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Abstract Denham and Suciu (Pure Appl Math Q 3(1):25-60, 2007) and Panov and
Ray (in: Harada, et al. (eds) Toric topology. Contemporary Mathematics, American
Mathematical Society, Providence, 2008) computed the ranks of homotopy groups
and the Poincaré series of a moment-angle-complex Z (K)/Davis—Januszkiewicz space
D J(K) associated to a flag simplicial complex . In this note we revisit these results
and interpret them as polynomial bounds on the face numbers of an arbitrary simplicial
flag complex.
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1 Introduction

Let K be an n-dimensional simplicial complex. Denote by f; the number of i-
dimensional simplices of K. Characterization of possible f-vectors (fo, ..., f;) of
various classes of simplicial complexes is a classical problem of enumerative combi-
natorics. We mention several results in this direction:

(1) The Kruskal-Katona theorem [11, II.1], describing all possible f-vectors of gen-
eral simplicial complexes.

(2) Analogue of the Kruskal-Katona theorem for Cohen—Macaulay simplicial com-
plexes [11, IL.2].
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(3) The upper bound theorem due to McMullen [11, I1.3.4], which gives necessary
conditions for a tuple of integers to be the f-vector of a triangulation of an
n-dimensional sphere.

(4) g-Theorem, characterizing the f-vectors of simplicial polytopes, see [11, I1.6.2].

The proofs of these results led to numerous constructions, associating certain
algebraic and topological objects to combinatorial objects (simplicial complexes, tri-
angulations of spheres, polytopes, etc.). These constructions allow to employ methods
of homological algebra, algebraic geometry and algebraic topology in purely combi-
natorial problems.

In a similar spirit, in this note we derive a series of inequalities on the f-vectors
of flag simplicial complexes. The characterization of the f-vectors of flag simplicial
complexes, or, equivalently clique vectors of simple graphs, is a well-studied problem
with many partial results. In [12] Zykov gave a generalization of the classical Turdn’s
theorem for graphs. Razborov [10] proved asymptotic bounds on the component f>
in terms of f| and fp. Herzog et al. [7] gave a complete characterization of all the
possible f-vectors of chordal flag simplicial complexes. Goodarzi [6] generalized this
result for k-connected chordal simplicial complexes.

Our article is built upon the results of Denham and Suciu [3] and Panov and Ray [9],
where the authors relate the Poincaré series of a face ring of a flag simplicial complex
to the Poincaré series of a free graded algebra. Let p,(x1, x2,...) and e, (x1, x2,...)
be the degree n Newton (power-sum) and elementary symmetric polynomials, respec-
tively (see [8, 1.2]). Slightly abusing notation, we denote the unique representation of
Ppn as apolynomial in e := {eq, e, ...} by py(e) := pn(e1, e2,...). The main result
can be formulated as follows.

Theorem 1.1 Let K be a flag simplicial complex with the f-vector (fo, ..., fu). Then
forany N > 1 we have

=DV 3" wN/d) (1) pa(@) > 0, M

dIN

where
n—1 n—1
%~;ﬁ<i>
and (u(n) is the Mobius function

(— DK, if nis a product of k distinct prime factors;
nn) = .
0, otherwise,

and the summation is taken over all positive integers d dividing N.

The rest of the paper is organized as follows. In Sect. 2 we recall standard lower
bounds on the dimensions of the graded components of a graded free algebra. In Sect. 3
we discuss basic notions of the toric topology and recall the results of Denham-Suciu
and Panov—Ray. Finally, in Sect. 4 we prove our main result, Theorem 4.1.
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2 Free Graded Algebras

Throughout this paper we work with algebras over a field k of characteristic zero,
which are

(1) (graded) A = > 72, A" with A" - A/ C A’/

(2) (locally finite dimensional) dimy A' < o0;

(3) (commutative) a - b = (—=1)Y b-afora € A', b e Al;

(4) (connected) A° = (1)y.

The aim of this section is to derive certain identities involving the dimensions of the
graded components of a free graded algebra A®. In different contexts similar identities
appeared, e.g., in [1, Chap. 3], see also references therein. As a corollary of these
identities we get lower bounds on dim AV, N e N.

Definition 2.1 Let V°* = Zi>1 V' be a graded vector space over a ground field k.

Assume that dimy Vi < oo fori > 1. A free graded commutative algebra generated
by V is the algebra

s (V)= sym* (vHe & AV

i=2k i=2k+1

where Sym® (V%) and A®(V?*+1) are the symmetric and the exterior graded algebras
generated by V2 and V**1 | respectively.

Definition 2.2 For a graded vector space V* =3~ Vi, the Poincaré series of V*
is a formal power series

- Zdimk Vit
i

For a graded algebra A®, its Poincaré series h(A®; t) is the Poincaré series of the
underlying graded vector space.

Proposition 2.3 Let V°* = Zi>1 Vi be a graded vector space. Let h(V®; t) = vt +

V212 + - - - be the Poincaré series of V®. Then, for the free graded algebra generated
by V, one has:

h (S'(V); t) _ l_[ (1 _ tZk)—UZk 1_[ (1 +t2k+1)U2k+l

i=2k i=2k+1

=TT0-e0)" b @

Proof For a one-dimensional V* = V¥ the corresponding free algebra S*(V ) is a
polynomial algebra with one generator in degree 2k, hence

h(S(V*) ) =1+ ¥ = ——
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Similarly for a one-dimensional V2!
h(s(vzk—f‘l)’ t) — 1 + t2k+1.

These identities together with the multiplicativity of /4 (-; t) with respect to the tensor
product imply formula (2). O

Lets = {s1, 52, ...} be an arbitrary sequence of indeterminates. Fix some integer
N > 1 and introduce new variables y1, ..., yy suchthats; = ¢;(y1,...,¥n), i <N,
is the elementary symmetric polynom1al in {yk W t—1- We denote the unique presentation
of the ith Newton polynomial y| + - - -+, as apolynomial in {s1, ..., sy} by p;(s).
It is easy to check that for a fixed i this presentation does not depend on the choice of
N > i. The first few polynomials p;(s) are:

pi(s) = s1,
pa(s) = S12 — 252,
p3(s) = S% — 35251 + 353,
pa(s) = 57 — 4sas] + 4sas) + 257 — 4sa.
If we assign gradings deg s; = i, then p;(s) is a homogeneous polynomial of degree

i. We also point out that in p; (s) the coefficient at s; equals (=Dit,
The following proposition gives a converse of Proposition 2.3.

Proposition 2.4 Let V* = Zi>1 Vi be a graded vector space. Let h(S*(V); t) =
1 + 51t + 521> + - - - be the Poincaré series of the corresponding free algebra. Then
the dimensions of graded components of V* are given by the formulas:

dimy VN = (1)N+1

———— Y u(N/d)pa(s). 3)

d|IN
where the summation is taken over all positive integers d dividing N.

Proof Taking the logarithm of the identity (2) we get

log (1481t +526° +-+-) = > (=) log (1 — (—1)"). €
Now let us fix any integer N and formally expand
Vst syt =]+ v,
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where {y;} are new variables. Then in k[s, ..., sN][[t]]/tN+1 C klyr, ..., yalllell/
tV*1 we have

N N
log (1 fdsot24---)= log (1 +vit) = )it pi(s) i
og( + 51t + st + ) gog( +yit) lg]:( ) :

Taking the limit N — oo, we obtain in k[s1, 2, ...][[#]] the following identity:

+ + 2 § (S)
1 1 t t . — 1 N+1 PN(S N.
Og( S1 52 + ) N ( ) N

After expanding the power series log(1 — (—7)’) in the RHS of (4), and comparing
the coefficients of V, we conclude that

Y (=Dfivi == pn(s).
iIN
Finally, with the use of the Mobius inversion formula we get

( 1)N+l
oy = D uIN/d)pa(®),

d|N

as stated. |

Proposition 2.4 gives anecessary condition for a sequence of integers {1, s, s2, ...}
to be the dimensions of the graded components of a free graded algebra S°®(V).

Corollary 2.5 If 1 + 51t + 52t + - - - is the Poincaré series of a free graded algebra
S®(V), then for any integer N > 1 the sequence s = {s1, $2, ...} satisfies

(=D " w(N/d)pa(s) > 0. )

d|N
Example 2.6 For small values of N Corollary 2.5 gives

(N=1s =20;
1

(N=1Ds2 = =s1(s1 —1);

2
1
(N=1s3 = 3 (.’)sz—s1 +1).

More generally, for any N inequality (5) is equivalent to a lower bound on sy of
the form

N ZgN (S1,...,SN=1),

where gy is some polynomial of degree N, with degs; = i.
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3 Toric Topology

We begin this section by recalling the basic combinatorial notions of simplicial com-
plexes, f-vectors and flag simplicial complexes.

Definition 3.1 An abstract simplicial complex K on the set of vertices [m] =
{1,...,m} is a collection K = {0} of subsets of [m] such that for any o € K all
subsets of o also belong to K. Elements o € K are called simplices of K. The dimen-
sion of a simplex o € K is |o| — 1. We also assume that all one-element sets belong
to KC, i.e., there are no ‘ghost vertices’.

For an n-dimensional simplicial complex K, let f; be the number of its i-
dimensional simplices. Then the f-vector of K is (fo, ..., fu)-

Definition 3.2 Let /C be a simplicial complex on the set of vertices [m]. A subset
o C [m] is a minimal non-face of K if o ¢ IC, but all proper subsets ¢’ C o are
simplices of K : ¢/ € K.

Simplicial complex I is flag if all its minimal non-faces are two-element subsets
of [m]. Clearly, any flag simplicial complex is determined by its 1-skeleton.

Now we describe a construction originating from toric topology [2]. This construc-
tion associates a topological space (X, Aftoa simplicial complex K and a pair of
topological spaces (X, A). The main idea is that the ‘topology’ of (X, A)X somehow
captures the ‘combinatorics’ of K.

Definition 3.3 (Polyhedral product) Let K be an abstract simplicial complex on the
set of vertices [m]. Let (X, A) be a pair of topological spaces. The polyhedral product
associated to /C is a topological space (X, AKX < X™ defined as follows. For any
subset o C [m] let us denote a ‘building block’ inside X:

(X, A =]]x=x]]acxm
ieo i¢o
Then by definition (X, A)’C is the union of the building blocks (X, A)?, where o

runs over simplices of X:

x. Af =X, 4.
oell

Example 3.4 Let us consider a pair (Dz, Sl), where D? is the unit disc and S! is its
boundary. The corresponding polyhedral product is called the moment-angle-complex
and is denoted by

Z(K) == (D%, s"".
Starting with the pair (CP°°, pt), we get the Davis—Januszkiewicz space
i K
DJ(K) = ((CP , pt) .
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It is known (see [2, Theorem 4.3.2]) that the moment-angle-complex Z(K) is a homo-
topy fibre of the inclusion DJ(K) — (CP>)™. In particular, the higher homotopy
groups of Z(K) and D J (K) coincide:

7 (Z(K)) = 7 (DJ(K)), i>3.

Remark 3.5 The crucial property of Davis—Januszkiewicz spaces is that for any sim-
plicial complex /C, the cohomology ring of DJ(K) is the face ring:

H*(DJ(K); k) ~ k[K] :=k[vi,...,vu]/Zsr(K), deguv; =2,

where Zgr is the ideal generated by the monomials corresponding to all non-simplices

of K:
ISRZ{UiI,...,vik |O’={i1,...,ik}¢/C}.

The following result is due to Panov and Ray.

Proposition 3.6 [9, Proposition9.5] For any flag simplicial complex IC, we have

h(H*(QDJ(K); Q); 1) = h(QIK], (-~
dim IC

" i+l -1
= (1 + ; (=D fi a +—t)i+1) .

Let X be an arbitrary simply connected pointed C W-complex. Its loop space QX
is an H-space, hence its rational cohomology is a Hopf algebra. At the same time, any
Hopf algebra over a field of characteristic zero is a free graded algebra, see [4]:

H*(QX, Q) ~ S*(V),

where V. = V* is a graded vector space spanned by primitive elements in the
Hopf algebra H*(22X, Q). Alternatively, V* could by described as the dual to
e (2X) =~ mqe(X)[—1], where [—1] stands for the grading shift, see, e.g., [5]. This
observation together with the remark in Example 3.4 explains that the following
slightly reformulated result due to Denham and Suciu contains essentially the same
information as Proposition 3.6:

Theorem 3.7 [3, Theorem4.2.1] Let K be a flag complex with the face ring k[K].
Then the ranks w; = 70; (Z(K)) of the homotopy groups of the moment-angle complex
Z(K) are given by

10_0[ 1+ t2r—l)n’zr

(1 — ¢2r)mar+1

= h(Tor(@IK]. ). (~0'2, ~(=n'?)7",

r=1

where h(A®, t1, o) is the bigraded Poincaré series of Tor-algebra.
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4 Proof of the Main Result

Now we are ready to prove our main result:

Theorem 4.1 Let K be a flag complex with the f- vector (fos - --» fn). Then the coef-
ficients of the power series (1 + Zdlm K—pitty
Specifically, for any N > 1 we have

(1+z)‘+1 )_1 satisfy inequalities (5).

=DM 3" wN/d) (1) pa(@) > 0, ©)

d|N

where pg is the dth Newton polynomial expressed in the elementary symmetric poly-
nomials ¢ = (o1, a2, ...) with

n—1
oy = Zf,(n z_ 1).
i=0

Proof The fact that the coefficients of a power series Q(¢) := (1 + Zdlm,c (—1)it!

fi a -t:)’ = )_ satisfy inequalities (5) immediately follows from the fact that this power

series is the Poincaré series of a free graded algebra H*(QDJ(K), Q) and from
Corollary 2.5.

To find the explicit form of these inequalities we follow the proof of Proposition 2.4
with slight modifications. Namely, we first rewrite Q(¢) as follows

—1

oo n—1
o) = ZZf,-(";l)(—r)"

n=0 j=0

Now we take logarithm of the identity

10_0[ 1+ t2r—1)v2r

— £2ryvor41
L=y

@) =

and comparing coefficients at " as in the proof of Proposition 2.4 we find that

> =Diiv = —px ([(—1>"ak}°°

iIN =1

) = (D" py ().

Applying again the Mobius inversion formula we get the identity

(=DN

UN =

> wN/d) (=1 pa(@),

dIN

which implies the stated inequality. O
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Example 4.2 For small values of N Theorem 4.1 gives:
(N = 1) Inequality (6) reads p; > 0. Plugging in p; = fy, we get

fo=0.

(N = 2) Inequality (6) reads p» + p1 > 0. Plugging in p» = & — 20, with
a1 = fo, a2 = fo+ f1, we get
fo
< .
h <2

(N = 3) Inequality (6) reads p3 — p; > 0. With p3 = oz13 — 3a1ap + 3a3, o) =
fo. a2 = fo+ f1, a3 = fo+2f1 + f» we arrive at

fe=3fo(fo+ fi)+3f— fo =0,

o () (5(5) )

The first two inequalities are trivially satisfied for any simplicial complex and
simply indicate that the number of vertices is non-negative and the number of edges
is bounded above by ().

The third inequality is not satisfied for a general simplicial complex. It says that for
a flag simplicial complex the number of non-triangles is less or equal than the number
of non-edges times ( fo —2). Indeed, each non-triangle contains at least one non-edge,
while every non-edge is a side of fy — 2 non-triangles.

or, equivalently,

Remark 4.3 For a general N inequality (6) has the form

DNy =gn (fis -y fn-1) s

where ¢y is a polynomial of degree N with deg f; =i + 1.
It is interesting if inequalities (6) have a simple combinatorial interpretation:

Question Does there exist a direct combinatorial proof of inequalities (6) for all N ?

Acknowledgements Iam grateful to Taras Panov for fruitful discussions and many useful remarks. I would
like also to thank anonymous reviewers for valuable comments, which helped improving this article.
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