof Given a set of clauses K1, . . . , Kd , we set the weight of each clause to 1 and
construct the same point sets as in the PLS-reduction. Additionally, we introduce for
each clause K j a new helper color class H ′

j = {h′
j }, where

(h′
i ) j =

{
(d + 1)

(
(2n + 3) − d

d+1

)
, if i = j, and

1, otherwise.

Let now C be a colorful choice and let AC be the corresponding assignment. As in the
PLS-reduction, for k = 0, . . . , 3, let Sk contain all clauses that are satisfied by exactly
k literals in the assignment AC . Then, the following point h is contained in the convex
hull of the helper points:

h =
∑

i∈S2

hi

d + 1
+
∑

j∈S3

h′
j

d + 1
+
(
1 − |S2| + |S3|

d + 1

)
hd+1.

As above, we see that (h) j = 1, if j ∈ S0 ∪ S1, (h) j = n + 2, if j ∈ S2, and
(h) j = 2n + 3, if j ∈ S3. Indeed, for j ∈ S0 ∪ S1, we have:
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(h) j =
∑

i∈S2

1

d + 1
(hi ) j +

∑

i∈S3

1

d + 1
(h′

i ) j +
(
1 − |S2| + |S3|

d + 1

)
(hd+1) j

j /∈S2∪S3=
∑

i∈S2∪S3

1

d + 1
+
(
1 − |S2| + |S3|

d + 1

)
= 1.

For j ∈ S2, we have

(h) j =
∑

i∈S2

1

d + 1
(hi ) j +

∑

i∈S3

1

d + 1
(h′

i ) j +
(
1 − |S2| + |S3|

d + 1

)
(hd+1) j

= (h j ) j +
∑

i∈S2\ j

1

d + 1
+
∑

i∈S3

1

d + 1
+
(
1 − |S2| + |S3|

d + 1

)

=
(
(n + 2) − d

d + 1

)
+ d

d + 1
= n + 2,

and for j ∈ S3,

(h) j =
∑

i∈S2

1

d + 1
(hi ) j +

∑

i∈S3

1

d + 1
(h′

i ) j +
(
1 − |S2| + |S3|

d + 1

)
(hd+1) j

= (h′
j ) j +

∑

i∈S2

1

d + 1
+

∑

i∈S3\ j

1

d + 1
+
(
1 − |S2| + |S3|

d + 1

)

=
(
(2n + 3) − d

d + 1

)
+ d

d + 1
= 2n + 3.

As before, the convex combination p = ∑n
i=1

1
n+1 l i + 1

n+1h results in a point
in the convex hull of C whose distance to the origin is the number of unsatisfied
clauses, where l i denotes the point from Xi in C . Indeed, if K̂ j is not satisfied, then
all j-components in the sum are 1, and ( p) j = 1. If j ∈ S1, then, as discussed above

( p) j = −n

n + 1
+ n − 1

n + 1
+ 1

n + 1
= 0.

If j ∈ S2, then

( p) j = −2n

n + 1
+ n − 2

n + 1
+ n + 2

n + 1
= 0,

and if j ∈ S3, then

( p) j = −3n

n + 1
+ n − 3

n + 1
+ 2n + 3

n + 1
= 0.

Together with (i) from the proof of Theorem 5.4, 3Sat can be decided by knowing a
global optimum C� to the Ncp problem: if δ(C�) = 0, AC� is a satisfying assignment.
If not, there exists no satisfying assignment at all. �	

123



754 Discrete Comput Geom (2018) 60:720–755

As mentioned above, we can adapt the proof of Theorem 5.6 to answer a question
by Bárány and Onn [4].

Corollary 5.7 Let C1, . . . , Cm ⊂ Q
d be an input for G-Ncp. Then, G-Ncp remains

NP-hard even if m = d + 1.

Proof Let F be a 3Sat formula with d clauses and n variables. As in the proof of
Theorem 5.6, we construct n + 2d + 1 =: d ′ + 1 point sets in Qd such that there is a
colorful choice that embraces the origin if and only if F is satisfiable. Since d ′ > d,
we can lift the point sets to Q

d ′
by appending 0-coordinates. Then, we have d ′ + 1

point sets such that there is a colorful choice that embraces the origin if and only if F
is satisfiable. �	

6 Conclusion

We conclude with several interesting open problems.

– The algorithm in Theorem 3.7 computes in polynomial time a 0-embracing �εd�-
colorful choice for any fixed ε > 0. A more careful analysis shows that the
algorithm needs only cε color classes, where cε > 0 is a constant depending only
on ε. Hence, the algorithm does not use its complete input. Can this be used to
further improve the approximation guarantee?

– Is it possible to compute a 0-embracing o(d)-colorful choice in polynomial time
and in particular, is it possible to compute a 0-embracing O(1)-colorful choice in
polynomial time?

– On the other hand, can it be shown that computing a 0-embracing O(1)-colorful
choice is as hard as computing a 0-embracing 1-colorful choice?

– In Sect. 4, we show that many color classes help to find a 0-embracing 1-colorful
choice. Can a 0-embracing 1-colorful choice be computed in polynomial time if
we have poly(d) color classes?

Acknowledgements We would like to thank Frédéric Meunier and Pauline Sarrabezolles for interesting
discussions on the colorful Carathéodory problem and for hosting us during multiple research stays at the
École Nationale des Ponts et Chaussées. Furthermore, we would like to thank the anonymous reviewers for
their detailed reading of our paper and for their helpful and encouraging comments on previous versions.

Funding WM was supported in part by DFG Grants MU 3501/1 and MU 3501/2 and ERC StG 757609.
YS was supported by the Deutsche Forschungsgemeinschaft within the research training group ‘Methods
for Discrete Structures’ (GRK 1408) and by GIF Grant 1161.

References

1. Aarts, E., Lenstra, J.K. (eds.): Local Search in Combinatorial Optimization. PrincetonUniversity Press,
Princeton (2003)

2. Arocha, J.L., Bárány, I., Bracho, J., Fabila, R.,Montejano, L.:Very colorful theorems.DiscreteComput.
Geom. 42(2), 142–154 (2009)

3. Bárány, I.: A generalization of Carathéodory’s theorem. Discrete Math. 40(2–3), 141–152 (1982)
4. Bárány, I., Onn, S.: Colourful linear programming and its relatives. Math. Oper. Res. 22(3), 550–567

(1997)

123



Discrete Comput Geom (2018) 60:720–755 755

5. Barman, S.: Approximating Nash equilibria and dense bipartite subgraphs via an approximate ver-
sion of Carathéodory’s theorem. In: Proceedings of the 47th Annual ACM Symposium on Theory of
Computing (STOC’15), pp. 361–369. ACM, New York (2015)

6. Blum, M., Pratt, V., Tarjan, R.E., Floyd, R.W., Rivest, R.L.: Time bounds for selection. J. Comput.
Syst. Sci. 7(4), 448–461 (1973)

7. Chan, T.M.: An optimal randomized algorithm for maximum Tukey depth. In: Proceedings of the 15th
Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’04), pp. 430–436. ACM, New York
(2004)

8. Fabrikant, A., Papadimitriou, C., Talwar, K.: The complexity of pure Nash equilibria. In: Proceedings
of the 36th Annual ACM Symposium on Theory of Computing (STOC’04), pp. 604–612. ACM, New
York (2004)

9. Jadhav, S., Mukhopadhyay, A.: Computing a centerpoint of a finite planar set of points in linear time.
Discrete Comput. Geom. 12(3), 291–312 (1994)

10. Johnson, D.S., Papadimitriou, C.H., Yannakakis, M.: How easy is local search? J. Comput. System
Sci. 37(1), 79–100 (1988)

11. Kapoor, S., Vaidya, P.M.: Fast algorithms for convex quadratic programming and multicommodity
flows. In: Proceedings of the 18th Annual ACM Symposium on Theory of Computing (STOC’86), pp.
147–159. ACM, New York (1986)

12. Kirchberger, P.: Über Tchebychefsche Annäherungsmethoden. Math. Ann. 57(4), 509–540 (1903)
13. Kozlov, M.K., Tarasov, S.P., Khachiyan, L.G.: The polynomial solvability of convex quadratic pro-

gramming. USSR Comput. Math. Math. Phys. 20(5), 223–228 (1980)
14. Matoušek, J.: Lectures on Discrete Geometry. Graduate Texts in Mathematics, vol. 212. Springer, New

York (2002)
15. Megiddo, N., Papadimitriou, C.H.: On total functions, existence theorems and computational com-

plexity. Theor. Comput. Sci. 81(2), 317–324 (1991)
16. Meunier, F., Deza, A.: A further generalization of the colourful Carathéodory theorem. In: Bezdek,

K., Deza, A., Ye, Y. (eds.) Discrete Geometry and Optimization. Fields Institute Communications, vol.
69, pp. 179–190. Springer, Berlin (2013)

17. Meunier, F., Mulzer, W., Sarrabezolles, P., Stein, Y.: The rainbow at the end of the line—a PPAD
formulation of the colorful Carathéodory theoremwith applications. In: Proceedings of the 28thAnnual
ACM–SIAM Symposium on Discrete Algorithms (SODA’17), pp. 1342–1351. SIAM, Philadelphia
(2017)

18. Meunier, F., Sarrabezolles, P.: Colorful linear programming, Nash equilibrium, and pivots (2014).
arXiv:1409.3436

19. Michiels, W., Aarts, E., Korst, J.: Theoretical Aspects of Local Search. Monographs in Theoretical
Computer Science. Springer, Berlin (2007)

20. Miller, G.L., Sheehy, D.R.: Approximate centerpoints with proofs. Comput. Geom. 43(8), 647–654
(2010)

21. Mulzer,W.,Werner, D.: ApproximatingTverberg points in linear time for any fixed dimension.Discrete
Comput. Geom. 50(2), 520–535 (2013)

22. Papadimitriou,C.H.: The complexity of theLin-Kernighanheuristic for the traveling salesmanproblem.
SIAM J. Comput. 21(3), 450–465 (1992)

23. Preparata, F.P., Shamos, M.I.: Computational Geometry. Texts and Monographs in Computer Science.
Springer, New York (1985)

24. Rado, R.: A theorem on general measure. J. Lond. Math. Soc. 21, 291–300 (1946)
25. Roudneff, J.P.: Partitions of points into simplices with k-dimensional intersection. I. The conic Tver-

berg’s theorem. Eur. J. Comb. 22(5), 733–743 (2001)
26. Sarkaria, K.S.: Tverberg’s theorem via number fields. Israel J. Math. 79(2–3), 317–320 (1992)
27. Schäffer, A.A., Yannakakis, M.: Simple local search problems that are hard to solve. SIAM J. Comput.

20(1), 56–87 (1991)
28. Teng, S.-H.: Points, Spheres, and Separators: A Unified Geometric Approach to Graph Partitioning.

Ph.D. thesis, Carnegie Mellon University (1991)
29. Tverberg, H.: A generalization of Radon’s theorem. J. Lond. Math. Soc. 41(1), 123–128 (1966)
30. Tverberg, H.: A generalization of Radon’s theorem II. Bull. Aust. Math. Soc. 24(3), 321–325 (1981)
31. Tverberg, H., Vrećica, S.: On generalizations of Radon’s theorem and the ham sandwich theorem. Eur.

J. Comb. 14(3), 259–264 (1993)

123

http://arxiv.org/abs/1409.3436

	Computational Aspects of the Colorful Carathéodory Theorem
	Abstract
	1 Introduction
	2 Preliminaries: Embracing Equivalent Points
	3 k-Colorful Choices
	3.1 Applications

	4 Exact Algorithms for ColorfulCarathéodory
	4.1 A Simple Special Case
	4.2 Many Colors

	5 The Complexity of a Related Problem
	5.1 The Complexity Class PLS
	5.2 The Local Search Nearest Colorful Polytope Problem
	5.3 The Global Search Nearest Colorful Polytope Problem

	6 Conclusion
	Acknowledgements
	References




