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Abstract
The 3SUM problem asks if an input n-set of real numbers contains a triple whose sum
is zero. We qualify such a triple of degenerate because the probability of finding one
in a random input is zero. We consider the 3POL problem, an algebraic generaliza-
tion of 3SUM where we replace the sum function by a constant-degree polynomial
in three variables. The motivations are threefold. Raz et al. gave an O(n11/6) upper
bound on the number of degenerate triples for the 3POL problem. We give algo-
rithms for the corresponding problem of counting them. Grønlund and Pettie designed
subquadratic algorithms for 3SUM.We prove that 3POL admits bounded-degree alge-
braic decision trees of depth O(n12/7+ε), and we prove that 3POL can be solved in
O(n2(log log n)3/2/(log n)1/2) time in the real-RAMmodel, generalizing their results.
Finally, we shed light on the General Position Testing (GPT) problem: “Given n points
in the plane, do three of them lie on a line?”, a key problem in computational geom-
etry: we show how to solve GPT in subquadratic time when the input points lie on a
small number of constant-degree polynomial curves. Many other geometric degener-
acy testing problems reduce to 3POL.

Keywords 3SUM · Subquadratic algorithms · General position testing · Range
searching · Dominance reporting · Algebraic geometry · Degeneracy testing

Mathematics Subject Classification 68P10 · 68Q25 · 68R05 · 68W40

1 Introduction

The3SUMproblem is defined as follows: givenn distinct real numbers, decidewhether
any three of them sum to zero. A popular conjecture is that no O(n2−δ)-time algorithm
for 3SUM exists, for any δ > 0. This conjecture has been used to show conditional
lower bounds for problems in P, notably in computational geometry with problems
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such as GeomBase, general position [30] and Polygonal Containment [7], and more
recently for string problems such as Local Alignment [2] and Jumbled Indexing [5],
as well as dynamic versions of graph problems [1,47], triangle enumeration and Set
Disjointness [35]. For this reason, 3SUM is considered one of the key subjects of an
emerging theory of complexity-within-P, along with other problems such as all-pairs
shortest paths, orthogonal vectors, booleanmatrixmultiplication, and conjectures such
as the Strong Exponential Time Hypothesis [3,13,41].

Because fixing two of the numbers a and b in a triple only allows for one solution to
the equation a+b+ x = 0, an instance of 3SUM has at most n2 degenerate triples. An
instance giving a matching lower bound is for example the set

{ 1−n
2 , . . . , n−1

2

}
(for

odd n) with 3
4n

2+ 1
4 degenerate triples. One might be tempted to think that the number

of “solutions” to the problem would lower bound the complexity of algorithms for the
decision version of the problem, as it is the case for this problem, and other problems, in
restrictedmodels of computation [25,26]. This intuition is incorrect. Indeed, Grønlund
and Pettie [32] proved that there exist Õ(n3/2)-depth linear decision trees and o(n2)-
time real-RAM algorithms for 3SUM.

We consider an algebraic generalization of the 3SUM problem: we replace the sum
function by a constant-degree polynomial in three variables F ∈ R[x, y, z] and ask
to determine whether there exists a degenerate triple (a, b, c) of input numbers such
that F(a, b, c) = 0. We call this new problem the 3POL problem.

Some combinatorics aspects of the 3POL problem have already been studied. For
the particular case F(x, y, z) = f (x, y) − z where f ∈ R[x, y] is a constant-degree
bivariate polynomial, Elekes and Rónyai [23] show that the number of degenerate
triples is o(n2) unless f is special. Special for f means that f has one of the two
special forms

f (u, v) = h(ϕ(u) + ψ(v)) or f (u, v) = h(ϕ(u) · ψ(v)),

where h, ϕ, ψ are univariate polynomials of constant degree. It must be noted that the
3SUM problem falls in the special category since, in that case, f is the sum function.
Elekes and Szabó [24] later generalized this result to a broader range of functions
F using a wider definition of specialness. Raz et al. [52] and [54] improved both
bounds to O(n11/6). They translated the problem into an incidence problem between
points and constant-degree algebraic curves. Then, they showed that unless f (or F)
is special, these curves have low multiplicities. Finally, they applied a theorem due to
Pach and Sharir [45] bounding the number of incidences between the points and the
curves. Some of these ideas appear in our approach.

We focus on the computational complexity of 3POL. Since 3POL contains 3SUM,
an interesting question is whether a generalization of Grønlund and Pettie’s 3SUM
algorithm exists for 3POL. If this is true, then we might wonder whether we can
“beat” the O(n11/6) = O(n1.833...) combinatorial bound of Raz et al. [54] with
nonuniform algorithms. We give a positive answer to both questions: we design a
uniform O(n2(log log n)3/2/(log n)1/2)-time real-RAM algorithm and a nonuniform
O(n12/7+ε) = O(n1.7143)-depth bounded-degree algebraic decision tree for 3POL.1

1 Throughout this document, ε denotes a positive real number that can be made as small as desired.

123



700 Discrete & Computational Geometry (2019) 61:698–734

To prove our uniform result, we present a fast algorithm for the Polynomial Dominance
Reporting (PDR) problem, a far reaching generalization of the Dominance Reporting
problem. As the algorithm for Dominance Reporting and its analysis by Chan [15] is
used in fast algorithms for all-pairs shortest paths, (min,+)-convolutions, and 3SUM,
we expect this new algorithm will have more applications.

Our results can be applied to many algebraic degeneracy testing problems, such
as the General Position Testing (GPT) problem: “Given n points in the plane, do
three of them lie on a line?” It is well known that GPT is 3SUM-hard, and it is
open whether GPT admits a subquadratic algorithm. Raz et al. results on the 3POL
problem [54] can be applied to obtain a combinatorial bound of O(n11/6) on the
number of collinear triples when the input points are known to be lying on a constant
number of polynomial curves, provided those curves are neither lines nor cubic curves.
A corollary of our first result is that GPTwhere the input points are constrained to lie on
o((log n)1/6/(log log n)1/2) constant-degree polynomial curves (including lines and
cubic curves) admits a subquadratic real-RAM algorithm and a strongly subquadratic
bounded-degree algebraic decision tree. Interestingly, both reductions from 3SUM
to GPT on 3 lines (map a to (a, 0), b to (b, 2), and c to ( c2 , 1)) and from 3SUM to
GPT on a cubic curve (map a to (a3, a), b to (b3, b), and c to (c3, c)) construct such
special instances of GPT. This constitutes the first step towards closing the major open
question of whether GPT can be solved in subquadratic time. To further convince the
reader of the expressive power of the 3POL problem, we also give reductions from
the problem of counting triples of points spanning unit circles, from the problem
of counting triples of points spanning unit area triangles, and from the problem of
counting collinear triples in any dimension.

The algorithms we present manipulate polynomial expressions. In computational
geometry, it is customary to assume the real-RAMmodel can be extended to allow the
computation of roots of constant degree polynomials. We distance ourselves from this
practice and take particular care of using the real-RAMmodel and the bounded-degree
algebraic decision tree model with only the four arithmetic operators.

2 Problems Definition

We study two different generalizations of 3SUM. In the first generalization, which
we call the 3POL problem, we replace the sum function by a trivariate polynomial of
constant degree:

Problem 2.1 (3POL) Let F ∈ R[x, y, z] be a trivariate polynomial of constant degree,
given three sets A, B, and C , each containing n real numbers, decide whether there
exist a ∈ A, b ∈ B, and c ∈ C such that F(a, b, c) = 0.

The second generalization is a special case of the 3POL problem where we restrict
the trivariate polynomial F to have the form F(a, b, c) = f (a, b) − c. We call it
the explicit 3POL problem because the dependency on the third variable is explicitly
given:
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Problem 2.2 (Explicit 3POL) Let f ∈ R[x, y] be a bivariate polynomial of constant
degree, given three sets A, B, and C , each containing n real numbers, decide whether
there exist a ∈ A, b ∈ B, and c ∈ C such that c = f (a, b).

We will first design algorithms for this easier problem. The techniques used can then
be adapted to work for the more general 3POL problem. We design both uniform
and nonuniform algorithms. In Sect. 6, we give a O(n12/7+ε)-depth bounded-degree
algebraic decision tree for explicit 3POL, and in Sect. 8, we adapt this decision tree
to run in O(n2(log log n)3/2/(log n)1/2)-time in the real-RAMmodel. In Sect. 10, we
generalize the decision tree from Sect. 6 to work for 3POL with the same depth, up
to constant factors. Finally, in Sect. 11, we give a real-RAM implementation of this
second decision tree to solve 3POL as fast as explicit 3POL, up to constant factors.

3 Models of Computation

Similarly to Grønlund and Pettie [32], we consider both nonuniform and uniform
models of computation. For the nonuniform model, Grønlund and Pettie consider
linear decision trees, where one is only allowed to manipulate the input numbers
through linear queries to an oracle. Each linear query has constant cost and all other
operations are free but cannot inspect the input. In this paper, we consider bounded-
degree algebraic decision trees (ADT) [49,57,59], an algebraic generalization of linear
decision trees, as the nonuniform model. In a bounded-degree algebraic decision tree,
one performs constant cost branching operations that amount to test the sign of a
constant-degree polynomial of the input numbers. Again, operations not involving the
input are free. For the uniform model we consider the real-RAM model with only the
four arithmetic operators.

The problemswe consider require our algorithms tomanipulate polynomial expres-
sions and, potentially, their real roots. For that purpose, we will rely on Collins’s
cylindrical algebraic decomposition (CAD) [19]. To understand the power of this
method, and why it is useful for us, we give some background on the related concept
of first-order theory of the reals.

Definition 3.1 A Tarski formula φ ∈ T is a grammatically correct formula consisting
of real variables (x ∈ R), universal and existential quantifiers on those real vari-
ables (∀, ∃: R × T → T), the boolean operators of conjunction and disjunction
(∧,∨: T

2 → T), the six comparison operators (<,≤,=,≥,>, 
= : R
2 → T), the

four arithmetic operators (+,−, ∗, / : R
2 → R), the usual parentheses that modify

the priority of operators, and constant real numbers (R). A Tarski sentence is a fully
quantified Tarski formula. The first-order theory of the reals (∀∃R) is the set of true
Tarski sentences.

Tarski [58] and Seidenberg [56] proved that ∀∃R is decidable. However, the algo-
rithm resulting from their proof has nonelementary complexity. This proof, as well
as other known algorithms, are based on quantifier elimination, that is, the translation
of the input formula to a much longer quantifier-free formula, whose validity can be
checked. There exists a family of formulas for which any method of quantifier elimi-
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nation produces a doubly exponential size quantifier-free formula [21]. Collins’s CAD
matches this doubly exponential complexity.

Theorem 3.2 (Collins [19]) ∀∃R can be solved in 22
O(n)

time in the real-RAM model,
where n is the size of the input Tarski sentence.

See Basu et al. [9] for additional details, Basu et al. [8] for a singly exponential algo-
rithm when all quantifiers are existential (existential theory of the reals, ∃R), Caviness
and Johnson [14] for an anthology of key papers on the subject, and Mishra [43] for
a review of techniques to compute with roots of polynomials.

Collins’s CAD solves any geometric decision problem that does not involve quan-
tification over the integers in time doubly exponential in the problem size. This does
not harm our results as we exclusively use this algorithm to solve constant size sub-
problems. Geometric is to be understood in the sense of Descartes and Fermat, that is,
the geometry of objects that can be expressed with polynomial equations. In particular,
it allows us to make the following computations in the real-RAM and bounded-degree
ADT models:

1. Given a constant-degree univariate polynomial, count its real roots in O(1) oper-
ations,

2. Sort O(1) real numbers given implicitly as roots of some constant-degree univari-
ate polynomials in O(1) operations,

3. Given a point in the plane and an arrangement of a constant number of constant-
degree polynomial planar curves, locate the point in the arrangement in O(1)
operations.

Instead of bounded-degree algebraic decision trees as the nonuniform model we
could consider decision trees in which each decision involves a constant-size instance
of the decision problem in the first-order theory of the reals. The depth of a bounded-
degree algebraic decision tree simulating such a tree would only be blown up by a
constant factor.

4 Algorithmic Results on the 3SUM Problem

For the sake of simplicity, we consider the following definition of 3SUM:

Problem 4.1 (3SUM) Given three sets A, B, and C , each containing n real numbers,
decide whether there exist a ∈ A, b ∈ B, and c ∈ C such that c = a + b.

Gajentaan and Overmars [30] were the first to take serious interest in the 3SUM
problem. They introduced the concept of n2-hard (or 3SUM-hard) problems: they
revealed a connection between seemingly unrelated geometric problems by showing
that each of them is at least as hard as 3SUM.

A quadratic lower bound for solving 3SUM holds in a restricted model of com-
putation: the 3-linear decision tree model. Erickson [26] and Ailon and Chazelle [4]
showed that, in this model, where one is only allowed to test the sign of a linear expres-
sion of up to three input numbers, no matter which decision tree you use, there always
exists an instance for which a quadratic number of critical tuples must be tested.
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Theorem 4.2 (Erickson [26]) The depth of a 3-linear decision tree for 3SUM isΩ(n2).

While no evidence suggested that this lower bound could be extended to other
models of computation, it was eventually conjectured that 3SUM requires Ω(n2)
time.

Baran et al. [6] were the first to give concrete evidence for doubting the conjecture.
They gave subquadratic Las Vegas algorithms for 3SUM, where input numbers are
restricted to be integer or rational, in the circuit RAM, word RAM, external memory,
and cache-oblivious models of computation. Their idea is to exploit the parallelism of
the models, using linear and universal hashing.

Grønlund and Pettie [32], using a trick due to Fredman [28], showed that there exist
subquadratic decision trees for 3SUM when the queries are allowed to be 4-linear.

Theorem 4.3 (Grønlund and Pettie [32]) There is a 4-linear decision tree of depth
O(n3/2

√
log n) for 3SUM.

They also gave deterministic and randomized subquadratic real-RAM algorithms for
3SUM, refuting the conjecture. Similarly to the subquadratic 4-linear decision trees,
these new results use the power of 4-linear queries. These algorithms were later
improved by Freund [29] and Gold and Sharir [31]. The currently best published
bound for real-RAM 3SUM is

Theorem 4.4 (Freund [29], Gold and Sharir [31]) There is a O(n2 log log n/ log n)-
time real-RAM algorithm for 3SUM.2

Since then, the conjecture was eventually updated. This new conjecture is considered
an essential part of the theory of complexity-within-P.

Conjecture 4.5 There is no O(n2−δ)-time real-RAM algorithm for 3SUM with δ > 0.

The k-SUM problem is a generalization of 3SUM where we are given an n-set of
real numbers and are asked to decide whether it contains a k-tuple that sums to zero.
The lower bound of Erickson generalizes to Ω(nk/2�) for k-linear decision trees that
solve k-SUM. All the aforementioned subquadratic algorithms for 3SUM inspect the
input through 4-linear queries. Grønlund and Pettie’s decision tree can be turned into
a O(nk/2

√
log n)-depth (2k − 2)-linear decision tree for k-SUM, for all odd k ≥ 3.3

Early results of Meyer auf der Heide [40] and Meiser [39] show that if one is
allowed to use n-linear queries, the complexity drops to a polynomial in the input
size whose exponent does not depend on k. Cardinal et al. [12] carefully analyzed the
complexity of Meiser’s algorithm to show that k-SUM can be solved in O(n3 log2 n)

n-linear queries. They also showed how to efficiently implement this decision tree in
the real-RAM model. This decision tree is a prune and search algorithm that relies on
the simplicial decomposition of an arrangement of hyperplanes. Ezra and Sharir [27]

2 Chan [16] shows that an additional logarithmic factor can be shaved by augmenting the real-RAMmodel
with constant time nonstandard operations on Θ(log n) bits words. His improvements extend to 3POL.
3 The main result in Gold and Sharir’s paper [31] is a randomized O(nk/2)-depth (2k − 2)-linear decision
tree for k-SUM, for all odd k ≥ 3.
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later improved the decision tree depth to O(n2 log n) by using vertical decomposition
instead.

In a breakthrough result, Kane et al. [42] proved that k-SUM can be solved using
O(n log2 n) 2k-linear queries. This is close to the information theoretic lower bound
ofΩ(n log n). Their decision tree is also a prune and search algorithm. The techniques
used rely heavily on the linearity of the sum function in the 3SUM problem. We do
not see how to apply their techniques to obtain subquadratic-depth decision trees for
the 3POL problem.

5 Combinatorics Results on 3POL and GPT

In a series of results spanning fifteen years, Elekes and Rónyai [23], Elekes and
Szabó [24], Raz et al. [52] and [54] give upper bounds on the number of degener-
ate triples for the 3POL problem. The last and strongest result is the following:

Theorem 5.1 (Raz et al. [54])Let A, B,C be n-sets of real numbers and F ∈ R[x, y, z]
be a polynomial of constant degree, then

|Z(F) ∩ (A × B × C)| = O(n11/6),

unless F has some group related form.4

Raz et al. [54] also look at the number of degenerate triples for the General Position
Testing problem when the input is restricted to points lying on a constant number of
constant-degree algebraic curves.

Theorem 5.2 (Raz et al. [54]) Let C1,C2,C3 be three (not necessarily distinct) irre-
ducible algebraic curves of degree atmost d inC2, and let S1 ⊂ C1, S2 ⊂ C2, S3 ⊂ C3
be finite subsets. Then the number of proper collinear triples in S1 × S2 × S3 is

Od
(|S1|1/2|S2|2/3|S3|2/3 + |S1|1/2(|S1|1/2 + |S2| + |S3|)

)
,

unless C1 ∪ C2 ∪ C3 is a line or a cubic curve.

Nassajian Mojarrad et al. [44] and Raz et al. [55] proved bounds for versions of the
problem where F is a 4-variate polynomial.

6 Nonuniform Algorithm for Explicit 3POL

We begin with the description of a nonuniform algorithm for explicit 3POL which we
use later as a basis for other algorithms. We prove the following:

Theorem 6.1 There is a bounded-degree ADT of depth O(n12/7+ε) for explicit 3POL.

4 Because our results do not depend on the meaning of group related form, we do not bother defining it
here. We refer the reader to Raz et al. [54] for the exact definition.
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Idea We partition the sets A and B into small groups of consecutive elements.
That way, we can divide the A × B grid into cells with the guarantee that each curve
c = f (x, y) intersects a small number of those cells. For each such curve and each cell
it intersects, we search c among the values f (a, b) for all (a, b) in a given intersected
cell. We generalize Fredman’s trick [28]—and how it is used in Grønlund and Pettie’s
paper [32]—to quickly obtain a sorted order on those values, which provides us a
logarithmic search time for each cell. Below is a sketch of the algorithm.

Algorithm 6.2 (Nonuniform algorithm for explicit 3POL)
input A = {a1 < · · · < an}, B = {b1 < · · · < bn},C = {c1 < · · · < cn} ⊂ R.
output accept if ∃ (a, b, c) ∈ A × B × C such that c = f (a, b), reject otherwise.5

1. Partition the intervals [a1, an] and [b1, bn] into blocks A∗
i and B∗

j such that
Ai = A ∩ A∗

i and Bj = B ∩ B∗
j have size g.

2. Sort the sets f (Ai × Bj ) = { f (a, b) : (a, b) ∈ Ai × Bj } for all Ai , Bj . This
is the only step that is nonuniform.

3. For each c ∈ C ,
3.1. For each cell A∗

i × B∗
j intersected by the curve c = f (x, y),

3.1.1. Binary search for c in the sorted set f (Ai × Bj ). If c is found, accept and halt.
4. reject and halt.

Like in Grønlund and Pettie’s Õ(n3/2) decision tree for 3SUM [32], the key is to give
an efficient implementation of step 2.

A× B grid partitioning Let A = {a1 < a2 < · · · < an} and B = {b1 < b2 < · · · <

bn}. For some positive integer g to be determined later, partition the interval [a1, an]
into n/g blocks A∗

1, A
∗
2, . . . , A

∗
n/g such that each block contains g numbers in A. Do

the same for the interval [b1, bn] with the numbers in B and name the blocks of this
partition B∗

1 , B∗
2 , . . . , B∗

n/g . For the sake of simplicity, and without loss of generality,
we assume here that g divides n. We continue to make this assumption in the following
sections. To each of the (n/g)2 pairs of blocks A∗

i and B∗
j corresponds a cell A

∗
i × B∗

j .

By definition, each cell contains g2 pairs in A× B. For the sake of notation, we define
Ai = A ∩ A∗

i = {ai,1 < ai,2 < · · · < ai,g} and Bj = B ∩ B∗
j = {b j,1 < b j,2 <

· · · < b j,g}. Figure 1 depicts this construction.
The following two lemmas result from this construction:

Lemma 6.3 For a fixed value c ∈ C, the curve c = f (x, y) intersects O(n/g) cells.
Moreover, those cells can be found in O(n/g) time.

Proof Since f has constant degree, the curve c = f (x, y) can be partitioned into a
constant number of xy-monotone arcs. Split the curve into x-monotone pieces, then
each x-monotone piece into y-monotone arcs. The endpoints of the xy-monotone arcs
are the intersections of f (x, y) = cwith its derivatives f ′

x (x, y) = 0 and f ′
y(x, y) = 0.

By Bézout’s theorem, there are O(deg( f )2) such intersections and so O(deg( f )2) xy-
monotone arcs. Figure 2 shows that each such arc intersects O(n/g) cells since the

5 Note that it is easy to modify the algorithm to count or report the solutions. In the latter case, the algorithm
becomes output sensitive.
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Fig. 1 The partitioning of
A × B. There are n/g columns
A∗
i , n/g rows B∗

j , and (n/g)2

cells A∗
i × B∗

j . There are n
2

points in A × B. Each column
contains the ng points in
Ai × B, each row contains the
ng points in A × B j , and each

cell contains the g2 points in
Ai × B j

B

A

n
g

n
g

g

g

a1
b1

bn

an

A ∗
i × B ∗

jB ∗
j

A ∗
i

cells intersected by a xy-monotone arc form a staircase in the grid. This proves the
first part of the lemma.

To prove the second part, notice that for each connected component of c = f (x, y)
intersecting at least one cell of the grid either: (1) it intersects a boundary cell of
the grid, or (2) it is a (singular) point or contains vertical and horizontal tangency
points.6 The cells intersected by c = f (x, y) are computed by exploring the grid
from O(n/g) starting cells. Start with an empty set. Find and add all boundary cells
containing a point of the curve. Finding those cells is achieved by solving the Tarski
sentence ∃ x ∃ y (c = f (x, y) ∧ x ∈ A∗

i ∧ y ∈ B∗
j ), for each cell A∗

i × B∗
j on the

boundary. This takes O(n/g) time. Find and add the cells containing singular points
and tangency points of c = f (x, y). Finding those cells is achieved by first finding
the constant number of vertical and horizontal slabs A∗

i × R and R × B∗
j containing

such points:

∃ x ∃ y
(
c = f (x, y) ∧ ( f ′

x (x, y) = 0 ∨ f ′
y(x, y) = 0) ∧ x ∈ A∗

i

)
,

∃ x ∃ y
(
c = f (x, y) ∧ ( f ′

x (x, y) = 0 ∨ f ′
y(x, y) = 0) ∧ y ∈ B∗

j

)
.

This takes O(n/g) time. Then for each pair of vertical and horizontal slab containing
such a point, check that the cell at the intersection of the slabs also contains such a
point:

∃ x ∃ y
(
c = f (x, y) ∧ ( f ′

x (x, y) = 0 ∨ f ′
y(x, y) = 0) ∧ x ∈ A∗

i ∧ y ∈ B∗
j

)
.

This takesO(1) time.Note thatwe can always assume the constant-degree polynomials
we manipulate are square-free, as making them square-free is trivial [60]: since R[x]
and R[y] are unique factorization domains, let Q = P/gcd(P, P ′

x ; x) and sf(P) =
6 Note that vertical and horizontal lines fall in both categories.
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Fig. 2 An xy-monotone arc of
the two-dimensional polynomial
curve of equation c = f (x, y).
This arc intersects a staircase of
at most 2n/g − 1 cells in the
grid. When f has constant
degree, the defined curve can be
partitioned into O(1) such arcs

B

A

n
g

n
g

a1
b1

bn

an

c = f (x, y )

Q/gcd(P, P ′
y; y), where gcd(P, Q; z) is the greatest common divisor of P and Q

when viewed as polynomials in R[z] where R is a unique factorization domain and
sf(P) is the square-free part of P . The set now contains, for each component of each
type, at least one cell intersected by it. Initialize a list with the elements of the set.While
the list is not empty, remove any cell from the list, add each of the eight neighbouring
cells to the set and the list, if it contains a point of c = f (x, y)—this can be checked
with the same sentences as in the boundary case—and if it is not already in the set. This
costs O(1) per cell intersected. The set now contains all cells of the grid intersected
by c = f (x, y). ��
Lemma 6.4 If the sets A, B,C can be preprocessed in Sg(n) time so that, for any
given cell A∗

i × B∗
j and any given c ∈ C, testing whether c ∈ f (Ai × Bj ) =

{ f (a, b) : (a, b) ∈ Ai × Bj } can be done in O(log g) time, then, explicit 3POL can

be solved in Sg(n) + O
( n2
g log g

)
time.

Proof We need Sg(n) preprocessing time plus the time required to search each of the
n numbers c ∈ C in each of the O(n/g) cells intersected by c = f (x, y). Each search
costs O(log g) time. We can compute the cells intersected by c = f (x, y) in O(n/g)
time by Lemma 6.3. ��

Remark We do not give a Sg(n)-time real-RAM algorithm for preprocessing the
input, but only an Sg(n)-depth bounded-degree ADT. In fact, this preprocessing step
is the only nonuniform part of Algorithm 6.2. A real-RAM implementation of this
step is given in Sect. 8.

Preprocessing All that is left to prove is that Sg(n) is subquadratic for some choice
of g. To achieve this we sort the points inside each cell using Fredman’s trick [28].
Grønlund and Pettie [32] use this trick to sort the sets Ai +Bj = {a+b : (a, b) ∈ Ai ×
Bj } with few comparisons: sort the set D = (⋃

i [Ai − Ai ]
)∪ (⋃ j [Bj − Bj ]

)
, where

Ai − Ai = {a − a′ : (a, a′) ∈ Ai × Ai } and Bj − Bj = {b− b′ : (b, b′) ∈ Bj × Bj },
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Fig. 3 For each cell, we sort the
points it contains with
comparisons. The points (a, b)
and (a′, b′) are compared using
the comparison
f (a, b) ≤ f (a′, b′)

B

A

n
g

n
g

a1
b1

bn

an
a a′

b′
b

Fig. 4 The disk is the
semi-algebraic set
{(x, y) : f (x, b) ≤ f (y, b′)}.
Here (a, a′) lies outside this
semi-algebraic set which implies
that f (a, b) > f (a′, b′)

A

n
g

n
g

a1 an
a

a1

an

a′

A

(a, a ′)

using O(n log n+|D|) comparisons, then testing whether a+b ≤ a′ +b′ can be done
using the free (already computed) comparison a−a′ ≤ b′−b. We use a generalization
of this trick to sort the sets f (Ai × Bj ). For each Bj , for each pair (b, b′) ∈ Bj × Bj ,
define the curve γb,b′ = {(x, y) : f (x, b) = f (y, b′)}. Define the sets γ 0

b,b′ = γb,b′ ,

γ −
b,b′ = {(x, y) : f (x, b) < f (y, b′)}, and γ +

b,b′ = {(x, y) : f (x, b) > f (y, b′)}. The
following lemma—illustrated by Figs. 3 and 4—follows by definition:

Lemma 6.5 Given a cell A∗
i × B∗

j and two pairs (a, b), (a′, b′) ∈ Ai × Bj , decid-
ing whether f (a, b) < f (a′, b′) (respectively f (a, b) = f (a′, b′) and f (a, b) >

f (a′, b′)) amounts to deciding whether the point (a, a′) is contained in γ −
b,b′ (respec-

tively γ 0
b,b′ and γ +

b,b′).

There are N := n
g · g2 = ng pairs (a, a′) ∈ ⋃

i [Ai × Ai ] and there are N pairs
(b, b′) ∈ ⋃ j [Bj × Bj ]. Sorting the f (Ai × Bj ) for all (Ai , Bj ) amounts to solving
the following problem:
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Problem 6.6 (Polynomial Batch Range Searching) Given N points and N polynomial
curves in R2, locate each point with respect to each curve.

We can now refine the description of step 2 in Algorithm 6.2.

Algorithm 6.7 (Sorting the f (Ai × Bj ) with a nonuniform algorithm)
input A = {a1 < a2 < · · · < an}, B = {b1 < b2 < · · · < bn} ⊂ R.
output The sets f (Ai × Bj ), sorted.

2.1 Locate each point (a, a′) ∈ ⋃i [Ai × Ai ]w.r.t. each γb,b′, (b, b′) ∈ ⋃ j [Bj × Bj ].
2.2 Sort the sets f (Ai × Bj ) using the information retrieved in step 2.1.

Note that this algorithm is nonuniform: step 2.2 costs at least quadratic time in the
real-RAM model, however, this step does not need to query the input at all, as all the
information needed to sort is retrieved during step 2.1. step 2.2 incurs no cost in our
nonuniform model (Fig. 5).

To implement step 2.1, we use a modified7 version of the N 4/32O(log∗ N ) algorithm
of Matoušek [36] for Hopcroft’s problem. In the next section, we prove the following
upper bound:

Lemma 6.8 Polynomial Batch Range Searching can be solved in O(N 4/3+ε) time in
the real-RAM model when the input curves are the γb,b′ .

Analysis Combining Lemmas 6.4 and 6.8 yields a O((ng)4/3+ε +n2 log g/g)-depth
bounded-degreeADT for explicit 3POL.By optimizing over g, we get g = Θ(n2/7−ε),
and the previous expression simplifies to O(n12/7+ε), proving Theorem 6.1.

7 Polynomial Batch Range Searching

In this section we present a uniform algorithm that computes the relative position of
M points with respect to N γb,b′ curves. We call such a problem an (M, N )-problem.
When M = N the complexity of the algorithm is O(N 4/3+ε). The algorithm gives the
output in “concise form”: it outputs a set of (Πα, Γβ, σ ) triples where Πα is a subset
of input points, Γβ is a subset of input curves, and σ ∈ {−, 0,+} indicates the relative
position of all points in Πα with respect to all curves in Γβ . Note that if one is only
interested in incident point-curve pairs, the algorithm can explicitly report all of them
in O(N 4/3+ε) time, because there are at most O(N 4/3) such pairs and because they
can easily be filtered from the output.

Tools The proof of Lemma 6.8 involves stantard computational geometry tools:
vertical decomposition of an arrangement of polynomial curves (see Fig. 6), ε-nets,
cuttings and derandomization. For the construction of the vertical decomposition of an
arrangment of polynomial curves, we refer the reader to Pach and Sharir [46], Chazelle
et al. [17], and Edelsbrunner et al. [22]. For cuttings, ε-nets and derandomization, we
refer the reader to Matoušek [37,38], Chazelle and Matoušek [18] and Brönnimann et
al. [11].

7 The original algorithm relies on hierarchical cuttingswhich cannot be implemented in the bounded-degree
ADT model.
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Fig. 5 Some curves in R
2

Fig. 6 Vertical decomposition of
the curves in Fig. 5

Proof of Lemma 6.8 Fix some constant r ≥ 2. If M < r2 or N < r , solve by brute-
force in O(M + N ) time. Otherwise, consider the range space defined by γb,b′ curves
and y-axis aligned trapezoidal patches whose top and bottom sides are pieces of
γb,b′ curves. This range space has constant VC-dimension. Compute a 1

r -net of size
O(r log r) for the input curves with respect to this range space. Compute the vertical
decompositionΞ of the arrangement of this 1

r -net. This decomposition is a 1
r -cutting: it

partitionsR2 into O(r2 log2 r) cells of constant complexity each of which intersects at
most N

r input curves. Note that some of those cells are degenerate trapezoidal patches.
The decomposition contains vertices, line segments, and curve segments as cells, each
of which could contain input points and be intersected or contained by an input curve.
Denote by ΠC the set of points contained in the cell C ∈ Ξ . Partition each ΠC into⌈ |ΠC |
Mr−2

⌉
disjoint subsets of size at most M

r2
. All of this can be done in O(M +N ) time.

The last step consists of solving O(r2 log2 r)
(M
r2

, N
r

)
-problems, that is, solving the

problem recursively for the points and curves intersecting each cell. Each recursive
call is done by swapping the roles of the points and curves using a form of duality to
be described below. The whole algorithm can be formally described as follows,

Algorithm 7.1 (Polynomial Batch Range Searching)
input A set Π of M points (a, a′), A set Γ of N curves γb,b′ .
output A set of triples (Πα, Γβ, σ ) covering Π × Γ such that, for any triple
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(Πα, Γβ, σ ), for all points (a, a′) in Πα and all curves γ in Γβ , (a, a′) ∈ γ σ .

0. If M < r2 or N < r , solve the problem by brute force in O(M + N ) time.
1. Compute a 1

r -net of size O(r log r) for the input curves.
2. Compute the vertical decomposition Ξ of the arrangement of this 1

r -net.
3. Denote by ΠC the set of points contained in the cell C ∈ Ξ . Partition each

ΠC into
⌈ |ΠC |
Mr−2

⌉
disjoint subsets ΠC,i of size at most M

r2
.

4. For each cell C of the vertical decomposition,
4.1. For each subset ΠC,i of points contained in that cell,
4.1.1. Solve an

( N
r , M

r2
)
-problem on the curves intersecting that cell and the points

in ΠC,i , swapping the roles of lines and curves via duality.
4.2. For each curve γ not intersecting C ,
4.2.1. Compute the location σC,γ of any point in C with respect to γ .
4.3. Output ({γ : σC,γ = −},ΠC ,−).
4.4. Output ({γ : σC,γ = +},ΠC ,+).
4.5. Output ({γ : σC,γ = 0},ΠC , 0).

Correctness We want to locate each point with respect to each curve. When consid-
ering a curve-cell pair, there are two cases: either the curve intersects the cell, or it
does not. For the first case we locate each point in the cell with respect to the curve
in one of the recursive steps. For the second case, the relative position of all points
in the cell with respect to the curve is the same, it suffices thus to locate one of those
points with respect to the curve to get the location of all the points in O(1) time. Each
recursive call divides M and N by some constant strictly greater than one, hence, the
base case is reached in each of the paths of the recursion tree and the algorithm always
terminates.

Analysis For c1 some constant and bounding c1r2 log2 r above by c2r2+ε for some
large enough constant c2, the complexity T (M, N ) of an (M, N )-problem is thus

T (M, N ) ≤ c2r
2+ε T

(
M

r2
,
N

r

)
+ O(M + N ).

The complexity T (N , M) of an (N , M)-problem is the same as the complexity
T (M, N ) of an (M, N )-problem by the following point-curve duality result whose
proof is straightforward

Lemma 7.2 Define

γ̂a,a′ = {(x, y) : f (a, x) = f (a′, y)},

then, locating (a, a′) with respect to γb,b′ amounts to locating (b, b′) with respect to
γ̂a,a′ .

By doing alternately one step in the primal with the points (a, a′) and the curves
γb,b′ , then a second step with the dual points (b, b′) and the dual curves γ̂a,a′ , we get
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the following recurrence

T (M, N ) ≤ c22r
4+ε T

(
M

r3
,
N

r3

)
+ c2r

2+ε O

(
M

r2
+ N

r

)
+ O(M + N )

≤ c22r
4+ε T

(
M

r3
,
N

r3

)
+ O(M + N ).

Hence, for some large enough constant c3,

T (N , N ) = T (N ) ≤ c3r
4+ε T

(
N

r3

)
+ O(N ) ≤ O

(
N logr3 (c3r4+ε)

)
≤ O(N 4/3+ε).

��

8 Uniform Algorithm for Explicit 3POL

We now build on the first algorithm and prove the following:

Theorem 8.1 Explicit 3POL can be solved in O(n2(log log n)3/2/(log n)1/2) time.

We generalize again Grønlund and Pettie [32]. The algorithm we present is derived
from the first subquadratic algorithm in their paper.

Idea We want the implementation of step 2 in Algorithm 6.2 to be uniform, because
then, the whole algorithm is. We use the same partitioning scheme as before except
we choose g to be much smaller. This allows to store all permutations on g2 items in
a lookup table, where g is chosen small enough to make the size of the lookup table
Θ(nε). The preprocessing part of the previous algorithm is replaced by g2! calls to an
algorithm that determines for which cells a given permutation gives the correct sorted
order. This preprocessing step stores a constant-size8 pointer from each cell to the
corresponding permutation in the lookup table. Search can now be done efficiently:
when searching a value c in f (Ai × Bj ), retrieve the corresponding permutation on
g2 items from the lookup table, then perform binary search on the sorted order defined
by that permutation. The sketch of the algorithm is exactly Algorithm 6.2. The only
differences with respect to Sect. 6 are the choice of g and the implementation of step 2.

A × B grid partitioning We use the same partitioning scheme as before, hence
Lemmas 6.3 and 6.4 hold. We just need to find a replacement for Lemma 6.8.

Preprocessing For their simple subquadratic 3SUM algorithm, Grønlund and Pet-
tie [32] explain that for a permutation to give the correct sorted order for a cell, that
permutation defines a certificate—a set of inequalities—that the cell must verify. They
cleverly note—using Fredman’s Trick [28] as in Chan [15] and Bremner et al. [10]—
that the verification of a single certificate by all cells amounts to solving a red/blue

8 In the real-RAM and word-RAM models.
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point dominance reporting problem.We generalize theirmethod. For each permutation
π : [g2] → [g]2, where π = (πr , πc) is decomposed into row and column functions
πr , πc : [g2] → [g], we enumerate all cells A∗

i ×B∗
j forwhich the following certificate

holds:

f
(
ai,πr (1), b j,πc(1)

) ≤ f
(
ai,πr (2), b j,πc(2)

) ≤ · · · ≤ f
(
ai,πr (g2), b j,πc(g2)

)
.

Remark Since some entries may be equal, to make sure each cell corresponds to
exactly one certificate, we replace≤ symbols by choices of g2 −1 symbols in {=,<}.
Each permutationπ gets a certificate for each of those choices. This adds a 2g

2−1 factor
to the number of certificates to test, whichwill eventually be negligible. Note that some
of those 2g

2−1 certificates are equivalent. We need to skip some of them, as otherwise
we might output some cells more than once, and then there will be no guarantee with
respect to the output size. For example, the certificate f (ai,9, b j,5) = f (ai,6, b j,7) <

· · · < f (ai,4, b j,4) is equivalent to the certificate f (ai,6, b j,7) = f (ai,9, b j,5) <

· · · < f (ai,4, b j,4). Among equivalent certificates, we only consider the certificate
whose permutation π precedes the others lexicographically. In the previous example,
((6, 7), (9, 5), . . . , (4, 4)) ≺ ((9, 5), (6, 7), . . . , (4, 4)) hence we would only process
the second certificate. For the sake of simplicity, we will write inequality when we
mean either strict inequality or equation, and “≤” when we mean either “<” or “=”.

Fredman’s Trick This is where Fredman’s Trick comes into play. By Lemma 6.5,
each inequality f (ai,πr (t), b j,πc(t)) ≤ f (ai,πr (t+1), b j,πc(t+1)) of a certificate can be
checked by computing the relative position of (ai,πr (t), ai,πr (t+1)) with respect to
γb j,πc(t),b j,πc(t+1) . For a given certificate, for each Ai and each Bj , define

pi = ((
ai,πr (1), ai,πr (2)

)
, . . . ,

(
ai,πr (g2−1), ai,πr (g2)

))
,

q j = (
f
(
x, b j,πc(1)

) ≤ f
(
y, b j,πc(2)

)
, . . . , f

(
x, b j,πc(g2−1)

) ≤ f
(
y, b j,πc(g2)

))
.

A certificate is verified by a cell Ai × Bj if and only if, for all t ∈ [g2 − 1], the point
pi,t verifies the inequality q j,t . Enumerating all cells Ai × Bj for which the certificate
holds therefore amounts to solving the following problem:

Problem 8.2 (PolynomialDominanceReporting (PDR))Given N k-tuples pi of points
inR2 and N k-tuples q j of bivariate polynomial inequalities of degree at most δ, output
all pairs (pi , q j ) where, for all t ∈ [k], the point pi,t verifies the inequality q j,t .

In the next section, we explain how to solve PDR efficiently and prove the following:

Lemma 8.3 We can output all � such pairs in time 2O(k)N
2− 4

δ2+3δ+2
+ε + O(�).

We can now give a uniform implementation of step 2 in Algorithm 6.2:

Algorithm 8.4 (Sorting the f (Ai × Bj ) with a uniform algorithm)
input A = {a1 < a2 < · · · < an}, B = {b1 < b2 < · · · < bn} ⊂ R.
output The sets f (Ai × Bj ), sorted.
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2.1. Initialize a table that will contain all g2! permutations on g2 elements.
2.2. For each permutation π : [g2] → [g]2,
2.2.1. Append permutation π to the table,
2.2.2. For each choice of g2 − 1 symbols in {=,<},
2.2.2.1. If there is any “=” symbol that corresponds to a lexicographically decreasing

pair of tuples of indices in π , skip this choice of symbols.
2.2.2.2. Solve the PDR instance associated with A, B, π and the choice of symbols.
2.2.2.3. For each output pair (i, j), store a pointer to the last entry in the table.

Analysis Plugging in k = g2−1, N = n/g, iterating over all permutations
(∑

π � =
(n/g)2

)
, and adding the binary search step we get that explicit 3POL can be solved in

time

(g2!) 2g22O(g2)(n/g)
2− 4

deg( f )2+3 deg( f )+2
+ε + O((n/g)2) + O(n2 log g/g).

The first two terms correspond to the complexity of step 2 inAlgorithm 6.2, and the last
term corresponds to the complexity of step 3 inAlgorithm6.2. To get subquadratic time
we can set g = cdeg( f )

√
log n/ log log n, because then for some appropriate choice of

the constant factor cdeg( f ), (g2)! 2g22O(g2) = nδ where δ < 4/(deg( f )2 +3 deg( f )+
2)−ε, making the first term negligible. The complexity of the algorithm is dominated
by O(n2 log g/g) = O(n2(log log n)3/2/(log n)1/2). This proves Theorem 8.1.

9 Polynomial Dominance Reporting

In this section, we combine a standard dominance reporting algorithm [48] with
Matoušek’s algorithm [36] to prove Lemma 8.3. For a pair of blue and red points
in R

k , we say that the blue point dominates the red point if for all indices i ∈ [k]
the i th coordinate of the blue point is greater or equal to the i th coordinate of the red
point. The standard algorithm in [48] solves the following problem:

Problem 9.1 Given N blue and M red points inRk , report all bichromatic dominating
pairs.

Our problem is significantly more complicated and general. Instead of blue points
we have blue k-tuples pi of 2-dimensional points, instead of red points we have red
k-tuples q j of bivariate polynomial inequalities, and we want to report all bichromatic
pairs (pi , q j ) such that, for all t ∈ [k], the point pi,t verifies the inequality q j,t .
The standard algorithm essentially works by a combination of divide and conquer
and prune and search, using a one-dimensional cutting (median selection) to split
a problem into subproblems. We generalize the standard algorithm by using higher
dimensional cuttings, in a way similar to Matoušek’s algorithm [36]. For the analysis,
we generalize Chan’s analysis of the standard algorithm when k is not constant [15].

Proof of Lemma 8.3 We use the Veronese embedding [33,34]. Since the polynomials
have constant degree, we can trade polynomial inequalities for linear inequalities by

123



Discrete & Computational Geometry (2019) 61:698–734 715

lifting to a space of higher—but constant—imension. The degree of each polynomial
is at most�. There are exactly d = (

�+2
2

)−1 different bivariate monomials of degree
at most �.9 To each monomial we associate a variable in R

d . By this association,
points in the plane are mapped to points in R

d and bivariate polynomial inequalities
are mapped to d-variate linear inequalities.

By abuse of notation, let pi denote the tuple pi where each 2-dimensional point
has been replaced by its d-dimensional counterpart, and let qi denote the tuple qi
where each bivariate polynomial inequality has been replaced by its d-variate linear
counterpart. We have N k-tuples pi and M k-tuples q j . The algorithm checks each of
the k components of the tuples in turn and can be described recursively as follows for
some positive integer r > 1:

Algorithm 9.2 (Polynomial Dominance Reporting)
input N k-tuples pi of d-dimensional points,M k-tuples q j of d-variate linear inequal-
ities.
output All (pi , q j ) pairs such that, for all t ∈ [k], the point pi,t verifies the inequality
q j,t .

1. If k = 0, then output all pairs (pi , q j ) and halt.
2. If N < rd or M < r , solve the problem by brute force in O((N + M)k) time.
3. We now only consider the kth component of each input k-tuple and call these active

components. To each active d-variate linear inequality corresponds a defining
hyperplane in R

d . Construct, as in [36], a hierarchical cutting of Rd using O(rd)
simplicial cells such that each simplicial cell is intersected by at most M

r of the
defining hyperplanes. This construction also gives us for each simplicial cell of the
cutting the list of defining hyperplanes intersecting it. This takes O(Mrd−1) time.
Locate each active point inside the hierarchical cutting in time O(N log r). Let S
be a simplicial cell of the hierarchical cutting. Denote byΠS the set of active points

in S. Partition each ΠS into
⌈ |ΠS |
Nr−2

⌉
disjoint subsets of size at most N

rd
. For each

simplicial cell, find the active inequalities whose corresponding geometric object
(hyperplane, closed or open half-space) contains the cell. This takes O(Mrd) time.
The whole step takes O(N log r + Mrd) time.

4. For each of the O(rd) simplicial cells, recurse on the at most N
rd

k-tuples pi whose

active point is inside the simplicial cell and the at most M
r k-tuples q j whose active

inequality’s defining hyperplane intersects the simplicial cell.
5. For each of the O(rd) simplicial cells, recurse on the at most N

rd
(k−1)-prefixes of

k-tuples pi whose active point is inside the simplicial cell and the (k − 1)-prefixes
of k-tuples q j whose active inequality’s corresponding geometric object contains
the simplicial cell.

Correctness In each recursive call, either k is decremented or M and N are divided
by some constant strictly greater than one, hence, one of the conditions in steps 1 and
2 is met in each of the paths of the recursion tree and the algorithm always terminates.
Step 5 is correct because it only recurses on (pi , q j ) pairs whose suffix pairs are

9 Not including the independent monomial, namely, 1.
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dominating. The base case in step 1 is correct because the only way for a pair (pi , q j )

to reach this point is to have had all k components checked in step 5. The base case
in step 2 is correct by definition. Each dominating pair is output exactly once because
the recursive calls of steps 4 and 5 partition the set of pairs (pi , q j ) that can still claim
to be candidate dominating pairs.

Analysis For k, N , M ≥ 0, the total complexity Tk(N , M) of computing the inclu-
sions for the first k components, excluding the output cost (steps 1 and 2), is bounded,
in general, by

Tk(N , M) ≤ O(rd) Tk−1(N , M)
︸ ︷︷ ︸

Step 5

+ O(rd) Tk

(
N

rd
,
M

r

)

︸ ︷︷ ︸
Step 4

+ O(N + M)︸ ︷︷ ︸
Step 3

,

and, in particular, by Tk(N , M) = 0 when k = 0, Tk(N , M) = O(Nk) when M < r ,
and Tk(N , M) = O(Mk) when N < rd .

By point-hyperplane duality, Tk(N , M) = Tk(M, N ), hence, we can execute step 4
on dual linear inequalities and dual points to balance the recurrence. For some constant
c1 ≥ 1,

Tk(N , M) ≤ c1r
2d Tk−1(N , M) + c1r

2d Tk

(
N

rd+1 ,
M

rd+1

)
+ c1(N + M).

For simplicity, we ignore some problem-size reductions occuring in this balancing
step.

Let Tk(N ) = Tk(N , N ) denote the complexity of solving the problem when M =
N , excluding the output cost. Hence, we have

Tk(N ) ≤ c1r
2d Tk−1(N ) + c1r

2d Tk

(
N

rd+1

)
+ c1N , (9.1)

and, in particular, Tk(N ) = 0 when k = 0, and Tk(N ) = O(k) when N < rd+1.
To get rid of the parameter k and progress into the analysis of the recurrence, Chan

makes an ingenious change of variable [15]. With hindsight, choose b = rd+1 and let

T (N ′) = max
{
Tk(N ) : k ≥ 0, N ≥ 1, and bk N ≤ N ′} . (9.2)

For the rest of the discussion, we shorten the notation to

T (N ′) = max
bk N≤N ′

Tk(N ).

By combining (9.1) and (9.2) we obtain

T (N ′) = max
bk N≤N ′

Tk(N ) ≤ max
bk N≤N ′

[
c1r

2d Tk−1 (N ) + c1r
2d Tk

(
N

rd+1

)
+ c1N

]
.
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The maximum of a sum is always bounded by the sum of the maxima of its terms,
hence,

T (N ′) ≤ max
bk N≤N ′

[
c1r

2d Tk−1 (N )
]

+ max
bk N≤N ′

[
c1r

2d Tk

(
N

rd+1

)]
+ max

bk N≤N ′
[c1N ] .

Looking at each term separately, by definition of T (N ′), we have

max
bk N≤N ′

Tk−1(N ) = max
bk−1N≤ N ′

b

Tk−1(N ) = T

(
N ′

b

)
= T

(
N ′

rd+1

)
,

max
bk N≤N ′

Tk

(
N

rd+1

)
= max

bk N
rd+1 ≤ N ′

rd+1

Tk

(
N

rd+1

)
= T

(
N ′

rd+1

)
,

max
bk N≤N ′

N = max
N≤ N ′

bk

N = N ′

bk
≤ N ′,

which,when combinedwith the previous inequality, produce the following recurrence:

T (N ′) ≤ 2c1r
2d T

(
N ′

rd+1

)
+ c1N

′.

Powers of rd+1 We claim that if N ′ is a power of rd+1, then T (N ′) ≤ c2[N ′α − N ′]
for some constants α > 1 and c2 ≥ 1. We prove by induction that this (educated)
guess is indeed correct. For N ′ = 1, we have

T (1) = max
bk N≤1

Tk(N ) = T0(1) = 0 ≤ c2[1α − 1].

For N ′ ≥ rd+1 a power of rd+1, and assuming the claim holds for all smaller powers:

T (N ′) ≤ 2c1r
2dc2

[(
N ′

rd+1

)α

− N ′

rd+1

]
+ c1N

′

≤ c2N
′α
[
2c1r2d

(rd+1)
α

]
− c2N

′
[
2c1r

d−1 − c1
c2

]
.

We want

c1r2d

(rd+1)
α ≤ 1

2
and 2c1r

d−1 − c1
c2

≥ 1.

For the first inequality, we can set the left hand side to be equal to c1r−ε′ = 1
2 with

some small ε′ = 1+log c1
log r . Hence, 2d − α(d + 1) = −ε′, and for ε = ε′

d+1 , we get

α = 2d
d+1 + ε. The second inequality is equivalent to 2rd−1 ≥ 1

c1
+ 1

c2
, which always

holds since r > 1, d ≥ 1, c1 ≥ 1, c2 ≥ 1.
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We now have

T (N ′) = O
(
N ′ 2d

d+1+ε
)

,

where ε = 1+log c1
(d+1) log r can be chosen arbitrarily small by picking r = (2c1)1/ε(d+1)

arbitrarily large.

Remark The choice b = rd+1 gives a simpler analysis. Although giving more
freedom to the value of b—as inChan’s paper—yields a slightly better relation between
ε and r , namely r > c1/ε(d+1)

1 , it does not get rid of the dependency of ε in r , unless
c1 = 1.

General case When N ′ ≥ 2 is not a power of rd+1, we use the fact that T (N ′) ≤
T (N ′ + 1) by definition,

T (N ′) = T
(
(rd+1)

logrd+1 N ′)

≤ T
(
(rd+1)

�logrd+1 N ′�+1
)

= O
(
(rd+1)

(�logrd+1 N ′�+1)
(

2d
d+1+ε

))

= O
(
(rd+1)

2d
d+1+ε

(rd+1)
�logrd+1 N ′� 2d

d+1+ε)

= O
(
(rd+1)

�logrd+1 N ′� 2d
d+1+ε)

= O
(
(rd+1)

logrd+1 N ′ 2d
d+1+ε)

= O
(
N ′ 2d

d+1+ε
)
.

Finally We can now bound Tk(N ) using the upper bound for T (N ′),

Tk(N ) ≤ max
bki Ni≤bk N

Tki (Ni ) = T (bk N ) = O
(
(bk N )

2d
d+1+ε

)
= 2O(k)N

2d
d+1+ε.

Hence, Tk(N ) = 2O(k)N
2d
d+1+εr , and since d = (

�+2
2

)− 1, we have

Tk(N ) = 2O(k)N
2− 4

�2+3�+2
+εr

.

To that complexity we add a constant time unit for each output pair in steps 1 and 2. ��

10 Nonuniform Algorithm for 3POL

In this section, we extend the nonuniform algorithm given for explicit 3POL in Sect.
6 to work for the more general 3POL problem. We prove the following:

Theorem 10.1 There is a bounded-degree ADT of depth O(n12/7+ε) for 3POL.
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Idea The idea is the same as for explicit 3POL. Partition the plane into A∗
i ×B∗

j cells.
Note that for a fixed c ∈ C , the curve F(x, y, c) intersects O(n/g) cells A∗

i × B∗
j .

The algorithm is the following: (1) for each cell A∗
i × B∗

j , sort the real roots of the
F(a, b, z) ∈ R[z] taking the union over all (a, b) ∈ Ai × Bj , (2) for each c ∈ C , for
each cell A∗

i ×B∗
j intersected by F(x, y, c), binary search on the sorted order computed

in step (1) to find c. Step (2) costs O(n2 log g/g). It only remains to implement step
(1) efficiently.

A×B partition We use the same partitioning scheme as before. Hence, counterparts
of Lemmas 6.3 and 6.4 hold

Lemma 10.2 For a fixed c ∈ C, the curve F(x, y, c) = 0 intersects O(n/g) cells.
Moreover, those cells can be computed in O(n/g) time.

Lemma 10.3 If the sets A, B,C can be preprocessed in Sg(n) time so that, for any
given cell A∗

i × B∗
j and any given c ∈ C, testing whether c ∈ {z : ∃ (a, b) ∈ Ai ×

Bj such that F(a, b, z) = 0} can be done in O(log g) time, then, 3POL can be solved

in Sg(n) + O
( n2
g log g

)
time.

Interleavings Let P = (P1, P2, . . . , Pm) be a tuple of m univariate nonzero poly-
nomials. Let {pi,1 < · · · < pi,�i } be the set of real roots of Pi (without multiplicities).
Let I = ((i1, j1), . . . , (i�, jΔ)) be a tuple of pairs of positive integers. We say thatP
realizes I if and only if I is a permutation of {(i, j) : i ∈ [m], j ∈ [�i ]}, and for all
t ∈ [� − 1], pit , jt ≤ pit+1, jt+1 . When used in this context, we call I an interleaving.
Note that (1) the first condition implies � = ∑m

i=1 �i , (2) a tuple of polynomials
realizes at least one interleaving, (3) a tuple of polynomials realizes more than one
interleaving if some of the polynomials have common real roots. We denote byI (P)

the set of interleavings realized by P .

A×A (b, b′)-partitions For a fixed pair (b, b′) ∈ B×B, we partitionR2 into (b, b′)-
cells that encode equivalence classes. Each cell C is mapped to a unique interleaving
I , and if we take any two points (a1, a′

1) and (a2, a′
2) inside C , I is realized by

both (F(a1, b, z), F(a′
1, b

′, z)) and (F(a2, b, z), F(a′
2, b

′, z)). It is possible that a
degenerate case arises where we cannot associate an interleaving to C because one
of the polynomials is the zero polynomial. We can easily tackle these degeneracies,
because, if any point (a, a′) is contained in such a cell, we can immediately answer
the instance with the affirmative. Identifying the interleaving associated with each
cell of each (b, b′)-partition, then locating each (a, a′) inside each (b, b′)-partition
provides the answers to all questions of the form “Is the kth real root of F(a, b, z)
greater than the �th real root of F(a′, b′, z)?”, for some (a, b), (a′, b′) ∈ Ai × Bj .
Those answers are all we need to binary search for c in the union of the real roots
of the F(a, b, z) ∈ R[z] in time O(log g). Note again that in the nonuniform setting,
we do not sort the roots explicitly, but we must be able to recover the order from the
previous computation steps.

γb,b′ and δb curves We consider the set of interleavings I that (F(x, b, z), F(y,
b′, z)) realizes, where z is a variable, and x and y are parameters.We identify four types

123



720 Discrete & Computational Geometry (2019) 61:698–734

of event that can happen when the parameters x and y vary continuously (ignoring
zero polynomials): (1) a real root of Pi and a real root of Pj that were previously
distinct become equal, for some Pi and Pj in P , (2) a real root of Pi and a real root
of Pj that were previously equal become distinct, for some Pi and Pj inP , (3) a real
root appears in one of the polynomials, and (4) a real root disappears in one of the
polynomials. Note that many of those events can happen concurrently. By definition
of an interleaving, those events are the only ones that can cause I to change.

To handle events of the types (1) and (2), we redefine the curves γb,b′ from Sect. 6:

γb,b′ = {
(x, y) : ∃ z such that F(x, b, z) = F(y, b′, z) = 0

}
,

that is, (a, a′) ∈ γb,b′ if and only if F(a, b, z) and F(a′, b′, z)have at least one common
root.10 Note that this curve is defined by the equation res(F(x, b, z), F(y, b, z); z) =
0, that is, the set of pairs (x, y) forwhich the resultant (in z) of F(x, b, z) and F(y, b, z)
vanishes. This resultant is a polynomial in R[x, y] of degree O(deg(F)2) and can be
computed in constant time [20]. The following lemma follows by continuity of the
manipulated curve:

Lemma 10.4 Let (a1, a′
1) and (a2, a′

2) be two points in the plane such that there
does not exist an interleaving that both (F(a1, b, z), F(a′

1, b
′, z)) and (F(a2, b, z),

F(a′
2, b

′, z)) realize. Moreover, suppose that those two points belong to a connected
region in the plane such that for any point (a, a′) in that region, the number of real
roots of F(a, b, z) and F(a′, b′, z) is fixed (and finite). Then the interior of any con-
tinuous path from (a1, a′

1) to (a2, a′
2) lying in this connected region must intersect

γb,b′ .

Proof Let I1 be an interleaving realized by (F(a1, b, z), F(a′
1, b

′, z)) and let I2 be an
interleaving realized by (F(a2, b, z), F(a′

2, b
′, z)). Because the number of real roots

of the polynomials F(x, b, z) and F(y, b′, z) is fixed for any point (x, y) lying in
the connected region, I1 and I2 differ by a nonzero number of swaps. Moreover, by
contradiction, there is a swap that is common to every choice of I1 and I2. Since
there is a common swap, for some i, j ∈ [deg(F)] and without loss of generality,
the i th root of F(a1, b, z) is smaller than the j th root of F(a′

1, b
′, z) whereas the i th

root of F(a2, b, z) is larger than the j th root of F(a′
2, b

′, z). By continuity, on any
continuous path from (a1, a′

1) and (a2, a′
2) there is a point (a, a′) such that the i th root

of F(a, b, z) is equal to the j th root of F(a′, b′, z). This point cannot be an endpoint
of the path, hence, the interior of the path intersects γb,b′ . ��
The contrapositive states that, if there exists a continuous path from (a1, a′

1) to (a2, a′
2)

whose interior does not intersect the curve γb,b′ , then there exists an interleaving
realized by both (F(a1, b, z), F(a′

1, b
′, z)) and (F(a2, b, z), F(a′

2, b
′, z)).

To handle events of the types (3) and (4), we define the curve

δb = {(x, z) : F(x, b, z) = 0},

which lies in the xz-plane.

10 Note that Raz et al. [54] use the same points and curves.
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Lemma 10.5 We can partition the x axis of the xz-plane into a constant number of
intervals so that for each interval the number of real roots of F(a, b, z) is fixed for all
a in this interval.

Proof We partition the xz-plane into a constant number of vertical slabs and lines. The
x coordinates of vertical tangency points and singular points of δb are the values a for
which a real root of F(a, b, z) = 0 appears or disappears. The number of singular and
vertical tangency points of δb is quadratic in deg(F). For each of those points, draw
a vertical line that contains the point. Those vertical lines partition the xz-plane into
slabs and lines. The number of vertical lines we draw is constant because the degree
of F is constant. Figure 7 depicts this drawing. The projection of the vertical lines
on the x axis produce the desired partition (with roughly half of the intervals being
singletons). Let us name those lines δb-lines for further reference. ��
We can do a symmetric construction for F(y, b′, z) in the zy-plane and get horizontal
δb′-lines.

Lemma 10.6 We can partition the y axis of the zy-plane into a constant number of
intervals so that for each interval the number of real roots of F(a′, b′, z) is fixed for
all a′ in this interval.

Cells of the (b, b′)-partition For a given (b, b′) ∈ B2, let Γb,b′ be the set containing
the curve γb,b′ , the vertical δb-lines and the horizontal δb′ -lines. The arrangement
A (Γb,b′) of those constant-degree polynomial curves partitions R2 into a constant-
size set C (Γb,b′) of (b, b′)-cells. Let P = ⋃

γ∈Γb,b′ γ and C = ∅. Add all vertices of
A (Γb,b′) to C . Add each connected component of P\C to C . Add each connected
component of R2\P to C . Finally C (Γb,b′) = C . Those cells can be connected
regions, pieces of the curve γb,b′ , pieces of the δb- and δb′ -lines (vertical and horizontal
line segments), and intersections and self-intersection of those curves (vertices). This
partitioning scheme is depicted in Fig. 8. By construction, all (b, b′)-cells have the
following invariant property

Definition 10.7 A (b, b′)-cell has the invariant property if, for all points (a, a′) in that
cell, (1) the number of real roots of F(a, b, z) is fixed, (2) the number of real roots of
F(a′, b′, z) is fixed, and (3) either, at least one of F(a, b, z) or F(a′, b′, z) is the zero
polynomial, or the sorted order of the real roots of F(a, b, z) and F(a′, b′, z) is fixed,
that is, I ((F(a, b, z), F(a′, b′, z))) is fixed.

Lemma 10.8 All (b, b′)-cells have the invariant property.

Proof First, (1) and (2) hold for all (b, b′)-cells because of the partition induced by the
δb-lines and the δb′ -lines. Second, (3) holds for all (b, b′)-cells that are not contained
in γb,b′ since (1) and (2) hold for those cells and because of the partition induced by
γb,b′ (see Lemma 10.4). Third, (3) holds for all (b, b′)-cells that are both contained in
γb,b′ and some δb- or δb′-line because one of the associated polynomials must be the
zero polynomial.

123



722 Discrete & Computational Geometry (2019) 61:698–734

Fig. 7 The vertical tangency
points (VTP), self-intersection
points (SIP) and degenerate lines
(DL) of δb partition the A axis
into intervals. For all x of the
same interval, the polynomial
F(x, b, z) ∈ R[z] has a fixed
number of real roots

C

n
g

a1 an A

VTPSIP

0 1 2 1 2 1 0

# of real roots of F (x, b, z) = 0

δb

0 0∞ ∞

DL DLVTP

Fig. 8 Cells obtained after
partitioning the plane using the
curve γb,b′ and the δb- and
δb′ -lines. The five darkened
regions highlight examples of
(b, b′)-cells

A

n
g

n
g

a1 an
a1

an

A

γ b,b ′

Finally, if a (b, b′)-cell is contained in γb,b′ but not in any of the δb- or δb′ -lines, we
make a simple observation. This cell has two distinct neighbouring connected regions
lying on each of its sides. We just showed that those two neighbouring cells have the
invariant property. The union of this piece of γb,b′ with its two neighbouring cells is a
connected region as in Lemma 10.4. Hence, the ordering of any two real roots cannot
swap along the piece of γb,b′ , as this would otherwise contradict Lemma 10.4. Hence,
(3) holds for those pieces of γb,b′ . ��

This lemma implies that, provided we compute in which (b, b′)-cells each (a, a′)
point lies, we only need to probe a single point per (b, b′)-cell to reveal the sorted
permutation associated with each cell of the A × B partition.

Preprocessing Locate all points (a, a′) ∈ Ai × Ai for all Ai with respect to all γb,b′
curves, all vertical lines derived from δb and all horizontal lines derived from δb′ for
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all (b, b′) ∈ Bj × Bj for all Bj . As in Sect. 6, this can be done in a single batch using
the algorithm described in Sect. 7, and the following generalization of Lemma 7.2:

Lemma 10.9 Define

γ̂a,a′ = {
(x, y) : res(F(a, x, z), F(a′, y, z); z) = 0

}
,

δ̂a-lines = {
(x, y) : res(F(a, x, z), F ′

x (a, x, z); z) = 0
}
,

δ̂a′-lines = {
(x, y) : res(F(a′, y, z), F ′

y(a
′, y, z); z) = 0

}
,

Γ̂a,a′ = γ̂a,a′ ∪ δ̂a-lines ∪ δ̂a′ -lines.

Locating (a, a′) with respect to Γb,b′ amounts to locating (b, b′) with respect to Γ̂a,a′ .

This gives us the information needed for the binary search in step (2).

Analysis The analysis mirrors the explicit case (described immediately after
Lemma 6.8). Combining Lemmas 10.3 and 6.8 yields a O((ng)4/3+ε + n2 log g/g)-
depth bounded-degree ADT for 3POL. By optimizing over g, we get g = Θ(n2/7−ε),
and the previous expression simplifies to O(n12/7+ε), proving Theorem 10.1.

11 Uniform Algorithm for 3POL

In this section, we combine the uniform algorithm for explicit 3POL given in Sect.
8 with the nonuniform algorithm for 3POL given in Sect. 10 to obtain a uniform
subquadratic algorithm for 3POL. We prove the following

Theorem 11.1 3POL can be solved in O(n2(log log n)3/2/(log n)1/2) time.

Idea In the uniform algorithm for explicit 3POL of Sect. 8, we partition the set A×B
into very small sets Ai × Bj , sort the sets f (Ai × Bj ) using the dominance reporting
algorithm of Sect. 9 then binary search on those sorted sets in order to find a matching
c. Here we devise a similar scheme with the only difference that the sets to sort are
the unions of the real roots of the univariate polynomials F(a, b, z) ∈ R[z] over all
(a, b) ∈ Ai × Bj . The main difficulty resides in implementing the equivalent of the
certificates of Sect. 8 to reuse the dominance reporting algorithm of Sect. 9. We show
how to implement those certificates using the γb,b′ and δb curves defined in Sect. 10.

A × B partition We use the same partitioning scheme as all previous algorithms,
hence Lemmas 10.2 and 10.3 hold. We apply the same certificate verification scheme
as in Sect. 8, hence, the dominance reporting algorithm of Sect. 9 and the analysis in
Sect. 8 still apply.

Preprocessing The preprocessing algorithm is essentially the same as Algorithm 8.4
with more complex certificates. We explain how to construct those new certificates.
The first part of the explanation consists in generalizing the definition of a certificate.
The rest of the explanation focuses on the implementation of the verification of those
certificates via Polynomial Dominance Reporting.
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The certificates For a fixed pair (a, b), F(a, b, z) ∈ R[z] is a polynomial in z of
degree at most deg(F). Hence, F(a, b, z) has at most deg(F) real roots. For each cell
A∗
i × B∗

j , let

Ai × Bj = {
(ai,1, b j,1), (ai,1, b j,2), . . . , (ai,2, b j,1), (ai,2, b j,2), . . . , (ai,g, b j,g)

}
.

Let ρ : [g]2 → {0, 1, . . . , deg(F)} be a function that maps a pair (k, l) to the number
of real roots of F(ai,k, b j,l , z). Let Σρ = ∑

(i, j)∈[g]2 ρ(i, j) ≤ deg(F)g2. Given a

function ρ, let π : [Σρ] → [g]2 × {0, 1, . . . , deg(F)} be a permutation of the union
of the real roots of all g2 polynomials

F(ai,1, b j,1, z), F(ai,1, b j,2, z), . . . , F(ai,2, b j,1, z), . . . , F(ai,g, b j,g, z),

where the number of real roots of each polynomial is prescribed by ρ. Decompose
π = (πr , πc, πs) into row, column and real root number functions πr , πc : [Σρ] →
[g], and πs : [Σρ] → {0, 1, . . . , deg(F)}. Let �(a, b, s) denote the sth real root of
F(a, b, z). To fix the permutation of the union of the real roots of all g2 polynomials,
we define the following interleaving certificate with Σρ − 1 inequalities, for each
possible function ρ and permutation π

Φρ,π = �(ai,πr (1), b j,πc(1), πs(1)
) ≤ · · · ≤ �(ai,πr (Σρ), b j,πc(Σρ), πs(Σρ)

)
.

To fix the number of real roots each of the g2 polynomials can have, we define the
following cardinality certificate for each function ρ

Ψρ =
∧

(k,l)∈[g]2
F(ai,k, b j,l , z) has ρ(k, l) real roots.

For each possible function ρ and permutation π we define the certificate Υρ,π = Ψρ ∧
Φρ,π that fixes both the number of real roots each polynomial has and the permutation
of those real roots. The total number of certificatesΥρ,π is

∑
ρ : [g]2→{0,1,...,deg(F)} Σρ !

which is of the order of (g2)
O(g2)

.
Finally, we need to handle the edge cases where a polynomial F(a, b, z) is the zero

polynomial. In that case, F(a, b, z) cancels for all z ∈ R. Hence, all planar curves
F(x, y, c) = 0 go through (a, b) and we can immediately accept the 3POL instance.
To capture those edge cases, we will check the following certificate before running
the main algorithm:

ℵ =
∨

(k,l)∈[g]2
F(ai,k, b j,l , z) is the zero polynomial.

We can check if ℵ holds for any cell Ai × Bj in O(n log n) time. For each b ∈ B
binary search for a a ∈ A that lies on a vertical line component of δb.

If this certificate is verified we accept and halt. Otherwise we can safely run the
main algorithm.
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A × A (b, b′)-partitions For each Bj and for each (b, b′) ∈ B2
j compute a partition

of the A × A grid according to the (b, b′)-cells defined by Γb,b′—see Sect. 10. For
each (b, b′)-cell of that partition, pick a sample point (a, a′), compute the interleaving
I ((F(a, b, z), F(a′, b′, z))). Store that information for future lookup. All this takes
O(ng) time.

PDR instance forΨ� For a fixed pair (a, b), suppose F(a, b, z) has r real roots. Then
a must lie in one of the open intervals or be one of the breaking points defined by the
VTP, SIP and DL of δb that fixes the number of real roots of F(a, b, z) to r . Hence
Ψρ can be rewritten as follows:

Ψρ =
∧

(k,l)∈[g]2

( ∨

[u,v]∈Iρ(k,l)

u < ai,k < v
)∨( ∨

w∈Bρ(k,l)

ai,k = w
)
,

where Iρ(k,l) denotes the set of intervals fixing the number of real roots of
F(ai,k, b j,l , z) to ρ(k, l), and Bρ(k,l) denotes the set of breaking points fixing the
number of real roots of F(ai,k, b j,l , z) to ρ(k, l).

The PDR algorithm can only check conjunctions of polynomial inequalities. How-
ever, we can transform Ψρ into disjunctive normal form (DNF) by splitting the
certificate into distinct branches, each consisting of a conjunction of polynomial
inequalities. Since the number of intervals and breaking points considered above is
constant for each pair (k, l), the number of branches to test is 2O(g2).

For each Ai we have thus a single vector of reals

pi = (ai,1, ai,1, ai,2, ai,2, . . . , ai,g, ai,g),

and for each Bj we have 2O(g2) vectors of linear inequalities

q j = (
x ��u1,1 u1,1, x ��v1,1 v1,1, x ��u1,2 u1,2, x ��v1,2 v1,2,

. . . , x ��ug,g ug,g, x ��vg,g vg,g,
)
,

where each (��uk,l , uk,l , ��vk,l , vk,l) is an element of

{
(>, u,<, v) : (u, v) ∈ Iρ(k,l)

} ∪ {(=, w,=, w) : w ∈ Bρ(k,l)
}
.

For a fixed function ρ, the sets of vectors pi and q j is a valid PDR instance of
size N = (n/g) · 2O(g) = n2O(g) and with parameter k = 2g2 that will output all
cells A∗

i × B∗
j such that F(ai,k, b j,l , z) ∈ R[z] has exactly ρ(k, l) real roots for all

(ai,k, a j,l) ∈ Ai × Bj .

PDR instance forΦ�,� For fixed pairs (a, b) and (a′, b′), suppose the s-th real root of
F(a, b, z) is smaller or equal to the q-th real root of F(a, b, z). Then, (a, a′) must lie
in a (b, b′)-cell that orders the s-th root of F(x, b, z) before the q-th root of F(y, b′, z)
for all points (x, y) in that cell.
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Hence Φρ,π can be rewritten as follows:

Φρ,π =
∧

t∈[Σρ−1]

∨

C∈Cρ,π,t

(
ai,πr (t), ai,πr (t+1)

) ∈ C,

whereCρ,π,t denotes the set of (b, b′)-cells fixing to ρ(πr (t), πc(t)) the number of real
roots of F(ai,πr (t), b j,πc(t), z), fixing to ρ(πr (t+1), πc(t+1)) the number of real roots
of F(ai,πr (t+1), b j,πc(t+1), z), and ordering the πs(t)-th root of F(ai,πr (t), b j,πc(t), z)
before the πs(t + 1)-th root of F(ai,πr (t+1), b j,πc(t+1), z).

The PDR algorithm can only check conjunctions of polynomial inequalities. How-
ever, we can transform Φρ,π in DNF as we did for Ψρ . Again the number of cells
considered above is constant for each t , the description of each cell is constant, hence,
the number of branches to test is 2O(g2).

For each Ai we have thus a single vector of 2-dimensional points

pi = (
. . . ,

(
ai,πr (1), ai,πr (2)

)
, . . .

︸ ︷︷ ︸
ω

, . . . , . . . ,
(
ai,πr (Σρ−1), ai,πr (Σρ)

)
, . . .

︸ ︷︷ ︸
ω

)
,

where ω is the size of the largest description of a (b, b′)-cell C , and for each Bj we

have 2O(g2) vectors of polynomial inequalities,

q j = (
. . . , h1,ϑ (x, y) ��1,ϑ 0, . . .
︸ ︷︷ ︸

ϑ∈[ω]
, . . . , . . . , hΣρ−1,ϑ (x, y) ��Σρ−1,ϑ 0 . . .

︸ ︷︷ ︸
ϑ∈[ω]

)
,

where each (. . . , ht,ϑ (x, y) ��t,ϑ 0, . . .) is an element of {desc(C) : C ∈ Cρ,π,t },
where desc(C) is the description of the cell C given as a certificate of belonging to C
in the form of a Tarski sentence. The description of each (b, b′)-cell is padded with its
last component so that it has length ω.

For a fixed function ρ, for a fixed function π , the sets of vectors pi and q j is a
valid PDR instance of size N = n2O(g) and with parameter k = Θ(g2) that will
output all cells A∗

i × B∗
j such that the number of real roots of F(ai,πr (t), b j,πc(t), z)

is ρ(πr (t), πc(t)), the number of real roots of F(ai,πr (t+1), b j,πc(t+1), z) is ρ(πr (t +
1), πc(t+1)), and theπs(t)-th root of F(ai,πr (t), b j,πc(t), z) comes before theπs(t+1)-
th root of F(ai,πr (t+1), b j,πc(t+1), z), for all t ∈ [Σρ − 1].
PDR instance forΥ�,� We can combine the certificates given above forΨρ andΦρ,π

to obtain the ones forΥρ,π : concatenate the pi and q j together (add a dummy y variable
for the pi and q j ofΨρ). For a fixed functionρ, for a fixed functionπ , the sets of vectors
pi and q j is a valid PDR instance of size N = n2O(g) and with parameter k = Θ(g2)
that will output all cells A∗

i × B∗
j such that F(ai,k, b j,l , z) ∈ R[z] has exactly ρ(k, l)

real roots for all (ai,k, a j,l) ∈ Ai × Bj , and the πs(t)-th root of F(ai,πr (t), b j,πc(t), z)
comes before the πs(t + 1)-th root of F(ai,πr (t+1), b j,πc(t+1), z) for all t ∈ [Σρ − 1].
The rest of the analysis in Sect. 8 applies. This proves Theorem 11.1.
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12 Applications

To illustrate the expressive power of 3POL, we give some geometric applications in
the sections that follow. We show the following:

1. GPT can be solved in subquadratic time provided the input points lie on few
parameterized constant-degree polynomial curves.

2. In the plane, given three sets Ci of n unit circles and three points pi such that a
circle c ∈ Ci contains pi , deciding whether there exists (a, b, c) ∈ C1 ×C2 ×C3
such that a ∩ b ∩ c 
= ∅ can be done in subquadratic time.

3. Given n input points in the plane, deciding whether any triple spans a unit triangle
can be done in subquadratic time, provided the input points lie on few parameter-
ized constant-degree polynomial curves.

12.1 General Position Testing for Points on Curves

The following is a corollary of Theorem 5.2 in Raz et al. [54]

Corollary 12.1 (Raz et al. [54]) Any n points on an irreducible algebraic curve of
degree d inC2 determine Õd(n11/6) proper collinear triples, unless the curve is a line
or a cubic.

An interesting application of our results is the existence of subquadratic nonuniform
and uniform algorithms for the computational version of this corollary.

Problem 12.2 (GPT on curves) Let C1,C2,C3 be three (not necessarily distinct)
parameterized constant-degree polynomial curves in R

2, so that each Ci can be writ-
ten (gi (t), hi (t)) for some polynomials of constant degree gi , hi . Given three n-sets
S1 ⊂ C1, S2 ⊂ C2, S3 ⊂ C3, decide whether there exist any collinear triple of points
in S1 × S2 × S3.

Theorem 12.3 GPT on curves reduces linearily to 3POL.

Proof For each set Si , construct the set Ti = {t : p ∈ Si , p = (gi (t), hi (t))}. Testing
whether there exists a collinear triple in S1 × S2 × S3 amounts to testing whether any
determinant

∣∣∣∣∣∣

g1(t1) h1(t1) 1
g2(t2) h2(t2) 1
g3(t3) h3(t3) 1

∣∣∣∣∣∣

equals zero. This determinant is a trivariate constant-degree polynomial inR[t1, t2, t3].
Solving the original problemamounts thus to decidingwhether this polynomial cancels
for any triple (t1, t2, t3) ∈ T1 × T2 × T3. ��

Note that a similar polynomial predicate exists for testing collinearity in higher
dimension.
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Lemma 12.4 Let p = (p1, p2, . . . , pd), q = (q1, q2, . . . , qd), andr = (r1, r2, . . . , rd)
be three points in Rd , then p, q, and r are collinear if and only if

[
d∑

i=1

(pi − ri )(qi − pi )

]2

−
[

d∑

i=1

(pi − ri )
2

][
d∑

i=1

(qi − pi )
2

]

= 0.

Proof Let a = (p1, p2, . . . , pd), b = (q1, q2, . . . , qd), and c = (r1, r2, . . . , rd) be
three points inRd . The points p, q, and r are collinear if and only if r = p+λ(q − p)
for some unique λ ∈ R, that is

(p − r) + λ(q − p) = 0

⇒ ∀i ∈ [d] : (pi − ri ) + λ(qi − pi ) = 0

⇒
d∑

i=1

[(pi − ri ) + λ(qi − pi )]
2 = 0

⇒
d∑

i=1

[
(qi − pi )

2λ2 + 2(pi − ri )(qi − pi )λ + (pi − ri )
2
]

= 0

⇒
[

d∑

i=1

(qi − pi )
2

]

︸ ︷︷ ︸
A

λ2 +
[

2
d∑

i=1

(pi − ri )(qi − pi )

]

︸ ︷︷ ︸
B

λ +
[

d∑

i=1

(pi − ri )
2

]

︸ ︷︷ ︸
C

= 0

⇒ λ = −B ± √
B2 − 4AC

2A
.

For λ to exist and be unique B2−4AC must be zero. Hence, p, q, and r are collinear
if and only if

[

2
d∑

i=1

(pi − ri )(qi − pi )

]2

− 4

[
d∑

i=1

(pi − ri )
2

][
d∑

i=1

(qi − pi )
2

]

= 0. ��

Moreover, the improvement that we obtain in the time complexity of 3POL can be
exploited to boost the number of curves we pick the points from.

Theorem 12.5 Let C1,C2, . . . ,Ck be k = o
(
(log n)1/6/(log log n)1/2

)
(not neces-

sarily distinct) constant-degree polynomial curves in R
d . Given k n-sets Si j ⊂ Ci j ,

deciding whether there exists any collinear triple of points in any triple of sets
Si1 × Si2 × Si3 can be solved in subquadratic time.

Proof Solve a 3POL instance for each choice of Si1 × Si2 × Si3 . Since there are
o
(
(log n)1/2/(log log n)3/2

)
such choices, the theorem follows. ��
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12.2 Incidences on Unit Circles

Raz et al. [53] mention the following problem as a special case of the framework they
introduce. Let p1, p2, p3 be three distinct points in the plane, and, for i = 1, 2, 3, let
Ci be a family of n unit circles (a circle of radius 1) that pass through pi . Their goal
is to obtain an upper bound on the number of triple points, which are points that are
incident to a circle of each family. They prove:

Theorem 12.6 Let p1, p2, p3 be three distinct points in the plane, and, for i = 1, 2, 3,
let Ci be a family of n unit circles that pass through pi . Then the number of points
incident to a circle of each family is O(n11/6).

They observe that the following dual formulation is equivalent to their original
problem:

Theorem 12.7 Let C1,C2,C3 be three unit circles in R2, and, for each i = 1, 2, 3, let
Si be a set of n points lying on Ci . Then the number of unit circles, spanned by triples
of points in S1 × S2 × S3, is O(n11/6).

Our new algorithms indeed allow us to solve the decision version of their problems
in subquadratic time.

Problem 12.8 (UnitCircles Spanned byPoints onThreeUnitCircles (UCSPTUC)) Let
C1,C2,C3 be three unit circles in R2 with centers c1, c2, c3, and, for each i = 1, 2, 3,
let Si = {(xi,1, yi,1), (xi,2, yi,2), . . . , (xi,n, yi,n)} be a set of n points lying on Ci .
Decide whether any triple of points (p1, p2, p3) ∈ S1 × S2 × S3 spans a unit circle.

Theorem 12.9 UCSPTUC can be solved in O(n2(log log n)3/2/(log n)1/2) time.

Proof Without loss of generality, assume all input points lie on the right y-monotone
arc of their respective circle. All other seven cases can be handled similarly. We can
also assume that no input point is the top or bottom vertex of its circle, rotating the
plane if necessary.

Given three points p1, p2, and p3, let

x = ‖p1 − p2‖, X = x2, y = ‖p1 − p3‖, Y = y2, z = ‖p2 − p3‖, Z = z2.

Testing if the three points p1, p2, and p3 span a unit circle amounts to testing whether

X2 + Y 2 + Z2 − 2XY − 2X Z − 2Y Z + XY Z = 0.

The fact that the input points lie on the right y-monotone arc of unit circles of
centers c1, c2, c3 allows us to get down to a single variable per point. Let ci = (cxi , c

y
i )

and ti, j =
√

1−xi, j+cxi
1+xi, j−cxi

. Then the j th input point of the i th circle can be expressed as

pi, j = (xi, j , yi, j ) = ci +
(
1 − t2i, j
1 + t2i, j

,
2ti, j

1 + t2i, j

)

.
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Combining those two observations with some algebraic manipulations, one can
show that there exists some trivariate polynomial F of degree at most 24 that cancels
on t1, t2, t3 when the points

c1 +
(
1 − t21
1 + t21

,
2t1

1 + t21

)

, c2 +
(
1 − t22
1 + t22

,
2t2

1 + t22

)

, c3 +
(
1 − t23
1 + t23

,
2t3

1 + t23

)

,

span a unit circle.
Hence, the sets {t1,1, t1,2, . . . , t1,n}, {t2,1, t2,2, . . . , t2,n}, and {t3,1, t3,2, . . . , t3,n}

together with F give an instance of 3POL we can solve in subquadratic time with our
new algorithms.

Unfortunately, the computation
√· is not allowed in our model, and so, we cannot

compute ti, j . However, we can generalize the 3POL problem to make it fit:

Problem 12.10 (Modified 3POL) Let F ∈ R[x, y, z] be a trivariate polynomial of
constant degree, given three sets A, B, and C , each containing n real numbers, decide
whether there exist a ∈ A, b ∈ B, and c ∈ C such that

∃ t1, t2, t3
(
t21 = a ∧ t22 = b ∧ t23 = c ∧ F(t1, t2, t3) = 0

)
.

The sets (all computable in our models) {t21,1, t21,2, . . . , t21,n}, {t22,1, t22,2, . . . , t22,n},
and {t23,1, t23,2, . . . , t23,n} together with F give an instance of this modified version of
3POL.

We can tweak our algorithms so that they work for this new version of 3POL. We
prefix each decision we make on the first-order theory of the reals with an existential
quantifier and a condition of the type t2i = x , with x the square of ti , when we
reference ti in the formula we test. This new algorithm answers positively if and only
if the original problem contains a triple of points spanning a unit circle.

In general, any constant-degree polynomial curve can be decomposed in a constant
number of pieces as above. Each point on this curve can be given a parameterization
that might involve roots of its coordinates. Those can be taken care of by appropriately
augmenting the Tarski sentences in our algorithm with equations that encode those
roots for free. ��

12.3 Points Spanning Unit Triangles

A similar problem, namely counting the number of input point triples spanning an area
S triangle (provided they lie on a few curves), can also easily be reduced to 3POL.
The polynomial to look at in this case is

F(x, y, z) = X2 + Y 2 + Z2 − 2XY − 2X Z − 2Y Z + 16S2.

Note that when the input points lie in the plane, the number of solutions is more
than quadratic [50,51].
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47. Pătracu, M.: Towards polynomial lower bounds for dynamic problems. In: Proceedings of the 42nd
ACM International Symposium on Theory of Computing (STOC’10), pp. 603–609. ACM, New York
(2010)

48. Preparata, F.P., Shamos, M.I.: Computational Geometry: An Introduction. Texts and Monographs in
Computer Science. Springer, New York (1985)

49. Rabin, M.O.: Proving simultaneous positivity of linear forms. J. Comput. Syst. Sci. 6(6), 639–650
(1972)

50. Raz, O.E., Sharir, M.: The number of unit-area triangles in the plane: Theme and variations. In: Arge,
L., Pach, J. (eds.) Proceedings of the 31st International Symposium on Computational Geometry
(SoCG’15). LIPIcs. Leibniz International Proceedings in Informatics, vol. 34, pp. 569–583. Schloss
Dagstuhl. Leibniz-Zentrum für Informatik, Wadern (2015)

51. Raz, O.E., Sharir, M., Shkredov, I.D.: On the number of unit-area triangles spanned by convex grids
in the plane. Comput. Geom. 62, 25–33 (2017)

52. Raz, O.E., Sharir, M., Solymosi, J.: Polynomials vanishing on grids: The Elekes–Rónyai problem
revisited. In: Proceedings of the 30th Annual Symposium on Computational Geometry (SoCG’14),
pp. 251–260. ACM, New York (2014)

53. Raz, O.E., Sharir, M., Solymosi, J.: On triple intersections of three families of unit circles. Discrete
Comput. Geom. 54(4), 930–953 (2015)

54. Raz, O.E., Sharir, M., de Zeeuw, F.: Polynomials vanishing on cartesian products: The Elekes–Szabó
theorem revisited. In:Arge,L., Pach, J. (eds.) Proceedings of the 31st International SymposiumonCom-
putational Geometry (SoCG’15). LIPIcs. Leibniz International Proceedings in Informatics, vol. 34, pp.
522–536. Schloss Dagstuhl. Leibniz-Zentrum für Informatik, Wadern (2015)

55. Raz, O.E., Sharir, M., de Zeeuw, F.: The Elekes-Szabó Theorem in four dimensions. Isr. J. Math.
227(2), 663–690 (2018)

56. Seidenberg, A.: Constructions in algebra. Trans. Am. Math. Soc. 197, 273–313 (1974)
57. Steele, J.M., Yao, A.C.: Lower bounds for algebraic decision trees. J. Algorithms 3(1), 1–8 (1982)
58. Tarski, A.: A decision method for elementary algebra and geometry. In: Caviness, B.F., Johnson, J.R.

(eds.) Quantifier Elimination and Cylindrical Algebraic Decomposition. Texts and Monographs in
Symbolic Computation, pp. 24–84. Springer, Vienna (1998)

59. Yao, A.C.C.: A lower bound to finding convex hulls. J. ACM 28(4), 780–787 (1981)
60. Yun, D.Y.Y.: On square-free decomposition algorithms. In: Proceedings of the 3th ACM Symposium

on Symbolic and Algebraic Computation (SYMSACC’76) , pp. 26–35. ACM New York (1976)

Affiliations

Luis Barba1 · Jean Cardinal2 · John Iacono3 · Stefan Langerman2 ·
Aurélien Ooms2 · Noam Solomon4

Luis Barba
luis.barba@inf.ethz.ch

Jean Cardinal
jcardin@ulb.ac.be

John Iacono
ulb.ac.be@johniacono.com

123

http://arxiv.org/abs/1507.08181
http://orcid.org/0000-0002-5733-1383


734 Discrete & Computational Geometry (2019) 61:698–734

Stefan Langerman
slanger@ulb.ac.be

Aurélien Ooms
aureooms@ulb.ac.be

Noam Solomon
noam.solom@gmail.com

1 Department of Computer Science, ETH Zürich, Zürich, Switzerland

2 Département d’Informatique, Université libre de Bruxelles (ULB), Brussels, Belgium

3 Department of Computer Science and Engineering, New York University (NYU), New York,
NY, USA

4 Center of Mathematical Sciences and Applications, Harvard University, Cambridge, MA, USA

123


	Subquadratic Algorithms for Algebraic 3SUM
	Abstract
	1 Introduction
	2 Problems Definition
	3 Models of Computation
	4 Algorithmic Results on the 3SUM Problem
	5 Combinatorics Results on 3POL and GPT
	6 Nonuniform Algorithm for Explicit 3POL
	7 Polynomial Batch Range Searching
	8 Uniform Algorithm for Explicit 3POL
	9 Polynomial Dominance Reporting
	10 Nonuniform Algorithm for 3POL
	11 Uniform Algorithm for 3POL
	12 Applications
	12.1 General Position Testing for Points on Curves
	12.2 Incidences on Unit Circles
	12.3 Points Spanning Unit Triangles

	Acknowledgements
	References




