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Abstract
We consider a multi-parameter model for randomly constructing simplicial complexes
that interpolates between random clique complexes and Linial–Meshulam random
k-dimensional complexes. Unlike these models, multi-parameter complexes exhibit
nontrivial homology in numerous dimensions simultaneously. We establish upper and
lower thresholds for the appearance of nontrivial cohomology in each dimension and
characterize the behavior at criticality.

Keywords Random simplicial complexes · Homology · Cohomology · Phase
transitions
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1 Introduction

1.1 Background

Manyproblems in physics, economics, biology, andmechanics involve themodeling of
extremely large and intricate systems.With such high levels of complexity, understand-
ing these systems from their microscopic structure is often intractable. In such cases it
may make more sense to view them as random topological spaces with certain proba-
bility parameters. This framework enables us tomake a variety of powerful conclusions
about how these systemswill generally behave. Indeed, as mentioned in [15], the study
of random geometric and topological spaces has on several occasions lent intuition to
the extraordinary prevalence of certain properties amongst mathematical objects.
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The purpose of this work is to understand the homological behavior of a generalized
model for randomsimplicial complexes,mentioned in [15] and recently explored in [5].
Wedefine X(n, p1, p2, . . .) to be the probability distributionover simplicial complexes
on vertex set [n] = {1, . . . , n}whose distribution on 1-skeletons agrees withG(n, p1).
The distribution on higher dimensional skeletons is constructed inductively: for an
integer k > 1, any k-simplex whose boundary is contained in our complex is added
with probability pk . This provides ameasure on all simplicial complexes on n vertices.
Two well-studied structures, random k-complexes (Linial–Meshulam complexes for
k = 2 and Meshulam–Wallach complexes for higher d) and clique complexes, are
realized as X(n, 1, . . . , 1, pk, 0, . . .) and X(n, p, 1, . . .).

The study of random topological spaces began with random graphs, the seminal
example of which is G(n, p), the Erdős–Rényi model. Given a probability parameter
p ∈ (0, 1), typically a function of n, we consider a graph on n vertices where every
edge between two vertices ofG is added independentlywith probability p. This defines
a probability measure on the set of all simple graphs on n vertices and we say G(n, p)
to indicate a random graph with law G(n, p).

Most random topology results pertain to the asymptotic behavior of a model, i.e.,
what happens as the number of vertices tends to infinity. Given some property A of
simplicial complexes, we say that X ∈ A with high probability, or w.h.p., if

lim
n→∞P [X ∈ A] = 1.

These results frequently involve asymptotic notation worth briefly covering. Given
two functions f (n) and g(n), we say f if little-o of g, or f (n) = o (g(n)),
if limn→∞ f (n)

g(n)
= 0. We say f is big-O of g, or f (n) = O (g(n)), if

lim supn→∞
| f (n)|
g(n)

< ∞ Finally, we say f is little-ω of g, or f (n) = ω (g(n)), if

limn→∞
∣
∣ f (n)
g(n)

∣
∣ = ∞. Observe that all asymptotic terms in these results are relative to

the number of vertices, n. A formative result of random graph theory, proven by Erdős
and Rényi, was the sharp threshold for connectivity in G(n, p).

Erdős–Rényi Theorem [8, Thm.] If p ≥ (log n + ω(1))/n then G(n, p) is w.h.p.
connected, and if p ≤ (log n − ω(1))/n then G(n, p) is w.h.p. disconnected.

Significant work has been done on the behavior of random graphs since [8]. Pro-
viding a higher dimensional analog, recent study has been focused on several models
for random simplicial complexes. One of the most natural questions to ask, results in
this field often depict the homological or cohomological behavior of a complex. Even
the connectivity threshold for G(n, p) is a statement about the 0-homology of graphs:
H0(G,Z) = Z

m where m is the number of connected components of G.
In this context there are two different types of phase transitions that occur in these

models. For any given dimension, there can be a threshold at which homology or
cohomology changes from trivial to nontrivial. Conversely, there can be a threshold
at which it goes from nontrivial to trivial, or vanishes. Extensive work has been done
to establish lower bounds on the thresholds at which homology appears and upper
bounds on the thresholds at which homology vanishes for various models.
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A high-dimensional analog to G(n, p) is Yk(n, p), the model for random k-
dimensional simplicial complexes. We begin with a complex on n vertices and full
(k − 1)-skeleton, then add every possible k-face independently with probability p.
Linial and Meshulam initially considered when k = 2 in [19], establishing a sharp
threshold for when Z2-homology disappears in the first dimension. Babson, Hoff-
man, and Kahle later looked at the fundamental group of this model in [3], proving a
threshold where π1 (Y2(n, p)) transitions w.h.p. from hyperbolic to trivial.

Meshulam and Wallach [21] extended the result in [19] to Hk−1
(

Yk(n, p),Zq
)

for any dimension k. Their work was followed by [12], where Hoffman, Kahle, and
Paquette demonstrated an upper bound for the vanishing of integer homology in this
model. It is also natural to ask how Hk(Yk(n, p),Z) behaves in these complexes.
Kozlov proved a threshold for the appearance of k-homology in [18]. Aronshtam and
Linial [1], joined by Łuczak andMeshulam [2], extended this work to bounds on when
the top dimension of this complex is in fact collapsible. Peled and Linial impressively
established a tight bound for the top homology for every k in [20].

Another model of interest is the random clique complex model, X(n, p). Just as
in our own model, the distribution of the 1-skeleton is identical to G(n, p), but in

this case the edges dictate the entire complex. Given some X
dist= X(n, p), X contains

the k-simplex spanned by a set of k + 1 vertices only if the vertices form a complete
subgraph in X , called a (k+1)-clique. For any dimension k, Kahle established in [13]
and [14] sharp thresholds for p for which there will be nontrivial kth cohomology. This
shows that, outside the critical windows of these thresholds, cohomology will w.h.p.
be nontrivial in just one dimension, the middle dimension of the complex. Kahle has
proved numerous results concerning the behavior of X(n, p), such as establishing a
central limit theorem for the distribution of Betti numbers βk = dim

(

Hk(X ,Q)
)

with
Meckes [17].

As we noted before, all these complexes are special cases of X(n, p1, p2, . . .). The
random graph model G(n, p) is identical to X(n, p, 0, . . .), Yk(n, p) corresponds to
X(n, 1, . . . , 1, pk = p, 0, . . .), and clique complexes are the case X(n, p1, 1, . . .). In
fact, many of our results are achieved through a reworking of frameworks laid down
in [13,14]. This appears to be the natural bridge between these models, and we show
that often the results for specific models may be extended to this broader construction.
Through this process we exhibit cohomological behavior unique to this model.

Significant work has been done on this model concurrently by Costa and Farber,
where they introduce the additional parameter p0 for adding vertices of [n]. In [5]
they address the containment problem: given an r -dimensional subcomplex S, they
define a convex set M(S) ⊂ R

r+1 such that if (α0, . . . , αk) ∈ M(S), then X w.h.p.
contains a subcomplex isomorphic to S. In [6,7], they look at the fundamental group
of these complexes, establishing regimes in which it w.h.p. trivial, nontrivial, and
specifically has property (T). They also show cohomology is concentrated in a critical
dimension, showing bounds on the Betti numbers in this and nearby dimensions, as
well as bounding the size of possible cycles in higher dimensions.

123



90 Discrete & Computational Geometry (2019) 62:87–127

1.2 Statement of Results

Notation. We write X
dist= X(n, p1, p2, . . .) to indicate that X is chosen from the

distribution X(n, p1, p2, . . .).
Our theorems deal with the (k−1)th homology or cohomology of X(n, p1, p2, . . .).

As mentioned above there are two types of phase transitions, and we work to develop
bounds on the thresholds for both. Since the (k − 1)th (co)homology of a simplicial
complex depends only on its k-skeleton, these theorems only depend on probabilities
p1 through pk . The primary open problem from this work concerns the (k − 1)th
homology of our complexes when pk = 1, which we discuss following our statement
of results.

As with clique complexes, the (k − 1)-cohomology of X(n, p1, p2, . . .) has two
phase transitions. We can think of this as corresponding to two disjoint hypersurfaces
in α-space. Cohomology will be trivial for sufficiently small or sufficiently large
probabilities pi , corresponding to large and small αi , respectively. The range of values
between these two hypersurfaces is where nontrivial cohomology is exhibited.

The following result establishes when the probabilities are sufficiently large that
we will have trivial cohomology.

Theorem 1.1 Let X
dist= X(n, p1, p2, . . .) with pi = n−αi and αi ≥ 0 for all i . If

k
∑

i=1

αi

(
k

i

)

< 1 (1)

then w.h.p. Hk−1(X ,Q) = 0.

We prove this threshold is essentially the best possible by establishing nontriv-
ial cohomology on the other side of (1). Moreover, the second regime for which
cohomology exists is establishes the potential for Hk(X ,Q) �= 0 simultaneously for
several k.

Theorem 1.2 Let X
dist= X(n, p1, p2, . . .) with pi = n−αi , αi ≥ 0 for all i , and

1 ≤
k
∑

i=1

αi

(
k

i

)

. (2)

If

k−1
∑

i=1

αi

(
k − 1

i

)

< 1, (3)

then w.h.p. Hk−1(X ,Q) �= 0. Furthermore, when αk > 0 we can relax the condition
in (3) to
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k−1
∑

i=1

αi

(
k + 1

i + 1

)

< k + 1. (4)

A common question to ask concerning phase transitions is what happens at the
boundary between phases. Given a complex X , we let βk denote the kth Betti number
of X , given by βk := dim

(

Hk(X ,Q)
)

. Allowing the pi to be more varied func-
tions of n, we identify this critical region and establish a limit theorem for the Betti
number. Combined with Theorems 1.1 and 1.2, this proves a threshold for vanishing
cohomology for all possible pi .

Theorem 1.3 Let X
dist= X(n, p1, p2, . . .) with

pi = (ρ1 log n + ρ2 log log n + c)νi n−αi

such that

ρ1 = k −
k−1
∑

i=1

αi

(
k

i + 1

)

, ρ2 =
k−1
∑

i=1

νi

(
k

i + 1

)

and
k
∑

i=1

αi

(
k

i

)

=
k
∑

i=1

νi

(
k

i

)

= 1.

Then βk−1 approaches a Poisson distribution

βk−1 → Poi(μ)

with mean

μ = ρ
ρ2
1 e−c

k! .

We also provide a lower bound on the thresholdwhere homology first appears in our
complex. This bound, combined with the second part of Theorem 1.2, is essentially
the best possible when αk > 0.

Theorem 1.4 Let X
dist= X(n, p1, p2, . . .) with pi = n−αi and αi ≥ 0 for all i . If

k + 1 <

k−1
∑

i=1

αi

(
k + 1

i + 1

)

(5)

then w.h.p. Hk−1(X ,Z) = 0.

Repeated application of our theorems for each dimension will often fully describe
the cohomology of our random complex. Specifically when the set of pi = n−αi

parameters fall within the specified regimes of Theorems 1.1, 1.2, and 1.4.
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Example 1.5 Consider X
dist= X(n, p1, p2, . . .) with pi = n−αi and

(α1, α2, α3, . . .) =
(
1

5
,
1

5
,
2

5
, 0, 0, . . .

)

.

Then

2
∑

i=1

αi

(
2

i

)

= 3

5
< 1

so w.h.p. H1(X ,Q) = 0 by Theorem 1.1.

3
∑

i=1

αi

(
3

i

)

= 7

5
> 1 and

3−1
∑

i=1

αi

(
3 − 1

i

)

= 3

5
< 1,

so by Theorem 1.2 w.h.p. H2(X ,Q) �= 0. Finally,

4−1
∑

i=1

αi

(
4 + 1

i + 1

)

= 6 > 4 + 1,

so by Theorem 1.4, H3(X ,Z) = 0 w.h.p. Moreover, a simple bound using the last
equation allows us to use the theorem to deduce Hk(X ,Z) = 0 w.h.p. for all k ≥ 3.

The proof of Theorem 1.1 is handled in Sects. 3 and 4. The inequality (1) precisely
ensures every (k − 1)-simplex of X is w.h.p. contained in a k-simplex, so no single
face generates a nontrivial cocyle in Hk−1(X). With this condition satisfied we prove
the result by applying [4, Theorem 2.1], a result connecting spectral gap theory and
the homology of simplicial complexes and presented in Sect. 2. Most of the work
lies in showing the various hypotheses of the theorem are met by our complexes, for
which we use [11, Theorem 1.1], a tool for bounding the spectral gap of Erdős–Rényi
random graphs.

Theorem 1.2 is proven in Sects. 5 and 6. The statement for the range defined by (2)
and (3) is shown by exhibiting that our complexwill have farmore (k−1)-dimensional
faces than those in adjacent dimensions, so the kernel of the coboundary map is very
large. In fact, the second moment argument used in the proof yields the stronger result
that within this range of values our Betti number βk−1 will grow polynomially in n.
We write X ∼ Y with high probability if for all ε > 0, we have

lim
n→∞P [(1 − ε) ≤ Y/X ≤ (1 + ε)] → 1.

Using this notation, we have a strong handle on the size of cohomology within this
window.
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Theorem 1.6 Let X
dist= X(n, p1, p2, . . .) with pi = n−αi and αi ≥ 0 for all i and

βk−1 be the (k − 1)th Betti number. If

k−1
∑

i=1

αi

(
k − 1

i

)

< 1 <

k
∑

i=1

αi

(
k

i

)

,

then w.h.p. βk−1 is growing polynomially according to

βk−1 ∼
(
n

k

)

n−∑k−1
i=1 αi(

k
i+1).

The result when (2) and (4) hold extends the argument presented in the example at
the end of this section: showing our complex will w.h.p. contain certain subcomplexes
that generate nontrivial homological cycles.

In Sect. 7 we prove Theorem 1.3. The strict requirements on our pi define a range
where we have a nonzero but finite expected number of maximal (k − 1)-faces. A
factorial moment argument shows this number approaches a limiting distribution, a
slight adaptation of the work in Sect. 4 then proves these faces generate the only
nontrivial cocycles of dimension k − 1.

Finally, the proof of Theorem 1.4 is found in Sect. 8. The subset (5) defines when
our complex will w.h.p. not contain the boundary of a k-simplex. We show this is the
most likely subcomplex to appear in X that generates a (k − 1)-cycle. Thus, when X
w.h.p. does not contain the boundary of a k-simplex it will have no (k − 1)-cycles.

1.3 Discussion

Primarily our results concern when pi = n−αi with αi ≥ 0 or pi = 0 (here we say
αi = ∞). This was done to make the theorem statements as concise as possible. Our
threshold results extend easily to when pi are more varied functions of n. If pi =
ωi n−αi with ωi (n) → ∞ and ωi (n) = o(nε) for all ε > 0, then Theorems 1.1, 1.2,
and 1.4 still hold provided the αi do not lie on the boundary between two thresholds.

Our work on this multi-parameter model confirms it as the natural bridge between
X(n, p) and Yk(n, p). Our theorems imply the analogous results for the rational coho-
mology of these complexes. However, it is important to note for both these models
there are results concerning the vanishing of homology over arbitrary field coeffi-
cients. The boundary between Theorems 1.1 and 1.2 is sharp when pi = n−αi , and
combined with Theorem 1.3 establishes a sharp upper bound for vanishing cohomol-
ogy that encompasses the analogous results for clique complexes [14, Thm. 1.1] and
Linial–Meshulam complexes [21, Thm. 1.1].

While our bounds on the threshold where homology vanishes are seen to be close
to optimal, we have not fully characterized the threshold for appearing homology. Our
bounds for when Hk−1 first becomes nontrivial are good so long as αk > 0, and Kahle
proved the correct bound for clique complex case in [13], but we have been unable to
generalize his arguments or find another method. For now we leave this as an open
problem.
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Open Problem 1 What is the correct threshold for the appearance of Hk−1 (X ,Z)

when αk = 0? I.e., what hyperplane for α1, . . . , αk−1 determines whether homology
is trivial or nontrivial?

Note that αk = 0, or pk = 1, implies X cannot contain the unfilled boundary of
a k-simplex, the question likely reduces to understanding the smallest homological
cycle that can appear in X . We suspect the answer is determined, perhaps uniquely, by
the largest l < k, such that pl �= 1. Meanwhile, the Linial–Meshulam andMeshulam–
Wallach models begin with nontrivial (k−1)-homology, and pk+1 = 0 so our bounds
for Hk(Yk(n, p)) are roughly in line with the main results, though we only consider
probability parameters that are powers of n.

Another open problem concerns when integer homology vanishes in a specific
dimension.

Open Problem 2 Does (1) in Theorem 1.1 imply that w.h.p. Hk−1(X ,Z) = 0?

We understand the phase transition for Hk−1(X ,Q) and have reason to believe our
results should hold for integer homology, but our present arguments are insufficient.
We note this question is also currently unsolved for X(n, p). Morevoer, in [16] Kahle,
Lutz, Newman, and Parsons mention that experimentally, through many trials X(n, p)
never exhibited torsion in homology.

Although X(n, p) and Yk(n, p) seem like quite different instances of
X(n, p1, p2, . . .), they do not fully characterize our model. We often observe asymp-
totic behavior dramatically different from either one. In fact, for any fixed integer l we
can find some k such that the range of values for pi defined by applications of Theo-
rem 1.2 in dimensions k through k + l is nontrivial. This yields a result exemplifying
the differences in this model.

Corollary 1.7 Let X
dist= X(n, p1, p2, . . .)with pi = n−αi , for any integer l there exists

an integer k and an open set of αi for which X w.h.p. has nontrivial cohomology in
dimensions k through k + l.

Proof The result follows directly from Theorem 1.2. Considering (2), if

1 ≤
k
∑

i=1

αi

(
k

i

)

for some k, then

1 ≤
j
∑

i=1

αi

(
j

i

)

for all j > k. Similarly, considering (4), if

k−1
∑

i=1

αi

(
k + 1

i + 1

)

< k + 1,
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then

j−1
∑

i=1

αi

(
j + 1

i + 1

)

< j + 1

for all j < k.
We will construct a simple, far from optimized open set. We fix our l and let k be

sufficiently large such that k > l + 2. If

1

k + 1
< α1,

then

1 <

k+
∑

i=1

αi

(
k + 1

i

)

.

Moreover, if

α1 <
1

k
,

then

α1

(
k + l + 2

2

)

< k + l + 2.

Thus, so long as pi �= 1 for k + 1 ≤ i ≤ k + l + 1 and

k+l
∑

i=2

αi

(
k + l + 2

i + 1

)

< 1,

our result follows from Theorem 1.2. 
�

1.4 Low-Dimensional Example

Wepresent a low-dimensional example to give some intuition forwhere the inequalities
in our theorems come from, aswell as illustrate the potential for nontrivial cohomology
in multiple dimensions simultaneously.

Example 1.8 Let X
dist= X(n, p1, p2, . . .), if

α2, α3 > 0, 6α1 + 4α2 < 4, and 1 ≤ 2α1 + α2

then w.h.p. H1(X ,Q) �= 0 and H2(X ,Q) �= 0.
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Proof Within this proof, and later in Sect. 5, we consider the appearance of certain
subcomplexes in X . First, we establish the presence of triangles with an unfilled 2-
face whose first edge, determined lexicographically, is not part of any 2-face in X . Our
complex is defined on the vertex set [n], and for any j ∈ ([n]

3

)

we let A j denote the event
that the vertex set corresponding to j forms such a subcomplex. Using independence,
this has probability

P
[

A j
] = p31(1 − p2)(1 − p21 p2)

n−3.

The first two terms require the three edges are in X while the 2-simplex itself is not
present. The last term ensures our first edge ismaximal, i.e. does not form a 2-simplex
with any of the n − 2 remaining vertices.

Letting M1 denote the number of such subcomplexes in X , by linearity of expecta-
tion

E [M1] =
∑

j∈([n]
3 )

P
[

A j
] =

(
n

3

)

p31(1 − p2)(1 − p21 p2)
n−3.

Using standard first moment techniques we see, for large enough n,

E [M1] ≈ n3

6
n−3α1(1 − p2)

(

1 − n−(2α1+α2)
)n

≈ 1

6
n3−3α1 (1 − p2) e

−n1−(2α1+α2)

.

Since α2 > 0, we have that 1 − p2 > 0. The last two terms are therefore 	(1) when
1 ≤ 2α1+α2, then α1 < 1 impliesE[M1] → ∞. Secondmoment arguments, detailed
in Appendix A, then show that w.h.p. M1 > 0.

We now show the existence of empty tetrahedrons, the first 2-face of which is max-
imal. For each l ∈ ([n]

3

)

, let Bl be the event that the vertices l form such a subcomplex
in X . Similar considerations show

P [Bl ] = p61 p
4
2(1 − p3)

(

1 − p31 p
3
2 p3

)n−4
.

LettingM2 denote the total number of such subcomplexes in X , linearity of expectation
shows

E [M2] =
∑

l∈([n]
4 )

P[Bl ] =
(
n

4

)

p61 p
4
2(1 − p3)

(

1 − p31 p
3
2 p3

)n−4
.

It follows that if α3 > 0, 6α1 +4α2 < 4, and 1 ≤ 3α1 +2α2 +α3, then E [M2] → ∞.
Second moment calculations establish that w.h.p. M2 > 0.

Combining the two sets of requirements on pi yields that whenever p2, p3 �= 1,
1 ≤ 2α1 + α2, and 6α1 + 4α2 < 4 w.h.p. M1, M2 > 0. Each such subcomplex can
be seen to generate a nontrivial Z-summand in the 1- and 2-homology, respectively.
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Thus w.h.p. H1(X ,Z) �= 0 and H2(X ,Z) �= 0, and our result follows by the Universal
Coefficients Theorem, covered in the next section. 
�

2 Topological Preliminaries

2.1 Basic Definitions

Before proceeding, we lay out the definitions and theorems critical to our work. For
further reference, specifically regarding the homology and cohomology of simplicial
complexes, we direct the reader to [10].

A crucial definition for our work is the link of a subcomplex. Given a simplicial
complex X and a k-dimensional simplex σ in X, we define the link of σ in X , denoted
lkX (σ ), to be a new simplicial complexwith the vertex set corresponding to the vertices
of X that form a (k + 1)-face with σ . We then construct the new simplicial complex
by adding the (l −1)-face corresponding to a set of vertices v1, . . . , vl precisely when
the vertices σ ∪ {v1, . . . , vl} comprise a (k + l)-face in X .

A simplicial complex X is pure k-dimensional if every face of X is contained in a
k-dimensional face.

Finally, let G be some graph of ordered vertices with minimum degree at least 1.
Define D and A to be the associated degree and adjacency matrices of G, respectively.
We define the normalized Laplacian of G, denoted L, by

L = I − D−1/2AD−1/2.

For our work we look at the spectral gap of G (denoted λ2[G]), which is the absolute
value of the smallest nonzero eigenvalue of the normalized Laplacian of G.

2.2 Useful Theorems

There are several established theorems we use in our work.
While not explicitly used in this work, the Universal Coefficient Theorem provides

the link between the homology and cohomology over Z and various finite fields.
Any statement about rational homology can be extended to cohomology, and vice
versa.Moreover, aZ-summand of Hk (X ,Z) necessarily corresponds to aQ-summand
of Hk(X ,Q), and any torsion will correspond to nontrivial homology of the finite
field with the same number of elements. Within our work, the language of a theorem
statement primarily corresponds to whichever group we worked with in the proof.
Finally, we note that the vanishing of integer homology is a much stronger statement
than the vanishing of rational homology.

With the definitions established we introduce the first of the two theorems instru-
mental in our proof of Theorem 1.1. We use a special case of Theorem 2.1 in a paper
by Ballmann and Świątkowski [4].

Cohomology Vanishing Theorem. To prove vanishing cohomology we employ a
result of Garland [9]. Paraphrasing [4, Thm. 2.1], let X be a pure D-dimensional finite
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simplicial complex such that for every (D − 2)-dimensional face σ , the link lkX (σ )

is connected and has spectral gap

λ2[lkX (σ )] > 1 − 1

D
.

Then HD−1(X ,Q) = 0.
We note that since X is stipulated to be pure D-dimensional, the link of any (D−2)-

face will be of dimension 1. The spectral gaps of these link complexes are therefore
well defined.

To produce the necessary estimates on these gaps we then need the help of the main
result in [11], established by Hoffman, Kahle, and Paquette. We present it here as a
concise statement sufficient for our needs, noting the actual result yields more general
and precise results.

Spectral Gap Theorem [11, Thm. 1.1] Fix a δ > 0 and let G
dist= G(n, p) with

p ≥ (1+δ) log n
n . Then G is connected and

λ2(G) > 1 − o(1)

with probability 1 − o(n−δ).

3 CalculatingMaximal Faces

We call a (k − 1)-face in a simplicial complex maximal if it is not contained in any
k-simplex. These subcomplexes naturally play an important role in homology, their
characteristic functions generate (k − 1)-cocycles. We let Nk−1 denote the number of
maximal (k − 1)-faces in X . Recall our complex has vertex set [n], we use j ∈ ([n]

k

)

to denote a set of k vertices of [n]. Letting C j be the event that the vertices of j span
a maximal (k − 1)-simplex, it follows that

Nk−1 =
∑

j∈([n]
k )

1C j .

Lemma 3.1 For any j ∈ ([n]
k

)

,

P
[

C j
] =

(
k−1
∏

i=1

p
( k
i+1)

i

)(

1 −
k
∏

i=1

p
(ki)
i

)n−k

. (6)

Proof The left parenthetical calculates the probability that j is in our complex. For
any 1 ≤ i ≤ k − 1 we need the

( k
i+1

)

possible i-faces on the vertices of j to be
contained in X . Proceeding inductively, the (i − 1)-skeleton of each face is already
contained in X and each i-face is added independently with probability pi . The right
parenthetical calculates the probability these vertices do not form a k-face with one of
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the other n−k vertices. For a fixed vertex v, this happenswhen every face of dimension
1, . . . , k involving v and vertices of j is contained in our complex. This event that we

wish to avoid occurs independently for each vertex with probability
∏k

i=1 p
(ki)
i , and

our result follows. 
�
We now establish the threshold where these subcomplexes do not appear in our

complex.

Lemma 3.2 Let X
dist= X(n, p1, p2, . . .) with pi = n−αi , if

k
∑

i=1

(
k

i

)

αi < 1

then X w.h.p. contains no maximal (k − 1)-faces.

Proof Recall Nk−1 counts the maximal faces in X , by (6) and linearity of expectation
we have

E
[

Nk−1
] =

∑

j∈([n]
k )

E
[

1C j

] =
∑

j∈([n]
k )

P
[

C j
]

=
∑

j∈([n]
k )

(
k−1
∏

i=1

p
( k
i+1)

i

)(

1 −
k
∏

i=1

p
(ki)
i

)n−k

=
(
n

k

)(k−1
∏

i=1

p
( k
i+1)

i

)(

1 −
k
∏

i=1

p
(ki)
i

)n−k

≤ nk

k!

(
k−1
∏

i=1

n−αi(
k

i+1)

)⎛

⎝e
−(n−k)

(
∏k

i=1 n
−αi (

k
i )
)⎞

⎠ .

Then for some D > 0,

E
[

Nk−1
] ≤ D

nk

k!
(

n−∑k−1
i=1 αi(

k
i+1)
)

⎛

⎝e
−n

(

n−∑k
i=1 αi (

k
i )
)⎞

⎠

= D

k!
(

nk−
∑k−1

i=1 αi(
k

i+1)
)(

e−n1−
∑k

i=1 αi (
k
i )
)

.

By hypothesis

k−1
∑

i=1

αi

(
k

i

)

< 1,
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so the right parenthetical of our last term is e−nε
for some ε > 0. This term asymptoti-

cally dominates the rest of the expression and E
[

Nk−1
] → 0 exponentially. Markov’s

inequality tells us

P
[

Nk−1 ≥ 1
] ≤ E

[

Nk−1
] = o(1),

completing our proof. 
�
So in this regime w.h.p. every (k − 1)-face of our complex is contained in a k-face,

a fact necessary to utilize [4, Theorem 2.1] and prove that Hk−1(X ,Q) = 0 in this
range.

4 Trivial Cohomology

In this section we prove Theorem 1.1, the upper threshold for vanishing cohomology,
with [4, Thm. 2.1] and [11, Thm. 1.1] crucial to our argument.

To understand the (k − 1)th cohomology of a complex we need only consider its
k-skeleton, i.e., the subcomplex of X induced by its faces of dimension k and lower.
We use Xk to denote the k-skeleton of X , observing Hk−1(Xk) = Hk−1(X). The
following lemma provides the first step to invoking the [4, Thm. 2.1].

Lemma 4.1 Let X
dist= X(n, p1, p2, . . .) such that

k
∑

i=1

αi

(
k

i

)

< 1

and Xk be its k-skeleton. Then Xk is w.h.p. pure k-dimensional.

Proof This implies α1 < 1/k < 1, so w.h.p. every vertex has degree greater than 0.
Fixing a 1 ≤ j ≤ k − 1 we have

j+1
∑

i=1

αi

(
j + 1

i

)

≤
k
∑

i=1

αi

(
k

i

)

< 1,

so by Lemma 3.2 w.h.p. every j-face of Xk is contained in a ( j + 1)-face. Our claim
follows immediately. 
�
Thus Xk satisfies the first hypothesis of [4, Theorem 2.1]. To establish trivial coho-
mology we must bound the spectral gaps of the links of Xk .

4.1 Using the Spectral Gap Theorem

We wish to understand the structure of the links of the (k − 2)-faces in our complex.
Given a (k − 2)-face σ ∈ Xk , we let Lσ denote the number of vertices in lkXk (σ ). We
also define
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p̄ =
k−1
∏

i=1

p
(k−1

i )
i

and

p′ =
k
∏

i=1

p
(k−1
i−1)

i .

Lemma 4.2 For any (k−2)-face σ ∈ X, Lσ has the same distribution as Bin (n−k+
1, p̄). Moreover, conditioning on the value of Lσ , lkXk (σ ) has the same distribution
as G(Lσ , p′).

Proof Fixing a (k−2)-faceσ , a vertexvwill be in lkXk (σ ) if Xk contains everypossible
face spanned by v and some subset of the vertices of σ . In dimension 1 ≤ i ≤ k − 1
there are

(k−1
i

)

such faces, each present with probability pi . Distinct vertices appearing
in the link are statements about disjoint sets of faces, so these events are independent
with probability p̄ and our statement about Lσ follows.

Similarly, after conditioning upon the number of vertices in the link, the edge
between two vertices of lkXk (σ ) is includedwhen Xk contains every face of dimension
1, . . . , k involving those two vertices and vertices of σ . This occurs with probability
p′, and the inclusion of distinct edges are again independent events. Thus lkXk (σ ) has
the same distribution as G(Lσ , p′) as desired. 
�
So the link of a (k − 2)-face behaves like an Erdős–Rényi random graph, but before
applying the Spectral Gap Theorem we must bound Lσ .

Lemma 4.3 Let X
dist= X(n, p1, p2 . . .) with

k
∑

i=1

αi

(
k

i

)

< 1,

then w.h.p. n p̄/2 ≤ Lσ for every (k − 2)-face σ ∈ X.

Proof For any specific (k − 2)-face σ and n large enough that

n p̄/2 < 4(n − k + 1) p̄/7,

ifμ denotes the mean of Lσ , then Chernoff bounds on binomial random variables give
us that

P (Lσ < n p̄/2) ≤ P (Lσ < 4(n − k + 1) p̄/7)

= P

(

Lσ <

(

1 − 3

7

)

μ

)

≤ e
−
(
3
7

)2
μ
2

= e− 9μ
98 . (7)
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However, these probabilities are not independent for each (k − 2)-face. Defining Jσ
to be the indicator random variable for {Lσ < n p̄/2} for a (k − 2)-face σ , Markov’s
Inequality tells us

P

[ ∑

σ∈( [n]
k−1)

Jσ ≥ 1
]

≤ E

[ ∑

σ∈( [n]
k−1)

Jσ
]

=
∑

σ∈( [n]
k−1)

E [Jσ ] .

There are at most
( n
k−1

)

faces of dimension k − 2 in X and by construction E [Jσ ] =
P(Lσ < n p̄/2), so

P

[ ∑

σ∈( [n]
k−1)

Jσ ≥ 1
]

≤
(

n

k − 1

)

P (Lσ < n p̄/2) (for some fixed σ)

≤
(

n

k − 1

)

e− 9μ
98 (by (7))

=
(

n

k − 1

)

e− 9(n−k+1) p̄
98

=
(

n

k − 1

)

e− 9n p̄
98 e

(k−1) p̄
98 .

Since αi ≥ 0 for all i , we know

k−1
∑

i=1

αi

(
k − 1

i

)

<

k
∑

i=1

αi

(
k

i

)

< 1

and so for some ε > 0

p̄ =
k−1
∏

i=1

p
(k−1

i )
i = n−∑k−1

i=1 αi(
k−1
i ) = nε−1.

Since (k−1) p̄
98 → 0 so long as pi < 1 for some 1 ≤ i ≤ k − 1, we may bound e

(k−1) p̄
98

above by a constant C > 0. It follows that

P

[( ∑

σ∈( [n]
k−1)

Jσ
)

≥ 1
]

≤ C

(
n

k − 1

)

e− 9
98 n

ε = o(1).

Thus w.h.p. Lσ = 0 for every (k − 2)-face σ , completing our proof. 
�
We require one last lemma before proving our main result.

Lemma 4.4 Let X
dist= X(n, p1, p2, . . .) and fix δ > 0. If

k
∑

i=1

αi

(
k

i

)

< 1
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then w.h.p.

(1 + δ) log Lσ

Lσ

≤ p′ (8)

for all (k − 2)-faces σ in X.

Proof We let L = n p̄/2. Straightforward calculus shows f (x) = (1+δ) log(x)
x is mono-

tonically decreasing on [e,∞). For large n we have e < L , so if f (L) < p′ then by
Lemma 4.3, f (Lσ ) < p′ for all σ w.h.p. We let ε = 1 −∑k

i=1 αi
(k
i

)

, noting ε > 0
by hypothesis. Then

f (L)

p′ = (1 + δ)
log L

Lp′

≤ (2 + 2δ)
log n

n p̄ p′

= (2 + 2δ)
log n

n1−
∑k−1

i=1 αi(
k−1
i )−∑k

1 αi(
k−1
i−1)

= (2 + 2δ)
log n

n1−
∑k

i=1 αi(
k
i)

= (2 + 2δ)
log n

nε

= o(1).

Thus w.h.p. f (Lσ ) < f (L) < p′ for all (k − 2)-faces σ . 
�

4.2 TheMain Result

We now have the machinery to prove a main theorem.

Proof of Theorem 1.1 We begin by fixing the δ > 0 we will use in the Spectral Gap
Theorem in Sect. 2:

δ = k −∑k−2
i=1 αi

(k−1
i+1

)

1 −∑k−1
i=1 αi

(k−1
i

) . (9)

A standard second moment technique, detailed in Sect. 6, tells us that if fk−2
denotes the number of (k − 2)-faces in X , or Xk , then w.h.p.

fk−2 ≤ (1 + o(1))E
[

fk−2
] = (1 + o(1))

(
n

k − 1

) k−2
∏

i=1

p
(k−1
i+1)

i . (10)
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By Lemma 4.2 each of these faces has link with distribution G(Lσ , p′), and by
Lemma 4.4 w.h.p.

(1 + δ) log Lσ

Lσ

< p′

for all (k − 2)-faces σ of X . Thus by the Spectral Gap Theorem the probability Pσ

that

λ2[lkXk (σ )] < 1 − 1/k

is o
(

L−δ
σ

)

. Let PX denote the probability there exists any (k − 2)-face whose link in
Xk has spectral gap less than 1− 1/k. We apply a union bound over all (k − 2)-faces
to see

PX ≤
∑

σ∈( [n]
k−1)

Pσ

=
∑

σ∈( [n]
k−1)

o
(

L−δ
σ

)

≤
∑

σ∈( [n]
k−1)

o

((
n p̄

2

)−δ
)

.

The last line holds since w.h.p. n p̄/2 < Lσ , so L−δ
σ < (n p̄/2)−δ . By (10),

PX ≤ (1 + o(1))

(
n

k − 1

)(k−2
∏

i=1

p
(k−1
i+1)

i

)

o
(

2δ(n p̄)−δ
)

≤ (1 + o(1))
nk−1

(k − 1)!

(
k−2
∏

i=1

p
(k−1
i+1)

i

)

o
(

2δ(n p̄)−δ
)

= O

(

2δnk−1n−∑k−2
i=1 αi(

k−1
i+1)

(

n · n−∑k−1
i=1 αi(

k−1
i )
)−δ

)

= O

(

2δnk−1−∑k−2
i=1 αi(

k−1
i+1)n

−δ
(

1−∑k−1
i=1 αi(

k−1
i )
))

.

By our choice of δ in (9),

PX = O
(

nk−1−∑k−2
i=1 αi(

k−1
i+1)n−(k−∑k−2

i=1 αi(
k−1
i+1))

)

= O
(

n−1
)

= o(1).
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Thus w.h.p.

λ2[lkXk (σ )] > 1 − 1

k

for every (k−2)-faceσ ofX.Combining thiswith Lemma3.2,wemay apply theCoho-
mologyVanishingTheorem inSect. 2 on Xk to conclude thatw.h.p. Hk−1(Xk,Q) = 0.
Noting that Hk−1(Xk,Q) ∼= Hk−1(X ,Q) completes our proof. 
�

5 Nontrivial Homology: Boundaries of Simplices

In this section we consider the case

1 ≤
k
∑

i=1

αi

(
k

i

)

,

k−1
∑

i=1

αi

(
k + 1

i + 1

)

< k + 1, and αk > 0, so pk �= 1

to prove the second half of Theorem 1.2.
In [2], the threshold for the appearance of nontrivial k-homology in Yk(n, p) was

studied with a stochastic k-face adding process. It was shown that under this process
of adding faces uniform randomly, the first type of homological k-cycle to appear was
either an empty k-simplex, the (k − 1)-skeleton of a k-simplex, or a cycle supported
on a positive fraction of the total number of k-faces. In this section we consider the
first case to X(n, p1, p2, . . .), when pk �= 1 and the presence of an empty k-simplex
is possible. If X contains an empty k-simplex with at least one maximal (k − 1)-face,
then it generates a Z-summand in Hk−1(X ,Z). For a set of k + 1 vertices j ∈ ( [n]

k+1

)

,
we define A j as the event j corresponds to an empty k-simplex with first (k − 1)-
face, determined by lexicographic order, maximal in X . Letting Mk−1 denote the total
number of such subcomplexes in X , it follows that

Mk−1 =
∑

j∈( [n]
k+1)

1A j .

We then calculate the probability of A j .

Lemma 5.1 For any j ∈ ( [n]
k+1

)

,

E
[

1A j

] = P
[

A j
] =

(
k−1
∏

i=1

p
(k+1
i+1)

i

)

(1 − pk)

(

1 −
k
∏

i=1

p
(ki)
i

)n−k−1

. (11)

Proof The first term calculates the probability that X contains the necessary i-faces
for i < k: we need every subset of i + 1 vertices of j to form an i-simplex. The
second term is the requirement that the associated k-simplex is empty. The last term is
ensuring our first (k−1)-face is maximal, or does not form a k-simplex with any of the
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remaining n − k − 1 vertices. This occurs independently with probability
∏k

i=1 p
(ki)
i

for each vertex. 
�
We note that narrowing our consideration to when the first (k − 1)-face is maximal
simplifies the calculations without altering the relevant probability thresholds. Recall
that we say X ∼ Y with high probability if for all ε > 0, we have

lim
n→∞P [(1 − ε) ≤ Y/X ≤ (1 + ε)] → 1.

Lemma 5.2 Let X
dist= X(n, p1, p2, . . .) with pi = n−αi and Mk−1 count the number

of empty k-simplices in X with maximal first (k − 1)-face. If

1 ≤
k
∑

i=1

αi

(
k

i

)

,

k−1
∑

i=1

αi

(
k + 1

i + 1

)

< k + 1, and pk �= 1

then w.h.p. Mk−1 > 0 and Mk−1 ∼ E
[

Mk−1
]

.

Proof By linearity of expectation we have

E [Mk−1] =
(

n

k + 1

)(k−1
∏

i=1

p
(k+1
i+1)

i

)

(1 − pk)

(

1 −
k
∏

i=1

p
(ki)
i

)n−k−1

≈ 1 − pk
(k + 1)!

(

nk+1−∑k−1
i=1 αi(

k+1
i+1)
)(

e−n1−
∑k

i=1 αi (
k
i )
)

.

By the first inequality in our hypothesis,

1 −
k
∑

i=1

αi

(
k

i

)

≤ 0,

which implies that

e−n1−
∑k

i=1 αi (
k
i ) = 	(1).

We therefore have

E
[

Mk−1
] = 	

(

nk+1−∑k−1
i=1 αl(

k+1
i+1)
)

, (12)

hence E[Mk−1] → ∞.
This, along with a straightforward second moment argument (see e.g. [14]) which

is detailed in Appendix A, allow us to use Chebyshev’s inequality to conclude that
w.h.p. Mk−1 ∼ E

[

Mk−1
]

. 
�
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Proof of the second part of Theorem 1.2 It follows fromLemma5.2 thatw.h.p.Mk−1 >

0. Consider such a subcomplex σ . As the boundary of a k-simplex, a signed sum of
its (k − 1)-faces is in the kernel of the (k − 1)-boundary map. Since one of these
faces, τ , is maximal, it is not contained in a k-face of X . Thus no (k − 1)-chain
with a non-zero coefficient of τ can be a (k − 1)-boundary of X . Thus we have
a nontrivial cycle no multiple of which is a boundary, contributing a Z-summand
to Hk−1(X ,Z) and a Q-cycle to Hk−1(X ,Q). By vector space duality we conclude
Hk−1(X ,Q) ∼= Hk−1(X ,Q) �= 0. 
�

6 Nontrivial Cohomology: Betti Numbers Argument

We now consider when

1 <

k
∑

i=1

αi

(
k

i

)

and
k−1
∑

i=1

αi

(
k − 1

i

)

< 1,

proving the other half of Theorem 1.2.

Proof of the first part of Theorem 1.2 For X
dist= X(n, p1, p2, . . .), with the aforemen-

tioned conditions on pi , we let fi denote the number of i-simplices in X and
βi = dim Hi (X ,Q). Linear algebra considerations tell us

fk−1 ≥ βk−1 ≥ fk−1 − fk − fk−2. (13)

Thus showing thatw.h.p. fk−1 > fk+ fk−2 impliesβk−1 > 0.We begin by calculating
the expected number of faces in these dimensions:

E
[

fk−2
] =

(
n

k − 1

) k−2
∏

i=1

p
(k−1
i+1)

i ,

E
[

fk−1
] =

(
n

k

) k−1
∏

i=1

p
( k
i+1)

i ,

E [ fk] =
(

n

k + 1

) k
∏

i=1

p
(k+1
i+1)

i .

By linearity of expectation

E
[

fk−1
] ≥ E

[

βk−1
] ≥ E

[

fk−1
]− E

[

fk−2
]− E [ fk] .

Comparing the expectations in different dimensions we see

E [ fk]

E
[

fk−1
] = n − k

k + 1

k
∏

i=1

p
(k+1
i+1)−( k

i+1)
i = n − k

k + 1

k
∏

i=1

p
(ki)
i ≤ n

k
∏

i=1

p
(ki)
i = o(1), (14)
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because

k
∏

i=1

p
(ki)
i < n−1

by hypothesis. Similarly, since

k−1
∏

i=1

p
(k−1

i )
i = nc−1

for some c > 0, we have

E
[

fk−2
]

E
[

fk−1
] = k

n − k + 1

k−1
∏

i=1

p
(k−1
i+1)−( k

i+1)
i

= k

n − k + 1

k−1
∏

i=1

p
−(k−1

i )
i = kn1−c

n − k + 1
= o(1). (15)

Thus E
[

fk−1
]

asymptotically dominates the other two terms. Letting

f̃k−1 := fk−1 − fk − fk−2,

it follows from (14) and (15) that

E [ f̃k−1] ∼ E
[

βk−1
] ∼ E

[

fk−1
]

. (16)

Toprove stronger statements aboutβk−1 weagainmakeuseofChebyshev’s Inequal-
ity. That is, if Z is a random variable with E [Z ] → ∞ and Var [Z ] = o

(

E[Z ]2), then
w.h.p. Z ∼ E [Z ].

Now

Var
[

fk−1

]

= E

[

f 2k−1

]

− E
[

fk−1
]2

= E

[

f 2k−1

]

−
(
n

k

)2
(
k−1
∏

i=1

p
2( k

i+1)
i

)

.

It remains to calculate E [ f 2k−1]. For any j ∈ ([n]
k

)

let E j be the event that the
vertices of j span a (k − 1)-face in X . Then

E [ f 2k−1] =
∑

j,l∈([n]
k )

P [E j ∩ El ] =
(
n

k

)
∑

l∈([n]
k )

P [E j ∩ El ].
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The second equality follows by symmetry and fixing some set of vertices j , say
{1, . . . , k}. We proceed by grouping the l according to | j ∩ l|. Through this approach
we see

E [ f 2k−1] =
(
n

k

)
∑

l∈([n]
k )

P [A j ∩ Al ]

=
(
n

k

) k
∑

m=0

(
k

m

)(
n − k

k − m

)(k−1
∏

i=1

p
2( k

i+1)−( m
i+1)

i

)

=
(
n

k

) k−1
∏

i=1

p
2( k

i+1)
i

(
k
∑

m=0

(
k

m

)(
n − k

k − m

) m−1
∏

i=1

p
−( m

i+1)
i

)

.

We pull the m = 0 term out of the summation and use
(n−k

k

)

<
(n
k

)

to see

E [ f 2k−1] ≤ E [ fk−1]2 +
(
n

k

) k−1
∏

i=1

p
2( k

i+1)
i

(
k
∑

m=1

(
k

m

)(
n − k

k − m

) m−1
∏

i=1

p
−( m

i+1)
i

)

.

We observe

Var [ fk−1]
E [ fk−1]2 ≤

(n
k

)∏k−1
i=1 p

2( k
i+1)

i

(
∑k

m=1

( k
m

)(n−k
k−m

)∏m−1
i=1 p

−( m
i+1)

i

)

(n
k

)2
(
∏k−1

i=1 p
2( k

i+1)
i

)

=
∑k

m=1

( k
m

)(n−k
k−m

)∏m−1
i=1 p

−( m
i+1)

i
(n
k

)

=
k
∑

m=1

O

(

n−m
m−1
∏

i=1

p
−( m

i+1)
i

)

= o(1).

The final line holds from our hypotheses since

m−1
∑

i=1

αi

(
m

i + 1

)

≤ m

k

(
k−1
∑

i=1

αi

(
k

i + 1

))

≤ m

k

(

k ·
k−1
∑

i=1

αi

(
k − 1

i

))

< m,

so for m = 1, . . . , k,

m−1
∏

i=1

p
−( m

i+1)
i = n

∑m−1
i=1 αi(

m
i+1) = o

(

nm
)

.

We conclude fk−1 ∼ E [ fk−1].
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We note that nothing in the above argument is unique to fk−1, so w.h.p. − fk−2 ∼
E
[− fk−2

]

and − fk ∼ E [− fk]. By linearity of expectation f̃k−1 ∼ E [ f̃k−1], then
from (13) and (16) we conclude that w.h.p. βk−1 ∼ E [βk−1] ∼ fk−1. Thus βk−1 =
dim

(

Hk−1(X ,Q)
) �= 0 w.h.p., which completes our proof. 
�

Under these conditions we have proven a stronger result than nontrivial homology.

Proof of Theorem 1.6 From the above,

βk−1 ∼ fk−1 ∼ E [ fk−1] = gk−1(n, α1, . . . αk).

The result follows. 
�
Our proof also shows that allowing

k
∑

i=1

αi

(
k

i

)

= 1

still ensures nontrivial cohomology.

Lemma 6.1 If

k
∑

i=1

αi

(
k

i

)

= 1,

then w.h.p. Hk−1(X ,Q) �= 0 and

βk−1 ≥
(

k

k + 1

)

fk−1.

Proof We first calculate

E [ fk]
E [ fk−1] = n − k

k + 1

k
∏

i=1

p
(ki)
i

= n − k

n(k + 1)

≈ 1

k + 1
.

The machinery established in the previous section then does the work for us. Since
βk−1 is bounded between fk−1 and fk−1 − fk − fk−2, with fk−1 ∼ E [ fk−1] and
( fk−1 − fk − fk−2) ∼ E [( fk−1 − fk − fk−2)] ∼ ( k

k+1

)

E [ fk−1], our result follows
immediately. 
�
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7 Behavior at the Boundary

In this sectionwe explore the behavior of the (k−1)th cohomology of X(n, p1, p2, . . .)
at the upper threshold line. Specifically, we refine the parameters of our pi to elicit
some interesting behavior and prove Theorem 1.3.

7.1 Maximal Faces

To get the threshold for maximal faces, and thus trivial cohomology, we must slightly
refine our model. Unfortunately there is no concise way to categorize these pi . We
consider when

pi = (ρ1 log n + ρ2 log log n + c)νi n−αi

for some constants νi , ρ1, ρ2, and c, with

k
∑

i=1

αi

(
k

i

)

= 1.

It follows that

E [Nk−1] ≈ nk

k!

(
k−1
∏

i=1

p
( k
i+1)

i

)⎛

⎝e
−n

(
∏k

i=1 p
(ki )
i

)⎞

⎠

= nk−
∑k−1

i=1 αi(
k

i+1)

k!

[
k−1
∏

i=1

((ρ1 + o(1)) log n)νi(
k

i+1)

]

× e−∏k
i=1(ρ1 log n+ρ2 log log n+c)νi (

k
i )

= nk−
∑k−1

i=1 αi(
k

i+1)

k! ((ρ1 + o(1)) log n)
∑k−1

i=1 νi(
k

i+1)

× e−(ρ1 log n+ρ2 log log n+c)
∑k

i=1 νi (
k
i )
.

Letting

k
∑

i=1

νi

(
k

i

)

= 1,

we have

E [Nk−1] ≈ nk−
∑k−1

i=1 αi(
k

i+1)

k! ((ρ1 + o(1)) log n)
∑k−1

i=1 νi(
k

i+1)

× e−(ρ1 log n+ρ2 log log n+c)
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= nk−
∑k−1

i=1 αi(
k

i+1)

k! ((ρ1 + o(1)) log n)
∑k−1

i=1 νi(
k

i+1) n−ρ1(log n)−ρ2e−c.

If we set

ρ1 = k −
k−1
∑

i=1

αi

(
k

i + 1

)

and

ρ2 =
k−1
∑

i=1

νi

(
k

i + 1

)

,

then

E [Nk−1] → ρ
ρ2
1 e−c

k! (17)

as n → ∞. We then establish the following result.

Lemma 7.1 Let X
dist= X(n, p1, p2, . . .) with

pi = (ρ1 log n + ρ2 log log n + c)νi n−αi

such that

ρ1 = k −
k−1
∑

i=1

αi

(
k

i + 1

)

and

ρ2 =
k−1
∑

i=1

νi

(
k

i + 1

)

.

If

k
∑

i=1

αi

(
k

i

)

= 1 =
k
∑

i=1

νi

(
k

i

)

,

then Nk−1, the number of maximal (k − 1)-faces in X, approaches a Poisson distri-
bution

Nk−1 → Poi(μ)
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with mean

μ = ρ
ρ2
1 e−c

k! .

Proof We prove this with through a standard factorial moment argument, found in
Appendix B. 
�

7.2 Betti Numbers

At criticality, if we condition on the event Nk−1 = 0 then slightly modifying our
arguments in Sect. 4 will show Hk−1(X ,Q) = 0 w.h.p. This enables us to use the
limiting distribution of Nk−1 to prove an identical result for βk−1.

Proof of Theorem 1.3 FromLemma 7.1we know that given these hypotheses, Nk−1 →
Poi(μ). We suppose Nk−1 = m for somem ∈ Z. The characteristic functions of these
m maximal faces are (k − 1)-cocycles. We show these cocycles are not coboundaries,
and in fact constitute the only cohomological cocycles of dimension k − 1 in X .

We label these faces σ1, . . . , σm and their respective characteristic functions
φ1, . . . , φm . Letting Rk−2 count the number of (k − 2)-faces of X contained in m
or fewer (k − 1)-faces, we have

E [Rk−2] =
(

n

k − 1

) k−2
∏

i=1

p
(k−1
i+1)

i

⎛

⎝

m
∑

j=0

(
n − k + 1

j

)(k−1
∏

i=1

p
(k−1

i )
i

) j

×
(

1 −
k−1
∏

i=1

p
(k−1

i )
i

)n−k+1− j⎞

⎠

= o(e−n−ε

) for some ε > 0.

This holds since by our hypotheses

n

(
k−1
∏

i=1

p
(n−1

i )
i

)

→ ∞,

so the right-most term is exponentially decaying and dominates the expression.
Therefore w.h.p. X contains no (k − 2)-face contained solely in some combination

of our σi . We now suppose there exists some (k − 2)-cochain λ such that δk−2(λ) =
∑m

i=1 aiφi with ai �= 0 for some i . It follows that λ is not a (k − 2)-coboundary.
We now consider the subcomplex X ′ = X − {σ1, . . . , σm}, and observe Rk−2 = 0
implies that X ′ has no maximal (k − 2)-faces. Since

∑k−1
i=1 αi

(k−1
i

)

< 1, it follows
from Theorem 1.1 that w.h.p. Hk−2(X ′,Q) = 0. But δk−2(λ) = 0 in X ′ and λ is not
a coboundary in X or X ′, yielding a contradiction. Therefore no such λ exists and we
conclude each φi generates a unique nontrivial cocycle in Hk−1 (X ,Q).
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To show these cochains are the only contributors to cohomology we again consider
X ′. By construction X ′ has no maximal (k−1)-faces, and a reworking of our proof of
Theorem 1.1 (primarily refining our estimate in Lemma 4.3 to show Lemma 4.4 still
holds) tells us Hk−1(X ′,Q) = 0 w.h.p. It follows that Hk−1 (X ,Q) ∼= Q

m . 
�

Implicit in our proof is the result that when

k
∑

i=1

αi

(
k

i

)

= 1,

the presence of maximal (k − 1)-faces is a necessary and sufficient condition for
Hk−1(X ,Q) �= 0.

8 The Phase Transition for Homology Appearing

In this section we prove Theorem 1.4. The requirement

k + 1 <

k−1
∑

i=1

αi

(
k + 1

i + 1

)

is exactly the condition that our complex will w.h.p. not contain the boundary of a
k-simplex. Logic dictates that, as the first (k−1)-cycle to appear, the threshold for the
presence of these subcomplexes should provide a lower bound for trivial homology.
We proceed by verifying this intuition, using the fact that minimal homological cycles
have bounded vertex support. After establishing these points we may apply a union
bound to conclude our result.

8.1 Cycles of Small Vertex Support

We begin with a few definitions identical to those in Section 5 of [13]. For a (k − 1)-
chain C the support of C is the union of (k − 1)-faces with nonzero coefficients
in C , while the vertex support is the underlying vertex set of the support. A pure
(k − 1)-dimensional subcomplex K is strongly connected if every pair of (k − 1)-
faces σ, τ ∈ Kk−1 can be connected by a sequence of faces σ = σ0, σ1, . . . , σ j = τ

such that dim(σi ∩ σi+1) = k − 2 for 0 ≤ i ≤ j − 1. Every (k − 1)-cycle is a linear
combination of (k − 1)-cycles with strongly connected support.

Lemma 8.1 Let

1 <

k−1
∑

i=1

αi

(
k − 1

i

)
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and fix D such that

k −∑k−1
i=1 αi

( k
i+1

)

∑k−1
i=1 αi

(k−1
i

)− 1
< D.

Then w.h.p. all strongly connected pure (k − 1)-dimensional subcomplexes of X have
fewer than D + k vertices in their support.

Proof Let K be such a subcomplex, since it is strongly connected we may order its
faces f1, f2, . . . fm where each face f j , for j > 1, has (k−2)-dimensional intersection
with at least one fl with l < j . This induces an ordering on the supporting vertices
v1, . . . , vs by looking at the vertex supports of f1, f1∪ f2, f1∪ f2 ∪ f3, . . . Thus each
vertex after vk corresponds to the addition of a (k − 1)-face f j , along with the

(k−1
i

)

i-dimensional faces of f j that include this vertex (and hence were not contained in
f1 ∪ · · · ∪ f j−1 ).
If K has D + k vertices, it follows that there are at least

(
k

i + 1

)

+ D

(
k − 1

i

)

i-dimensional faces for each 1 ≤ i ≤ k − 1. Now either X w.h.p. contains no (k − 1)-
simplices, in which case the result is trivial, or

k−1
∏

i=1

p
( k
i+1)

i =
k−1
∏

i=1

n−αi(
k

i+1) = n−k+β

for some β > 0. By hypothesis

k−1
∏

i=1

p
(k−1

i )
i =

k−1
∏

i=1

n−αi(
k−1
i ) = n−1−ε

for some ε > 0. We choose D such that β < Dε and let AK denote the event that X
contains a subcomplex isomorphic to K . We apply a union bound on the probability
of AK as follows:

P(AK ) ≤ (D + k)!
(

n

D + k

) k−1
∏

i=1

p
( k
i+1)+D(k−1

i )
i

= (D + k)!
(

n

D + k

)

n(−k+β)−D(1+ε)

≤ nD+kn−(D+k)nβ−Dε

= nβ−Dε

= o(1).

The last line holds by our choice of D.
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As there are finitely many isomorphism classes of strongly connected (k − 1)-
complexes on D + k vertices, a union bound shows that w.h.p. none of them are
subcomplexes of X . We complete our proof by observing that any such complex
with more vertices must contain a strongly connected subcomplex on D + k vertices.
For example, under the ordering of the faces and vertices defined at the beginning
of the proof, the subcomplex induced by the first D + k vertices must be strongly
connected. 
�

8.2 The Threshold for a Simplex Boundary

Here we prove our lower threshold for vanishing homology, which is sharp when
pk �= 1.

Proof of Theorem 1.4 We consider some nontrivial (k − 1)-cycle γ with strongly con-
nected support and K , its induced subcomplex in X . By our hypothesis we have

k + 1 <

k−1
∑

i=1

αi

(
k + 1

i + 1

)

,

and either X will w.h.p. contain no (k − 1)-faces, making the result trivial, or

k−1
∑

i=1

αi

(
k

i + 1

)

< k.

Moreover,

k−1
∑

i=1

αi

(
k − 1

i

)

=
k−1
∑

i=1

αi
i + 1

k

(
k

i + 1

)

=
k−1
∑

i=1

αi
i + 1

k

k − i

k + 1

(
k + 1

i + 1

)

≥ 1

k + 1

k−1
∑

i=1

αi

(
k + 1

i + 1

)

> 1.

Thus we may invoke Lemma 8.1 to conclude K is w.h.p. supported on less than D+ k
vertices. As in that proof, we may order the vertices v1, . . . , vk+m for some m < D.
We prove our result by removing one vertex at a time from K and counting the faces
containing it that must also be removed.

Since we have a nontrivial cycle every vertex is contained in at least k faces of
dimension k − 1. Removing vk+m first, we observe the fewest faces are removed if
vk+m is contained in exactly k faces of dimension k − 1. In this case we then remove
(k
i

)

i-dimensional faces for each i . We then remove vertices vk+m−1, . . . , vk+1, and
by construction each one was contained in a (k − 1)-face comprised exclusively of
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vertices before it, so at each removal step we remove at least that simplex. Thus at
each removal we account for at least

(k−1
i

)

i-faces for each i . The last k vertices
correspond to our initial (k − 1)-simplex. Putting this together we get a lower bound
on the probability of a subcomplex isomorphic to K appearing. Letting BK denote the
probability X contains such a subcomplex,

P(BK ) ≤ (k + m)!
(

n

k + m

)(k−1
∏

i=1

p
(ki)
i

)(
k−1
∏

i=1

p
(k−1

i )
i

)m−1 (k−1
∏

i=1

p
( k
i+1)

i

)

≤ nk+m

(
k−1
∏

i=1

p
(k+1
i+1)

i

)(
k−1
∏

i=1

p
(k−1

i )
i

)m−1

≤
(

nk+1
k−1
∏

i=1

p
(k+1
i+1)

i

)(

nm−1
k−1
∏

i=1

p
(k−1

i )
i

)m−1

= o(1).

The last line holds since

k + 1 <

k−1
∑

i=1

αi

(
k + 1

i + 1

)

and 1 <

k−1
∑

i=1

αi

(
k − 1

i

)

.

As there are finitely many isomorphism types of strongly connected (k − 1)-
complexes on less than D + k vertices, we may apply this argument to each of them
and apply a union bound to conclude that w.h.p. none of them are subcomplexes of
X . Thus we w.h.p. have no nontrivial (k − 1)-cycles, and Hk−1(X ,Z) = 0. 
�

Appendix A: Boundaries of Simplices

Proof of Lemma 5.2 We consider the case

1 ≤
k
∑

l=1

(
k

l

)

αl

where (from (12) in Sect. 5) we have E [Mk−1] → ∞. By Chebyshev’s inequality,

P

[∣
∣Mk−1 − E [Mk−1]

∣
∣ ≥ E [Mk−1]

]

≤ Var [Mk−1]
E [Mk−1]2 .

Thus if we can show Var [Mk−1] = o(E [Mk−1]2), then we may conclude

P[Mk−1 > 0] → 1.

123



118 Discrete & Computational Geometry (2019) 62:87–127

Considering Mk−1 as a sum of indicator random variables,

Var [Mk−1] ≤ E [Mk−1] +
∑

i, j∈([n]
k )

Cov[1Ai , 1A j ]

= E [Mk−1] +
∑

i, j∈([n]
k )

(

P [Ai ∩ A j ] − P [Ai ]P [A j ]
)

.

ClearlyE [Mk−1] = o(E [Mk−1]2), to handle the sumweconsider pairs i, j ∈ ( [n]
k+1

)

and break them into three cases depending on I = |i ∩ j |. To make the calculations
more readable we introduce some useful notation, defining ηk to be

ηk = (1 − pk)
k−1
∏

l=1

p
(k+1
l+1)

l ,

the probability that our complex contains the unfilled boundary of a specific k-simplex.
We define γk as

γk =
k
∏

l=1

p
(kl)
l ,

the probability that a fixed (k − 1)-face and vertex form a k-simplex.

A.1: I = 0

We begin by calculating P [Ai ∩ A j ]. The probability that both boundaries are in
our complex but unfilled is η2k . By inclusion–exclusion principles the probability that
neither σi nor σ j , the associated first (k − 1)-faces of these subcomplexes, form a
k-simplex with a vertex outside of i ∪ j is 1−2γk +γ 2

k , and there are n−2k−2 such
vertices. Finally, we must have that no k-face is formed between one subcomplex and
a single vertex of the other. While this probability can be explicitly calculated, every
term that is not 1 will contain a copy of γk , so this probability is 1 − O(γk). Thus

P [Ai ∩ A j ] = η2k

(

1 − 2γk + γ 2
k

)n−2k−2
(1 − O(γk)) ,

and by (11) in Sect. 5 we know
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P [Ai ]P [A j ] =
(

ηk (1 − γk)
n−k−1

)2

= η2k

(

1 − 2γk + γ 2
k

)n−k−1

= η2k

(

1 − 2γk + γ 2
k

)n−2k−2 (

1 − 2γk + γ 2
k

)k+1

= η2k

(

1 − 2γk + γ 2
k

)n−2k−2
(1 − O(γk)) .

Thus

P [Ai ∩ A j ] − P [Ai ]P [A j ] = η2k

(

1 − 2γk + γ 2
k

)n−2k−2
O(γk)

and there are O(n2k+2) such pairs i, j , so the overall contribution of these pairs to our
sum is

S0 = O

(

n2k+2η2k

(

1 − 2γk + γ 2
k

)n−2k−2
γk

)

= O

(

n2k+2η2k

(

1 − 2γk + γ 2
k

)n−k−1
γk

)

.

The second equality holds by restricting our consideration to n > k, then γk ≤ n−1 <

k−1 and there is some C > 0 such that

(1 − 2γk + γ 2
k )k+1 > (1 − 2γk)

k+1 > (1 − 2k−1)k > C,

so removing this term does not affect our big-O calculations.
Since

E [Mk−1]2 =
(

n

k + 1

)2

η2k (1 − γk)
2(n−k−1) = O

(

n2k+2η2k (1 − 2γk + γ 2
k )n−k−1

)

and γk → 0 we conclude

S0
E [Mk−1]2 = O(γk) = o(1).

Hence the contribution of these pairs to the variance is seen to be o(E [Mk−1]2).

A.2: I = 1

The probability of both subcomplexes being in X is again η2k since the two do not share
a face of dimension greater than 0. We again use inclusion–exclusion to calculate the
probability that σi and σ j do not form k-simplices with another vertex. However,
these faces may or may not both contain the shared vertex: if they do not then the
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calculations are identical to above, so we assume the alternative. In this case the two
k-faces formed with some new vertex would share a common edge. So the probability
is 1 − 2γk + γ 2

k p
−1
1 for each of the n − 2k − 1 remaining vertices. Similarly, the

probability we do not have a k-face consisting of σi or σ j and a vertex in i � j is
1 − O(γk p

−1
1 ). We then calculate P [Ai ∩ A j ] to be

P [Ai ∩ A j ] = η2k

(

1 − 2γk + γ 2
k p

−1
1

)n−2k−1 (

1 − O(γk p
−1
1 )
)

.

Before calculating P [Ai ∩ A j ] − P [Ai ]P [A j ], we observe

1 − 2γk + γ 2
k =

(

1 − 2γk + γ 2
k p

−1
1

) 1 − 2γk + γ 2
k

1 − 2γk + γ 2
k p

−1
1

=
(

1 − 2γk + γ 2
k p

−1
1

)
(

1 − γ 2
k (p−1

1 − 1)

1 − 2γk + γ 2
k p

−1
1

)

=
(

1 − 2γk + γ 2
k p

−1
1

) (

1 − O(γ 2
k p

−1
1 )
)

.

The last equality holds by an identical argument to the one in the first case: we can
bound 1 − 2γk + γ 2

k p
−1
1 , and consequently its inverse, from above and below by

constants. We use this to calculate

P [Ai ]P [A j ] = η2k

(

1 − 2γk + γ 2
k

)n−k−1

= η2k

[(

1 − 2γk + γ 2
k p

−1
1

) (

1 − O(γ 2
k p

−1
1 )
)]n−k−1

= η2k

(

1 − 2γk + γ 2
k p

−1
1

)n−k−1 (

1 − O(γ 2
k p

−1
1 )
)n−k−1

.

But since γk < n−1 we have

(

1 − O(γ 2
k p

−1
1 )
)n−k−1 = 1 − O(nγ 2

k p
−1
1 )

= 1 − O(γk p
−1
1 ).

We calculate

P [Ai ]P [A j ] = η2k

(

1 − 2γk + γ 2
k p

−1
1

)n−k−1 (

1 − O(γk p
−1
1 )
)

= η2k

(

1 − 2γk + γ 2
k p

−1
1

)n−2k−1 (

1 − 2γk + γ 2
k p

−1
1

)k (

1 − O(γk p
−1
1 )
)

= η2k

(

1 − 2γk + γ 2
k p

−1
1

)n−2k−1
(1 − O(γk))

(

1 − O(γk p
−1
1 )
)

= η2k

(

1 − 2γk + γ 2
k p

−1
1

)n−2k−1 (

1 − O(γk p
−1
1 )
)

.
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Therefore

P [Ai ∩ A j ] − P [Ai ]P [A j ] = η2k

(

1 − 2γk + γ 2
k p

−1
1

)n−2k−1
O(γk p

−1
1 )

with O(n2k+1) such pairs i, j , making the total contribution of these pairs to the
variance

S1 = O
(

n2k−1η2k (1 − 2γk + γ 2
k p

−1
1 )n−2k+1γk p

−1
1 )
)

= O
(

n2k−1η2k (1 − 2γk + γ 2
k p

−1
1 )n−k−1γk p

−1
1 )
)

.

As before, the second equality follows from bounding (1 − 2γk + γ 2
k p

−1
1 )k−1 by

constants on either side.
Since

E [Mk−1]2 = O
(

n2k+2η2k (1 − 2γk + γ 2
k )n−k−1

)

it follows that

S1
E [Mk−1]2 = O

(

(1 − 2γk + γ 2
k p

−1
1 )n−k−1γk p

−1
1

n(1 − 2γk + γ 2
k )n−k−1

)

= O

⎛

⎝
γk p

−1
1

n

(

1 + γ 2
k (p−1

1 − 1)

1 − 2γk + γ 2
k

)n−k−1
⎞

⎠

= O

⎛

⎝
γk p

−1
1

n

(

1 + γ 2
k p

−1
1

1 − 2γk

)n−k−1
⎞

⎠ .

We proceed by bounding the right term by a constant.

(

1 + γ 2
k p

−1
1

1 − 2γk

)n−k−1

≤ exp

(

(n − k − 1)
γ 2
k p

−1
1

1 − 2γk

)

≤ exp

(

nγ 2
k p

−1
1

1 − k

)

≤ e1/(1−k).

Then
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S1
E [Mk−1]2 = O

(

γk p
−1
1

n

)

= O

(
1

n

)

= o(1).

Thus the contribution of these pairs is also o(E [Nk−1]2), as desired.

A.3: 2 ≤ I ≤ k

In this final case the probability of the two subcomplexes being contained is η2kη
−1
I

where ηI := ∏I−1
l=1 p

( I
l+1)

l . The η−1
I accounts for all faces common to i and j , which

would otherwise be counted twice. We note σi and σ j share between I − 2 and I
vertices, and assuming maximal overlap provides an upper bound on P [Ai ∩ A j ].
Hence the probability that neither will form a k-simplex with some other vertex is at

most
(

1 − 2γk + γ 2
k γ −1

I

)n−2k−2+I
with γI := ∏I

l=1 p
(Il)
l . The probability of one not

forming a k-simplex with one vertex of the other is 1 − O(γkγ
−1
I ). We see

P [Ai ∩ A j ] = η2kη
−1
I

(

1 − 2γk + γ 2
k γ −1

I

)n−2k−2+I (

1 − O(γkγ
−1
I )

)

.

Just as in the previous case,

1 − 2γk + γ 2
k =

(

1 − 2γk + γ 2
k γ −1

I

) (

1 − O(γ 2
k γ −1

I )
)

.

We now calculate

P [Ai ]P [A j ] = η2k

(

1 − 2γk + γ 2
k

)n−k−1

= η2k

(

1 − 2γk + γ 2
k γ −1

I

)n−k−1 (

1 − O(γ 2
k γ −1

I )
)n−k−1

= η2k

(

1 − 2γk + γ 2
k γ −1

I

)n−2k−2+I (

1 − O(γkγ
−1
I )

)

.

It then follows that

P [Ai ]P [A j ]
P [Ai ∩ A j ] =

η2k

(

1 − 2γk + γ 2
k γ −1

I

)n−2k−2+I (

1 − O(γkγ
−1
I )

)

η2kη
−1
I

(

1 − 2γk + γ 2
k γ −1

I

)n−2k−2+I (

1 − O(γkγ
−1
I )

)

= O(ηI ).
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Thus if ηI �= 1 then P [Ai ∩ A j ] − P [Ai ]P [A j ] = (1 − o(1))P [Ai ∩ A j ], and
otherwise P [Ai ∩ A j ] − P [Ai ]P [A j ] = η2k

(

1 − 2γk + γ 2
k γ −1

I

)n−2k+I
O(γkγ

−1
I ).

There are O(n2k+2−I ) such pairs, so their total contribution to the variance is either

SI = O

(

n2k+2−Iη2kη
−1
I

(

1 − 2γk + γ 2
k γ −1

I

)n−2k−2+I
)

= O

(

n2k+2−Iη2kη
−1
I

(

1 − 2γk + γ 2
k γ −1

I

)n−k−1
)

,

or

SI = O

(

n2k+2−Iη2k

(

1 − 2γk + γ 2
k γ −1

I

)n−k−1
γkγ

−1
I

)

.

In the first case we have

SI
E [Mk−1]2 = O

⎛

⎜
⎝

n2k+2−Iη2kη
−1
I

(

1 − 2γk + γ 2
k γ −1

I

)n−k−1

n2k+2η2k

(

1 − 2γk + γ 2
k

)n−k−1

⎞

⎟
⎠

= O

⎛

⎝
η−1
I

n I

(

1 − 2γk + γ 2
k γ −1

I

1 − 2γk + γ 2
k

)n−k−1
⎞

⎠ .

Just as before, the right-most term can be bounded above by a constant. We note

I−1
∑

l=1

αl

(
I

l + 1

)

<
I

k

k−1
∑

l=1

αl

(
k

l + 1

)

<
I

k
k = I

and conclude

SI
E [Mk−1]2 = O

(

η−1
I

n I

)

= O
(

n−I+∑I−1
l=1 αl(

I
l+1)
)

= o(1).

In the second case we have
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SI
E [Mk−1]2 = O

⎛

⎝
γkγ

−1
I

n I

(

1 − 2γk + γ 2
k γ −1

I

1 − 2γk + γ 2
k

)n−k−1
⎞

⎠

= O

(

γkγ
−1
I

n I

)

= O
(

n−I
)

= o(1).

Thus SI = o(E [Mk−1]2) for 2 ≤ I ≤ k. We therefore have that E [M2
k−1] =

o(E [Mk−1]2), and our result that Mk−1 ∼ E [Mk−1] follows by Chebyshev’s Inequal-
ity. 
�

Appendix B: Factorial Moments of Maximal Faces

Proof of Lemma 7.1 Similarly to previous second moment calculations:

E [N 2
k−1] =

(
n

k

) k
∑

m=0

[(
k

m

)(
n − k

k − m

)(k−1
∏

i=1

p
2( k

i+1)−( m
i+1)

i

)

×
(

1 − 2
k
∏

i=1

p
(ki)
i +

k
∏

i=1

p
2(ki)−(mi )
i

)n−2k+m

(1 − o(1))

]

.

We can simplify this slightly to

E [N 2
k−1] = (1 + o(1))

(
n

k

)(k−1
∏

i=1

p
2( k

i+1)
i

)
k
∑

m=0

[(
k

m

)(
n − k

k − m

)(m−1
∏

i=1

p
−( m

i+1)
i

)

×
(

1 − 2
k
∏

i=1

p
(ki)
i +

k
∏

i=1

p
2(ki)−(mi )
i

)n−2k+m ]

.

Pulling out the m = 0 summand, asymptotically

(
n

k

)(
n − k

k

)(k−1
∏

i=1

p
2( k

i+1)
i

)(

1 −
k
∏

i=1

p
(ki)
i

)2(n−2k)

= (1 + o(1))

⎛

⎝

(
n

k

)(k−1
∏

i=1

p
( k
i+1)

i

)(

1 −
k
∏

i=1

p
(ki)
i

)n−k⎞

⎠

2

= (1 + o(1))E [Nk−1]2.
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Meanwhile, them = k term is seen to beE [Nk−1].We claim the k−1 other summands
do not contribute in the limit. For a fixedm = 1, . . . , k−1 let dm < 1 be some constant
value such that

dm > max

{

1 − m(m − 1)

k(k − 1)
, 1 − m −∑m−1

i=1 αi
( m
i+1

)

k −∑k−1
i=1 αi

( k
i+1

)

}

.

Both fraction terms are between 0 and 1, so such a dm exists. For sufficiently large n
we have u

1 − 2
k
∏

i=1

p
(ki)
i +

k
∏

i=1

p
2(ki)−(mi )
i = 1 −

(

2 −
k
∏

i=1

p
(ki)−(mi )
i

)
k
∏

i=1

p
(ki)
i

≤ 1 − (1 + dm)

k
∏

i=1

p
(ki)
i .

Thus there exists a constant D such that

(

1 − 2
k
∏

i=1

p
(ki)
i +

k
∏

i=1

p
2(ki)−(mi )
i

)n−2k+m

≤
(

1 − (1 + dm)

k
∏

i=1

p
(ki)
i

)n−2k+m

≤ De
−n(1+dm )

(
∏k

i=1 p
(ki )
i

)

= De−(1+dm )(ρ1 log n+ k−1
2 log log n+c)

= Dn−(1+dm )ρ1 (log n)−(1+dm ) k−1
2 e−(1+dm )c.

Then by our construction of dm ,

n−(1+dm )ρ1 = o
(

n−2k+m+∑k−1
i=1 αi(

k
i)−

∑m−1
i=1 αi(

m
i )
)

and

(log n)−(1+dm ) k−1
2 = o

(

(log n)−(k−1)+m(m−1)
2k

)

.

It follows that the corresponding summand is bounded by

Dn2k−m
k−1
∏

i=1

p
2( k

i+1)−( m
i+1)

i n−(1+dm )ρ1(log n)−(1+dm ) k−1
2 = o(1),

thereby contributing nothing as n → ∞. Therefore,

E [(Nk−1)2] = E [N 2
k−1] − E [Nk−1] = E [Nk−1]2(1 − o(1)) → E [Nk−1]2

as n → ∞. We will now establish a similar result for each factorial moment.
We direct our attention to the lth factorial moment of Nk−1, assuming that

E [(Nk−1) j ] → E [Nk−1] j for all j < l. Using the notation from Sect. 3 we have
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E

[

Nl
k−1

]

= E

⎡

⎢
⎣

⎛

⎜
⎝

∑

σ∈([n]
k )

1Cσ

⎞

⎟
⎠

l⎤

⎥
⎦

=
∑

σ1,...,σl∈([n]
k )

P
[

Cσ1 ∩ · · · ∩ Cσl

]

.

We break up this sum into two parts: where no two σi ’s are identical and where
such two σi are the same. Considering the first case, an identical argument for l = 2
tells us the only summand contributing in the limit corresponds to when no two faces
share any vertices, and this term converges to E [Nk−1]l .

Moving on to the second case, we let s(l, j) and S(l, j) denote Stirling numbers of
the first and second kind, respectively. There are S(l, j)ways to break our σi up into j
groups where all faces in a group are the same. Moreover, for any such configuration
into j groups, the corresponding contribution toE [Nl

k−1]wouldbeE [N j
k−1].Webegin

by pulling out S(l, l − 1) = −s(l, l − 1) copies of E [Nl−1
k−1]. However, the number

of partitions of σi into k − 2 groups has now been overcounted. There should only be
S(l, l − 2) such configurations, but we have just counted −s(l, l − 1)S(l − 1, l − 2)
of them, so we add S(l, l − 2) + s(l, l − 1) S(l − 1, l − 2) = −s(l, l − 2) copies of
E [Nl−2

k−1].
Fixing some j < l − 1, we now assume attaching a coefficient of −s(l,m) to

E [Nm
k−1] for all m > j ensures every partition of the σi into j + 1, . . . l − 1 sets

is properly counted. Then for each m > j , the −s(l,m) copies of E [Nm
k−1] count−s(l,m) S(m, j) partitions into just j groups. Meanwhile we know there are actually

only S(l, j) distinct partitions, so we must add:

S(l, j) +
l−1
∑

m= j+1

s(l,m) S(m, j) =
l
∑

m= j+1

s(l,m) S(m, j)

=
l
∑

m= j

s(l,m) S(m, j) − s(l, j) S( j, j)

= δl, j − s(l, j) = −s(l, j).

The last line follows from a well-known Stirling number identity. We use induction to
conclude that as n → ∞,

E [Nl
k−1] → E [Nk−1]l −

l−1
∑

j=1

s(l, j)E [N j
k−1],

thus

E [(Nk−1) j ] =
l
∑

j=1

s(l, j)E [N j
k−1] → E [Nk−1]l
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for any fixed l. It follows that Nk−1 converges in distribution to Poi(μ) with μ =
E [Nk−1], completing our proof. 
�
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