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Abstract Denham and Suciu (Pure Appl Math Q 3(1):25–60, 2007) and Panov and
Ray (in: Harada, et al. (eds) Toric topology. Contemporary Mathematics, American
Mathematical Society, Providence, 2008) computed the ranks of homotopy groups
and the Poincaré series of amoment-angle-complexZ(K)/Davis–Januszkiewicz space
DJ (K) associated to a flag simplicial complex K. In this note we revisit these results
and interpret them as polynomial bounds on the face numbers of an arbitrary simplicial
flag complex.

Keywords Toric topology · Flag simplicial complex · f -vector · Moment-angle-
complex · Poincaré series

1 Introduction

Let K be an n-dimensional simplicial complex. Denote by fi the number of i-
dimensional simplices of K. Characterization of possible f -vectors ( f0, . . . , fn) of
various classes of simplicial complexes is a classical problem of enumerative combi-
natorics. We mention several results in this direction:

(1) The Kruskal–Katona theorem [11, II.1], describing all possible f -vectors of gen-
eral simplicial complexes.

(2) Analogue of the Kruskal–Katona theorem for Cohen–Macaulay simplicial com-
plexes [11, II.2].
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(3) The upper bound theorem due to McMullen [11, II.3.4], which gives necessary
conditions for a tuple of integers to be the f -vector of a triangulation of an
n-dimensional sphere.

(4) g-Theorem, characterizing the f -vectors of simplicial polytopes, see [11, II.6.2].

The proofs of these results led to numerous constructions, associating certain
algebraic and topological objects to combinatorial objects (simplicial complexes, tri-
angulations of spheres, polytopes, etc.). These constructions allow to employ methods
of homological algebra, algebraic geometry and algebraic topology in purely combi-
natorial problems.

In a similar spirit, in this note we derive a series of inequalities on the f -vectors
of flag simplicial complexes. The characterization of the f -vectors of flag simplicial
complexes, or, equivalently clique vectors of simple graphs, is a well-studied problem
with many partial results. In [12] Zykov gave a generalization of the classical Turán’s
theorem for graphs. Razborov [10] proved asymptotic bounds on the component f2
in terms of f1 and f0. Herzog et al. [7] gave a complete characterization of all the
possible f -vectors of chordal flag simplicial complexes. Goodarzi [6] generalized this
result for k-connected chordal simplicial complexes.

Our article is built upon the results of Denham and Suciu [3] and Panov and Ray [9],
where the authors relate the Poincaré series of a face ring of a flag simplicial complex
to the Poincaré series of a free graded algebra. Let pn(x1, x2, . . .) and en(x1, x2, . . .)
be the degreen Newton (power-sum) and elementary symmetric polynomials, respec-
tively (see [8, I.2]). Slightly abusing notation, we denote the unique representation of
pn as a polynomial in e := {e1, e2, . . .} by pn(e) := pn(e1, e2, . . .). The main result
can be formulated as follows.

Theorem 1.1 LetK be a flag simplicial complex with the f -vector ( f0, . . . , fn). Then
for any N � 1 we have

(−1)N
∑

d|N
μ(N/d)(−1)d pd(α) � 0, (1)

where

αn :=
n−1∑

i=0

fi

(
n − 1

i

)
,

and μ(n) is the Möbius function

μ(n) =
{

(−1)k, if n is a product of k distinct prime factors;
0, otherwise,

and the summation is taken over all positive integers d dividing N .

The rest of the paper is organized as follows. In Sect. 2 we recall standard lower
bounds on the dimensions of the graded components of a graded free algebra. In Sect. 3
we discuss basic notions of the toric topology and recall the results of Denham–Suciu
and Panov–Ray. Finally, in Sect. 4 we prove our main result, Theorem 4.1.
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2 Free Graded Algebras

Throughout this paper we work with algebras over a field k of characteristic zero,
which are

(1) (graded) A = ∑∞
i=0 A

i with Ai · A j ⊂ Ai+ j ;
(2) (locally finite dimensional) dimk Ai < ∞;
(3) (commutative) a · b = (−1)i j b · a for a ∈ Ai , b ∈ A j ;
(4) (connected) A0 = 〈1〉k .
The aim of this section is to derive certain identities involving the dimensions of the

graded components of a free graded algebra A•. In different contexts similar identities
appeared, e.g., in [1, Chap. 3], see also references therein. As a corollary of these
identities we get lower bounds on dim AN , N ∈ N.

Definition 2.1 Let V • = ∑
i�1 V

i be a graded vector space over a ground field k.

Assume that dimk V i < ∞ for i � 1. A free graded commutative algebra generated
by V is the algebra

S•(V ) :=
⊗

i=2k

Sym•(V i ) ⊗
⊗

i=2k+1

�•(V i ),

where Sym•(V 2k) and �•(V 2k+1) are the symmetric and the exterior graded algebras
generated by V 2k and V 2k+1, respectively.

Definition 2.2 For a graded vector space V • = ∑
i�0 V

i , the Poincaré series of V •
is a formal power series

h
(
V •; t) :=

∑

i

dimk V
i t i .

For a graded algebra A•, its Poincaré series h(A•; t) is the Poincaré series of the
underlying graded vector space.

Proposition 2.3 Let V • = ∑
i�1 V

i be a graded vector space. Let h(V •; t) = v1t +
v2t2 + · · · be the Poincaré series of V •. Then, for the free graded algebra generated
by V, one has:

h
(
S•(V ); t) =

∏

i=2k

(
1 − t2k

)−v2k
∏

i=2k+1

(
1 + t2k+1)v2k+1

=
∏

i

(
1 − (−t)i

)(−1)i+1vi . (2)

Proof For a one-dimensional V • = V 2k the corresponding free algebra S•(V 2k) is a
polynomial algebra with one generator in degree 2k, hence

h
(
S
(
V 2k); t) = 1 + t2k + t4k + · · · = 1

1 − t2k
.
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Similarly for a one-dimensional V 2k+1

h
(
S
(
V 2k+1); t) = 1 + t2k+1.

These identities together with the multiplicativity of h(·; t) with respect to the tensor
product imply formula (2). �	

Let s = {s1, s2, . . .} be an arbitrary sequence of indeterminates. Fix some integer
N > 1 and introduce new variables γ1, . . . , γN such that si = ei (γ1, . . . , γN ), i � N ,
is the elementary symmetric polynomial in {γk}Nk=1.Wedenote the unique presentation
of the i th Newton polynomial γ i

1 +· · ·+γ i
N as a polynomial in {s1, . . . , sN } by pi (s).

It is easy to check that for a fixed i this presentation does not depend on the choice of
N > i. The first few polynomials pi (s) are:

p1(s) = s1,

p2(s) = s21 − 2s2,

p3(s) = s31 − 3s2s1 + 3s3,

p4(s) = s41 − 4s2s
2
1 + 4s3s1 + 2s22 − 4s4.

If we assign gradings deg si = i, then pi (s) is a homogeneous polynomial of degree
i. We also point out that in pi (s) the coefficient at si equals (−1)i+1i.

The following proposition gives a converse of Proposition 2.3.

Proposition 2.4 Let V • = ∑
i�1 V

i be a graded vector space. Let h(S•(V ); t) =
1 + s1t + s2t2 + · · · be the Poincaré series of the corresponding free algebra. Then
the dimensions of graded components of V • are given by the formulas:

dimk V
N = (−1)N+1

N

∑

d|N
μ(N/d)pd(s), (3)

where the summation is taken over all positive integers d dividing N .

Proof Taking the logarithm of the identity (2) we get

log
(
1 + s1t + s2t

2 + · · · ) =
∑

i

(−1)i+1vi log
(
1 − (−t)i

)
. (4)

Now let us fix any integer N and formally expand

1 + s1t + · · · + sN t
N =

N∏

i=1

(1 + γi t) ,

123



692 Discrete Comput Geom (2018) 60:688–697

where {γi } are new variables. Then in k[s1, . . . , sN ][[t]]/t N+1 ⊂ k[γ1, . . . , γN ][[t]]/
t N+1 we have

log
(
1 + s1t + s2t

2 + · · · ) =
N∑

i=1

log (1 + γi t) =
N∑

i=1

(−1)i+1 pi (s)

i
t i .

Taking the limit N → ∞, we obtain in k[s1, s2, . . .][[t]] the following identity:

log
(
1 + s1t + s2t

2 + · · · ) =
∑

N

(−1)N+1 pN (s)

N
tN .

After expanding the power series log(1 − (−t)i ) in the RHS of (4), and comparing
the coefficients of t N , we conclude that

∑

i |N
(−1)i ivi = − pN (s).

Finally, with the use of the Möbius inversion formula we get

vN = (−1)N+1

N

∑

d|N
μ(N/d)pd(s),

as stated. �	
Proposition2.4 gives a necessary condition for a sequenceof integers {1, s1, s2, . . .}

to be the dimensions of the graded components of a free graded algebra S•(V ).

Corollary 2.5 If 1+ s1t + s2t2 + · · · is the Poincaré series of a free graded algebra
S•(V ), then for any integer N � 1 the sequence s = {s1, s2, . . .} satisfies

(−1)N+1
∑

d|N
μ(N/d)pd(s) � 0. (5)

Example 2.6 For small values of N Corollary 2.5 gives

(N = 1) s1 � 0;
(N = 1) s2 � 1

2
s1 (s1 − 1) ;

(N = 1) s3 � 1

3
s1

(
3s2 − s21 + 1

)
.

More generally, for any N inequality (5) is equivalent to a lower bound on sN of
the form

sN � qN (s1, . . . , sN−1) ,

where qN is some polynomial of degree N , with deg si = i.
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3 Toric Topology

We begin this section by recalling the basic combinatorial notions of simplicial com-
plexes, f -vectors and flag simplicial complexes.

Definition 3.1 An abstract simplicial complex K on the set of vertices [m] =
{1, . . . ,m} is a collection K = {σ } of subsets of [m] such that for any σ ∈ K all
subsets of σ also belong toK. Elements σ ∈ K are called simplices ofK. The dimen-
sion of a simplex σ ∈ K is |σ | − 1. We also assume that all one-element sets belong
to K, i.e., there are no ‘ghost vertices’.

For an n-dimensional simplicial complex K, let fi be the number of its i-
dimensional simplices. Then the f -vector of K is ( f0, . . . , fn).

Definition 3.2 Let K be a simplicial complex on the set of vertices [m]. A subset
σ ⊂ [m] is a minimal non-face of K if σ /∈ K, but all proper subsets σ ′

� σ are
simplices of K : σ ′ ∈ K.

Simplicial complex K is flag if all its minimal non-faces are two-element subsets
of [m]. Clearly, any flag simplicial complex is determined by its 1-skeleton.

Now we describe a construction originating from toric topology [2]. This construc-
tion associates a topological space (X, A)K to a simplicial complex K and a pair of
topological spaces (X, A). The main idea is that the ‘topology’ of (X, A)K somehow
captures the ‘combinatorics’ of K.

Definition 3.3 (Polyhedral product) Let K be an abstract simplicial complex on the
set of vertices [m]. Let (X, A) be a pair of topological spaces. The polyhedral product
associated to K is a topological space (X, A)K ⊂ Xm defined as follows. For any
subset σ ⊂ [m] let us denote a ‘building block’ inside Xm :

(X, A)σ :=
∏

i∈σ

X ×
∏

i /∈σ

A ⊂ Xm .

Then by definition (X, A)K is the union of the building blocks (X, A)σ , where σ

runs over simplices of K:

(X, A)K :=
⋃

σ∈K
(X, A)σ .

Example 3.4 Let us consider a pair (D2, S1), where D2 is the unit disc and S1 is its
boundary. The corresponding polyhedral product is called themoment-angle-complex
and is denoted by

Z(K) := (
D2, S1

)K
.

Starting with the pair (CP∞, pt), we get the Davis–Januszkiewicz space

DJ (K) = (
CP∞, pt

)K
.
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It is known (see [2, Theorem4.3.2]) that the moment-angle-complex Z(K) is a homo-
topy fibre of the inclusion DJ (K) → (CP∞)m . In particular, the higher homotopy
groups of Z(K) and DJ (K) coincide:

πi (Z(K)) � πi (DJ (K)), i � 3.

Remark 3.5 The crucial property of Davis–Januszkiewicz spaces is that for any sim-
plicial complex K, the cohomology ring of DJ (K) is the face ring:

H∗(DJ (K); k) � k[K] := k [v1, . . . , vm] /ISR(K), deg vi = 2,

where ISR is the ideal generated by the monomials corresponding to all non-simplices
of K:

ISR = {
vi1 , . . . , vik | σ = {i1, . . . , ik} /∈ K}

.

The following result is due to Panov and Ray.

Proposition 3.6 [9, Proposition9.5] For any flag simplicial complex K, we have

h(H•(�DJ (K); Q); t) = h
(
Q[K], (−t)1/2

)−1

=
(
1 +

dimK∑

i=0

(−1)i+1 fi
t i+1

(1 + t)i+1

)−1

.

Let X be an arbitrary simply connected pointed CW -complex. Its loop space �X
is an H -space, hence its rational cohomology is a Hopf algebra. At the same time, any
Hopf algebra over a field of characteristic zero is a free graded algebra, see [4]:

H•(�X, Q) � S•(V ),

where V = V • is a graded vector space spanned by primitive elements in the
Hopf algebra H•(�X, Q). Alternatively, V • could by described as the dual to
π•(�X) � π•(X)[−1], where [−1] stands for the grading shift, see, e.g., [5]. This
observation together with the remark in Example 3.4 explains that the following
slightly reformulated result due to Denham and Suciu contains essentially the same
information as Proposition 3.6:

Theorem 3.7 [3, Theorem4.2.1] Let K be a flag complex with the face ring k[K].
Then the ranks πi = πi (Z(K)) of the homotopy groups of the moment-angle complex
Z(K) are given by

∞∏

r=1

(1 + t2r−1)π2r

(1 − t2r )π2r+1
= h

(
Tor(Q[K], Q), (−t)1/2, −(−t)1/2

)−1
,

where h(A•, t1, t2) is the bigraded Poincaré series of Tor-algebra.
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4 Proof of the Main Result

Now we are ready to prove our main result:

Theorem 4.1 LetK be a flag complex with the f -vector ( f0, . . . , fn). Then the coef-

ficients of the power series
(
1+∑dimK

i=0 (−1)i+1 fi
t i+1

(1+t)i+1

)−1
satisfy inequalities (5).

Specifically, for any N � 1 we have

(−1)N
∑

d|N
μ(N/d)(−1)d pd(α) � 0, (6)

where pd is the dth Newton polynomial expressed in the elementary symmetric poly-
nomials α = (α1, α2, . . .) with

αn :=
n−1∑

i=0

fi

(
n − 1

i

)
.

Proof The fact that the coefficients of a power series Q(t) := (
1 + ∑dimK

i=0 (−1)i+1

fi
t i+1

(1+t)i+1

)−1 satisfy inequalities (5) immediately follows from the fact that this power
series is the Poincaré series of a free graded algebra H∗(�DJ (K), Q) and from
Corollary 2.5.

To find the explicit form of these inequalities we follow the proof of Proposition 2.4
with slight modifications. Namely, we first rewrite Q(t) as follows

Q(t) =
⎛

⎝
∞∑

n=0

n−1∑

j=0

f j

(
n − 1

j

)
(−t)n

⎞

⎠
−1

.

Now we take logarithm of the identity

Q(t) =
∞∏

r=1

(1 + t2r−1)v2r

(1 − t2r )v2r+1
,

and comparing coefficients at t N as in the proof of Proposition 2.4 we find that

∑

i |N
(−1)i ivi = −pN

({
(−1)kαk

}∞

k=1

)
= (−1)N+1 pN (α).

Applying again the Möbius inversion formula we get the identity

vN = (−1)N

N

∑

d|N
μ(N/d)(−1)d pd(α),

which implies the stated inequality. �	
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Example 4.2 For small values of N Theorem 4.1 gives:
(N = 1) Inequality (6) reads p1 � 0. Plugging in p1 = f0, we get

f0 � 0.

(N = 2) Inequality (6) reads p2 + p1 � 0. Plugging in p2 = α2
1 − 2α2 with

α1 = f0, α2 = f0 + f1, we get

f1 �
(
f0
2

)
.

(N = 3) Inequality (6) reads p3 − p1 � 0. With p3 = α3
1 − 3α1α2 + 3α3, α1 =

f0, α2 = f0 + f1, α3 = f0 + 2 f1 + f2 we arrive at

f 30 − 3 f0 ( f0 + f1) + 3 f2 − f0 � 0,

or, equivalently,

f2 �
(
f0
3

)
−

(
f0 − 2

)((
f0
2

)
− f1

)
.

The first two inequalities are trivially satisfied for any simplicial complex and
simply indicate that the number of vertices is non-negative and the number of edges
is bounded above by

( f0
2

)
.

The third inequality is not satisfied for a general simplicial complex. It says that for
a flag simplicial complex the number of non-triangles is less or equal than the number
of non-edges times ( f0 −2). Indeed, each non-triangle contains at least one non-edge,
while every non-edge is a side of f0 − 2 non-triangles.

Remark 4.3 For a general N inequality (6) has the form

(−1)N fN � qN ( f1, . . . , fN−1) ,

where qN is a polynomial of degree N with deg fi = i + 1.

It is interesting if inequalities (6) have a simple combinatorial interpretation:

Question Does there exist a direct combinatorial proof of inequalities (6) for all N?
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