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Abstract
We consider the point location problem in an arrangement of n arbitrary hyperplanes
in any dimension d, in the linear decision tree model, in which we only count linear
comparisons involving the query point, and all other operations do not explicitly access
the query and are for free. We mainly consider the simpler variant (which arises in
many applications) where we only want to determine whether the query point lies on
some input hyperplane. We present an algorithm that performs a point location query
with O(d2 log n) linear comparisons, improving the previous best result by about a
factor of d. Our approach is a variant of Meiser’s technique for point location (Inf
Comput 106(2):286–303, 1993) (see also Cardinal et al. in: Proceedings of the 24th
European symposiumon algorithms, 2016), and its improved performance is due to the
use of vertical decompositions in an arrangement of hyperplanes in high dimensions,
rather than bottom-vertex triangulation used in the earlier approaches. The properties
of such a decomposition, both combinatorial and algorithmic (in the standard real
RAM model), are developed in a companion paper (Ezra et al. arXiv:1712.02913,
2017), and are adapted here (in simplified form) for the linear decision tree model.
Several applications of our algorithm are presented, such as the k-SUM problem and
the Knapsack and SubsetSum problems. However, these applications have been
superseded by the more recent result of Kane et al. (in: Proceedings of the 50th ACM
symposium on theory of computing, 2018), obtained after the original submission (and
acceptance) of the conference version of our paper (Ezra and Sharir in: Proceedings of
the 33rd international symposium on computational geometry, 2017). This result only

Editor in Charge: Kenneth Clarkson

Work on this paper by Esther Ezra was supported by NSF CAREER under Grant CCF:AF 1553354 and
by Grant 824/17 from the Israel Science Foundation. Work on this paper by Micha Sharir was supported
by Grant 892/13 from the Israel Science Foundation, by Grant 2012/229 from the U.S.—Israel Binational
Science Foundation, by the Blavatnik Research Fund in Computer Science at Tel Aviv University, by the
Israeli Centers of Research Excellence (I-CORE) program (Center No. 4/11), and by the Hermann
Minkowski-MINERVA Center for Geometry at Tel Aviv University. A preliminary version of this paper
appeared in Proc. 33rd Int. Sympos. Computational Geometry, 2017 [13].

Extended author information available on the last page of the article

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00454-018-0043-8&domain=pdf
http://orcid.org/0000-0001-8133-1335
http://arxiv.org/abs/1712.02913


736 Discrete & Computational Geometry (2019) 61:735–755

applies to ‘low-complexity’ hyperplanes (for which the �1-norm of their coefficient
vector is a small integer), which arise in the aforementioned applications. Still, our
algorithm has currently the best performance for arbitrary hyperplanes.

Keywords Point location in geometric arrangements · k-SUM and k-LDT · Linear
decision tree model · Epsilon-cuttings · Vertical decomposition of geometric
arrangements

Mathematics Subject Classification 52C99 · 52C45 · 68Q87 · 68Q25

1 Introduction

The basic problem studied in this paper is point location in an arrangement of hyper-
planes, in any dimension, in the linear decision treemodel. In the general version of this
problem we are given a set H of n hyperplanes inRd , where both n and d are assumed
to be large, and we seek an algorithm that, given a query point x := (x1, x2, . . . , xd),
computes the cell of the arrangement A(H) of H that contains x. In many of the
applications, though, it suffices to determine whether x lies on some hyperplane of H .
To simplify the presentation, most of the study in this paper is devoted to this special
case, but we will also address the general case.

Point location problems of this kind arise in several interesting applications, such
as the k-SUM problem, and the more general k-linear degeneracy testing (k-LDT)
problem, as well as their looser (and harder) variants SubsetSum and Knapsack. In
the k-SUM problem, we are given a set of n real numbers, represented as a point x :=
(x1, x2, . . . , xn) ∈ R

n , and want to decide whether there exist k indices i1, i2, . . . , ik
such that xi1 + xi2 + · · · + xik = 0. In the k-LDT problem, we are also given a fixed
k-variate linear function f (y1, . . . , yk) = a0 + ∑k

i=1 ai yi , where a0, a1, . . . , ak are
real coefficients, and, for a query point x := (x1, x2, . . . , xn) ∈ R

n , we want to decide
whether there exist k indices i1, i2, . . . , ik such that f (xi1 , xi2 , . . . , xik ) = 0. In the
SubsetSum problem, the input consists of n integers, and the goal is to decide whether
they contain a non-empty subset whose elements sum to 0. The Knapsack problem
is a variant of SubsetSum where given n real numbers, we would like to determine
whether there is a (non-empty) subset of them that sums to 1.

Following the approach in Cardinal et al. [3] for k-SUM (see also [2,12]), we define
H to be the collection of the

(n
k

)
hyperplanes h inRn of the form xi1+xi2+· · ·+xik = 0,

over all k-tuples 1 ≤ i1 < i2 < · · · < ik ≤ n. The k-SUM problem can then be
reformulated as asking, for a query point x, whether x lies on any hyperplane of H .
This reduces the k-SUM problem to the special variant of point location in hyperplane
arrangements, as discussed above. A similar reduction applies to the k-LDT problem,
and also to themore generalKnapsack orSubsetSum problems, inwhich the relevant
hyperplanes are of the form xi1+· · ·+xik = 1 or 0, for all the 2n−1 possible non-empty
subsets {i1, . . . , ik} of {1, . . . , n}.
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The model in which we consider this problem is the s-linear decision tree model:
Solving an instance of the problem with input x = (x1, . . . , xd) is implemented as a
search with x in some tree T . Each internal node v of T is assigned a linear function in
the d variables x1, . . . , xd , with at most s non-zero coefficients. The outgoing edges
from v are labeled<,>, or=, indicating the branch to follow depending on the sign of
the expression at v evaluated at x. Leaves are labeled “YES” or “NO”, where “YES”
means that we have managed to locate x on a hyperplane of H , and “NO” means that
x does not lie on any hyperplane. Each “YES” leaf has an edge labeled “=” leading
to it (but not necessarily vice versa, because some of the tests may involve auxiliary
hyperplanes that are not part of the input). To solve an instance of the problem, we
begin at the root of T . At each node v that we visit, we test the sign at x of the linear
function at v, and proceed along the outgoing edge labeled by the result of the test. We
conduct this search until we reach a leaf, and output its label “YES” or “NO”. At each
internal node, the test (which we also refer to as a linear query) is assumed to cost
one unit. All other operations are assumed (or rather required) not to depend on the
specific coordinates of x (although they might, and generally do, depend on discrete
data that has been obtained from the preceding queries with x), and incur no cost in
this model. Thus the length of the search path from the root is the overall number of
linear queries performed by the algorithm on the given input, and is thus our measure
for its cost. In other words, the worst-case complexity of the algorithm, in this model,
is the maximum depth of its corresponding tree. As in [3], when s = d (the maximum
possible value for s), we refer to the model just as a “linear decision tree”. The study
in this paper will only consider this unconstrained case.

We also note that, although we could in principle construct the whole tree T in a
preprocessing stage, which would cost nothing in our model, the algorithm that we
present only constructs, on the fly, the search path that x traces in T .

To recap, solving a point location instance in this model, with a query point x,
amounts to processing a sequence of linear queries of the form “Does x lie on some
hyperplane h, or else on which side of h does it lie?”. Each such query is a sign test,
asking for the sign of h(x), where h(·) is the linear expression defining h. Some of
the hyperplanes h that participate in these queries will be original hyperplanes of H ,
but others will be auxiliary hyperplanes that the algorithm constructs. For this special
variant of point location, the algorithm succeeds if at least one of the linear queries
that involves an original hyperplane results in an equality, determining that x does lie
on a hyperplane of H .

The same model applies for the general point location problem, except that each
leaf of the tree is labeled with some cell C of A(H) (of any dimension), and each
query that reaches that leaf lies in C . In the companion paper [14] we address several
concrete issues that arise in this general version, such as a compact way to represent
cells of the arrangement. However, in this paper these issues are not important for the
linear decision tree model, as they are independent of the concrete coordinates of the
query point.
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Previous work The k-SUM, k-LDT, SubsetSum, and Knapsack problems have
been studied extensively over the years. These problems are NP-complete (the first
two are NP-complete when k is part of the input), which raised interest in finding
polynomial-time solutions in restricted models, such as the linear decision tree model
considered here. The dependence of k-SUM and k-LDT on k (say, in the standard
RAM model) has not yet been fully resolved. Improved performance bounds have
been obtained by Erickson [12] (see also Ailon and Chazelle [2]).

Meyer auf der Heide [29] showed an upper bound of O(n4 log n) on the number of
linear queries for the n-dimensional Knapsack problem, and thus, in particular, for
k-SUM.

Meiser [28] presented an efficient point-location mechanism for high-dimensional
hyperplane arrangements, in the standard real RAM model. When interpreted in the
linear decision tree model, and applied to the instances at hand, it yields a linear
decision tree for k-SUM (as well as for the more general problem k-LDT) of depth
that is only polynomial in k and n. We remark that the original analysis of Meiser was
sketchy and relied on a suboptimal choice of parameters. Meiser’s analysis has been
somewhat tightened byLiu [25]. A careful andmeticulous study ofMeiser’s algorithm,
with improved performance bounds, is given in the companion paper with Har-Peled
and Kaplan [14]. Cardinal et al. [3] improved this bound to O(kn3 log2 n). Concerning
lower bounds in this model of computation, Dobkin and Lipton [11] showed a lower
bound of�(n log n) on the depth of the linear decision tree for k-LDT, and, in another
paper [10], a lower bound of �(n2) for the n-dimensional Knapsack problem. We
mention the very recent work of Kane et al. [22], who present an almost tight bound
of O(kn log2 n) on the number of linear queries for k-SUM. Below we discuss this
latter work in more detail and compare it to our results.

We remark that the case k = 3, i.e., the 3SUM-problem, is related to various
geometric problems to which it can be reduced. These problems are known as 3SUM-
hard. For example, the problem of testing whether there exist three collinear points in
a given planar set of n points is 3SUM-hard. These problems have been introduced in
the seminal work of Gajentaan and Overmars [16], who showed subquadratic reduc-
tions from 3-SUM to many of these problems. The prevailing conjecture was that any
algorithm for 3-SUM requires �(n2) time, but in a recent dramatic development, this
has been refuted by Grønlund and Pettie [18], who presented a (slightly) subquadratic
algorithm for 3-SUM (see also [15] and the more recent works of [4,5,17]). Further-
more, Grønlund and Pettie showed that in the (2k−2)-linear decision tree model, only
O(nk/2

√
log n) queries are required for k odd. In particular, for 3-SUM, this bound is

O(n3/2
√
log n), and it has been slightly improved to O(n3/2) [17].

Our results Our main result is the following improved algorithm for point location
in hyperplane arrangements, under the linear decision tree model.

Theorem 1.1 (Restricted point location) Let H be a set of n arbitrary hyperplanes
in R

d . Given a point x ∈ R
d , we can determine whether x lies on any hyperplane of

H with O(d2 log n) linear queries. The algorithm terminates almost surely, and can
be implemented in the real RAM model, where it makes the same number of linear
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queries, runs in overall polynomial time, and all its other operations do not access
explicitly the coordinates of x.

In some applications one seeks a procedure that actually returns the cell of the
arrangement (of the appropriate dimension) that contains the query pointx, for example
by outputting the sign vector of x, which is a vector indexed by the hyperplanes of H ,
so that each component is −1, 0, or 1, if x lies below, on, or above the corresponding
hyperplane, respectively. A suitable extension of our technique can perform this task
too; see the companion paper [14] for details.

Our analysis uses a variant of the approach in [3], inspired by the point-location
mechanism ofMeiser [28], wherewe locate the input point x inA(H) using a recursive
algorithm that searches with x through a sequence of arrangements of random samples
from the input set H . While this framework is not new, a major difference between the
construction of [3,28] and ours is that the former constructions apply bottom-vertex
triangulation to the cells in arrangements of suitable (random) subsets of H , which
partitions each cell into simplices. In dimension d, each simplex is defined (in general)
by �(d2) hyperplanes of H ; see, e.g., [1,9] and below. In contrast, in our construction
we partition the cells of such an arrangement using the vertical decomposition tech-
nique [1,7], where each cell of the arrangement is partitioned into a special kind of
vertical prisms, each of which is defined by only at most 2d hyperplanes of H . In both
studies, ours and those of Meiser [28] and of Cardinal et al. [3], the local construction
of the cell containing x (in an arrangement of some subsample of H ) is carried out
through d recursive steps (reducing the dimension by 1 at each step). The difference
is that the algorithm in [3] needs to perform roughly quadratically many queries at
each such recursive step, whereas our algorithm performs only linearly many queries.
With a few additional observations about the structure of vertical decompositions (see
below for a detailed discussion), this will eventually decrease the overall depth of the
linear decision tree by (slightly more than) a factor of d, with respect to the bound
in [3]. We note that, although the combinatorial bound on the overall complexity of
(number of simplices in) bottom-vertex triangulations in hyperplane arrangements is
in general smaller than the currently best known bound on the complexity of (number
of prisms in) vertical decompositions (in dimensions d ≥ 5), this is not an issue in the
decision tree model. In other words, for the purpose of locating the cell containing x,
in the linear decision tree model, using vertical decompositions is the decisive winning
strategy.1

We can apply this result to the k-SUM, k-LDT, Knapsack and SubsetSum prob-
lems, using the reduction described above, whichmaps the problem to a point-location
problem in Rn (where n is the size of the input), with a set of

(n
k

)
hyperplanes for the

former two problems, or of 2n − 1 hyperplanes for latter two problems. We obtain:

Theorem 1.2 (a) For any fixed k, the complexity of k-SUMand k-LDT in the (random-
ized) linear decision-tree model is O(kn2 log n) with high probability. Moreover,
the algorithms solving these two problems terminate almost surely.

1 As shown in the companion paper [14], this is also true, in a certain sense, in the real RAM model.
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(b) The complexity of the n-dimensional SubsetSum and Knapsack problems in the
(randomized) linear decision-tree model is O(n3)with high probability. Moreover,
the algorithms solving these two problems terminate almost surely.

On the “real” algorithmic front, we show that in the RAM model the k-SUM and
k-LDT problems, for k fixed, can be solved in expected polynomial time, with the
same number, namely O(kn2 log n), of linear queries (and with all other operations
independent of the actual coordinates of x), as in Theorem 1.2. This is described in
Sect. 4.4.

We note that while the bounds that we obtain in Theorem 1.2 are a significant
improvement over the previous works [3,28], they have been improved in a more
recent work of Kane et al. [22], who present an almost tight bound of O(kn log2 n) on
the number of linear queries for k-SUM, a similar nearly-tight bound of O(k2n log2 n)

for k-LDT, and a bound of O(n2 log n) for theKnapsack and SubsetSum problems.
Their approach is considerably different from ours and from the earlier works [3,28],
and uses the concept of “inference dimension” developed in the context of active learn-
ing.Moreover, the results in [22] hold, for the k-SUMand k-LDTproblems, already for
the (2k)-linear decision treemodel. However, as alreadymentioned, this groundbreak-
ing progress requires the hyperplanes that arise in the corresponding point-location
problem to have a few and small integer coefficients (the �1-norm of the vector of
the integer coefficients should be a small integer). This holds for k-SUM, and, after
a certain reduction, also for k-LDT, and also for Knapsack and SubsetSum, but
does not yield a good bound for arbitrary hyperplanes, as does our algorithm. Kane
et al., in a more recent work [23], have extended their approach to apply to arbi-
trary hyperplanes, but the number of linear queries is larger than ours; namely, for n
hyperplanes in Rd , their algorithm requires O(d4 log d log n) linear queries.2 In con-
clusion, our result still provides the best known bounds for the number of linear queries
for performing point location in an arrangement of arbitrary hyperplanes in higher
dimensions.

2 Preliminaries: Arrangements and Vertical Decomposition

Let H be a collection of n hyperplanes in Rd . We emphasize that H is not necessarily
in general position, and that it may contain vertical hyperplanes (as it does in the
case of the k-SUM problem and its variants), as well as vertices that are incident to
more than d hyperplanes. We allow degeneracies of the latter kind, but we get rid of
vertical hyperplanes by performing a slight random rotation of the coordinate frame
(generating a random rotation using the technique in [30]). This is made in order to
simplify the presentation and is also the approach taken in the companion paper [14].
See later for a discussion of this step.

The description of vertical decomposition and its related constructs, as presented
below, while being constructive, is made only to define the relevant notions, and to
set the infrastructure within which our algorithm will operate and will be analyzed.

2 On the other hand, their algorithm uses simpler queries that involve considerably fewer, and simpler
looking auxiliary hyperplanes.
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The algorithm itself will not construct explicitly the entire vertical decompositions
through which it searches.

The vertical decomposition V(H) of the arrangement A(H) is defined in the fol-
lowing recursive manner (see [1,7] for the general setup, and [19,24] for the case of
hyperplanes in four dimensions). Let the coordinate system be x1, x2, . . . , xd , and let
C be a cell in A(H). For each (d − 2)-face g on ∂C , we erect a (d − 1)-dimensional
vertical wall passing through g and confined to C ; this is the union of all the maximal
xd -vertical line-segments that have one endpoint on g and are contained in C . The
walls extend downwards (resp., upwards) from faces g on the top boundary (resp., bot-
tom boundary) of C (faces on the “equator” of C , i.e., faces that have an xd -vertical
supporting hyperplane, have no wall (withinC) erected from them). This collection of
walls subdivides C into convex vertical prisms, each of which is bounded by (poten-
tially many) vertical walls, and by two hyperplanes of H , one appearing on the bottom
portion and one on the top portion of ∂C , referred to as the floor and the ceiling of
the prism, respectively; in case C is unbounded, a prism may be bounded by just a
single (floor or ceiling) hyperplane of H . More formally, this step is accomplished by
projecting the bottom and the top portions of ∂C onto the hyperplane xd = 0, and
by constructing the overlay of these two convex subdivisions. Each full-dimensional
(i.e., (d − 1)-dimensional) cell in the overlay, when lifted vertically back to R

d and
intersected with C , becomes one of the above prisms.

Note that after this step, the two bases (or the single base, in case the prism is
unbounded) of a prism may still have arbitrarily large complexity, or, more precisely,
be bounded by arbitrarily many hyperplanes. It is simpler to describe the construction
using the overlay interpretation given in the preceding paragraph. That is, assume that
both bases exist. Then there exist a facet f − on the lower boundary of C and a facet
f + on the upper boundary of C , such that f − and f + are vertically visible within C ,
and the common xd -projection of the bases of (or of all of) the prism is the intersection
C ′ of the projections of f − and of f +. Let h− (resp., h+) be the hyperplane in H
that contains f − (resp., f +). Note that C ′ is a convex polyhedron in R

d−1, bounded
by at most n − 1 (d − 1)-hyperplanes, each of which is the projection of either (i)
an intersection of the form h− ∩ h, for h lying below C , or (ii) an intersection of the
form h+ ∩ h, for h lying above C , or (iii) the intersection h+ ∩ h− (in which case the
corresponding (d − 1)-hyperplane bounding C ′ is the projection of an equator face of
C). In what follows we refer to the prisms obtained so far as undecomposed prisms,
or partially decomposed prisms, or first-stage prisms.

Before continuing, we summarize the preceding observations in the following
lemma for future references.

Lemma 2.1 Let τ be a first-stage prism, whose ceiling and floor are contained in
two respective hyperplanes h−, h+. The xd-projection of τ is a convex polyhedron,
bounded by at most n − 1 hyperplanes (in xd = 0), each of which is of one of the
following types (i)–(iii):

(i) an intersection h− ∩ h, for some hyperplane h that passes below C, or
(ii) an intersection h+ ∩ h, for some hyperplane h that passes above C, or
(iii) h− ∩ h+.
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Remark An important feature of the preceding argument is that it also holds when
τ is any convex vertical prism, obtained at any recursive step of the decomposition
(as described shortly), and, in particular, when τ is the vertical prism obtained at the
final step. This property will be used in the complexity analysis of our point-location
algorithm, to be presented in Sect. 4.

Our goal is to decimate the dependence of the complexity of the prisms on n, and to
construct a decomposition of this kind so that each of its prisms is bounded by no
more than 2d hyperplanes. To do so, we recurse with the construction within the xd -
projection C ′ of the prism, so each recursive subproblem is now (d − 1)-dimensional.

Specifically, after the first decomposition step described above, we project each of
the first-stage prisms just obtained onto the hyperplane xd = 0, obtaining a (d − 1)-
dimensional convex polyhedron C ′, which we vertically decompose using the same
procedure described above, only in one lower dimension. That is, we now erect vertical
walls within C ′ from each (d − 3)-face of ∂C ′, in the xd−1-direction. These walls
subdivide C ′ into xd−1-vertical (undecomposed) prisms, each of which is bounded by
(at most) two facets of C ′, which contain its floor and ceiling (in the xd−1-direction),
and by some of the vertical walls.

We keep projecting these prisms onto hyperplanes of progressively lower dimen-
sions, and produce the appropriate vertical walls. We stop the recursion as soon as we
reach a one-dimensional instance, in which case all prisms projected from previous
steps become line-segments (including two halflines), requiring no further decompo-
sition.3 We now backtrack, and lift the vertical walls (constructed in lower dimensions,
over all iterations), one dimension at a time, ending up with (d−1)-dimensional walls
within the original cellC ; that is, a (d−i)-dimensional wall is “stretched” in directions
xd−i+2, . . . , xd (applied in that order), for every i = d, . . . , 2, where at each step it is
clipped between the floor and ceiling of the corresponding dimension.

Each of the final cells is a “box-like” prism, bounded by at most 2d hyperplanes.
Of these, two are original hyperplanes, two are hyperplanes supporting two xd -
vertical walls erected from some (d − 2)-faces, two are hyperplanes supporting two
xd−1xd -vertical walls erected from some (d − 3)-faces (within the appropriate lower-
dimensional subspaces), and so on.

We note that each final prism is defined in terms of at most 2d original hyperplanes
of H , in a sense made precise in the ensuing description. In degenerate situations
where there are vertices that are incident to more than d hyperplanes, the defining set
may not be unique, however, as we show below, we can still define the final prism with
at most 2d original hyperplanes. We establish this property using backward induction
on the dimension of the recursive instance. Initially, we have two original hyperplanes
h−, h+, which contain the floor and ceiling of the prism, respectively, and belong
to the defining set. We intersect each of the remaining hyperplanes of H with either
h− or h+, as prescribed earlier (including the intersection h− ∩ h+), and project all
these intersections onto the (d − 1)-hyperplane xd = 0. Suppose inductively that,
when we are at dimension j , we already have a set Dj of (at most) 2(d − j) original

3 If we care about the complexity of the resulting decomposition, in terms of its dependence on n, which
is an irrelevant issue in our model, it is better to stop the recursion earlier, as done in previous works. The
terminal dimension is d = 2 or d = 3 in (the two respective versions of) [7], and d = 4 in [24].
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defining hyperplanes (namely, all the original hyperplanes defining the walls erected
so far that bound the current, still not fully decomposed, prism), and that each (lower-
dimensional) hyperplane in the current collection Hj of ( j−1)-hyperplanes is obtained
by an interleaved sequence of intersections and projections, which are expressed in
terms of some subset of the at most 2(d − j) defining hyperplanes and (at most) one
additional original hyperplane. Clearly, all this holds trivially at the initial step j = d.
We now choose a new floor and a new ceiling from among the hyperplanes in Hj ,
gaining two new defining hyperplanes: The unique ones that define the new floor and
ceiling and are the ones not in Dj .4 We add them to Dj to form Dj−1, intersect each
of the other hyperplanes in Hj with either the new floor or the new ceiling, using the
rule given above (see Lemma 2.1), and project all the resulting ( j − 2)-intersections
onto the ( j − 1)-hyperplane x j = 0, to obtain a new collection Hj−1 of ( j − 2)-
hyperplanes. Clearly, the inductive properties that we assume carry over to the new
sets Dj−1 and Hj−1, so this holds for the final setup in d = 1 dimensions. Since each
step adds at most two new defining hyperplanes, and since no extra hyperplanes are
present at d = 1, the claim follows.

We apply this recursive decomposition for each cellC ofA(H), and thereby obtain
the entire vertical decomposition V(H). We remark though that our algorithm does
not explicitly construct V(H). In fact, it does not even construct the (full discrete
representation of the) prism of V(H) containing the query point x. It will be clear
shortly from the presentation what the algorithm actually constructs.

3 "-Cuttings and Optimistic Sampling with Vertical Decompositions

Given a finite collection H of hyperplanes in R
d , by an ε-cutting for H we mean a

subdivision of space into prism-like cells, of the form just defined, that we simply
refer to as prisms5, such that every cell is crossed by (i.e., the interior of the cell is
intersected by) at most ε|H | hyperplanes of H , where 0 < ε < 1 is the parameter of
the cutting. ε-cuttings are a major tool for a variety of applications; they have been
established and developed in several fundamental studies more than twenty five years
ago [6,8,26].

Roughly speaking, when d is a (small) constant, the random sampling theory of
Clarkson and Shor [9] (see also Clarkson [8]) produces an ε-cutting as follows. We
use the drawing model in which, to obtain a random sample R of target size r , we
make r independent random draws from H ; we allow repetitions, so the actual size of
R might be smaller than r . This is the model used in the ε-net theorem of Haussler and
Welzl [21] and in several related works. We refer to a sample drawn in this manner
as an r -sample. We now draw an r -sample R from H , for r := cd

ε
log d

ε
, where c

is a suitably large absolute constant, and construct the arrangement A(R) of R and
its vertical decomposition V(R). With a suitable choice of c, the random sampling

4 Note that in degenerate situations, although they may not be unique, we can choose the two new defining
hyperplanes arbitrarily. This does not violate the representation of the final prism.
5 In the original studies (see, e.g., [6]), these subcells were taken to be simplices, obtained from the
bottom-vertex triangulation of A(H) [27], although both forms have been used in the literature by now.

123



744 Discrete & Computational Geometry (2019) 61:735–755

τ

(b)(a)

Fig. 1 (a) A degeneracy, in which a geometric prism τ has many defining sets. The prism results from
nine combinatorially distinct prisms, each with a different signature defining set, consisting of the floor, the
ceiling, one of the other lines through the top-left corner, and one of the other lines through the bottom-right
corner. (b) Another possible degeneracy, where a defining set is not unique. In this case the two hyperplane
intersections coincide after projection. Both scenarios happen with probability 0

technique of Clarkson and Shor [9] then guarantees, with constant (high6) probability,
that every prism of V(R) is crossed by at most ε|H | hyperplanes of H . (This also
follows from the ε-net theory of Haussler and Welzl [21], but, as it turns out, the
dependence of r on d is much larger when d is large; see the companion paper [14]
for more details.)

A weak aspect of ε-cuttings is that they require that every cell of the cutting be
“light” (crossed by at most ε|H | hyperplanes of H ). This is important if we are after
a data structure that has to be constructed in a single preprocessing stage, and then
has to cater to every possible query point. However, in the linear decision tree model,
this is an overkill—all we want to ensure is that the prism containing the single query
point x be light. In Theorem 3.1, we consider the single-prism variant, and show that
its lightness can be guaranteed (with high probability) by using a smaller-size sample;
see also the companion paper [14], where this latter, single-prism approach is referred
to as optimistic sampling, for further details.

3.1 The Clarkson–Shor Framework

We keep denoting by H a set of n hyperplanes in R
d . Following the definitions and

notations in [20, Chap. 8], put T = T(H) :=
⋃

S⊆H
V(S); that is, T is the set of all

possible prisms defined by the subsets of H . For each prism τ ∈ T, we associate with
τ its defining set D(τ ) and its conflict list K (τ ). The former is the smallest subset
D ⊆ H such that τ is a prism in V(D), and the latter is the set of all hyperplanes
h ∈ H for which τ does not appear in V(D ∪ {h}); they are precisely the hyperplanes
in H \ D that cross τ . In degenerate situations (as those allowed in this paper), D(τ )

may not be uniquely defined; see Fig. 1 for an illustration.

6 The probability approaches 1 when we increase c.
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To overcome this hurdle, we distinguish between the notions of a geometric prism,
which is the spatial region occupied by the prism, and a combinatorially defined prism
(or just a combinatorial prism for short), which comes with its own unique defining
set, to which we refer as its signature; see again Fig. 1 for this distinction. That is, in
degenerate scenarios different sets Dmay define the same geometric prism τ , but in the
combinatorial sense each of these sets D defines its own distinct combinatorial prism.
When two (or more) distinct sets D1 and D2 define two respective combinatorially
distinct prisms τ1 and τ2 that give rise to the same geometric prism τ , the hyperplanes
in D2 \ D1 are irrelevant for the prism τ1—they neither define it nor cross it. In what
follows the unqualified term τ always refers to the combinatorial version of the prism
(and, with a bit of abuse of notation, also to its geometric counterpart). Of course,
when the hyperplanes are in general position, all these fine issues are irrelevant—each
geometric prism has a unique defining set.

By our discussion in Sect. 2 we have |D(τ )| ≤ 2d, for each τ ∈ T. In other words,
in the definition of T, it suffices to consider subsets S ⊆ H with |S| ≤ 2d.

We have the following two axioms, which hold for any subset S ⊆ H (recall that,
by convention, all prisms are now combinatorial):

(i) For any τ ∈ V(S), we have D(τ ) ⊆ S, for the defining set (signature) D(τ ) of τ ,
and K (τ ) ∩ S = ∅.

(ii) If D(τ ) ⊆ S, for the defining set D(τ ) of τ , and K (τ ) ∩ S = ∅, then τ ∈ V(S).

Theorem 3.1 Given a set H of n hyperplanes in d-space, a parameter ε ∈ (0, 1),
and a fixed point x ∈ R

d , a random sample R of r = cd
ε
log 1

ε
independent draws

(with repetitions) of hyperplanes of H, where c is a sufficiently large absolute con-
stant, satisfies, with constant (high) probability, the property that either (i) x lies on a
hyperplane of R, or (ii) the unique prism in the vertical decomposition V(R) ofA(R)

that contains x is crossed by at most ε|H | hyperplanes of H.

Proof Although the proof is rather standard, the specific sampling model that we use
requires some attention. We present the proof (i) for the sake of completeness, (ii) for
properly handling our drawing model, and (iii) for highlighting the way in which the
analysis is affected by the dependence of the “constant” of proportionality on d.

Fix a prism τ ∈ T(H) that contains x in its interior. Let k := |K (τ )| denote the size
of its conflict list, and assume, without loss of generality, that |D(τ )| is exactly 2d. The
probability that τ appears in V(R) is the probability that we draw all elements in D(τ )

and none of K (τ ) (once again, we emphasize that D(τ ) is the unique representative
signature of τ ). To obtain such a successful event, enumerate D(τ ) as h1, h2, . . . , h2d .
Choose a drawing index (out of the r draws) at which h1 is picked, then another index
at which h2 is picked, and so on. In any of the r − 2d remaining indices, choose any
of the n − k hyperplanes of H \ K (τ ). The number of such events is at most

r(r − 1) · · · (r − 2d + 1) · (n − k)r−2d .

This is an upper bound, rather than an equality, because we allow repetitions, so the
same event may be counted more than once in this bound. Hence the probability that
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τ appears in V(R) is at most

r(r − 1) · · · (r − 2d + 1) · (n − k)r−2d

nr
≤

(
r

n

)2d(n − k

n

)r−2d

≤
(
r

n

)2d

e−k(r−2d)/n .

We have r � 2d, with a suitable choice of constants, so we can write r − 2d ≥ c0r ,
for c0 ≈ 1. The above probability is then at most

(
r

n

)2d

e−c0kr/n .

In particular, if k is heavy, that is, if k ≥ εn then c0rk/n ≥ c0rε.
Recall that we take r = O

( d
ε
log 1

ε

)
. In this case,

c0rε = c0cd log
1

ε
,

and the probability of τ to appear in V(R) is at most

(
r

n

)2d

e−c0cd log
1
ε .

We repeat this analysis for each heavy prism τ ∈ T(H) that contains x in its interior.
The overall number of prisms that contain x is estimated as follows. For any subset R
of H , if x does not lie on any hyperplane of R (barring degenerate situations, in which
x lies on a vertical wall of a prism or on one of its vertical faces of lower dimension,
in which case it lies on the boundary of several prisms, an event which occurs with
probability 0), then it lies in (the interior of) a unique prism in V(R). Since any such
prism is defined by at most 2d hyperplanes of H , it follows that the number of such
prisms is

(
n

2d

)

≤ n2d

(2d)! = O

(
n2d

d1/2

(
e

2d

)2d)

.

Hence, substituting the value of r and using the probability union bound, we conclude
that the probability that the prism of V(R) that contains x in its interior is heavy is at
most

O

(
n2d

d1/2

(
e

2d

)2d

· r
2d

n2d
e−c0cd log

1
ε

)

= O

((
ce

2ε

)2d

e−c0cd log
1
ε

)

.
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This expression will be (much) smaller than 1 if we choose c large enough to have

(
ce

2ε

)2

e−c0c log 1
ε < 1, or c2εc

′
0c <

(
2ε

e

)2

,

where c′
0 is another absolute constant, which will be the case if we take c to be a

sufficiently large absolute constant. This completes the proof. 
�
Remark Our construction uses vertical decomposition. Expanding upon an earlier
made comment, we note that an alternative construction, for arrangements of hyper-
planes, is thebottom-vertex triangulation (see [1,27]).However, itsmajor disadvantage
for the analysis in this paper is that the typical size of a defining set of a simplex in this
decomposition is d0 = d(d + 3)/2, as opposed to the much smaller value d0 = 2d
for vertical decomposition; see above [1,27], and the companion paper [14], for more
details. The fact that prisms in the vertical decomposition have such a smaller bound
on the size of their defining sets is what makes vertical decomposition a superior tech-
nique for the decision-tree complexity of point location in hyperplane arrangements.
As a matter of fact, we show in the companion paper [14] that this superiority also
holds, with suitable caveats, in the uniform RAM model.

4 The Algorithm

4.1 AlgorithmOutline

The input to the algorithm is a set of n hyperplanes in R
d , and a query point x. The

high-level approach of our algorithm can be regarded as an optimized variant of the
algorithm of Cardinal et al. [3], which is inspired by the point-location mechanism of
Meiser [28]. We choose ε = 1/2, and apply the refined sampling strategy given in
Theorem 3.1. The algorithm proceeds as follows.

(i) Construct a random sample R of r := O
( d

ε
log 1

ε

) = O(d) hyperplanes of H ,
with a suitable absolute constant of proportionality.

(ii) Construct the prism τ = τx of V(R) that contains the input point x. If at that step
we detect an original hyperplane of H that contains x, we stop and return “YES”.

(iii) Construct the conflict list K (τ ) of τ (the subset of hyperplanes of H that cross τ ).
If |K (τ )| > n/2, discard R and restart the algorithm at step (i). Otherwise, recurse
on K (τ ).

(iv) Stop as soon as |K (τ )| is smaller than the sample size r = O
( d

ε
log 1

ε

)
(we use

the same sample size in all recursive steps). When that happens, test x, in brute
force, against each original hyperplane of H in K (τ ); return “YES” if one of the
tests results in an equality, and “NO” otherwise.

We note that those parts of the algorithm that do not explicitly depend7 on x, which
are costly in the RAMmodel, are performed here for free. That is, our goal at this point

7 By this we mean that they do not compute any explicit expression that depends on the coordinates of x;
recall the discussion in the introduction.
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is only to bound the number of linear queries performed by the algorithm. We also
note that the construction of the prism containing x (described below) is conceptually
simple, mainly due to the fact that there are no vertical hyperplanes (after we apply
the random rotation). The other kind of degeneracy, that is, vertices that are incident to
arbitrarily many hyperplanes, is handled relatively easily, at least in the linear decision
tree model—see below.

We comment that step (i) costs nothing in our model, so we do not bother with its
implementation details (which are thoroughly investigated in [14]). The tests in step
(iii), although being very costly in the standard real RAM model of computation, are
independent of the specific coordinates of x, and thus cost nothing in our model. Thus
only steps (ii) and (iv) need to be analyzed. We focus on the more involved step (ii);
step (iv) is trivial to analyze.

Constructing the prism containing x Since the overall complexity of the prism (the
number of its faces of all dimensions) is exponential in the dimension d, we do not
construct it explicitly. Instead we only construct explicitly its at most 2d bounding
hyperplanes, consisting of a floor and a ceiling (or only one of them in case the cell
Cx in A(R) containing x is unbounded), and at most 2d − 2 vertical walls (we have
strictly fewer than 2d −2 walls in cases when either the floor of τ intersects its ceiling
(on ∂τ ), or when this happens in any of the projections τ ∗ of τ in lower dimensions,
or when the current subcell becomes unbounded at any of the recursive steps). The
prism τ , as defined in step (ii), is then implicitly represented as the intersection of
the halfspaces bounded by these hyperplanes and containing x. Let Hx denote this
set of at most 2d hyperplanes. From now on we assume, to simplify the presentation
but without real loss of generality, that Cx is bounded, and that τ has exactly 2d − 2
vertical walls (and thus exactly 2d bounding hyperplanes).

The following recursive algorithm constructs Hx, and also detects whether x lies
on one of the bounding hyperplanes of τ . Let r = O

( d
ε
log 1

ε

)
denote the size of our

sample R. Initially, we set Hx := ∅. We first perform r linear queries with x and each
of the hyperplanes of R, resulting in a sequence of r output labels “above” / “below”
/ “on”. At the top level of recursion (before reducing the dimension), encountering
a label “on” means that x lies on an original hyperplane of H , and thus there is a
positive solution to our instance of the restricted variant of point location considered
here, and we stop the entire procedure and output “YES”. At deeper recursive levels
(in lower-dimensional spaces), the hyperplanes passed to such a recursive instance are
no longer the original hyperplanes of R ⊆ H . Under a random tilting of the coordinate
frame, the probability of encountering any “on” output is 0. If we do encounter “on”,
we have two options: We can either abort, or discard the current random tilting and
apply another one. In the former approach, the algorithm may fail with probability 0,
and in the latter it will never fail, but may not terminate, again only with probability
0. In what follows we opt for the second approach. (Note that when we re-tilt the
coordinate frame, the coordinates of x also vary accordingly.)

We thus assume, without loss of generality, that initially all labels are “above” or
“below”. We next partition the set of the hyperplanes in R according to their labels,
letting R1 denote the set of hyperplanes lying above x, and R2 the set of hyperplanes
below it. We then identify the upper hyperplane h1 ∈ R1 and the lower hyperplane
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h2 ∈ R2 with shortest vertical distances from x. We do this by computing the min-
imum of these vertical distances, each of which is a linear expression in x, using
(|R1| − 1) + (|R2| − 1) < r additional comparisons. The hyperplanes h1 and h2
contain the ceiling and the floor of τ , respectively, and we thus insert them into Hx.

In order to produce the hyperplanes containing the vertical walls of τ , we recurse
on the dimension d. This process somewhat imitates the one producing the entire
vertical decomposition of Cx described above. However, the challenges in the current
construction are to build only the single prism containing x, to keep the representation
implicit, and to do this efficiently.

In accordance with the preceding observations, summarized in Lemma 2.1 and the
remark following it, we generate the pairwise intersections h1 ∩ h, for h ∈ R1 \ {h1},
h2 ∩ h, for h ∈ R2 \ {h2}, and h1 ∩ h2, and project all of them onto xd = 0 (note
that by our assumption the number of defining hyperplanes is exactly 2d, h1 ∩ h2 is
not needed for the construction, but it should be considered in the more general case
where τ has less than 2d bounding hyperplanes). We denote by R(1) the resulting set
of projections. By construction we have |R(1)| ≤ r − 1.

We continue the construction recursively on R(1) in d − 1 dimensions. That is, at
the second iteration, we project x onto the subspace xd = 0; let x(1) be the resulting
point. We first perform at most r linear tests with x(1) and each of the hyperplanes in
R(1). If we encounter “on” for some h(1) ∈ R(1) then x lies on a vertical wall of τ

passing through h(1), and then we re-tilt the coordinate frame, as discussed above.
The general flow of the recursive procedure is as follows. At each step i , for i =

1, 2, . . . , d, we have a collection R(i−1) of at most |R| (actually of at most |R| − i)
hyperplanes of dimension d−i , and a point x(i−1), in the x1 · · · xd−i+1-hyperplane (for
i = 1 we have R(0) = R and x(0) = x). We first test whether x(i−1) lies on any of the
hyperplanes h(i−1) in R(i−1). If so, we re-tilt the frame (unless i = 1, in which case we
report “YES”), as above. Otherwise, no “on” label is produced, and we find the pair of
hyperplanes h(i−1)

1 , h(i−1)
2 that lie respectively above and below x(i−1) in the xd−i+1-

direction, and are closest to x(i−1) in that direction (they support the ceiling and floor
of the recursive prism, in the xd−i+1-direction). We note that in degenerate situations,
when there are vertices that are incident tomore than d hyperplanes, or,more generally,
when there are flats of dimension j that are incident to more than d− j hyperplanes, it
is possible that h(i−1)

1 , h(i−1)
2 are not unique. Typically, this might happen when all the

corresponding original hyperlanes that give rise to h(i−1)
1 or to h(i−1)

2 coincide after
transformed and projected to the current x1 · · · xd−i+1-hyperplane, and they all touch
the full-dimensional prism containing x at a corresponding common (d − i − 1)-face;
see Fig. 1 for an illustration. In this case, we can select h(i−1)

1 , h(i−1)
2 arbitrarily (among

the collection of candidates), which determines the pair of original hyperplanes to be
added to the signature of the final prism containing x. Another situation that can arise,
but only with probability 0, is that the point q, where the xd−i+1-directed ray from
x(i−1) meets these hyperplanes is a transversal intersection of some pair of them; see
Fig. 2. In this case, which can easily be tested by an operation that costs nothing in this
model, x lies on the boundary of a prism, and, as before, we discard the current tilting
and apply a new one. We will revisit this scenario when we discuss the algorithm in
the RAM model in Sect. 4.4.
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Fig. 2 The ray from x(i−1)

meets the current ceiling at a
transversal intersection of two
hyperplanes

x(i−1)

q

Having h(i−1)
1 , h(i−1)

2 as above, we produce a set R(i) of at most |R(i−1)| − 1
hyperplanes of dimension d − i − 1 in the x1 · · · xd−i -hyperplane. We also project
x(i−1) onto this hyperplane, thereby obtaining the next point x(i). The construction of
R(i) is performed similarly to the way it is done for i = 1, as described above, and
Lemma 2.1 (and the discussion surrounding it) continues to apply, so as to ensure that
indeed |R(i)| continues to be (progressively) smaller than |R|, and that its members
are easy to construct.

We stop when we reach i = d, in which case we are given a set of at most |R|
points on the real line, and we locate the two closest points to the final projected point
x(d).

To complete the construction, we take each of the hyperplanes h(i−1)
1 , h(i−1)

2 ,
obtained at each of the iterations i = 2, . . . , d, and lift it “vertically” in all the
remaining directions xd−i+2, . . . , xd , and add the resulting (d − 1)-hyperplanes in
R
d to Hx.

Remark The importance ofLemma2.1 is that it controls the sizes of the sets R(i), i ≥ 1.
Without the filtering that it provides, the size of each R(i) would be roughly twice the
size of R(i−1). This would happen if, in the above notation, for each h ∈ R \ {h1, h2},
we would take the projections of both intersections h1∩h, h2∩h, and the query would
then require exponentially many linear tests. This doubling effect also shows up in the
original analysis of the complexity of vertical decompositions [7].

Constructing the conflict list of � This is step (iii) of the algorithm. As we noted
above, the construction of the conflict list of τ costs nothing in the decision tree model.
This follows by noting that the discrete representation of τ is independent of the actual
coordinates of x. Specifically, τ is the intersection of (at most) 2d halfspaces in R

d ,
namely, those containing x and bounded by the hyperplanes in Hx. Each of these
hyperplanes is defined in terms of some subset of the set D of the (at most) 2d
defining hyperplanes of τ in H (see the definition of defining sets in Sect. 3), via a
sequence of operations, each of which is either (i) taking the intersection of some
h ∈ D with a previously constructed flat, or (ii) projecting some flat one dimension
down, or (iii) lifting, in (one or more of) the remaining coordinate directions, a lower-
dimensional flat to a hyperplane in Rd . (Note that an operation of type (iii) is vacuous
algebraically—as already mentioned, the equation of the flat within its ambient space
is the equation of the lifted hyperplane in Rd ; all the added coordinate variables have
zero coefficients.)
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Once we have constructed τ , in this implicit manner, we take each hyperplane
h ∈ H and test whether it intersects τ . We describe such a procedure in detail when
we later discuss, in Sect. 4.4, an extension of the algorithm to the RAM model, and
ignore these issues, irrelevant in our model, for now. We only note here that there is
a straightforward way to preform this step via linear programming, but, for efficiency
reasons, we will use a different approach in Sect. 4.4.

Implementing step (iv) This final step is trivial to implement, especially in our
model, as all it needs are at most r linear tests of x against each hyperplane in the final
conflict list.

4.2 Algorithm Correctness

It is clear from the preceding presentation that the algorithm will never report that x
lies on a hyperplane of H when it does not.

Consider then the case where x is contained in some hyperplane h of H . Consider
a fixed step of the main recursion (on the size of H ), and let τ be the full-dimensional
prism, in the vertical decomposition of the corresponding sample R, that contains x.
(Recall our discussion of handling queries that, with probability 0, happen to lie on the
boundary of a prism but not on its first-level floor or ceiling.) Clearly, h must intersect
the interior or the boundary of τ . In the former case, h belongs to K (τ ), and will be
passed down the recursion. (And if we are at the bottom of the recursion, h will be
explicitly tested.) In the latter case, h must intersect the (first-stage) floor or ceiling of
τ , and then, if x ∈ h then x also lies on the respective floor or ceiling (because there
are no xd -vertical hyperplanes in H ), and the first stage of constructing τ will detect
that x ∈ h.

We also comment that at each recursive step we construct the prism τ only with
respect to the conflict list of its parent cell τ0 (initially, τ0 = R

d and K (τ0) = H ),
implying that τ is not necessarily contained in τ0. In other words, the sequence of cells
τ constructed in our algorithm are spatially in no particular relation to one another
(except that all of them contain x). Still, this does not harm the correctness of the
search process, as argued above.

The termination of the algorithm We next claim that the algorithm terminates
(almost surely). Indeed, at each recursive step, the sample R is drawn from the corre-
sponding subset K (τ0). Applying Theorem 3.1 to K (τ0), we obtain that the conflict list
of the next prism τ contains (with certainty, due to the test applied at step (iii), under the
assumption that this resampling process terminates) only atmost ε|K (τ0)| = 1

2 |K (τ0)|
hyperplanes of K (τ0). Another source of potential non-termination is the handling of
events where x lies on the vertical boundary of a prism, in which case we re-tilt the
frame, and risk non-convergence of this process, which however happens only with
probability 0. Hence, with probability 1, after a logarithmic number of steps (see below
for the concrete analysis) we will reach step (iv), and then the algorithm will correctly
determine whether x lies on a hyperplane of H (by the invariant that we maintain, any
such hyperplane belongs to the final conflict list K (τ )).
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The termination is guaranteed only almost surely, because of the possibility of the
event (that has probability 0) of repeatedly failing to choose a good sample at some
recursive application of step (i), or of repeatedly finding x to lie on a vertical wall of
a prism.

4.3 The Query Complexity

We now analyze the query complexity, beginning with the analysis of step (ii). Con-
sider, for simplicity, the top recursive step, in dimension d. We test each hyperplane
h of R with x in order to determine whether h lies above, below, or on x. This infor-
mation also defines the cell Cx in A(R) containing x. Overall, we perform at most r
linear queries at this step. Finding the ceiling and floor hyperplanes h1 and h2 that lie
directly above and below x takes at most r additional linear queries.

In general, we recall that at each recursive step i , we are given a corresponding set
R(i−1) of fewer than r hyperplanes (which is a consequence of Lemma 2.1). We test
each of them with the corresponding projection x(i−1) of x, in order to determine, for
each hyperplane in R(i−1), whether it lies above, below (in the xd−i+1-direction), or
on x(i−1). Overall, we perform at most r linear queries at this step, and identify the
new pair of floor and ceiling with r additional comparisons. We stop when we reach
i = d, where we obtain the interval between two consecutive points of R(d−1) that
contains x(d−1) and return it. We emphasize that backtracking through the recursion
does not involve any additional cost in our model of computation.

Overall, this amounts to O(r) = O
( d

ε
log 1

ε

) = O(d) linear queries at each recur-
sive step, for a total of O(d2) linear queries over all d steps of the recursion (on the
dimension).

As already argued, step (iii) of the algorithm does not depend on the query point x.
Step (iv) is implemented in brute force, performing at most r = O(d) additional linear
tests on x. The recursion is powered by Theorem 3.1, which guarantees that at each
step we eliminate at least half of the hyperplanes in H , so the algorithm terminates
(almost surely) within O(log |H |) = O(log n) steps. Therefore the overall number of
linear queries is O(d2 log n). This completes the proof of the restricted point location
(Theorem 1.1).

Applications The technique just described can be applied to the k-SUM, k-LDT,
SubsetSum and Knapsack problems, using the reduction explained in the intro-
duction. It yields the bounds O(kn2 log n) for k-SUM and k-LDT, and O(n3) for
SubsetSum andKnapsack. This established Theorem 1.2. We recall that for k-LDT,
the very recent work in [22] does improve these solutions, as noted earlier, although
the bound of [22] for k-LDT is O(k2n log2 n), so our bound for this problem is asymp-
totically smaller whenever k > n/ log n.

4.4 A Polynomial Time Algorithm for Point Location in the RAMModel

We next discuss a polynomial-time implementation of our algorithm in the real RAM
model. Steps (i), (ii), and (iv) are easy to implement in polynomial time, so that the
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number of (linear) tests that access the actual coordinates of the query point does not
change, and so that all other operations do not access (explicitly) this data. We leave
the straightforward details to the reader.

Regarding the implementation of step (iii) of the construction of the conflict list of
a prism τ , we need to test for each hyperplane h ∈ H (not in the sample R) whether
it intersects the interior of τ . We use the following simple approach. Recall that Hx is
the set of the (at most) 2d hyperplanes bounding τ . With a slight abuse of notation,
let us now denote this set by Hτ .

We first need to rule out the possibility that in degenerate situations (where there
are multiple defining sets for the same geometric representation of τ ) h does not touch
τ in a face of dimension d − 2 or lower. That is, in such a scenario h appears in one
of the (geometric) defining sets of τ , and therefore it does not properly intersect τ and
should not be part of K (τ ). We thus slightly modify our algorithm to construct τ so
that it produces on the side the unionD of all (geometric) defining sets D1, . . . , Dt of
τ , for some integer t ≥ 1. We proceed as follows. Recall that in the construction of τ ,
at any recursive step i we find the pair of hyperplanes h(i−1)

1 , h(i−1)
2 that are vertically

closest to the query point. In degenerate scenarios, where these hyperplanes may not
be unique, instead of choosing such an arbitrary pair (as does the algorithm applied
in the linear decision tree model), we report all such hyperplanes, which enables us
to obtain all the corresponding original hyperplanes touching τ in the sense described
above. This forms the generalized defining setD. We note that since we initially have
Hτ at hand, this application of the modified algorithm does not involve x. Thus at the
termination of this procedure, we obtain the generalized defining set D, and then we
need to test whether h is in D. If it does, we exclude h from K (τ ).

If h is not in D, then either h properly crosses τ or h is disjoint from τ . We next
observe that h crosses τ if and only if the prism τ ′ in the vertical decomposition of
A(D ∪ {h}) that contains x is properly contained in the original prism τ . Moreover,
this implies that τ and τ ′ have different defining sets, and, in particular, h is part of
the defining set of τ ′. We thus apply the modified version of our algorithm as outlined
above, in order to construct the generalized defining setD′ of τ ′. Once the construction
is completed we test whether h belongs toD′, if so, it is added to the conflict list of τ .
Repeating this for all h ∈ H \ R, we obtain K (τ ).

The execution of our algorithm to constructD andD′ takes time, which is linear in
n and polynomial in d (note that each sign test costs O(d) in the RAM model), since
in degenerate scenarios, the cardinality of D (and D′) might be as large as �(|H |).
This also serves as an asymptotic time bound for checking whether h is in D, and
later, in D′. We once again emphasize that none of the operations performed in this
step involve the query point x. We thus conclude that constructing the entire conflict
list of τ , when processing all hyperplanes h ∈ H , can be performed in overall O(n2)
time, where the constant of proportionality depends polynomially in d.

We thus obtain the following results.

Theorem 4.1 (Restricted point location in the RAM model) The point location prob-
lem for n hyperplanes in R

d can be solved in polynomial time in the RAM model,
using only O(d2 log n) linear queries on the input, so that all other operations do not
explicitly access the input. The algorithm terminates almost surely.
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Corollary 4.2 The k-SUM and k-LDT problems, for any fixed k, can be solved in
polynomial time in the RAM model, using only O(kn2 log n) linear queries on the
input, so that all other operations do not explicitly access the input. The algorithm
terminates almost surely.
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