
Discrete & Computational Geometry (2019) 61:91–119
https://doi.org/10.1007/s00454-018-0037-6

Analyzing the Squared Distance-to-Measure Gradient Flow
Systemwith k-Order Voronoi Diagrams

Patrick O’Neil1 · Thomas Wanner1

Received: 24 March 2017 / Revised: 4 March 2018 / Accepted: 3 August 2018 /
Published online: 17 October 2018
© Springer Science+Business Media, LLC, part of Springer Nature 2018

Abstract
Point cloud data arises naturally from 3-dimensional scanners, LiDAR sensors, and
industrial computed tomography (i.e. CT scans) among other sources. Most point
clouds obtained through experimental means exhibit some level of noise, inhibiting
mesh reconstruction algorithms and topological data analysis techniques. To alleviate
the problems caused by noise, smoothing algorithms are often employed as a pre-
processing step. Moving least squares is one such technique, however, many of these
techniques are designed to work on surfaces inR3. As interesting point clouds can nat-
urally live in higher dimensions, we seek a method for smoothing higher dimensional
point clouds. To this end, we turn to the distance to measure function. In this paper, we
provide a theoretical foundation for studying the gradient flow induced by the squared
distance to measure function, as introduced by Chazal, Cohen-Steiner, and Mérigot.
In particular, we frame the gradient flow as a Filippov system and find a method
for solving the squared distance to measure gradient flow, induced by the uniform
empirical measure, using higher order Voronoi diagrams. In contrast to some existing
techniques, this gradient flow provides a smoothing algorithm which computationally
scales with dimensionality.

Keywords Distance-to-measure function · Point cloud · Data smoothing · Voronoi
diagrams · Topological data analysis

Editor in Charge: Kenneth Clarkson

Patrick O’Neil
ponl@ponl.io

Thomas Wanner
twanner@gmu.edu

1 Department of Mathematical Sciences, George Mason University, Fairfax, VA 22030, USA

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00454-018-0037-6&domain=pdf
http://orcid.org/0000-0003-3928-3995
http://orcid.org/0000-0003-3294-0366

92 Discrete & Computational Geometry (2019) 61:91–119

1 Introduction

There has been substantial research effort recently (for example [8,18,20,22,27,31])
concerned with analyzing point clouds drawn from an underlying set M in R

N . Pri-
marily, the focus has been on topologically and/or geometrically faithful manifold
reconstructions using a point cloud (i.e. a finite set of points in R

N) sampled from
the manifold. Examples of such techniques include the moving least squares method
(see [3,26,28], and [2]), spectral methods (see [25,30]), and many more (see [14] for
a thorough exposition). Since most applications utilizing point clouds involve a noisy
data collection process, the sampled points must be assumed to lie near the underlying
set, instead of directly on the set. Therefore, algorithms which are topologically and
geometrically robust to varying levels of noise are required.

One approach to reducing noise is through the use of smoothing gradient flows,
where we evolve a point cloud according to some specified gradient flow. In the
continuous case, several examples of smoothing flows come to mind, including mean
curvature flow [33], Willmore flow [5], and Ricci flow [29]. Such smoothing methods
maintain the topology of the set while varying its geometry.When dealing with a point
cloud, one could envision constructing an approximation of the mean curvature flow
and applying such a flow to the point cloud.

In this paper, we study the squared distance to measure gradient flow and its appli-
cation to point cloud denoising. The distance to measure function gives a notion of the
distance between a point inRN and a probability measure defined onRN . Through the
use of this gradient flow, we aim to reduce the level of noise present in a point cloud
sampled with noise. The distance to measure function and its connection to denois-
ing has been studied extensively. For example, in [7], Buchet et al. use the distance
to measure function to remove outliers and resample the data, producing a denoised
point cloud. Other works use the distance to measure function directly to study the
topology of a set via a point cloud sampled from the set. For example, in [11], Chazal
et al. explore statistical properties of the distance to measure function and its ability
to estimate the persistent homology of the set S, from which a point cloud has been
sampled. Recently, the distance to measure function was used by Brécheteau in [6] to
build a hypothesis test for rejecting whether two point cloud samples came from the
same underlying metric-measure spaces.

In this work, our goal is to develop a theoretical foundation for the gradient flow
defined by the square of the distance to measure function introduced by Chazal et al.
in [9]. In particular, we investigate the behavior of this gradient flowwhen the distance
to measure function is induced by the uniform empirical measure. The gradient flow
evolves a point cloud so as to minimize the distance between the points in the cloud
and an approximation of the underlying sampling distribution. This has the effect of
smoothing the point cloud.

In order to provide a better understanding of the squared distance to measure gra-
dient flow, we recognize it as a Filippov system, i.e., as a piece-wise smooth flow.
Systems of this type have been widely studied (see for example [4,17,23], and [16])
and can lead to interesting dynamical phenomena. One of the main results of the
present paper is the determination of the specific structure of the squared distance to
measure gradient flow. We will show that on a set of full measure this flow is linear,

123

Discrete & Computational Geometry (2019) 61:91–119 93

and in fact given by motion along lines towards differing points. Moreover, in contrast
to general Filippov systems, our considered smoothing flow does not exhibit attrac-
tive sliding. In general Filippov systems, such behavior leads to the merging of sets
of orbits, and necessitates explaining dynamical behavior on subsets of the domain
which are of co-dimension two or higher. In addition to simplifying the study of the
flow, the lack of attractive sliding motion allows for a streamlined simulation of the
flow. Finally, we give a detailed description of the overall qualitative features of the
flow, such as a characterization of invariant sets, as well as a description of unstable
separatrices along interfaces with repulsive sliding.

Existing approaches for characterizing the squared distance to measure gradient
flow, such as [21], recognize the squared distance to measure function as being equiv-
alent to finding the squared Euclidean distance to a set of points in R

N+1. From this
perspective, some of our results characterizing the gradient flow, such as Theorem 3.7
which proves trajectories cannot “slide” along certain co-dimension one interfaces,
can also be seen using sets of paraboloids. However, unlike the approach in [21], we
recognize the system as a Filippov system (see [19]) and build our results under the
Filippov framework. Moreover, using the subsequent results, we are able to produce
a directed graph which captures the motion of the points in the system.

In the next section, we will recall the definition of the distance to measure function
and provide some results from [9] which give motivation for its use. In Sect. 3, we
will define the gradient flow system induced by the squared distance to measure func-
tion and develop a theoretical framework to describe the dynamics of the system. In
particular, we will show that the system defines a piecewise-smooth flow as defined
in [16], and we will use higher order Voronoi diagrams to characterize the system.
Finally, in Sect. 4, we will provide numerical results obtained by running the gradient
flow on some simple geometries.

2 The Distance toMeasure Function

Point clouds are often sampled from physical objects. For example, the surface of the
Earth can be sampled using LiDAR, yielding a point cloud. Often, the point cloud
is then used to construct a manifold which approximates the sampled object. Many
manifold reconstruction techniques rely on the use of the distance function dK to a set
K defined by

dK (y) = inf
x∈K

‖x − y‖ for all y ∈ R
N ,

where ‖ · ‖ refers to the Euclidean distance. For example, given a point cloud X ⊂ R
N ,

the Čech complex can be formed using a sublevel set of this function. In particular,
one specifies a parameter ε > 0 and uses the sublevel set d−1

X (0, ε/2) to construct
a simplicial complex. This amounts to constructing spheres of radius ε/2 centered
around the points of X and building simplices out of intersecting spheres. Although
the distance function is conceptually simple, it has its issues. Of primary concern for
mesh reconstruction, the presence of a single outlying point causes the topology of

123

94 Discrete & Computational Geometry (2019) 61:91–119

d−1
X (0, ε/2) to change. Therefore, it is clear that the distance function is not robust to

noise in the data.
We turn to the distance to measure function, introduced by [9], for a distance like

function which is robust to noise. The distance to measure function is built on the
pseudo-distance to a probability measure, as defined below.

Definition 2.1 Let μ be a probability measure on R
N . For m ∈ [0, 1], the pseudo-

distance to the measure μ is defined for all x ∈ R
N as

δμ,m(x) = inf
{
r > 0 : μ(B(x, r)) > m

}
,

where B(x, r) ⊂ R
N denotes the closed ball of radius r centered at x ∈ R

N .

Note that for m = 0, the definition of δμ,m reduces to the distance function to the
support of μ. We can now turn to the definition of the distance to measure function,
the primary tool for inducing our gradient flow.

Definition 2.2 Letμ be a probability measure onRN and letm0 ∈ (0, 1]. The distance
to measure μ with parameter m0 is the function dμ,m0 : RN → R

+ defined by

dμ,m0(x) =
(

1

m0

∫ m0

0
δμ,m(x)2dm

)1/2

.

Notice that like the pseudo-distance function, the distance to measure function gives a
precise notion of the distance of a point to a probabilitymeasureμ. However, unlike the
pseudo-distance function, the distance to measure function is continuous with respect
to the measure μ and the parameter m0 (see [9]).

As mentioned previously, one of the primary benefits of using the distance to mea-
sure function is that this function is robust to noise. To make this precise, we first
recall that given two Radon probability measures μ and ν on R

N , a transport plan
between μ and ν is another Radon probability measure π on R

N × R
N such that for

all A, B ⊆ R
N , we have π(A ×R

N) = μ(A) and π(RN × B) = ν(B). With this, we
can define a distance metric between two probability measures.

Definition 2.3 Given p ≥ 1, the p-cost of a transport plan π is defined as

C p(π) =
(∫

RN ×RN
‖x − y‖pdπ(x, y)

)1/p

.

The Wasserstein distance (of order p), as originally introduced in [24], denoted
Wp(μ, ν), between two Radon probability measures μ and ν with finite p-moments
is defined as

Wp(μ, ν) = inf
π

C p(π),

where the infimum is taken over all transport plans π between μ and ν.

123

Discrete & Computational Geometry (2019) 61:91–119 95

It can be shown that the Wasserstein distance is in fact a metric and turns the space of
all Radon probability measures over RN , with finite p-moments, into a metric space.
Returning to the distance to measure function, Chazal et al. also show the following
in [10].

Proposition 2.4 If μ and ν are two Radon probability measures on R
N and 0 < m0 ≤

1, then ‖dμ,m0 − dν,m0‖L∞(RN) ≤ 1√
m0

W2(μ, ν).

Recall that as we send m0 → 0, the distance to measure function reduces to the
traditional distance function. In this proposition, as we send m0 → 0, the upper bound
approaches infinity. This reflects the issue previously discussed that minor changes in
a set K drastically change the distance function dK . The importance of this proposition
becomes clear when we consider μ to be a distribution induced by a noisy sampling
of a set and ν to be some noiseless probability measure for sampling the set. In this
context, ifμ and ν are close in theWasserstein sense, the distance tomeasure functions
induced by μ and ν will be close in the L∞ sense. Many additional error bounds and
convergence results may be found in [12].

Since point clouds are often sampled through a noisy process, we would like to
model the noise. For symmetric noise, we can set M ⊂ R

N to be the set from which
we wish to sample, and let ν be the uniform probability measure on the surface of M ,
induced by surface area. If we were to sample directly from ν, we would not encounter
any noise. However, if we letN (0, σ 2) denote an N -dimensional Gaussian distribu-
tion with covariance matrix σ 2 IN (where IN is the N -dimensional identity matrix),
andwe setμ = ν�N (0, σ 2)where � denotes the convolution of probabilitymeasures,
then sampling from the resulting distribution, μ, would yield a noisy sampling of M .
Under this sampling model, Chazal et al. establish the following in [10].

Proposition 2.5 Let μX denote the empirical measure on X, that is

μX (A) = |A ∩ X |
|X | for all Borel subsets A ⊆ R

N .

Also, assume μX is constructed from a point cloud X sampled according to μ =
ν�N (0, σ 2) where N (0, σ 2) is a Gaussian distribution with mean 0 and covariance
matrix σ 2 IN . Then

lim|X |→∞ W2(μX , μ) ≤ σ
√

N with probability 1.

Therefore, in the limit of the sampling size, the Wasserstein distance between the
empirical distribution and the sampled distribution is bounded by the bandwidth (i.e.
σ) of the Gaussian. Combining the results of Propositions 2.4 and 2.5, we can establish
the following corollary.

123

96 Discrete & Computational Geometry (2019) 61:91–119

Corollary 2.6 Let X ⊂ R
N be a noisy point cloud sampled from the probability mea-

sure μ = ν�N (0, σ 2) and let μX denote the empirical distribution on X, then we
have the following estimate:

lim|X |→∞ ‖dμX ,m0 − dμ,m0‖L∞(RN) ≤
√

N

m0
σ.

The result established by Corollary 2.6 shows that the distance to measure function
dμX ,m0 induced by the point cloud sample provides a good approximation for the
distance to measure function dμ,m0 of the sampled distribution.Wewould like to move
the points of X so that they lie closer (in the distance tomeasure sense) to the underlying
distribution ν. To do so, we first note that since dμ,m and dμX ,m are close, their squares
are close. Thus, by moving the sampled points in a manner which decreases d2

μX ,m ,
we hope to decrease d2

μ,m . Of course, by Proposition 2.4, we know dμ,m and dν,m are
close (and so are there squares) if μ and ν are close in the Wasserstein sense. Thus,
through decreasing d2

μX ,m , we aim to move the points closer to μ and in turn, closer to
ν. In the following section, we investigate a gradient flow system that does just that.

3 Squared Distance-to-Measure Gradient Flow

In this section, we present the squared distance to measure gradient flow and establish
a few properties of the flow.We then present our new theoretical framework for solving
the gradient flow system. Although we are able to find exact solutions of the gradient
flowusing this technique, it is computationally expensive. In practice, directly inducing
the gradient flow onto a point cloud through discretization is preferred due to its lower
computational cost. However, our theoretical framework will give some insight into
how inaccuracies may arise during this discretization. This will be discussed more
in Sect. 4. We now turn our attention to finding solutions of the squared distance to
measure gradient flow.

3.1 Smoothing Gradient Flow System

As we saw in the previous section, if two probability measures are close in theWasser-
stein sense, then their respective distance to measure functions will be close, and thus,
their squared distance to measure functions will be close. Using this idea, we will
evolve a point cloud bymoving each point along a trajectory whichmaximally reduces
its squared distance to measure. To make this notion precise, we note that if we use the
empirical measure μX , as defined in Definition 2.6, the distance to measure μX with
parameter m0 = k/n, for some non-negative integer k ≤ |X |, reduces to the following
function:

Ek
X (x) ..= d2

μX ,m0
(x) = 1

k

∑

y∈NNk
X (x)

‖x − y‖2 (1)

with n = |X | and where NNk
X (x) is the set of the k-nearest neighbors of x in the

point cloud X . For the derivation of this result, see [9]. Since the distance to measure

123

Discrete & Computational Geometry (2019) 61:91–119 97

(a) k = 3 (b) k = 5

–0.5 0.0 0.5 1.0 1.5–0.5 0.0 0.5 1.0 1.5
–1.0

–0.5

0.0

0.5

1.0

–1.0

–0.5

0.0

0.5

1.0

Fig. 1 k-Order Voronoi diagrams for 10 points

function in the above equation depends only on the integer value k, we will ignore the
parameter m0 and simply refer to d2

μX ,m0
as Ek

X for the remainder of the paper.

Note that there is some ambiguity above in the definition of NNk
X (x). In particular,

for a point x ∈ R
N , if we let y1, y2, . . . , yn denote all the points of X ordered so that

‖x − y1‖ ≤ ‖x − y2‖ ≤ · · · ≤ ‖x − yn‖, then the natural definition of NNk
X (x) is

simply NNk
X (x) = {y1, y2, . . . , yk}. However, if ‖x − yk‖ = ‖x − yk+1‖, then the

points yk and yk+1 are equidistant from x . Thus, we have more than k candidates for
the set NNk

X (x). While this is not an issue in (1) since we only need the distance to
the k-nearest neighbors (which is the same for all the ambiguous points), it will be
an issue when we take the gradient of this function. As it turns out, points for which
there is ambiguity in the definition of Ek

X hold special significance for the gradient
flow induced by the squared distance to measure function.

From (1), we can compute the gradient of Ek
X ,

∇Ek
X (x) = 2

k

∑

y∈NNk
X (x)

(x − y). (2)

As just discussed, this equation is valid almost everywhere. However, it is not valid at
points ofRN where there is more than one valid k-nearest neighbor set. If we consider
the set of all points for which NNk

X (x) is ambiguous, then we have constructed the
skeleton of the k-order Voronoi diagram induced by the point cloud X . Recall that
the k-order Voronoi diagram induced by a finite set of points P , denoted V k(P), is a
decomposition ofRN into regions, called k-order Voronoi cells, in which every interior
point of a Voronoi region V shares the same k nearest neighbors as every other interior
point of the region V . In Fig. 1, we show two k-order Voronoi diagrams, with k = 3
and k = 5, for a point cloud consisting of 10 points drawn uniformly on [0, 1]2. Notice
that as expected, the two diagrams are quite different.

Given a k-order Voronoi region V , we call the common k-nearest neighbors, of the
interior points of V , the generators of V , denoted gen(V). Note that gen(V) is unique
and well defined for all V ∈ V k(P) since it is defined using the interior of V , where

123

98 Discrete & Computational Geometry (2019) 61:91–119

there is no ambiguity in the nearest neighbor set. We will denote the skeleton of the
k-order Voronoi diagram by ∂V k(P).

As a quick aside, it is a well known fact that higher order Voronoi diagrams can be
constructed recursively. In particular, given a (k − 1)-order Voronoi diagram, we can
construct the k-order Voronoi diagram following a simple procedure. For every region
V ∈ V k−1(X), we construct the first-order Voronoi diagram of the set X\ gen(V).
Then, we intersect this new diagram with the region V , producing several subregions
of V . Each of these subregions will contain the same k-nearest neighbors. We do this
for every regions V ∈ V k(X). Once all the subregions are formed, a simple checkmust
be performed to ensure that two adjacent subregions do not contain the same k-nearest
neighbors. If they do, these subregions must be merged. Thus, every face of a Voronoi
region in V k(X) arises from an intersection with a first order Voronoi diagram. Since
all the faces of a first order Voronoi diagram are bisecting hyperplanes between two
points, we can see that all co-dimension all co-dimension one faces one faces of the
k-order Voronoi diagram arise as bisecting hyperplanes. In particular, for any adjacent
k-order Voronoi regions Vi and Vj sharing a co-dimension one Voronoi face, we must
have | gen(Vi) ∩ gen(Vj)| = k − 1 (the generators of the regions only disagree on
one point since the interface between the regions is co-dimension one). Furthermore,
since the co-dimension one Voronoi faces arise from bisecting hyperplanes between a
finite number of points, we of course have that the union of all the co-dimension one
Voronoi faces will be measure zero in R

N . Therefore, the probability, following the
model outlined in Sect. 2, that a point cloud X will be sampled in which a point x ∈ X
lies on a co-dimension one Voronoi face is zero. This can be seen by considering the
sampling of X to be incremental. When sampling xi , the points x1, . . . , xi−1 induce
a higher-order Voronoi diagram whose co-dimension one faces, when unioned, have
zero measure in R

N . Thus, the probability that xi would fall on one of these faces is
zero. These results will be important in the proof of Theorem 3.7.

Returning to the discussion at hand, due to the ambiguities of the gradient ∇Ek
X (x)

for points x on the boundary ∂V k(X), we cannot simply define a gradient flow using
(2). Instead, we would like to define a piecewise-smooth flow, as defined by M. di
Bernardo et al. in [16]. We reproduce this definition below.

Definition 3.1 A piecewise-smooth flow is a finite set of ordinary differential equa-
tions,

ẋ = Fi (x) for x ∈ Si ,

where the sets Si ⊂ R
N each have non-empty interior and

⋃
i Si ⊆ R

N . Additionally,
the intersection 	i j = Si ∩ S j is either a co-dimension one submanifold included in
the boundaries ∂Si and ∂S j , or is the empty set. Finally, each vector field Fi is smooth
in both x , and defines a smooth flow φi (x, t) with any open set U ⊃ Si . In particular,
each flow φi is well defined on both sides of the boundary ∂Si .

Using the language of [16], for Vi , Vj ∈ V k(X), we will refer to the boundary
	i j = ∂Vi ∩ ∂Vj as a switching manifold. Additionally, we define

123

Discrete & Computational Geometry (2019) 61:91–119 99

	 =
⋃

	i j .

For the remainder of this paper, as in [16], when we discuss switching manifolds,
we only concern ourselves with switching manifolds of co-dimension one. Lower
dimensional submanifolds are of little concern since the set of initial points whose
trajectories will pass through these manifolds has measure zero. This fact is a result
of Theorem 3.7 which states that trajectories cannot “slide” along the Voronoi faces
in positive time.

Putting the gradient flow system in the context of piecewise-smooth flows, we let
Ei denote the function

Ei (x) = 1

k

∑

y∈gen(Vi)

‖x − y‖2

defined over all x ∈ R
N . Then, in Definition 3.1, the gradient flow induced by∇Ei (x)

plays the role of φi (x, t). That is, we can set

∂φi

∂t
(x, t) = −∇Ei (φi (x, t))

for t > 0 and φi (x, 0) = x .
Now, consider a co-dimension one switching manifold 	i j and suppose we had

∇Ei (x) = ∇E j (x) for some x ∈ 	i j . Then we have

2

k

∑

v∈gen(Vi)

(x − v) = 2

k

∑

w∈gen(Vj)

(x − w)

and therefore

∑

v∈gen(Vi)

v =
∑

w∈gen(Vj)

w.

However, since we know k − 1 points of gen(Vi) and gen(Vj) must agree (since they
share a co-dimension one face), it is impossible to have this equality since this would
imply all k points of gen(Vi) and gen(Vj) must agree and hence Vi and Vj cannot be
separate k-order Voronoi regions, contrary to our assumption.

Thus, along the switching manifold, we have ∇Ei (x) − ∇E j (x) �= 0 for x ∈ 	i j .
As noted in [16], at these points the switching manifold 	i j is said to have degree
of smoothness one. This means that the first non-zero partial derivative with respect
to t of [φi (x, t) − φ j (x, t)]|t=0 is of order one. Since our system exhibits switching
manifolds with degree of smoothness one, we recognize the gradient flow system as
a Filippov type system.

Defining the gradient along the switchingmanifolds becomes important in Filippov
systems. In this work, we follow Filippov’s convex method [19]. To utilize Filippov’s
convex method, we must define the sliding region, 	̂i j of the switching manifold

123

100 Discrete & Computational Geometry (2019) 61:91–119

Fig. 2 Attractive sliding along
the interface ∂Vi ∩ ∂Vj

Vi

Vj

–∇Ei(x)

–∇Ej(x)

	i j = ∂Vi ∩ ∂Vj . First, let ηx denote the normal vector of the co-dimension one
hyperplane ∂Vi ∩ ∂Vj . In particular, we choose the normal vector which points into
Vi . Let Ei (x) and E j (x) be the function Ek

X (x) as defined for Vi and Vj respectively
(i.e. induced by gen(Vi) and gen(Vj)). Then we can define the sliding region, 	̂i j of
the switching manifold 	i j to be

	̂i j = {
x ∈ 	i j : 〈ηx ,∇Ei (x)〉 · 〈ηx ,∇E j (x)〉 < 0

}
.

Thus, points in the sliding region 	̂i j consist of points where the gradients on either
side of 	i j point into different k-order Voronoi regions.

For points x ∈ 	i j\	̂i j , the definition of the gradient is straightforward since both
gradients point into the same k-order Voronoi region. In particular, we will just follow
the flow and if a trajectory leaves Vi and enters Vj , then we define the gradient on
∂Vi ∩ ∂Vj to be the gradient induced by the generators of Vj (i.e. gen(Vj)). However,
on 	̂i j , we define the gradient ∇Ek

X (X) to be a convex combination of the gradients
on either side of ∂Vi ∩ ∂Vj . Thus, for a point x ∈ 	̂i j , we set

∇Ek
X (x) = (1 − α(x))∇Ei (x) + α(x)∇E j (x) for all x ∈ 	i j . (3)

We then define α : RN → R as in [16], setting

α(x) = 〈ηx ,∇Ei (x)〉
〈ηx ,∇(Ei − E j)(x)〉 ,

where 〈·, ·〉 is the Euclidean inner product. This choice of α(x) causes the gradient
∇Ek

X (x) to lie orthogonal to ηx . This is illustrated in Fig. 2, which shows the resulting
gradient (red arrow) for two regions Vi and Vj which exhibit attractive sliding along
the interface.

In [16], Bernardo et al. show that the above definition of 	̂i j is identical to the
following,

	̂i j = {
x ∈ 	i j : 0 ≤ α ≤ 1

}
.

There are twomodes of sliding which can occur in the sliding region. Recall that in the
region Vi (resp. Vj), the induced flow follows the vector field given by −∇Ei (resp.
−∇E j). Note that if 〈ηx ,−∇Ei 〉 < 0 and 〈ηx ,−∇E j 〉 > 0, then the system exhibits
attractive sliding at the point x , since ηx was chosen to point into Vi . Conversely, if
〈ηx ,−∇Ei 〉 > 0 and 〈ηx ,−∇E j 〉 < 0, then the system exhibits repulsive sliding at x .

123

Discrete & Computational Geometry (2019) 61:91–119 101

Repulsive sliding does not pose any problems evolving the point cloud in forward
time since these interfaces cannot be reached in forward time. Additionally, as pre-
viously mentioned, the probability that a point cloud X is sampled for which there
exists a point x ∈ X which lies on a co-dimension one Voronoi face is zero. On the
other hand, attractive sliding is important since regardless of whether a point starts
on the interface, it may be drawn to the interface in forward time, at which point it
will begin sliding. If points can slide along an interface, then two points can enter the
sliding regions at different points and exit the sliding region at the same point. Thus,
trajectories are not well defined in reverse time. However, as we will see in the next
section, attractive sliding does not occur for any point cloud undergoing this flow.
Repulsive sliding, on the other hand, does occur. In fact, repulsive sliding regions pro-
vide the unstable regions of the gradient flow system. In particular, a repulsive sliding
region acts as a separatrix, with points on opposing sides following entirely different
trajectories.

For now,we put off analyzing the sliding region dynamics sincewe have all we need
to define the gradient flow system for the entire domain R

N . To define the trajectory
u(t) for a point x ∈ R

N , we evolve using the following differential equation:

⎧
⎨

⎩

du

dt
(t) = −∇Ek

X (u(t)), t > 0,

u(t) = x, t = 0,
(4)

where ∇Ek
X follows the form given in (2) if x does not lie on a sliding region and the

form given in (3) when x lies on some sliding region. Now, let φ(x, t) = u(t)where u
is the trajectory defined above for a given x ∈ R

N . Given a point cloud X , we define
Xt = {φ(x, t) : x ∈ X} for all t ≥ 0. As we increase t , every point in the point cloud
will move in the direction which minimizes its squared distance to measure.

It is important to note a subtle issue that we side stepped when defining the gradient
flow system. If we were to evolve a point cloud X according to the system as described
in (4), updating the nearest neighbor function as we go, all the points would begin to
cluster together. This is because the points are drawn to their nearest neighbors, which
are in turn drawn to them. To help alleviate this issue, we fix the nearest neighbor
function NNk

X at time t = 0. That is, at any time t > 0, instead of computing ∇Ek
Xt

we compute ∇Ek
X0
, using the original positions of the points, and use this gradient in

(4).

3.2 Qualitative Description of the Flow

The discussion of the squared distance to measure gradient flow system made it clear
that there is a strong connection between higher order Voronoi diagrams and the
system described in (4). We will now make the connection clear and use the higher
order Voronoi diagram to solve the squared distance to measure gradient flow system.
First, we must establish a few properties of k-order Voronoi diagrams.

Proposition 3.2 Let X ⊂ R
N be a point cloud. Then V 1(X) is a set of convex polytopes.

123

102 Discrete & Computational Geometry (2019) 61:91–119

To see why this proposition holds, note that each Voronoi diagram is simply an
intersection of half-spaces. In particular, the Voronoi region corresponding to x is
precisely the intersection of all half-spaces H y

x (for x �= y ∈ X) where the separating
hyperplane of H y

x consists of all points equidistant from x and y. With this in mind,
we can prove the following.

Proposition 3.3 Let X ⊂ R
N be a point cloud. Then the k-order Voronoi diagram of

X is a set of convex polytopes.

Proof Consider a non-empty k-order Voronoi region V ∈ V k(X). Let the generator
set of V be given by gen(V) = {x1, . . . , xk}. Recall that any point x in the interior of
V is closer to the points x1, . . . , xk than to any other y ∈ X\ gen(V). Consider the
subsets Xi ⊂ X for 1 ≤ i ≤ k where Xi = X\{x1, . . . , x̂i , . . . , xk} and x̂i denotes
the absence of xi . Then in the first order Voronoi diagram V 1(Xi), the Voronoi region
Vi corresponding to xi is convex by Proposition 3.2. Additionally, Vi consists of all
points whose distance to xi is less than or equal to the distance to any other point
in X\ gen(V). Repeating this for every 1 ≤ i ≤ k yields a set of convex polytopes
{V1, . . . , Vk}where for each i , Vi is convex. Thus, the set V1∩ V2 ∩· · ·∩ Vk is convex.
We claim that V1 ∩ V2 ∩ · · · ∩ Vk = V and so V is also convex.

To see this, let x ∈ V1 ∩ V2 ∩ · · · ∩ Vk . Since x ∈ Vi for each 1 ≤ i ≤ k, we know
that ‖x − xi‖ ≤ ‖x − y‖ for all y ∈ X\ gen(V). Since this holds for each 1 ≤ i ≤ k,
we have

max
1≤i≤k

‖x − xi‖ ≤ min
y∈X\ gen(V)

‖x − y‖.

Thus, we have x ∈ V and so V1 ∩ · · · ∩ Vk ⊆ V . Conversely, if x ∈ V , then by
the definition of a k-order Voronoi region, for any 1 ≤ i ≤ k, we know that the
distance from x to xi is less than or equal to the distance from x to any point in
X\ gen(V). Hence, x ∈ Vi for all 1 ≤ i ≤ k. Thus, x ∈ V1 ∩ V2 ∩ · · · ∩ Vk and so
V ⊆ V1 ∩ V2 ∩ · · · ∩ Vk . Therefore, we have V = V1 ∩ V2 ∩ · · · ∩ Vk as desired.
Since V was an arbitrary k-order Voronoi region in V k(X), we see that all the k-order
Voronoi regions of V k(X) are convex. ��

Since all the k-order Voronoi regions are convex polytopes, we know there must be
a finite number of k-order Voronoi regions since there are a finite number of points in
X (and thus a finite number of k-combinations of points in X). Futhermore, we can
easily identify the vertex barycenter of each bounded region. For our purposes, we will
need to distinguish between the vertex barycenter of the polytope and the barycenter
of the generators of the k-order Voronoi region. To make this difference precise, we
use the following definition.

Definition 3.4 For a k-order Voronoi region V with gen(V) = {x1, . . . , xk}, let
BarG(V), called the generator barycenter, be defined by

BarG(V) = 1

k

k∑

i=1

xi .

123

Discrete & Computational Geometry (2019) 61:91–119 103

On the other hand, let BarP (V) be the vertex barycenter of V . That is,

BarP (V) = 1

n

∑

v∈Vert(V)

v,

where Vert(V) denotes the vertices of the convex polytope V . This will be defined for
all bounded k-order Voronoi regions.

It is important to note that for a k-order Voronoi region V ∈ V k(X), we must
have BarP (V) ∈ V if BarP (V) exists (since V is the convex hull of Vert(V) and
BarP (V) is a convex sum of points in Vert(V)). However, we will not, in general,
have BarG(V) ∈ V . In fact, the regions V for which BarG(V) ∈ V are of particular
interest.

Theorem 3.5 Let V k(X) be the k-order Voronoi diagram for a point cloud X ⊂ R
N .

Under the gradient flow induced by (4), a region V ∈ V k(X) is a positively invariant
set if and only if it contains its generator barycenter. That is,

φ(x, t) ∈ V for all x ∈ V , t ≥ 0 ⇔ BarG(V) ∈ V .

Proof Let gen(V) = {x1, . . . , xk}. Since all points of V share the same k-nearest
neighbors, we can solve the gradient flow exactly for all x ∈ V (until the trajectory
leaves V). In particular, for any x ∈ V , let u(t) = φ(x, t), then we have

du

dt
= −2

k

k∑

i=1

(u − xi) = −2u + 2

k

k∑

i=1

xi = −2u + 2BarG(V),

which has the solution

u(t) = BarG(V) + c1e−2t

for some c1 ∈ R. Thus, since u(0) = x ∈ V , we have x = BarG(V) + c1 and so
c1 = x − BarG(V). Hence, the solution is

u(t) = BarG(V) + (x − BarG(V))e−2t

= xe−2t + (1 − e−2t)BarG(V)

= xλ(t) + (1 − λ(t))BarG(V),

(5)

where λ(t) = e−2t . This solution is only valid so long as u(t) ∈ V . Let T = max{t ∈
R

+ : u(t) ∈ V }. Note that λ(t) ∈ (0, 1] for t ∈ [0, T). Therefore, {u(t)}T
t=0 is a line

segment from x to BarG(V). Since V is convex, this line segment never leaves V .
Thus, if BarG(V) is contained in V , then the trajectory never leaves V and the point
x flows toward BarG(V).

123

104 Discrete & Computational Geometry (2019) 61:91–119

(a) Original Cloud (b) Barycentric Sinks

–1.5 –1.0 –0.5 0.0 0.5 1.0 1.5–1.5 –1.0 –0.5 0.0 0.5 1.0 1.5
–1.5

–1.0

–0.5

0.0

0.5

1.0

1.5

–1.5

–1.0

–0.5

0.0

0.5

1.0

1.5

Fig. 3 Barycentric sinks for a point cloud sampled from S1

Conversely, suppose V ∈ V k is a positively invariant set. Then for any x ∈ V with
u(t) = φ(x, t), we have u(t) ∈ V for all t ≥ 0.We know the trajectory of x must begin
at x and follow a straight line [by (5)], ending at BarG(V). However, since u(t) ∈ V
for all t ≥ 0, this line never leaves V . Thus, BarG(V) is either in the interior of V or
it is a limit point of V . However, since V is closed, we must have BarG(V) ∈ V . ��

For the remainder of this paper, we will refer to the condition BarG(V) ∈ V as
the barycentric sink condition. The above theorem is quite powerful. In fact, we have
established that the set

S = {
V ∈ V k(X) : BarG(V) ∈ V

}

consists of all the positively invariant k-order Voronoi regions. Additionally, we know
that the set

B = {
BarG(V) : V ∈ S

}

contains all the equilibria of the gradient flow system defined by (4), and thus, all the
convergent orbits of the system will converge to a point in B.

As an example, in Fig. 3a we show a point cloud X of 100 points noisily drawn
from the unit circle S1. Additionally, in Fig. 3b, we show the elements of B as red
points and the fifth-order Voronoi diagram of the point cloud X . Notice that many
points ofB, although close to the sampled circle, form tightly packed clusters around
the circle. This can result in clustering of the data as the gradient flow progresses and
points flow toward elements of B.

In the proof of the last theorem,we established an additional result whichwe capture
in the following lemma. In this lemma, we denote the interior of a set A as int(A).

Lemma 3.6 Let V ∈ V k(X) and let x ∈ int(V). Then there exists τ > 0 such that
φ(x, t) ∈ V for all t < τ . Furthermore, for any x ∈ V , the set {φ(x, t) : t < τ } is
a line segment from x toward BarG(V), terminating either at the boundary ∂V or at
the point BarG(V) itself.

123

Discrete & Computational Geometry (2019) 61:91–119 105

Having established some positively invariant sets, we now return to analyzing the
dynamics on a sliding region. As mentioned in the previous section, repulsive sliding
motion is of little concern since it occurs with probability zero. However, attractive
sliding motion deserves greater attention. In the following theorem, we show that
attractive sliding cannot occur.

Theorem 3.7 Attractive sliding does not occur when the gradient flow system given in
(4) is applied to a point cloud.

Proof For sake of contradiction, suppose that a co-dimension one interface between
Vi ∈ V k(X) and Vj ∈ V k(X) exhibits attractive sliding motion. Since this interface,
∂Vi ∩ ∂Vj , is between two k-order Voronoi regions, we know it is a co-dimension one
hyperplane. Thus, we can extend the interface to decompose RN into two regions Hi

and Hj , such that Vi ⊆ Hi and Vj ⊆ Hj . Following our procedure in the previous
section, we define ηx to be the normal vector to ∂Vi ∩ ∂Vj at the point x ∈ ∂Vi ∩ ∂Vj

pointing into Vi , and thus into Hi as well. Of course, the normal direction of ∂Vi ∩∂Vj

is constant along ∂Vi ∩∂Vj (due to ∂Vi ∩∂Vj being a subset of a hyperplane), therefore,
we will simply write η when referring to ηx .

The boundary of ∂Vi ∩ ∂Vj may intersect other k-order Voronoi regions. However,
points in the interior of ∂Vi ∩∂Vj will only be members of Vi and Vj (since ∂Vi ∩∂Vj

is co-dimension one). Thus, given a point x in the interior of ∂Vi ∩ ∂Vj , we have

ri = max
y∈gen(Vi)

‖x − y‖ = max
z∈gen(Vj)

‖x − z‖ = r j .

To see why this is true, suppose without loss of generality that ri < r j . Then there
exists z ∈ gen(Vj) such that ‖x − y‖ < ‖x − z‖ for all y ∈ gen(Vi). Since there
are k points in gen(Vi), the point z cannot be one of the k-nearest neighbors of x ,
contradicting the fact that x ∈ Vj . Thus, the statement must hold. Next, we let

Gi = {y ∈ gen(Vi) : ‖x − y‖ = ri },
G j = {y ∈ gen(Vj) : ‖x − y‖ = r j }

and see that |Gi | = |G j | = 1 and Gi ∩ G j = ∅. This can be seen immediately from
the recursive construction of the k-order Voronoi diagram. During its construction,
all co-dimension one Voronoi faces in the k-order Voronoi diagram arise as bisecting
hyperplanes (between twopoints). This is due to taking the intersection of a lower order
Voronoi region with a first order Voronoi diagram, which itself consists of bisecting
hyperplanes. Finally, since x lies on the interior of ∂Vi ∩ ∂Vj , it cannot lie on the
intersection of two or more bisecting hyperplanes (since this would result in a face of
the k-order Voronoi diagram with co-dimension greater than one). Thus, the sets Gi

and G j must consist of a single point each, in particular the points for which ∂Vi ∩∂Vj

act as a bisecting hyperplane.
For the system to exhibit attractive sliding motion at the point x ∈ ∂Vi ∩ ∂Vj , we

must have

〈η,−∇Ei (x)〉 < 0 and 〈η,−∇E j (x)〉 > 0.

123

106 Discrete & Computational Geometry (2019) 61:91–119

Since Gi and G j each consist of a single element, we can let Gi = {y} and G j = {z}
with y �= z. By definition, since every other point of gen(Vi) and gen(Vj) is closer
to x than the points y and z are to x , we must have that the sets gen(Vi) and gen(Vj)

intersect in every element except y and z. That is,

gen(Vi) ∩ gen(Vj) = {c1, . . . , ck−1},

where ci ∈ X\{y, z} for every 1 ≤ i ≤ k − 1. Now define

B = 1

k − 1

k−1∑

i=1

ci

and notice that

BarG(Vi) =
(

k − 1

k

)
B + 1

k
y,

BarG(Vj) =
(

k − 1

k

)
B + 1

k
z.

That is, BarG(Vi) and BarG(Vj) are both convex combinations of B with y and z,
respectively. Now by the assumption that 	i j exhibits sliding motion, we must have
BarG(Vi) ∈ Hj and BarG(Vj) ∈ Hi . We also know y ∈ Hi since points of Vi are
closer to y than they are to z. Then since BarG(Vi) ∈ Hj is a convex combination of
B and y ∈ Hi , we must have B ∈ Hj following from the fact that Hi is also convex.
However, we also have z ∈ Hj and since BarG(Vj) ∈ Hi is a convex combination
of B and z ∈ Hj , we must similarly have B ∈ Hi . The only way this can occur is if
B ∈ Hi ∩ Hj . But then if B ∈ Hi ∩ Hj , any convex combination of B with a point
from int(Hi)will fall in Hi and not in Hj . Thus we have come to a contradiction since
we assumed BarG(Vi) ∈ Hj . Therefore, we cannot have attractive sliding motion. ��

Another way to see this result can be obtained using sets of paraboloids defined via
the barycenters of the points of X . As shown in [21], the squared distance to measure
function is equivalent to

Ek
X (x) = min

c∈C
‖x − c‖2 − wc,

where C is the set of all barycenters of k points in X andwc is a weighting term. Thus,
the distance to measure function can be seen as arising from a set of paraboloids.
Hence, at the interface of two k-order Voronoi regions, it can be shown, using these
paraboloids, that there is no attractive sliding motion.

Finally, we turn our attention to periodic orbits. Since the squared distance to
measure gradient flow system is in fact a gradient flow system, it should come as no
surprise that there are no periodic orbits. This follows from the fact that the squared
distance to measure gradient flow is piecewise-smooth.

123

Discrete & Computational Geometry (2019) 61:91–119 107

Theorem 3.8 The gradient flow system defined in this section contains no periodic
orbits.

Proof Suppose there were a point x ∈ R
N such that for some t > 0, we had φ(x, 0) =

φ(x, t). Then obviously Ek
X (φ(x, 0)) = Ek

X (φ(x, t)). The trajectoryφ(x, ·)may cross
the k-order Voronoi skeleton many times during the flow. However, it can never stay
in the k-order Voronoi skeleton for some non-zero amount of time since there is no
attractive sliding in the system (see Theorem 3.7). Suppose the crosses happen at times
0 ≤ t1 < · · · < tn ≤ t . Then

0 = Ek
X (φ(x, 0)) − Ek

X (φ(x, t)) =
n−1∑

i=1

Ek
X (φ(x, ti+1)) − Ek

X (φ(x, ti))

=
n−1∑

i=1

∫ ti+1

ti

d Ek
X (φ(x, t))

dt
dt .

However, since
d Ek

X (φ(x,t))
dt < 0 for all t ∈ Ii and each i ∈ {1, . . . , m}, we see

that the right hand side of the above derivation must be strictly less than 0. This
contradicts the assumption that Ek

X (φ(x, t)) = Ek
X (φ(x, 0)) and hence the assumption

that φ(x, t) = φ(x, 0) for some x ∈ R
N and some t > 0. ��

3.3 The Flow Diagram

Having demonstrated a few properties of the gradient flow system described by (4), we
are now ready to provide a systematicmethod for solving such a system. To this end,we
will construct a directed graph which encapsulates the dynamics of the gradient flow
system. The graph will be a directed subgraph of the k-order Delaunay triangulation,
whose definition is given below.

Definition 3.9 Let V k(X) be the k-order Voronoi diagram of a finite point cloud X ⊂
R

N . The k-order Delaunay triangulation, Dk(X) = (V , E), is the graphwhose vertex
set V is given by

V = {
BarP (V) : V ∈ V k(X)

}
,

where we set BarP (V) to be some point of the interior of V if V is unbounded. An
edge exists between vertices vi = BarP (Vi) and v j = BarP (Vj) if the corresponding
boundaries of the k-order Voronoi regions intersect,

(vi , v j) ∈ E ⇔ ∂Vi ∩ ∂Vj �= ∅.

Of course this graph is the natural extension of the traditionalDelaunay triangulation
and is the dual graph of the k-order Voronoi diagram. We now seek to direct some of
the edges of Dk(X) and remove other edges. The remaining edges will indicate when
points from one region Vi will flow into another region Vj . Thus, after the orientation

123

108 Discrete & Computational Geometry (2019) 61:91–119

Fig. 4 Example polyhedral cone CA(x)

 CA(x)

A

x

and removal process, any k-orderVoronoi regionV satisfying the barycentric condition
will have zero edges leaving V . Conversely, any region V not satisfying the barycentric
sink condition will have at least one edge leaving V . To determine which edges to keep
and which edges to remove, we require the following tool.

Definition 3.10 Let A be a closed, convex polytope in R
N and let x ∈ R

N . The
polyhedral cone, CA(x), from x to A is given by

CA(x) = {
λx + (1 − λ)y : y ∈ A, λ ∈ [0, 1]}. (6)

Note that this is simply the union of all line segments originating in a closed, convex
polytope A and terminating at some x ∈ R

N . If the point x is in fact contained in
the polytope A, then CA(x) = A. For our purposes, we will set the polytope to be
one of our k-order Voronoi regions, V ∈ V k(X), and let x = BarG(V). An example
polyhedral cone CA(x) for a set A is given in Fig. 4.

Let V ∈ V k(X) and let EV denote all the edges of Dk(X) which include BarP (V)

as a vertex. We wish to keep an edge e from V to a neighbor region V ′ if any point
y ∈ V passes into the interior of V ′ during the gradient flow. Of course, if V satisfies
the barycentric sink condition, then none of the points of V will leave V during the
flow and thus we will not orient any of the edges in EV . Let us assume that V does
not satisfy the barycentric sink condition. Since we know that the point y will follow
the line segment from y to BarG(V), if this line segment intersects the interior of V ′,
then we know that y will pass into V ′ during the flow. By definition, this will happen
exactly when

CV (BarG(V)) ∩ int(V ′) �= ∅. (7)

Therefore, to determine whether to keep an edge from V to V ′, we simply check
whether int(V ′) intersects the polyhedral cone from BarG(V) to V . If the intersection
does occur, then we orient an edge from V to V ′. Doing this for all k-order Voronoi
regions in V k , we complete the process by removing any undirected edges. This
produces the flow diagram Fk(X), a directed graph describing the dynamics of the
system induced by (4). Note that this flow graph does not fully describe the dynamics,
but instead gives a higher level view of the dynamics. To fully characterize the flow, we
would need to further decompose the k-order Voronoi diagrams according to where
the points flow. In this graph however, each k-order Voronoi region may have many
edges pointing to adjacent k-order Voronoi regions. This indicates that some points in
the region flow to one neighbor while other points flow to another neighbor.

Examples of Dk(X) and Fk(X) for k = 3 and k = 5, computed on a small point
cloud X ∈ R

2, are given in Figs. 5 and 6, respectively. Of course, the dynamics will

123

Discrete & Computational Geometry (2019) 61:91–119 109

(a) D3 (X) (b) F3 (X)

–1.0 0.0 0.5 1.0
–1.0

–0.5

0.0

0.5

1.0

–0.5–1.0 0.0 0.5 1.0–0.5
–1.0

–0.5

0.0

0.5

1.0

Fig. 5 Delaunay triangulation (left) and flow diagram (right)

(a) D5(X) (b) F5(X)

–1.0

–0.5

0.0

0.5

1.0

–1.0

–0.5

0.0

0.5

1.0

–1.0 0.0 0.5 1.0–0.5–1.0 0.0 0.5 1.0–0.5

Fig. 6 Delaunay triangulation (left) and flow diagram (right)

change when using different values of k, as can be seen in the two figures. In all the
figures, we show the k-order Voronoi diagram for the point cloud X using black, solid
lines. Then, in the first figures of Figs. 5 and 6, the third and fifth order Delaunay
triangulations are shown using red, dotted lines. In (b) of each figure, we show the
flow diagram. Here, the vertices of F3(X) and F5(X) are color coded, where a red
vertex indicates a sink of the flow and a green vertex indicates that the region does not
satisfy the barycentric sink condition. The arrows indicate the direction of the flow
out of the green regions.

To emphasize the fact that regions satisfying the barycentric sink condition contain
a sink of the gradient flow, we have not only shown the sinks in red in Figs. 5b and
6b, we have actually opted to move the vertices of these regions to their generator
barycenters. That is, in these figures, whenever a region V satisfies the barycentric
sink condition, instead of showing BarP (V) as the vertex, we show BarG(V) as the
vertex. This gives a better visual sense of where points will end up after running the
gradient flow for a long time. For the higher order Delaunay triangulations, we still
use the polytope generator since this is common practice.

123

110 Discrete & Computational Geometry (2019) 61:91–119

4 Numerical Results

In this section, we present some examples which help illustrate the result of inducing
the squared distance to measure gradient flow on a point cloud. Since computing the
k-order Voronoi diagram is expensive for large point clouds and large values of k,
we instead opt to simply induce the gradient flow without first computing the k-order
Voronoi diagram.Additionally, we discretize the systemby setting T = (t1, t2, . . . , tn)

and

φ(x, ti) = φ(x, ti−1) − λ∇Ek
X (φ(x, ti−1)), (8)

where λ is often referred to as the step-size. Of course, discretizing the dynamical
system may result in loss of accuracy. Through our theoretical framework, we know
that thiswill happen if themagnitude ofλ∇Ek

X (φ(x, ti−1)) is large enough thatwe skip
over one of the k-order Voronoi regions we would pass through under the continuous
time gradient flow. Therefore, properly setting the value of the step-size λ is important.
Themost effective settingwill depend on the point cloud and, in particular, the induced
k-order Voronoi diagram.

Similarly, setting the appropriate value of k depends on the point cloud. In general,
larger values of k will induce greater smoothing. This can be desired if the sampled
object is itself smooth and lacks edges. However, if edges are present in the object, the
gradient flow will smooth these edges and destroy these features. This is of particular
concern for buildings in LiDAR data. To preserve the edges, a lower value of k would
need to be used. In follow onwork, we explore allowing k to adapt to the approximated
local geometry of the point cloud as the gradient flow progresses.

Finally, we must determine how long to perform the gradient flow smoothing. This
again depends on the data set. In our experiments, we see this dependence: smoothing
the point clouds sampled from simpler geometries takes more iterations than the more
complex point clouds. In the examples that follow, we set λ = 0.05 and experiment
with various values of k and the duration of the gradient flow.

4.1 Unit Circle inR2

We begin our numerical analysis using simple point clouds noisily sampled from
the unit circle, S1. We choose S1 since it has a simple geometry which allows us to
compute the geometric error associated with the smoothed point cloud. In particular,
given a smoothed point cloud Xt , we can compute the geometric error as

E(Y) =
∑

y∈Y

(1 − ‖y‖)2, (9)

where ‖ · ‖ is the Euclidean norm in R
2. To test the k-nearest neighbor algorithm,

we sampled 1000 points from S1 and added symmetrically distributed noise to each
point in the point cloud. For the noise, we used a Gaussian distribution with mean 0
and bandwidth σ = 0.1. An example point cloud is shown in Fig. 7.

123

Discrete & Computational Geometry (2019) 61:91–119 111

Fig. 7 Sample point cloud
drawn from S1

–1.5 –1.0 –0.5 0.0 0.5 1.0 1.5
–1.5

–1.0

–0.5

0.0

0.5

1.0

1.5

Fig. 8 Average geometric error
for S1

0 50 100 150 200 250
0

1

2

3

4

5

6

7

Number of Neighbors

G
eo

m
et

ri
c

E
rr

or

1 lterations
3 lterations
5 lterations
7 lterations
9 lterations
Noise Baseline

We generated 100 point clouds in this fashion and ran the k-nearest neighbor gradi-
ent flow for varying values of k. Thus, for each value of k, we have 100 point clouds.
We then compute the geometric error of these point clouds and take the average, result-
ing in a single average geometric error for each value of k. Furthermore, we do this at
every iteration ti . The results of these calculations are shown in Fig. 8.

As a baseline, the average error present in a noisy point cloud X was E(X) = 9.89.
Thus, all of the shown error rates are lower than the average original error in the point
cloud. Even a single iteration removes a great deal of noise. Any of the displayed
parameter values would reduce the geometric error in the point cloud, however it is
clear that the optimal value for k is around k = 75 and the optimal number of iterations
to run the gradient flow is around T = 20.After this, the point cloud begins to converge
and the average error does not change much.

An example smoothed point cloud is shown in Fig. 9. In this figure, we can see
that the k-nearest neighbor gradient flow tends to induce clustering in the point cloud
during the smoothing process. This is because points will flow until they reach a region
satisfying the barycentric sink condition. Once they enter this region, they will remain
in this region. This can cause many points to flow toward the same point. However,

123

112 Discrete & Computational Geometry (2019) 61:91–119

Fig. 9 Smoothed point cloud

–1.5 –1.0 –0.5 0.0 0.5 1.0 1.5
–1.5

–1.0

–0.5

0.0

0.5

1.0

1.5

Fig. 10 Geometric error for a
point cloud drawn from S5 under
the k-nearest neighbors flow

40200 60 80 100 120 140
0

20

40

60

80

100

120

140

Number of Neighbors

G
eo

m
et

ri
c

E
rr

or

2 lterations
1 lterations

4 lterations
6 lterations
8 lterations
10 lterations
Noise Baseline

it should be noted that even points which lie far from the circle in Fig. 7 have been
moved substantially closer to the circle in Fig. 9.

4.2 Five-Dimensional Sphere

To demonstrate the effectiveness of the smoothing gradient flow in higher dimensions,
we investigate the effect of applying the flow to a point cloud sampled from the five
dimensional unit sphere embedded in R6, i.e. the sphere S5. Since we have increased
the dimensionality, we also increase the number of points in the point cloud, to avoid
issues with sampling density. In particular, we drew a point cloud of 10,000 points
from S5. Since we are using S5, the geometric error function E(Y) is nearly the same
as (9), we just take the norm to be the Euclidean norm in R

6. Similar to the previous
case, we sampled 100 random point clouds using Gaussian noise and computed the
geometric error for these point clouds across a range of parameter values.

The results of running the flow are shown in Fig. 10. From this image, we see that
the gradient flow was able to drastically reduce the original geometric error, despite
the problem being posed in R

6. Thus, we see that the gradient flow still works as

123

Discrete & Computational Geometry (2019) 61:91–119 113

expected for higher dimensions. Interestingly, here we see that the optimal number
of nearest neighbors is substantially lower for S5 than it was for S1. In particular, the
k-nearest neighbors flow performs best with k = 15 and 10 iterations. The smallest
error obtained under this flow is E(Y) = 33.99. Thus, the average geometric error, per
point, was 0.0034 after the optimal number of iterations and under the optimal value
of k (on the other hand, the average error in the S1 case was 0.0099). The baseline
error was E(X) = 99.46. Therefore, as we see in Fig. 10, running the gradient flow
for any number of iterations from 1 to 10 and using any value of k between around
k = 3 and k = 110, reduces the overall geometric error, in the sense of (9), in the
point cloud.

From these results,we see that the gradient flowalgorithms can be effective in higher
dimensions. As for computational cost, let X2 and X5 be two point clouds drawn from
S2 and S5, respectively. Let |X2| = |X5| = 10, 000 and let k = 1000. Then a single
iteration of the k-nearest neighbor gradient flow for X2 takes approximately 5.706
seconds while a single iteration of the gradient flow for X5 takes approximately 8.910
seconds. We obtained these numbers by running the gradient flow on several thousand
point clouds sampled from both S2 and S5.We used amulti-threaded implementation1

of the k-nearest neighbor gradient flow on an Intel Core-i7 6700k CPU. As expected,
the high dimensional point cloud takes longer to process for the same point cloud size
and number of neighbors. However, the extra expense is not large given the ability to
smooth these higher dimensional point clouds. Furthermore, the computational cost
is dominated by the size of the point cloud and the value of k, not the dimensionality
of the point cloud. These factors drive the most expensive part of the algorithms, the
determination of the k-nearest neighbors for each point in X .

4.3 Stanford Bunny

We now turn our analysis toward a point cloud sampled from the classic Stanford
Bunnymodel,whichhas a rich history of use in testing various 3-dimensionalmodeling
algorithms. The Bunny was created by Greg Turk and Marc Levoy in [32] while at
Stanford University in 1994. Here, we analyze the performance of the smoothing
algorithm on the resulting sampled point clouds. Later in the section, we will analyze
the performance of the k-nearest neighbor algorithm on the Stanford Dragon as well.

For our evaluation using the Stanford Bunny, we will take a point cloud sampled
from the surface of the Bunny and add artificial noise to the point cloud. Following
this approach will allow us to measure the geometric error of the point cloud precisely,
since we know the surface from which the point cloud was sampled. The version of
the Stanford Bunny we use is a point cloud X of 35,947 points. The point cloud is
contained in a rectangular cuboid R which measures approximately

R = (−0.0972, 0.0631) × (0.0304, 0.1889) × (−0.0633, 0.0607).

Given these dimensions, we add a randomly sampled 3-dimensional Gaussian distri-
bution of mean 0 and bandwidth σ = 0.001 to each point of X , thereby producing

1 Available at https://github.com/ponl/GradSmooth.

123

https://github.com/ponl/GradSmooth

114 Discrete & Computational Geometry (2019) 61:91–119

Fig. 11 Example point clouds for Stanford Bunny

Fig. 12 Geometric error for
Stanford Bunny

40200
0.00

60 80 100 120 140

Number of Neighbors

G
eo

m
et

ri
c

E
rr

or

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

5 lterations
10 lterations
15 lterations
20 lterations

2 lterations

Noise Baseline

a noisy point cloud Xσ . We then apply the k-nearest neighbor flow of Sect. 3.1 for
varying values of k and for a varying number of iterations. For a given value of k and
a given number of iterations T , we then measure the geometric error L(X , Y) of the
resulting smoothed point cloud Y using the following equation:

L(X , Y) =
∑

y∈Y

min
x∈X

‖x − y‖2. (10)

Note that the above equation approximates the exact geometric error at each point.
While ideally we would measure the error by taking the distance to the manifold,
since the points of X all lie on the surface of the true manifold and provide a dense
sampling of the manifold, the point cloud based error function L provides an accurate
approximation of the true geometric error (Fig. 11).

The geometric error rates for the two algorithms are presented in Fig. 12. Here, we
show the value of L obtained by setting k = 5i where i ∈ N with 2 ≤ i ≤ 30. We
reported the error rate after T iterations, where T is set to be 2, 5, 10, 15, and finally
20. The noise baseline is also reported. This is the value of L computed directly on
the pair X and Xσ (i.e. the initial error of the noisy point cloud).

123

Discrete & Computational Geometry (2019) 61:91–119 115

Some immediate conclusions can be drawn from these two figures. In the k-nearest
neighbor flow in Fig. 12, it is clear that the optimal value of k lies somewhere around
k = 35. Additionally, the optimal number of iterations to run the algorithmwas T = 5.

It is worth noting that the increasing error demonstrated by the k-nearest neighbor
flowafter the optimal parameters have been passed is due to volumetric shrinking of the
point cloud. That is, when the point cloud is smoothed too much, its volume begins to
shrink. Thus, while the shape of the point cloud may still be an accurate representation
of the original point cloud, its volume has shrunken enough that the smoothed point
cloud is much smaller than the original point cloud, hence the increasing geometric
error.

Finally, notice that while the error rates for the k-nearest neighbor flow with T =
5, 10, 15 and 20 never cross each other as k increases, the error rates for T = 2 cross
both the T = 5 and T = 10 error rates. This makes sense since during the initial
evolution of the flow, the biggest decrease in error is produced. Then, once the optimal
value of k is passed (i.e. around k = 35), the volume begins to shrink, an effect felt
less when there are only two iterations. Also, notice that the error rates produced by
T = 20 are the worst for every value of k. This indicates the k-nearest neighbor
smoothing should be run for fewer iterations. In fact, other than for T = 2, the error
rates decrease at every value of k for decreasing values of T .

4.4 Stanford Dragon

For our next experiment, we analyze the performance of the k-nearest neighbors flow
when applied to a noisy version of the Stanford Dragon point cloud. The Stanford
Dragon is a point cloud created by the Stanford University Computer Graphics Labo-
ratory using the Cyberware 3030 MS scanner. The point cloud first appeared in [13].
To obtain the point cloud, approximately seventy scans were taken of the dragon,
producing 437,645 points.

Similar to the Stanford Bunny in Sect. 4.3, the points lie directly on the sampled
manifold. Therefore, to analyze the smoothing quality of our algorithms, we will arti-
ficially add noise to the point cloud. This allows us to precisely measure the geometric
error of the resulting point cloud. As in the previous section, we will use notation X
to represent the original point cloud, Xσ to represent the noisy point cloud, and Y to
represent the smoothed point cloud. Additionally, we once again use the geometric
error function L , given by (10).

The Stanford Dragon is contained in a rectangular cuboid R of dimensions

R = (−0.109, 0.097) × (−0.527, 0.198) × (−0.050, 0.042)

since the size of R is different for the Stanford Bunny than for the Stanford Dragon, we
will use a different bandwidth σ for the Gaussian noise. In particular, we set σ = 0.01.
We then perform a similar parameter sweep to the sweep we did in Sect. 4.3. Since
this point cloud has an order of magnitude more points than the Stanford Bunny, we
perform the sweep against larger values of k. Due to the increasing computational
demands as we increase k, we sampled the parameter space more densely for lower

123

116 Discrete & Computational Geometry (2019) 61:91–119

Fig. 13 Example point clouds for Stanford Dragon

Fig. 14 Geometric error for
Stanford Dragon

0 50 100 150 200 250 300 350 400
0.00

0.05

0.10

0.15

0.20

0.25

Number of Neighbors

G
eo

m
et

ri
c

E
rr

or

20 lterations
15 lterations
10 lterations
5 lterations
2 lterations

Noise Baseline

values of k than for higher values of k. That is, we set k = 10i for i = 1, . . . , 10
and then set k = 20 j for j > 5. We use the same iteration values as in the previous
experiment.

The results of our parameter sweep are shown in Fig. 14. We show the value of
L(X , Xσ), represented by the dotted noise baseline. From these results, we can see
that the optimal value for k lies somewhere around 50 when using 2, 5, or 10 iterations.
Whenusingmore iterations, the optimal value of k shrinks to around25.Once again,we
see that fewer iterations is preferable for the k-nearest neighbors smoothing algorithm.

An example of a smoothed point cloud is shown in Fig. 13. Unlike the Stanford
Bunny example, the clustering tendency of the gradient flow is on full display in this
figure.Many regions of the dragon are over sampled.However, as seen in the geometric
error plots (Fig. 14), these points are actually closer to the underlying surface, even if
they are overly dense in some regions.

123

Discrete & Computational Geometry (2019) 61:91–119 117

5 Conclusion

In this paper, we built a theoretical framework for studying the gradient flow induced
by the squared distance to measure function under the empirical measure. This gradi-
ent flow, first described in [9], arises naturally when studying the squared distance to
measure function.We saw that k-order Voronoi diagrams provide an effective geomet-
ric construction for studying the qualitative characteristics of the k-nearest neighbor
flow. From this construction, we were able to determine fixed points, some positively
invariant sets, and demonstrate that the flow does not give rise to any periodic orbits.
Furthermore, we recognized the system as a Filippov system and were able to show
that the flow does not exhibit any attractive sliding motion, an important result for
numerical implementations.

In a future paper,wewill investigatemethods for reducing the clustering tendency of
the k-nearest neighbor flow. A method for mitigating the clustering consists of adding
a diffusive term to the flow so that points push against one another as they begin to
cluster. A more sophisticated technique we will explore involves approximating the
normal and tangent bundles of the sampled manifold and then projecting the k-nearest
neighbor gradient flow onto the normal bundle of the manifold. This approach would
mimic the surface reconstruction techniques of Alexa et al. in [1].

Furthermore, we will investigate appropriate modifications for making the flow
adaptive to local conditions. This is desired since the optimal level of smoothing
in one region of the point cloud may be suboptimal in another region. By allowing
the gradient flow to adapt to the local geometry, this non-uniform smoothing can be
performed. The difficulty arises in finding an appropriate formulation for the adaptivity
which works in high dimensions. In [15], Dey and Sun created an adaptive surface
reconstruction method, however this technique only works in R3 on two-dimensional
surfaces. Our focus is on arbitrary dimensions, therefore this approachwould notwork.
Instead, we seek a method which is computationally inexpensive in high dimensions,
yet also effective at adapting the flow to local conditions.

References

1. Alexa, M., Behr, J., Cohen-Or, D., Fleishman, S., Levin, D., Silva, C.T.: Point set surfaces. In: Pro-
ceedings of the Conference on Visualization (VIS’01), pp. 21–28. IEEE, Washington, DC (2001)

2. Alexa, M., Behr, J., Cohen-Or, D., Fleishman, S., Levin, D., Silva, C.T.: Computing and rendering
point set surfaces. IEEE Trans. Vis. Comput. Graphics 9(1), 3–15 (2003)

3. Amenta, N., Kil, Y.J.: Defining point-set surfaces. ACM Trans. Graphics 23(3), 264–270 (2004)
4. Biák, M., Hanus, T., Janovská, D.: Some applications of Filippov’s dynamical systems. J. Comput.

Appl. Math. 254, 132–143 (2013)
5. Bobenko, A.I., Schröder, P.: Discrete Willmore flow. In: Proceedings of the 3rd Eurographics Sympo-

sium on Geometry Processing (SGP’05), # 101. Eurographics Association, Aire-la-Ville (2005)
6. Brécheteau, C.: The DTM-signature for a geometric comparison of metric-measure spaces from sam-

ples (2017). arXiv:1702.02838
7. Buchet, M., Dey, T.K., Wang, J., Wang, Y.: Declutter and resample: towards parameter free denoising.

In: Aronov, B., Katz, M.J. (eds.) Proceedings of the 33rd International Symposium on Computa-
tional Geometry (SoCG’17). Leibniz International Proceedings in Informatics, vol. 77, pp. 23:1–23:16.
Schloss Dagstuhl. Leibniz-Zentrum für Informatik, Wadern (2017)

123

http://arxiv.org/abs/1702.02838

118 Discrete & Computational Geometry (2019) 61:91–119

8. Chazal, F., Chen, D., Guibas, L.J., Jiang, X., Sommer, C.: Data-driven trajectory smoothing. Research
Report RR-7754, INRIA (2011)

9. Chazal, F., Cohen-Steiner, D., Mérigot, Q.: Geometric inference for measures based on distance func-
tions. Research Report RR-6930, INRIA (2010)

10. Chazal, F., Cohen-Steiner, D., Mérigot, Q.: Geometric inference for probability measures. Found.
Comput. Math. 11(6), 733–751 (2011)

11. Chazal, F., Fasy, B.T., Lecci, F., Michel, B., Rinaldo, A., Wasserman, L.A.: Robust topological infer-
ence: Distance to a measure and kernel distance (2014). arXiv:1412.7197

12. Chazal, F., Massart, P., Michel, B.: Rates of convergence for robust geometric inference. Electron. J.
Stat. 10(2), 2243–2286 (2016)

13. Curless, B., Levoy, M.: A volumetric method for building complex models from range images. In:
Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive Techniques (SIG-
GRAPH’96), pp. 303–312. ACM, New York (1996)

14. Dey, T.K.: Curve and surface reconstruction: algorithms with mathematical analysis. In: Cambridge
Monographs on Applied and Computational Mathematics, vol. 23. Cambridge University Press, Cam-
bridge (2007)

15. Dey, T.K., Sun, J.: An adaptive MLS surface for reconstruction with guarantees. In: Proceedings
of the 3rd Eurographics Symposium on Geometry Processing (SGP’05), Art. No. 43. Eurographics
Association, Aire-la-Ville (2005)

16. di Bernardo, M., Budd, C.J., Champneys, A., Kowalczyk, P.: Piecewise-Smooth Dynamical Systems:
Theory and Applications. Applied Mathematical Sciences, vol. 163. Springer, London (2008)

17. di Bernardo, M., Liuzza, D.: Incremental stability of planar Filippov systems. In: Proceedings of the
2013 European Control Conference (ECC), pp. 3706–3711. IEEE, Washington, DC (2013)

18. Dong,M., Chou,W., Fang, B.: Underwatermatching correction navigation based on geometric features
using sonar point cloud data. Sci. Program. 2017, 10 (2017)

19. Filippov, A.F.: Differential equations with discontinuous right-hand side. Mat. Sb. (N.S.) 51(93), 99–
128 (1960)

20. Gevaert, C., Persello, C., Sliuzas, R., Vosselman, G.: Informal settlement classification using point-
cloud and image-based features from UAV data. ISPRS J. Photogramm. Remote Sens. 125, 225–236
(2017)

21. Guibas, L.J., Mérigot, Q., Morozov, D.: Witnessed k-distance. In: Proceedings of the 27th Annual
Symposium on Computational Geometry (SoCG’11), pp. 57–64. ACM, New York (2011)

22. Hu, L., Xu, X., Wang, L., Guo, N., Xie, F.: 3D registration method based on scattered point cloud from
B-model ultrasound image. In: Proceedings Volume 10245, International Conference on Innovative
Optical Health Science, Art. No. 102450C (2017)

23. Ito, T.: A Filippov solution of a system of differential equations with discontinuous right-hand sides.
Econ. Lett. 4(4), 349–354 (1979)

24. Kantorovich, L., Rubinshtein, G.: On a space of totally additive functions. Vestn. Leningr. Univ. 13(7),
52–59 (1958) (in Russian)

25. Kolluri, R., Shewchuk, J.R., O’Brien, J.F.: Spectral surface reconstruction from noisy point clouds.
In: Proceedings of the 2004 Eurographics/ACM SIGGRAPH Symposium on Geometry Processing
(SGP’04), pp. 11–21. ACM, New York (2004)

26. Levin, D.: Mesh-independent surface interpolation. In: Brunnett, G., Hamann, B., Müller, H., Linsen,
L. (eds.) Geometric Modeling for Scientific Visualization, pp. 37–49. Springer, Berlin (2004)

27. Malihi, S., Valadan Zoej, M.J., Hahn, M., Mokhtarzade, M., Arefi, H.: 3D building reconstruction
using dense photogrammetric point cloud. In: Proceedings of the International Archives of the Pho-
togrammetry, Remote Sensing and Spatial Information Sciences, vol. XLI-B3, pp. 71–74 (2016)

28. Mederos, B., Velho, L., de Figueiredo, L.H., de Figueirêdo, H.F.: Robust smoothing of noisy point
clouds. In: Proceedings of the SIAM Conference on Geometric Design and Computing (2003)

29. Morgan, J.W., Tian, G.: Ricci flow and the Poincaré conjecture (2007). arXiv:math/0607607v2
30. Niyogi, P., Smale, S., Weinberger, S.: A topological view of unsupervised learning from noisy data.

SIAM J. Comput. 40(3), 646–663 (2011)
31. Steer, P., Lague, D., Gourdon, A., Croissant, T., Crave, A.: 3D granulometry: grain-scale shape and

size distribution from point cloud dataset of river environments. In: Proceedings of the EGU General
Assembly 2016, vol. 18, EGU2016-8514 (2016)

123

http://arxiv.org/abs/1412.7197
http://arxiv.org/abs/math/0607607v2

Discrete & Computational Geometry (2019) 61:91–119 119

32. Turk, G., Levoy, M.: Zippered polygon meshes from range images. In: Proceedings of the 21st Annual
Conference on Computer Graphics and Interactive Techniques (SIGGRAPH’94), pp. 311–318. ACM,
New York (1994)

33. White, B.: Evolution of curves and surfaces by mean curvature. In: Proceedings of the International
Congress of Mathematics, vol. 1, pp. 525–538. Higher Education Press, Beijing (2002)

123

	Analyzing the Squared Distance-to-Measure Gradient Flow System with k-Order Voronoi Diagrams
	Abstract
	1 Introduction
	2 The Distance to Measure Function
	3 Squared Distance-to-Measure Gradient Flow
	3.1 Smoothing Gradient Flow System
	3.2 Qualitative Description of the Flow
	3.3 The Flow Diagram

	4 Numerical Results
	4.1 Unit Circle in mathbbR2
	4.2 Five-Dimensional Sphere
	4.3 Stanford Bunny
	4.4 Stanford Dragon

	5 Conclusion
	References

