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Abstract We prove that, for any covering of a unit d-dimensional Euclidean ball by
smaller balls, the sum of radii of the balls from the covering is greater than d. We also
investigate the problem of finding lower and upper bounds for the sum of powers of
radii of the balls covering a unit ball.
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1 Introduction

Let B ⊂ R
d be a convex closed body. We say that the family of homothets F =

{λ1B, λ2B, . . .}, λi ∈ (0, 1), forms a translative covering of B if B ⊆ ⋃
i (λi B +

xi ), where xi are translation vectors in R
d . A general question is to find necessary

conditions on coefficients λi for existence of a translative covering. In 1990, Soltan
formulated the following conjecture which was also stated in the book of Brass et al.
(see [2, Sect. 3.2, Conj. 2]).
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Conjecture 1.1 (Soltan) For any covering of a convex body B ⊂ R
d by its translative

homothets with coefficients λ1, . . . , λk ,

k∑

i=1

λi ≥ d.

Following [5], we define

g(B) := inf

{ k∑

i=1

λi : B ⊆
k⋃

i=1

(λi B + xi ), λi ∈ (0, 1), xi ∈ R
d
}

and

g(d) = inf
{
g(B) : B ⊂ R

d , B is a convex body
}
.

Then Conjecture 1.1 may be reformulated simply as g(d) ≥ d.
In [8], Conjecture 1.1 was proven for the case d = 2 and all convex bodies, for

which there exists a covering with the sum of coefficients equal to 2, were found. In
[5], the asymptotic version of the conjecture was proven, namely, it was shown that
limd→∞ g(d)/d = 1.

In this paper, we prove Conjecture 1.1 for the case of a d-dimensional ball Bd in
Euclidean spaces of all dimensions d.

The celebrated result of Coxeter et al. [3] gives the lower bound O(d) on the
density of coverings with sufficiently small spherical caps. Several papers such as
[1,4,6,7,9] give upper bounds, typically, O(d log d), on the density of coverings or
on the necessary number of caps given certain restrictions on caps’ radii. From this
point of view, the result of the paper is a rare exact lower bound for coverings of a
sphere by spherical caps.

Theorem 1.2 In any covering of the unit Euclidean sphere in R
d , d ≥ 2, by closed

spherical caps smaller than a half-sphere, the sum of Euclidean radii of the caps is
greater than d.

Conjecture 1.1 for balls follows from Theorem 1.2 immediately. Constructing cer-
tain coverings of Bd we can find the value of g(Bd) precisely.

Corollary 1.3 For d ≥ 2, g(Bd) = d.

Thepaper is organized as follows. InSect. 2,wewill showhow to proveTheorem1.2
and Corollary 1.3. In Sect. 3, we will discuss similar problems concerning the sum of
powers of radii in a covering of a ball by smaller balls.

2 Proof of the Main Theorem

Proof of Theorem 1.2 Throughout the proof, unless it is stated otherwise, by the radius
of a spherical cap we always mean its Euclidean radius and by the center of a cap we
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mean its Euclidean center (Euclidean center of the cap’s boundary). From the very
beginning, we can assume that none of the caps of a covering belongs to the union of
all other caps. We also note that the number of caps in a covering is always at least
d + 1. This may be proven, for instance, by induction: for any cap, a unit subsphere
of codimension 1 not intersecting it must be covered by at least d other caps.

We will prove the theorem by induction for d ≥ 2. In the case d = 2, any cap of
radius r (a chord with length 2r ) corresponds to a circular arc of length less than πr .
Since the sum of lengths of such arcs is at least 2π , the sum of radii is greater than 2.

For the induction step, we assume that the statement is true for d − 1, d ≥ 3, and
aim to prove it for d.

If there are two non-intersecting spherical caps with the sum of radii at least 1,
we consider a unit subsphere of codimension 1 separating them. By the induction
hypothesis, the sum of radii of spherical caps covering it must be greater than d − 1
and, in total, the sum of radii of all caps is greater than d. From this moment on we
assume there are no pairs of caps like this.

If, on the other hand, there are two intersecting spherical caps with the sum of
radii less than 1, we can substitute them by a bigger spherical cap covering both of
them with a radius less than the sum of their radii. If the statement of the theorem is
true after the substitution, then it was true before the substitution as well. By making
substitutions of this kind, we can guarantee there are no pairs of caps like this either.

We consider any maximal spherical cap Cmax of a given covering C of a unit sphere
S
d−1. Denote the boundary of this spherical cap by S and denote its radius by R.
By S′ we denote the sphere centrally symmetric to S with respect to the center of

S
d−1.Weclaim that it is sufficient to consider only the situationwhen all other spherical

caps of the covering intersect both S and S′. Consider an arbitrary capC from C. Since
C intersects some other cap, the sum of the radii of C and this cap must be at least 1.
Hence the sum of the radii of C and Cmax must be at least 1 and they must intersect. If
C does not intersect S′, then, analogously to the case shown above, we can substitute
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Cmax andC by a cap covering both of them. Due to the triangle inequality, the radius of
the substituting cap will be smaller that the sum of the radii ofCmax andC . By making
such substitutions we can obtain a covering where the required condition holds.

Now assume that the radius of the cap C intersecting S and S′ is r . Denote the
distance from the center of S to the center of S ∩ C by x and from the center of S′ to
the center of S′ ∩C by y. Then the distance from the center of Sd−1 to the center of C
is not greater than (x + y)/2 (see Fig. 1 with the orthogonal projection along S ∩C).
Hence ((x + y)/2)2 ≥ 1 − r2. From this inequality and Jensen’s inequality for the
concave function f (t) = √

R2 − t2, we get

√
R2 − x2 +

√

R2 − y2 ≤ 2

√

R2 −
( x + y

2

)2 ≤ 2
√
R2 + r2 − 1. (1)

We note that the left hand side of this inequality contains the sum of radii of S ∩ C
and S′ ∩ C .

Assume we have k caps C1, . . . ,Ck in the covering, not including Cmax, and define
ri , xi , yi for them just as above. Summing up the inequalities (1) for all these caps,
we get

k∑

i=1

(√
R2 − x2i +

√
R2 − y2i

)
≤ 2

k∑

i=1

√
R2 + r2i − 1.

The left hand side of this inequality is the sum of radii of the coverings of S and S′
and, by the induction hypothesis, it must be greater than 2(d − 1)R. Therefore,

(d − 1)R <

k∑

i=1

√
R2 + r2i − 1. (2)

Using Jensen’s inequality for the concave function g(t) = √
t2 − (1 − R2) and the

fact that k ≥ d,

k∑

i=1

√
R2 + r2i − 1 ≤ k

√
(∑k

i=1 ri
k

)2 + R2 − 1 =
√
√
√
√

( k∑

i=1

ri
)2 − k2(1 − R2)

≤
√
√
√
√

( k∑

i=1

ri
)2 − d2(1 − R2).

(3)

Combining inequalities (2) and (3), we get

√
√
√
√

( k∑

i=1

ri
)2 − d2(1 − R2) > (d − 1)R, so

k∑

i=1

ri >
√

(d − 1)2R2 + d2(1 − R2).

Therefore, the sum of radii of all caps in the covering satisfies the inequality
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R +
k∑

i=1

ri > R +
√

(d − 1)2R2 + d2(1 − R2),

which is at least d for any R ∈ [0, 1]. �

Proof of Corollary 1.3 Theorem 1.2 implies that g(Bd) ≥ d. In order to prove the
equality, it is sufficient to show that, for any given ε > 0, there is a set of balls
covering the unit ball with the sum of radii less than d + ε.

Fix a positive δ < 1/d. In a (d − 1)-dimensional subspace (all points with the
last coordinate 0) consider the sphere Sδ with the center at the origin and radius δ.
We choose points v1, . . . , vd on Sδ so that they form a regular (d − 1)-dimensional
simplex. We also take points v+ = (

0, . . . , 0,
√
1 − (d − 1)2δ2

)
and v− = −v+. We

claim that the set consisting of d balls with centers at v1, . . . , vd and radius 1 − δ2/2
and two balls with centers at v+, v− and radius dδ covers the d-dimensional unit ball
with the center at the origin.

Consider an arbitrary point u such that one of the angles � (uvi0) is obtuse. Then in
the case u does not belong to a ball with the center vi , we have u02 > uv2i + vi02 >

(1 − δ2/2)2 + δ2 > 1.
For each i , � (uvi0) is not obtuse if u belongs to the half-space formed by the

hyperplane through vi and perpendicular to 0vi . The intersection of these half-spaces
is an infinite cylinder. The last coordinate axis is the axis of this cylinder. The base
of the cylinder is formed by the regular simplex dual to the simplex formed by all vi
with respect to Sδ . The distance from the vertices of the base to the origin is (d − 1)δ.
Hence the intersections of the cylinder at the base vertices with the unit sphere will be
distant from the axis of the last coordinate by (d−1)δ and will have the last coordinate
±√

1 − (d − 1)2δ2.
Now we can split the infinite cylinder into three parts: the part with the last

coordinate at least
√
1 − (d − 1)2δ2, the part with the last coordinate at most

−√
1 − (d − 1)2δ2 and the triangular prism between the hyperplanes defined by the

last coordinate ±√
1 − (d − 1)2δ2.

The first and the second part will be covered by balls with the centers v+ and v−,
respectively. These balls actually cover the spherical caps formed by the hyperplanes
defined by the last coordinate ±√

1 − (d − 1)2δ2.
In order to show that the prism is covered completely we divide it into d subprisms

formed by the origin and each facet of the dual (d−1)-dimensional simplex described
above. The center of such facet is a point vi for some i . For d > 2, the square of the
distance from vi to any vertex of the corresponding subprism is not greater than

((d − 1)2δ2 − δ2) + (1 − (d − 1)2δ2) = 1 − δ2 <
(
1 − 1

2
δ2

)2
.

Therefore, the subprism is covered by the corresponding ball with the center vi .
For the cased = 2, the sameconstructionworks but oneneeds to consider trapezoids

formed by points (0,±√
1 − δ2 ∓ 2δ) instead of rectangles (subprisms).

The sum of radii of the balls in the family is d(1− δ2/2) + 2dδ, which is less than
d + ε for a sufficiently small δ. �
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3 Discussion

Similarly to g(B) and g(d), we can define gα(B) and gα(d) for the sums of powers
of the homothety coefficients:

gα(B) := inf

{ k∑

i=1

λα
i : B ⊆

k⋃

i=1

(λi B + xi ), λi ∈ (0, 1), xi ∈ R
d
}

,

and

gα(d) = inf
{
gα(B) : B ⊂ R

d , B is a convex body
}
.

The result from [5] may be formulated in these terms as limd→∞ gα(d)/d = 1 for
any fixed α ≥ 1.

Results somewhat similar to Theorem 1.2 and Corollary 1.3 hold for certain other
values of α as well. It is fairly easy to show that (1) for any α > d and any natural d,
gα(Bd) = 0, (2) for any α ∈ (d − 1, d] and any natural d, gα(Bd) = 1, (3) for any
α ∈ (d − 2, d − 1] and any natural d ≥ 2, gα(Bd) = 2.

Interestingly, for all these cases gα(Rd) = d + 1 − �α� (unless α > d + 1, when
the value of g is 0). This motivates us to formulate the following conjecture.

Conjecture 3.1 For all natural d and all α such that 0 ≤ α ≤ d + 1, gα(Bd) =
d + 1 − �α�.

Combining our results, we conclude that Conjecture 3.1 is true when α ∈ [0, 1] ∩
(d − 2, d + 1] for any d ≥ 2.

We do not know how to prove that d + 1 + �α� is a lower bound for gα(R), still
we are able to confirm it as an upper bound.

Theorem 3.2 For all natural d and all α such that 0 ≤ α ≤ d + 1, gα(Bd) ≤
d + 1 − �α�.
Proof Assume α ∈ (n, n + 1], where n ∈ N. We will use a construction generalizing
the construction from Corollary 1.3. We take a (d − n − 1)-dimensional space �

containing the center 0 of the unit ball Bd and consider a sphere Sδ in this space with
center at 0 and radius δ > 0.We select d−n points from Sδ forming a regular simplex.
Now for our covering we choose equal balls with centers at these points and radius
1 − δ2/2. By S⊥ we denote the intersection of the orthogonal complement �⊥ and
the boundary of Bd . The set of points not covered by the balls we have already chosen
is an O(δ)-neighborhood of S⊥. Since S⊥ belongs to the n-dimensional space �⊥,
we can choose its covering with sufficiently small spheres with density O(n log n)

and obtain a sufficiently small contribution of this covering into the sum of powers of
radii. Overall, we will get the sum of powers of radii as close to d − n as we wish. �


Concluding the paper, we would like to make a general conjecture that the same
lower bounds as in Conjecture 3.1 hold for all convex bodies.

Conjecture 3.3 For all natural d and all α such that 0 ≤ α ≤ d + 1, gα(d) =
d + 1 − �α�.
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