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Abstract
We give algorithms with running time 2O(

√
k log k) · nO(1) for the following problems.

Given an n-vertex unit disk graph G and an integer k, decide whether G contains

– a path on exactly/at least k vertices,
– a cycle on exactly k vertices,
– a cycle on at least k vertices,
– a feedback vertex set of size at most k, and
– a set of k pairwise vertex-disjoint cycles.

For the first three problems, no subexponential time parameterized algorithms were
previously known. For the remaining two problems, our algorithms significantly
outperform the previously best known parameterized algorithms that run in time
2O(k0.75 log k) · nO(1). Our algorithms are based on a new kind of tree decompositions
of unit disk graphs where the separators can have size up to kO(1) and there exists a
solution that crosses every separator at most O(

√
k) times. The running times of our

algorithms are optimal up to the log k factor in the exponent, assuming the exponential
time hypothesis.

Keywords Longest path · Longest cycle · Cycle packing · Feedback vertex set · Unit
disk graph · Unit square graph · Parameterized complexity

Mathematics Subject Classification 68W01 · 68W40 · 68Q25

Editor in Charge: Kenneth Clarkson

The preliminary version of the paper appeared in the proceedings of ICALP 2017. The research leading to
the results of the paper is supported by Pareto-Optimal Parameterized Algorithms, ERC Starting Grant
715744, Parameterized Approximation, ERC Starting Grant 306992, Rigorous Theory of Preprocessing,
ERC Advanced Investigator Grant 267959, and NFR MULTIVAL project.

Extended author information available on the last page of the article

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00454-018-00054-x&domain=pdf
http://orcid.org/0000-0001-6213-8687


880 Discrete & Computational Geometry (2019) 62:879–911

1 Introduction

Unit disk graphs are the intersection graphs of unit circles in the plane. That is, given
n-unit circles in the plane, we have a graph G where each vertex corresponds to
a circle such that there is an edge between two vertices when the corresponding
circles intersect. Unit disk graphs form one of the most well studied graph classes in
computational geometry because of their use inmodelling optimal facility location [41]
and broadcast networks such as wireless, ad hoc and sensor networks [25,34,43].
These applications have led to an extensive study of NP-complete problems on unit
disk graphs in the realms of computational complexity and approximation algorithms.
We refer the reader to [11,19,30] and the citations therein for these studies. However,
these problems remain hitherto unexplored in the light of parameterized complexity
with exceptions that are few and far between [1,9,23,33,39].

In this paper we consider the following basic problems about finding, hitting and
packing cycles on unit disk graphs from the viewpoint of parameterized algorithms.
For a given graph G and integer k,

– Exactk-Cycle asks whether G contains a cycle on exactly k vertices,
– Longest Cycle asks whether G contains a cycle on at least k vertices,
– Feedback Vertex Set asks whether G contains a vertex set S of size k such
that the graph G \ S is acyclic, and

– Cycle Packing askswhetherG contains a set of k pairwise vertex-disjoint cycles.

Along the way, we also study Longest Path (decide whether G contains a path on
exactly/at least k vertices) and Subgraph Isomorphism (SI). In SI, given connected
graphs G and H on n and k vertices, respectively, the goal is to decide whether there
exists a subgraph inG that is isomorphic to H . Throughout the paper we assume that a
unit disk graph is given by a set of n points in the Euclidean plane and there is a graph
where vertices correspond to these points and there is an edge between two vertices if
and only if the Euclidean distance between the two points is at most 2.

In parameterized complexity each of these problems serves as a testbed for develop-
ment of fundamental algorithmic techniques such as color-coding [2], the polynomial
method [4,35,36,42], matroid based techniques [21] for Longest Path and Longest
Cycle, and kernelization techniques for Feedback Vertex Set [40]. We refer to
[13] for an extensive overview of the literature on parameterized algorithms for these
problems. For example, the fastest known algorithms solving Longest Path are the
1.66k ·nO(1) time randomized algorithm of Björklund et al. [4], and the 2.597k ·nO(1)

time deterministic algorithm of Zehavi [44]. Moreover, unless the exponential time
hypothesis (ETH) of Impagliazzo et al. [31] fails, none of the problems above can be
solved in time 2o(k) · nO(1) [31].

While all these problems remain NP-complete on planar graphs, substantially
faster—subexponential—parameterized algorithms are known on planar graphs.
In particular, by combining the bidimensionality theory of Demaine et al. [14]
with efficient algorithms on graphs of bounded treewidth [18], Longest Path,
Longest Cycle, Feedback Vertex Set and Cycle Packing are solvable in
time 2O(

√
k) · nO(1) on planar graphs. The parameterized subexponential “tractabil-

ity” of such problems can be extended to graphs excluding some fixed graph
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as a minor [16]. The bidimensionality arguments cannot be applied to Exactk-
Cycle and this was one of the motivations for developing the new pattern-covering
technique, which is used to give a randomized algorithm for Exactk-Cycle run-
ning in time 2O(

√
k log2 k) · nO(1) on planar and apex-minor-free graphs [20]. The

bidimensionality theory was also used to design (efficient) polynomial time approx-
imation scheme ((E)PTAS) [15,22] and polynomial kernelization [24] on planar
graphs.

It would be interesting to find generic properties of problems, similar to the theory
of bidimensionality for planar-graph problems, that could guarantee the existence of
subexponential parameterized algorithms or (E)PTAS on geometric classes of graphs,
such as unit disk graphs. The theory of (E)PTAS on geometric classes of graphs is
extremely well developed and several methods have been devised for this purpose.
This includes methods such as shifting techniques, geometric sampling and bidimen-
sionality theory [12,23,26–28,30,38]. However, we are still very far from a satisfactory
understanding of the “subexponential” phenomena for problems on geometric graphs.
We know that some problems such as Independent Set and Dominating Set,
which are solvable in time 2O(

√
k) ·nO(1) on planar graphs, are W[1]-hard on unit disk

graphs and thus the existence of an algorithm of running time f (k) · nO(1) is highly
unlikely for any function f [37]. The existence of a vertex-linear kernel for some
problems on unit disk graphs such as Vertex Cover [10] or Connected Ver-
tex Cover [33] combined with an appropriate separation theorem [1,9,39] yields a
parameterized subexponential algorithm. A subset of the authors of this paper used a
different approach based on bidimensionality theory to obtain subexponential algo-
rithms of running time 2O(k0.75 log k) ·nO(1) on unit disk graphs for Feedback Vertex
Set and Cycle Packing in [23]. No parameterized subexponential algorithms on
unit disk graphs for Longest Path, Longest Cycle, and Exactk-Cycle were
known prior to our work.

Our results.We design subexponential parameterized algorithms, with running time
2O(

√
k log k) · nO(1), for Exactk-Cycle, Longest Cycle, Longest Path, Feed-

back Vertex Set and Cycle Packing on unit disk graphs and unit square graphs.
It is also possible to show by known NP-hardness reductions for problems on unit disk
graphs [11] that an algorithm of running time 2o(

√
k) ·nO(1) for any of our problems on

unit disk graphs would imply that ETH fails. Hence our algorithms are asymptotically
almost tight. Along the way we also design Turing kernels (in fact, many-to-one) for
Exactk-Cycle,Longest Cycle,Longest Path and SI. That is, we give a polyno-
mial time algorithm that given an instance of Exactk-Cycle or Longest Cycle or
Longest Path or SI, produces polynomially many reduced instances of size polyno-
mial in k such that the input instance is aYes-instance if and only if one of the reduced
instances is a Yes-instance. As a byproduct of this we obtain a 2O(k log k) · nO(1) time
algorithm for SI when G is a unit disk graph and H is an arbitrary connected graph. It
is noteworthy to remark that a simple disjoint union trick implies that Exactk-Cycle,
Longest Cycle, Longest Path, and SI do not admit a polynomial kernel on unit
disk graphs [7]. Finally, we remark that we do not use Turing kernels to design our
subexponential time algorithms except for Exactk-Cycle. The subexponential time

123



882 Discrete & Computational Geometry (2019) 62:879–911

parameterized algorithm for Exactk-Cycle also uses a “double layering” of Baker’s
technique [3].

All our subexponential time algorithms have the following theme in common. If
an input n-vertex unit disk graph G contains a clique of size poly(k) (such a clique
can be found in polynomial time), then we have a trivialYes-instance orNo-instance,
depending on the problem. Otherwise, we show that the unit disk graph G in a Yes-
instance of the problem admits, sometimes after a polynomial time preprocessing,
a specific type of (ω,�, τ)-decomposition, where the meaning of ω, � and τ is as
follows. The vertex set of G is partitioned into cliques C1, . . . ,Cd , each of size at
most ω = kO(1). We also require that after contracting each of the cliques Ci to a
single vertex, the maximum vertex degree � of the obtained graph G̃ is O(1), while
the treewidth τ of G̃ is O(

√
k). Moreover, the corresponding tree decomposition of

G̃ can be constructed efficiently. We use the tree decomposition of G̃ to construct a
tree decomposition of G by “uncontracting” each of the contracted cliques Ci . While
the width of the obtained tree decomposition of G can be of order ω · τ = kO(1), we
show that each of our parameterized problems can be solved in time f (�) · ω f (�)·τ .
Here we use dynamic programming over the constructed tree decomposition of G,
however there is a twist from the usual way of designing such algorithms. This part
of the algorithm is problem-specific—in order to obtain the claimed running time, we
have to establish a very specific property for each of the problems. Roughly speaking,
the desired property of a problem is that it always admits an optimal solution such
that for every pair of adjacent bags X ,Y of the tree decomposition of G, the number
of edges of this solution “crossing” a cut between X and Y isO(

√
k). We remark that

the above decomposition is only given in the introduction to present our ideas for all
the algorithms in a unified way and the term (ω,�, τ)-decomposition is not defined
in the technical sections.

2 Preliminaries

For a positive integer t , we use [t] as a shorthand for {1, 2, . . . , t}. Given a function
f : A → B and a subset A′ ⊆ A, let f |A′ denote the restriction of the function f
to the domain A′. For a function f : A → B and B ′ ⊆ B, f −1(B ′) denotes the set
{a ∈ A : f (a) ∈ B ′}. For t, t ′ ∈ N, a set [t] × [t ′], i ∈ [t] and j ∈ [t ′] we use (∗, j)
and (i, ∗) to denote the sets {(i ′, j) : i ′ ∈ [t]} and {(i, j ′) : j ′ ∈ [t ′]}, respectively.
For a set U , we use 2U to denote the power set of U .

Graph Theory.Weuse standard notation and terminology from the book ofDiestel [17]
for graph-related terms which are not explicitly defined here. Given a graph G, V (G)

and E(G) denote its vertex-set and edge-set, respectively. When the graph G is clear
from context, we denote n = |V (G)| and m = |E(G)|. Given U ⊆ V (G), we let
G[U ] denote the subgraph of G induced by U , and we let G \ U denote the graph
G[V (G) \ U ]. For an edge subset E , we use V (E) to denote the set of endpoints
of edges in E and G[E] to denote the graph (V (E), E). For X ,Y ⊆ V (G), we
use E(X) and E(X ,Y ) to denote the edge sets {{u, v} ∈ E(G) : u, v ∈ X} and
{{u, v} ∈ E(G) : u ∈ X , v ∈ Y }, respectively. Moreover, we let N (U ) denote
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the open neighborhood of G. In case U = {v}, we denote N (v) = N (U ). Given
an edge e = {u, v} ∈ E(G), we use G/e to denote the graph obtained from G
by contracting the edge e. In other words, G/e denotes the graph on the vertex-set
(V (G) \ {u, v}) ∪ {x{u,v}}, where x{u,v} is a new vertex, and the edge-set E(G/e) =
E(G[V (G) \ {u, v}]) ∪ {{x{u,v}, w} | w ∈ N ({u, v})}. A graph H is called a minor of
G, if H can be obtained from G by a sequence of edge deletions, edge contractions
and vertex deletions. In a graph G, a sequence of vertices [u1u2 . . . u�] is called a path
in G, if for any i, j ∈ [�], i 	= j , ui 	= u j and {ur , ur+1} ∈ E(G) for all r ∈ [� − 1].
We also call the path P = [u1u2 . . . u�] as u1-u� path. The internal vertices of a
path P = [u1u2 . . . u�] are {u2, u3, . . . , u�−1}. A sequence of vertices [u1u2 . . . u�] is
called a cycle in G, if u1 = u�, [u1u2 . . . u�−1] is a path and {u�−1, u�} ∈ E(G). For
a path or a cycle Q, we use V (Q) to denote the set of vertices in Q. Given k ∈ N, we
let Kk denote the complete graph on k vertices. For a set X , we use K [X ] to denote
the complete graph on X .

Given a, b ∈ N, an a× b grid is a graph on a · b vertices, vi, j for (i, j) ∈ [a]× [b],
such that for all i ∈ [a − 1] and j ∈ [b], it holds that vi, j and vi+1, j are neighbors,
and for all i ∈ [a] and j ∈ [b − 1], it holds that vi, j and vi, j+1 are neighbors.
By slightly abusing the notation, for any two positive real numbers a and b, we use
the term a × b grid to denote a 
a� × 
b� grid. For ease of presentation, for any
function f : D → [a] × [b] (where a, b ∈ N), i ∈ [a], and j ∈ [b], we use f −1(i, j),
f −1(∗, j), and f −1(i, ∗) to denote the sets f −1((i, j)), f −1((∗, j)), and f −1((i, ∗)),
respectively.

A path decomposition is defined as follows.

Definition 2.1 A path decomposition of a graph G is a sequence P = (X1, X2, . . . ,

X�), where each Xi ⊆ V (G) is called a bag, that satisfies the following conditions:

–
⋃

i∈[�] Xi = V (G).
– For every edge {u, v} ∈ E(G) there exists i ∈ [�] such that {u, v} ⊆ Xi .
– For every vertex v ∈ V (G), if v ∈ Xi ∩ X j for some i ≤ j , then v ∈ Xr for all
r ∈ {i, . . . , j}.

The width of P is maxi∈[�] |Xi | − 1.

The pathwidth of G is the minimum width of a path decomposition of G, and it
is denoted by pw(G). A tree decomposition is a structure more general than a path
decomposition, which is defined as follows.

Definition 2.2 A tree decomposition of a graph G is a pair T = (T , β), where T is a
tree and β is a function from V (T ) to 2V (G), that satisfies the following conditions:

–
⋃

x∈V (T ) β(x) = V (G).
– For every edge {u, v} ∈ E(G) there exists x ∈ V (T ) such that {u, v} ⊆ β(x).
– For every vertex v ∈ V (G), if v ∈ β(x) ∩ β(y) for some x, y ∈ V (T ), then

v ∈ β(z) for all z on the unique path between x and y in T .

The width of T is maxx∈V (T ) |β(x)| − 1. Each β(x) is called a bag. Moreover, we let
γ (x) denote the union of the bags of x and its descendants.
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In other words, a path decomposition is a tree decomposition where T is a path,
but it will be convenient for us to think of a path decomposition as a sequence using
the syntax in Definition 2.1. The treewidth of G is the minimum width of a tree
decomposition of G, and it is denoted by tw(G).

Proposition 2.3 [8]Given a graph G and an integer k, in time 2O(k) · n, we can either
decide that tw(G) > k or output a tree decomposition of G of width 5k.

A nice tree decomposition is a tree decomposition of a form that simplifies the
design of dynamic programming (DP) algorithms. Formally,

Definition 2.4 A tree decomposition T = (T , β) of a graph G is nice if for the root r
of T , it holds that β(r) = ∅, and each node v ∈ V (T ) is of one of the following types:

– Leaf: v is a leaf in T and β(v) = ∅.
– Forget: v has exactly one child u, and there exists a vertex w ∈ β(u) such that

β(v) = β(u) \ {w}.
– Introduce: v has exactly one child u, and there exists a vertex w ∈ β(v) such that

β(v) \ {w} = β(u).
– Join: v has exactly two children, u and w, and β(v) = β(u) = β(w).

Proposition 2.5 [5] Given a graph G and a tree decomposition T of G, a nice tree
decomposition T ′ of the same width as T can be computed in linear time.

Geometric Graphs. Given a set of geometric objects O , the intersection graph of O
is a graph G with vertex set V (G) = O and edge set E(G) = {{u, v} : u, v ∈ O ,
u ∩ v 	= ∅}.

Let P = {p1 = (x1, y1), p2 = (x2, y2), . . . , pn = (xn, yn)} be a set of points in
the Euclidean plane. In the unit disk graph model, for every i ∈ [n], we let di denote
the disk of radius 1 whose centre is pi . Accordingly, we denote D = {d1, d2, . . . , dn}.
Then, the unit disk graph of D is the intersection graph of D. Alternatively, the unit
disk graph of D is the geometric graph of G such that E(G) = {{pi = (xi , yi ), p j =
(x j , y j )} | pi , p j ∈ D, i 	= j,

√
(xi − x j )2 + (yi − y j )2 ≤ 2}. In the unit square

graph model, for every i ∈ [n], we let si denote the axis-parallel unit square whose
centre is pi . Accordingly, we denote S = {s1, s2, . . . , sn}. Then, the unit square graph
of S is the intersection graph of S. Alternatively, the unit square graph of S is the
geometric graph G such that E(G) = {{pi = (xi , yi ), p j = (x j , y j )} | pi , p j ∈
S, i 	= j, |xi − x j | ≤ 1, |yi − y j | ≤ 1}.

3 Clique-Grid Graphs

In this section, we introduce a family of “grid-like” graphs, called clique-grid graphs,
that is tailored to fit our techniques. Given a unit disk/square graph G, we extract the
properties of G that we would like to exploit, and show that they can be captured by
an appropriate clique-grid graph. Let us begin by giving the definition of a clique-grid
graph. Roughly speaking, a graphG is a clique-grid graph if each of its vertices can be
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embedded into a single cell of a grid (where multiple vertices can be embedded into
the same cell), ensuring that the subgraph induced by each cell is a clique, and that
each cell can interact (via edges incident to its vertices) only with cells at “distance”
at most 2. Formally,

Definition 3.1 (Clique-grid graphs) A graph G is a clique-grid graph if there exists a
function f : V (G) → [t]× [t ′], for some t, t ′ ∈ N, such that the following conditions
are satisfied:

1. For all (i, j) ∈ [t] × [t ′], it holds that f −1(i, j) is a clique.
2. For all {u, v} ∈ E(G), it holds that if f (u) = (i, j) and f (v) = (i ′, j ′) then

|i − i ′| ≤ 2 and | j − j ′| ≤ 2.

Such a function f is a representation of G.

We note that a notion similar to clique-grid graph was also used by Ito and
Kadoshita [32]. For the sake of clarity, we say that a pair (i, j) ∈ [t] × [t ′] is a
cell. Moreover, whenever we discuss a clique-grid graph, we assume that we also have
the representation. Next, we show that a unit disk graph is a clique-grid graph.

Lemma 3.2 Let D be a set of points in the Euclidean plane, and let G be the unit disk
graph of D. Then, a representation f of G can be computed in polynomial time.

Proof The proof is by creating a grid F containing all the points in D with horizontal
and vertical lines where two consecutive horizontal/vertical lines are at a distance

√
2.

Here each square in F is of dimension
√
2×√

2. We say that a point is in a square if it
is inside the square or it is on the boundary of the square which is the left vertical line
or the bottom horizontal line of the square. Then we define a function f which maps
the points in the square to the square it belongs to. Then we prove that f is indeed a
representation for G.

More formally, denote xmin = min{xi | pi = (xi , yi ) ∈ D}, xmax = max{xi | pi =
(xi , yi ) ∈ D}, ymin = min{yi | pi = (xi , yi ) ∈ D} and ymax = max{yi | pi =
(xi , yi ) ∈ D}.Without loss of generality assume that xmin = 0 and ymin = 0 (otherwise
we shift the origin to the point (xmin, ymin)). Let t = �ymax/

√
2� + 1 and t ′ =

�xmax/
√
2� + 1. Now we define f : V (G) → [t] × [t ′] as follows. For all pi =

(xi , yi ) ∈ V (G), define ai = 
xi/
√
2 + 1�, bi = 
yi/

√
2 + 1� and f (pi ) = (ai , bi ).

First, let us verify that Condition 1 in Definition 3.1 is satisfied. To this end, let pi =
(xi , yi ) and p j = (x j , y j ) be two distinct vertices in V (G) such that f (pi ) = f (p j ).
Then, 
xi/

√
2+1� = 
x j/

√
2+1� and 
yi/

√
2+1� = 
y j/

√
2+1�. Thus, we have

that |xi − x j | <
√
2 and |yi − y j | <

√
2. In particular,

√
(xi − x j )2 + (yi − y j )2 < 2,

which implies that (pi , p j ) ∈ E(G).
Next, let us verify that Condition 2 in Definition 3.1 is satisfied. To this end, let

{pi = (xi , yi ), p j = (x j , y j )} ∈ E(G). Recall that f (pi ) and f (p j ) are denoted by
(ai , bi ) and (a j , b j ), respectively. Thus, to prove that f (p j ) ∈ {(a′, b′) | |ai − a′| ≤
2, |bi − b′| ≤ 2}, it should be shown that |ai − a j | ≤ 2 and |bi − b j | ≤ 2. By
substituting ai , a j , bi and b j , it should be shown that
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–

∣
∣
∣
∣

⌊
xi√
2

⌋

−
⌊
x j√
2

⌋∣
∣
∣
∣ ≤ 2, and

–

∣
∣
∣
∣

⌊
yi√
2

⌋

−
⌊
y j√
2

⌋∣
∣
∣
∣ ≤ 2.

We focus on the proof of the first item, as the proof of the second item is symmet-
ric. Without loss of generality, suppose that x j ≤ xi . Then, it remains to show that

xi/

√
2� − 
x j/

√
2� ≤ 2. Since G is the unit disk graph of D and {pi , p j } ∈ E(G),

it holds that
√

(xi − x j )2 + (yi − y j )2 ≤ 2. In particular, xi − x j ≤ 2. Denote

X = x j/
√
2. Then, 
xi/

√
2� − 
x j/

√
2� ≤ 
X + √

2� − 
X� ≤ 2. ��
Similarly, we can show the following.

Lemma 3.3 Let S be a set of points in the Euclidean plane, and let G be the unit square
graph of S. Then, a representation f of G can be computed in polynomial time.

Proof (Sketch) Like the case of Lemma3.2, the proof is by creating a grid F containing
all the points in D. But here the grid is formed by horizontal and vertical lines where
two consecutive horizontal/vertical lines are at a distance 1. Here each square in F is
of dimension 1×1. Again, we say that a point is in a square if it is inside the square or it
is on the boundary of the square which is the left vertical line or the bottom horizontal
line of the square. Then the required function f maps the points in the square to the
square it belongs to. ��

Consequently, we have the following.

Corollary 3.4 Let (G, O, H , k) ((G, O, k)) be an instance of SI (resp. Longest
Cycle) on unit disk/square graphs. Then, in polynomial time, one can output
a representation f such that (G, f , H , k) (resp. (G, f , k)) is an instance of
SI (resp. Longest Cycle) on clique-grid graphs that is equivalent to (G, O, H , k)
(resp. (G, O, k)).

We conclude this section by introducing the definition of an �-NCTD, which is
useful for doing our dynamic programming algorithms.

Definition 3.5 A tree decomposition T = (T , β) of a clique-grid graph G with rep-
resentation f is a nice �-clique tree decomposition, or simply an �-NCTD, if for the
root r of T , it holds that β(r) = ∅, and for each node v ∈ V (T ), it holds that

– There exist atmost� cells, (i1, j1), . . . , (i�, j�), such thatβ(v) = ⋃�
t=1 f −1(it , jt ),

and
– The node v is of one of the following types:

– Leaf: v is a leaf in T and β(v) = ∅.
– Forget: v has exactly one child u, and there exists a cell (i, j) ∈ [t]×[t ′] such

that f −1(i, j) ⊆ β(u) and β(v) = β(u) \ f −1(i, j).
– Introduce: v has exactly one child u, and there exists a cell (i, j) ∈ [t] × [t ′]

such that f −1(i, j) ⊆ β(v) and β(v) \ f −1(i, j) = β(u).
– Join: v has exactly two children, u and w, and β(v) = β(u) = β(w).
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A nice �-clique path decomposition, or simply an �-NCPD, is an �-NCTD where T
is a path. In this context, for convenience, we use the notation referring to a sequence
presented in Sect. 2.

4 The Cell Graph of a Clique-Grid Graph

In this section, we introduce two compact representations of clique-grid graphs. By
examining these representations, we are able to infer information on the structure of
clique-grid graphs that are also unit disk/square graphs.

Definition 4.1 (Backbone) Given a clique-grid graph G with representation f : V (G)

→ [t] × [t ′], an induced subgraph H of G is a backbone for (G, f ) if for every two
distinct cells L, L ′ ∈ [t] × [t ′] for which there exist u ∈ f −1(L) and v ∈ f −1(L ′)
such that {u, v} ∈ E(G), there also exist u′ ∈ f −1(L) and v′ ∈ f −1(L ′) such that
{u′, v′} ∈ E(H). If no induced subgraph of H is a backbone for (G, f ), then H is a
minimal backbone for (G, f ).

First, we bound the maximum degree of a minimal backbone.

Lemma 4.2 LetG bea clique-grid graphwith representation f , and let H beaminimal
backbone for (G, f ). Then, for all (i, j) ∈ [t]×[t ′], it holds that | f −1(i, j)∩V (H)| ≤
24. Furthermore, the maximum degree of H is at most 599.

Proof By Condition 2 in Definition 3.1, we have that for all cells (i, j) ∈ [t] × [t ′],
it holds that | f −1(i, j) ∩ V (H)| ≤ |{(i ′, j ′) ∈ [t] × [t ′] \ {(i, j)} : |i − i ′| ≤
2 and | j − j ′| ≤ 2}| ≤ 24. Thus, for all (i, j) ∈ [t] × [t ′], the degree in H of a vertex
in f −1(i, j) ∩ V (H) is bounded by

∣
∣
∣
∣

( ⋃

(i ′, j ′)∈[t]×[t ′]
|i−i ′|≤2
| j− j ′|≤2

f −1(i, j) ∩ V (H)

)

\ {v}
∣
∣
∣
∣

≤ ∣
∣{(i ′, j ′) ∈ [t] × [t ′] : |i − i ′| ≤ 2 and | j − j ′| ≤ 2}∣∣ · 24 − 1

= 25 · 24 − 1 = 599. ��
Note that it is easy to compute a minimal backbone. The most naive computation

simply initializes H = G; then, for every vertex v ∈ V (G), it checks if the graph
H \ {v} has the same backbone as H , in which case it updates H to H \ {v}. Thus, we
have the following.

Observation 4.3 Given a clique-grid graph G with representation f , a minimal back-
bone H for (G, f ) can be computed in polynomial time.

To analyze the treewidth of a backbone, we need the following.1

1 The paper [23] does not consider unit square graphs, but the arguments it presents for unit disk graphs
can be adapted to handle unit square graphs as well.
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Proposition 4.4 [23] Any unit disk/square graph with maximum degree � contains a
tw

100�3 × tw
100�3 grid as a minor, where tw is the treewidth of the graph.

Thus, we have the following.

Lemma 4.5 Given a clique-grid graph G that is a unit disk/square graph, a represen-
tation f of G and an integer � ∈ N, in time 2O(�) · nO(1), one can either correctly
conclude that G contains an α�×α� grid as a minor, or obtain a minimal backbone H
for (G, f ) with a nice tree decomposition T of width at most 5�, where α = 1

100·5993 .

Proof By Lemma 4.2, Observation 4.3 and Proposition 4.4, in polynomial time, one
can compute a minimal backbone of H such that H either contains a α� × α� grid
as a minor or has treewidth at most �. Since H is a subgraph of G, it holds that if H
contains an a× b grid as a minor, then G also contains an a× b grid as a minor. Thus,
by Propositions 2.5 and 2.3, we conclude the proof of the lemma. ��
Next, we define a more compact representation of a clique-grid graph.

Definition 4.6 (Cell graph) Given a clique-grid graphG with representation f : V (G)

→ [t] × [t ′], the cell graph of G, denoted by cell(G), is the graph on the vertex-
set {vi, j : i ∈ [t], j ∈ [t ′], f −1(i, j) 	= ∅} and edge-set {{vi, j , vi ′, j ′ } : (i, j) 	=
(i ′, j ′), ∃u ∈ f −1(i, j) ∃v ∈ f −1(i ′, j ′) such that {u, v} ∈ E(G)}.

By Definitions 4.1 and 4.6, we directly conclude the following.

Observation 4.7 For a clique-grid graph G, a representation f of G and a backbone
H for (G, f ), it holds that cell(G) is a minor of H.

Since for any graph G and a minor H of G, it holds that tw(H) ≤ tw(G), we have
the following.

Observation 4.8 For a clique-grid graph G, a representation f of G and a backbone
H for (G, f ), it holds that tw(cell(G)) ≤ tw(H).

Overall, from Lemma 4.5 and Observation 4.8, we directly have the following.

Lemma 4.9 Given a clique-grid graph G that is a unit disk/square graph, a represen-
tation f of G and an integer � ∈ N, in time 2O(�) · nO(1), one can either correctly
conclude that G contains an α� × α� grid as a minor, or compute a nice tree decom-
position of cell(G) of width at most 5�, where α = 1

100·5993 .

Note that a nice tree decomposition of cell(G) of width 5� corresponds to a 5�-
NCTD of G. In other words, Lemma 4.9 implies the following.

Corollary 4.10 Given a clique-grid graph G that is a unit disk/square graph, a repre-
sentation f of G and an integer � ∈ N, in time 2O(�) · nO(1), one can either correctly
conclude that G contains an α� × α� grid as a minor, or compute a 5�-NCTD of G,
where α = 1

100·5993 .
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5 Turing Kernels

For the sake of uniformity, throughout this section, we denote an instance (G, O, k)
((G, f , k)) of Longest Cycle on unit disk/square graphs (resp. clique-grid graphs)
also by (G, O, H , k) (resp. (G, f , H , k)) where H is the empty graph. Our objective
is to show that both SI and Longest Cycle on unit disk/square graphs admit a Turing
kernel [13, Chap. 9]. More precisely, we prove the following.

Theorem 5.1 Let (G, O, H , k) be an instance of SI (Longest Cycle) on unit
disk/square graphs. Then, in polynomial time, one can output a set I of instances
of SI (resp. Longest Cycle) on unit disk/square graphs such that (G, O, H , k) is
a Yes-instance if and only if at least one instance in I is a Yes-instance, and for all
(Ĝ, Ô, Ĥ , k̂) ∈ I, it holds that |V (Ĝ)| = O(k3), |E(Ĝ)| = O(k4), Ĥ = H and
k̂ = k.

To prove Theorem 5.1, we first need two definitions.

Definition 5.2 LetG be a clique-grid graphwith representation f : V (G) → [t]×[t ′],
H ′ be a subgraph of G, and � ∈ N. We say that H ′ is �-stretched if there exist cells
(i, j), (i ′, j ′) ∈ [t] × [t ′] such that the following conditions are satisfied:

– It holds that |i − i ′| ≥ 2� or | j − j ′| ≥ 2� (or both).
– It holds that V (H ′) ∩ f −1(i, j) 	= ∅ and V (H ′) ∩ f −1(i ′, j ′) 	= ∅.
For a clique-grid graphG with representation f : V (G) → [t]×[t ′] and a subgraph

G ′ of G we denote imin(G ′) = min
{
i ∈ [t] : (⋃

j∈[t ′] f −1(i, j)
) ∩ V (G ′) 	= ∅}

,

imax(G ′) = max
{
i ∈ [t] : (⋃

j∈[t ′] f −1(i, j)
) ∩ V (G ′) 	= ∅}

, jmin(G ′) =
min

{
j ∈ [t ′] : (⋃

i∈[t] f −1(i, j)
) ∩ V (G ′) 	= ∅}

and jmax(G ′) = max
{
j ∈ [t ′] :

(⋃
i∈[t] f −1(i, j)

) ∩ V (G ′) 	= ∅}
. We proceed by proving two claims concerning

solutions to Longest Cycle and SI on clique-grid graphs.

Lemma 5.3 Let I = (G, f : V (G) → [t]× [t ′], H , k) be an instance of SI on clique-
grid graphs. Then, for any subgraph H ′ of G that is isomorphic to H, it holds that H ′
is not 2k-stretched.

Proof Let H ′ be a subgraph of G that is isomorphic to H . To prove that H ′ is not 2k-
stretched, we need to prove that imax(H ′)−imin(H ′) < 2k and jmax(H ′)− jmin(H ′) <

2k. We only prove that imax(H ′) − imin(H ′) < 2k, as the proof that jmax(H ′) −
jmin(H ′) < 2k is symmetric.
Let i1 < i2 < · · · < i� for the appropriate � be the set of indices i ∈ [t] such

that
(⋃

j∈[t ′] f −1(i, j)
) ∩ V (H ′) 	= ∅. Note that i1 = imin(H ′) and i� = imax(H ′).

We claim that for all r ∈ [� − 1], it holds that ir+1 − ir ≤ 2. Suppose, by way
of contradiction, that there exists r ∈ [� − 1] such that ir+1 − ir > 2. Recall that
H is a connected graph, and therefore H ′ is also a connected graph. Thus, there
exists an edge {u, v} ∈ E(H ′) ⊆ E(G) and indices i ≤ ir and i ′ ≥ ir+1 such
that u ∈ ⋃

j∈[t ′] f −1(i, j) and v ∈ ⋃
j∈[t ′] f −1(i ′, j). However, this contradicts the

fact that f is a representation of G. Also, since |V (H ′)| ≤ k and H ′ is connected,
imax(H ′) − imin(H ′) < 2k. ��
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Definition 5.4 Let I = (G, f : V (G) → [t] × [t ′], k) be an instance of Longest
Cycle on clique-grid graphs. We say that I is a stretched instance if G has a cycle C
that is �-stretched for some � ≥ 2k.

Lemma 5.5 Let I = (G, f : V (G) → [t]×[t ′], k) be an instance of Longest Cycle
on clique-grid graphs. Then, it can be determined in polynomial time whether I is a
stretched instance, in which case it is also a Yes-instance.

Proof It is well known that for any given graph and pair of vertices in this graph,
one can determine (in polynomial time) whether the given graph has a cycle that
contains both given vertices by checking whether they are in the same biconnected
component of the graph (see, e.g., [29]). Thus, by considering every pair (u, v) of
vertices in V (G) such that |i − i ′| ≥ 2k or | j − j ′| ≥ 2k (or both) where f (u) = (i, j)
and f (v) = (i ′, j ′), we can determine (in polynomial time) whether I is a stretched
instance.

Now, suppose that I is a stretched instance. Then, G has a cycle C that is �-
stretched for some � ≥ 2k. Note that I ′ = (G, f ,C, |V (C)|) is a Yes-instance of SI
on clique-grid graphs. Thus, by Lemma 5.3, it holds that C is not 2|V (C)|-stretched.
Therefore, � < 2|V (C)|, and since � ≥ 2k, we conclude that k < |V (C)|. Thus, I is
a Yes-instance. ��

Next, we prove Theorem 5.1. Our method is inspired by Baker’s technique [3].

Proof of Theorem 5.1 First, by Corollary 3.4, we obtain (in polynomial time) an
instance (G, f , H , k) of SI (Longest Cycle) on clique-grid graphs that is equiv-
alent to (G, O, H , k). Now in polynomial time, we output a set I ′ of instances of
SI (resp. Longest Cycle) on clique-grid graphs such that (G, f , H , k) (and hence
(G, O, H , k)) is a Yes-instance if and only if at least one instance in I ′ is a Yes-
instance, and for all (Ĝ, f̂ , Ĥ , k̂) ∈ I, it holds that Ĝ is either an induced subgraph of
G or Kk̂ , t̂, t̂

′ ≤ 2k = O(̂k), | f̂ −1(i, j)| < k̂ for any cell (i, j) ∈ [̂t] × [̂t ′], Ĥ = H
and k̂ = k.

Towards constructing such a set I ′, suppose that there exists a cell (i, j) ∈ [t]×[t ′]
such that | f −1(i, j)| ≥ k, then by Definition 3.1, G[ f −1(i, j)] is a clique on at least
k vertices. In particular, the pattern H is a subgraph of G[ f −1(i, j)], and therefore
it is also a subgraph of G. Thus, in this case, we conclude the proof by setting I ′ to
be the set that contains only one instance, (Kk, f̂ : V (Kk) → [1] × [1], H , k). From
now on, suppose that for all cells (i, j) ∈ [t] × [t ′], it holds that | f −1(i, j)| < k.

Second, in case the input instance I is of Longest Cycle, we use the computation
given by Lemma 5.5 to determine whether I is a stretched instance. If the answer
is positive, then by Lemma 5.5, it holds that I is a Yes-instance. In this case, we
again conclude the proof by setting I ′ to be the set that contains only one instance,
(Kk, f̂ : V (Kk) → [1] × [1], H , k). From now on, also suppose that if the input
instance I is of Longest Cycle, then it is not stretched.

Now, our algorithm to construct I ′ works as follows. For every (p, q) ∈ [t] × [t ′],
it computes
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Gp,q = G

[ ⋃

p≤i<min{p+2k,t+1}
q≤ j<min{q+2k,t ′+1}

f −1(i, j)

]

.

Let f p,q : V (Gp,q) → [2k] × [2k] be such that f p,q(v) := (i − p + 1, j − q + 1),
where (i, j) = f (v). Thus, since f is a representation of G, it holds that f p,q is a rep-
resentation of Gp,q . Finally, our algorithm outputs I ′ = {Ip,q = (Gp,q , f p,q , H , k) :
(p, q) ∈ [t] × [t ′]}.

Next, we show that (G, f , H , k) is aYes-instance if and only if at least one instance
in I ′ is a Yes-instance. Since for all (Gp,q , f p,q , H , k) ∈ I ′, it holds that Gp,q is
an induced subgraph of G, we have that if (G, f , H , k) is a No-instance, then every
instance inI ′ isNo-instance aswell.Next, suppose that (G, f , H , k) is aYes-instance.
Let us consider two cases.

– (G, f , H , k) is an instance of SI. Then, let H ′ be a subgraph ofG that is isomorphic
to H . By Lemma 5.3, it holds that both imax(H ′)− imin(H ′) < 2k and jmax(H ′)−
jmin(H ′) < 2k. Therefore, H ′ is a subgraph of Gp,q , where p = imin(H ′) and
q = jmin(H ′). This implies that Ip,q is a Yes-instance.

– (G, f , H , k) is an instance of Longest Cycle. Then, let C be a subgraph of G
that is a cycle on at least k vertices. Since (G, f , H , k) is not stretched, it holds
that both imax(C) − imin(C) < 2k and jmax(C) − jmin(C) < 2k. Therefore, C is
a subgraph Gp,q , where p = imin(C) and q = jmin(C). This implies that Ip,q is
a Yes-instance.

To conclude our proof, it is sufficient to show that for any instance (Ĝ, f̂ , Ĥ , k̂) ∈
I ′, we can compute (in polynomial time) an equivalent instance (G ′, O ′, H ′, k′) of SI
(Longest Cycle) on unit disk/square graphs such that |O ′| = O(k′3), H ′ = H and
k′ = k. To this end, fix some instance (Ĝ, f̂ , Ĥ , k̂) ∈ I ′. Let us first handle the simple
case where Ĝ is equal to Kk̂ . Here, we conclude the proof by defining p′

i = (0, i/k)
for i ∈ [k], and then setting O ′ = {p′

i : i ∈ [k]}.
Now, suppose that Ĝ is an induced subgraph of G. Then, we have that

V (Ĝ) ⊆ O , and the unit disk/square graph of V (Ĝ) is exactly Ĝ. Thus, we define
(G ′, O ′, H ′, k′) = (Ĝ, V (Ĝ), Ĥ , k̂). It remains to show that |V (Ĝ)| = O(k3) and
|E(Ĝ)| = O(k4).

By Definition 3.1, it holds that

|V (Ĝ)| =
∑

(i, j)∈[̂t]×[̂t ′]
| f −1(i, j)|.

Thus, since t̂, t̂ ′ = O(k) and | f̂ −1(i, j)| ≤ k for (i, j) ∈ [̂t] × [̂t ′], we have that
|V (Ĝ)| = O(k3).

Now, denote X = {((i, j), (i ′, j ′)) : i, i ′ ∈ [t], j, j ′ ∈ [t ′], |i − i ′| ≤ 2, | j − j ′| ≤
2}. Since t̂, t̂ ′ = O(k), we have that |X | = O(k2). By Definition 3.1, it also holds that

|E(Ĝ)| ≤
∑

((i, j),(i ′, j ′))∈X
| f −1(i, j)| · | f −1(i ′, j ′)|.
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Thus, since |X | = O(k2), and | f̂ −1(i, j)| ≤ k for (i, j) ∈ [̂t] × [̂t ′], we have that
|E(Ĝ)| = O(k4). ��
We obtain the following corollary.

Corollary 5.6 Let (G, O, H , k) be an instance of SI (Longest Cycle) on unit
disk/square graphs. Then, in polynomial time, one can output a set I of instances
of SI (resp. Longest Cycle) on clique-grid graphs such that (i) (G, O, H , k) is a
Yes-instance if and only if at least one instance in I is a Yes-instance, and (ii) for all
(Ĝ, f̂ : V (Ĝ) → [̂t] × [̂t ′], Ĥ , k̂) ∈ I, it holds that Ĝ is either an induced subgraph
of G or Kk̂ , | f̂ −1(L)| < k̂ for any cell L ∈ [̂t] × [̂t ′], Ĥ = H, k̂ = k and t̂, t̂ ′ ≤ 2̂k.

The proof of Corollary 5.6 follows from the proof of Theorem 5.1, even though a
direct application of Corollary 3.4 on each output instance of Theorem 5.1 implies
Corollary 5.6 without explicit bound on t and t ′. Corollary 5.6 is used in Sects. 6 and 7.

6 Exact k-Cycle

In this section we prove the following theorem.

Theorem 6.1 Exactk-Cycle on unit disk/square graphs can be solved in 2O(
√
k log k)·

nO(1) time.

Because of Corollary 5.6, towards proving Theorem 6.1, we can assume that the
input to our algorithm is (G, f : V (G) → [t]×[t ′], k)where G is a clique-grid graph
with a representation f , | f −1(L)| < k for all L ∈ [t] × [t ′] and t, t ′ ≤ 2k. Without
loss of generality we can assume that f is a function from V (G) to [2k]×[2k], because
[t]×[t ′] ⊆ [2k]×[2k]. Since f −1(L) < k for all L ∈ [t]×[t ′] the number of vertices
in the input graph is bounded by O(k2).

Given an instance (G, f : V (G) → [2k]×[2k], k), the algorithm applies a method
inspired by Baker’s technique [3] and obtains a family F of 2O(

√
k log k) instances of

Exactk-Cycle. The family F has the following properties:

1. In each of these instances the input graph is an induced subgraph of G and has
size kO(1).

2. The input (G, f : V (G) → [2k] × [2k], k) is a Yes-instance if and only if there
exists an instance (H , f ∗ : V (H) → [2k]×[2k], k) ∈ F which is aYes-instance.

3. Moreover, for any instance (H , f ∗ : V (H) → [2k] × [2k], k) ∈ F , H has a nice
7
√
k-clique path decomposition (7

√
k-NCPD).

We will call the family F satisfying the above properties as good family. Let
(H , f ∗ : V (H) → [2k] × [2k], k) be an instance of F . Let P = (X1, . . . , Xq)

be a 7
√
k-NCPD of H . We first prove that if there is a cycle of length k in H , then

there is a cycle C of length k in H such that for any two distinct cells L and L ′ of f ,
the number of edges with one endpoint in L and other in L ′ is at most 5. Let C be such
a cycle in H . Then using the property of C we get the following important property:
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For any i ∈ [q], the number of edges of C with one endpoint in Xi and other in⋃
i< j≤q X j is upper bounded by O(

√
k).

The above mentioned property allows us to design a dynamic programming (DP)
algorithm over the 7

√
k-NCPD, P , for Exactk-Cycle in time 2O(

√
k log k). Now we

are ready to give formal details about the algorithm.

Lemma 6.2 Let (G, f : V (G) → [2k] × [2k], k) be an instance of Exactk-Cycle,
where G is a clique-grid graph with representation f , | f −1(L)| < k for all L ∈
[2k] × [2k]. Given (G, f : V (G) → [2k] × [2k], k), there is an algorithm running in
time 2O(

√
k log k) that outputs a good family F .

Proof LetC be a cycle of length k inG. First we define a columnof the 2k×2k grid. For
any j ∈ [2k] the set of cells {(i, j) : i ∈ [2k]} is called a column.There are 2k columns
for the 2k × 2k grid. We partition them into k blocks of two consecutive columns and
label them from the set of labels [�√k�]. That is, each pair of columns 2i − 1 and
2i , where i ∈ [k] is labelled with ((i − 1)mod �√k�) + 1. Then by the pigeonhole
principle there is a label � ∈ {1, 2, . . . , �√k�} such that the number of vertices from
V (C) which are in columns labelled � is at most

√
k. As |V (G)| ≤ kO(1), the number

of vertices of G in columns labelled � is at most kO(1). We guess the vertices of V (C)

which are in the columns labelled �. The number of potential guesses is bounded by
kO(

√
k). Let Y be the set of guessed vertices of V (C)which are in the columns labelled

by �. Notice that |Y | ≤ √
k. Then we delete all the vertices in columns labelled �,

except the vertices of Y . Let S be the set of deleted vertices. By the property 2 of
clique-grid graph, G \ (S ∪ Y ) is a disjoint union of clique-grid graphs each of which
is represented by a function with at most 2(�√k� − 1) ≤ 2

√
k columns. That is, let

G1 = G
[⋃2(�−1)

j=1 f −1(∗, j)
]
, and Gi+1 = G

[⋃min{(i ·2�√k�)+2�−2,2k}
j=(i−1)2�√k�+2�+1

f −1(∗, j)
]
for

all i ∈ {1, . . . , �√k�}.
By property 2 of clique-grid graph, G \ (S ∪ Y ) = G1 � · · · � G�√k�+1.

Claim 1 G \ S has a nice 7
√
k-clique path decomposition (7

√
k-NCPD).

Proof First, for each i ∈ {1, . . . , �√k� + 1}, we define a path decomposition of Gi

(in the next paragraph) such that each bag is a union of at most 6
√
k many cells of fi .

As G \ (S ∪ Y ) = G1 � · · · �G�√k�+1, and |Y | ≤ √
k, by adding Y to each bag of all

path decompositions we can get a required nice 7
√
k-clique path decomposition for

G \ S.
Now, for each Gi , we define a path decomposition Pi = (Xi,1, Xi,2, . . . , Xi,2k−2)

where Xi, j = f −1
i ( j, ∗) ∪ f −1

i ( j + 1, ∗) ∪ f −1
i ( j + 2, ∗). We claim that Pi is

indeed a path decomposition of Gi . Notice that
⋃k−1

j=1 Xi, j = f −1
i (∗, ∗) = V (Gi ).

By property 2 of clique-grid graph, we have that for each edge {u, v} ∈ E(G),
there exists j ∈ [2k − 2] such that {u, v} ∈ Xi, j . For each u ∈ V (G), u is
contained in at most three bags and these bags are consecutive in the sequence
(Xi,1, Xi,2, . . . , Xi,2k−2). Hence Pi is a path decomposition of Gi . Since Xi, j =
f −1
i ( j, ∗) ∪ f −1

i ( j + 1, ∗) ∪ f −1
i ( j + 2, ∗), the number of columns in fi is at
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most 2
√
k and each cell of fi is a cell of f , we have that each Xi, j is a union of

6
√
k many cells of f . Since G \ (S ∪ Y ) = G1 � · · · � G�√k�+1, the sequence

P ′ = (X1,1, . . . , X1,2k−2, X2,1, . . . , X2,2k−2, . . . , X�√k�+1,1, . . . , X�√k�+1,2k−2) is
a path decomposition of G \ (S ∪ Y ). Moreover, each bag is a union of ver-
tices from at most 6

√
k cells of f . Also, since |Y | ≤ √

k, the sequence P =
(X1,1∪Y , . . . , X1,k−2∪Y , . . . , X�√k�+1,1, . . . , X�√k�+1,k−2∪Y ) obtained by adding
Y to each bag of P ′ we get a path decomposition of G \ S. Moreover, each bag in P is
a union of vertices from at most 7

√
k cells of f . We can turn the path decomposition

P to a 7
√
k-NCPD by an algorithm similar to the one mentioned in Proposition 2.5. ��

Our algorithm will construct a familyF as follows. For each � ∈ {1, . . . , �√k�} and
for two subsets of vertices S and Y such that S ∪ Y is a set of vertices in the columns
labelled � and |Y | ≤ √

k, our algorithm will include an instance (G \ S, f |V (G)\S, k)
in F . The number of choices of S and Y is bounded by 2O(

√
k log k) and thus the size

of F is bounded by 2O(
√
k log k).

We claim thatF is indeed a good family. Suppose there is a cycle C of length k in
G. Then, by the pigeonhole principle there is � ∈ {1, . . . , �√k�} such that at most

√
k

vertices from V (C) are in the columns labelled by �. Let S′ be the set of vertices in
the columns labelled by �. Let Y = S′ ∩ V (C) and S = S′ \ Y . Notice that |Y | ≤ √

k.
The instance (G \ S, f |V (G)\S, k) in F , is a Yes-instance. This completes the proof
of the lemma. ��

Now we can assume that we are solving Exactk-Cycle on (H , f , k), where
(H , f , k) ∈ F (here we rename the function f |V (H) with f for ease of presentation).
In our algorithm we seek for a special kind of cycle which is defined as follows.

Definition 6.3 Let H be a clique-grid graph with representation f . A cycle C in H is
called a simplified cycle if for any two cells L and L ′ of f , the number of edges of
E(C) with one endpoint in L and other in L ′ is at most 5.

Now we prove that if there is a cycle of length k in H , then there is a simplified
cycle of length k in H . Towards that we first define some notations. For a path P =
[u1u2 . . . u�], we use ←−

P to denote the path [u�u�−1 . . . u1]. For any two paths P1 =
[u1 . . . ui ] and P2 = [ui . . . u�], we use P1P2 to denote the path [u1u2 . . . u�].
Lemma 6.4 Let (H , f : V (H) → [2k] × [2k], k) be a Yes-instance of Exactk-
Cycle. Then there is a simplified cycle of length k in H.

Proof Let C be a cycle of length k such that the number edges of E(C) whose
endpoints are in different cells is minimized. We claim that C is a simplified
cycle in H . Suppose not. Then there exist two cells L and L ′ such that the
number of edges of E(C) with one endpoint in L and other in L ′ is at least
6. Let C = P1[u1v1]P2[u2v2]P3[u3v3]P4[u4v4]P5[u5v5]P6[u6v6] where for each
{ur , vr }, r ∈ {1, . . . , 6}, one endpoint is in the cell L and other is in the cell L ′, and
each subpath P�, � ∈ {1, . . . , 6}, can be empty too. Since C is a cycle, at least 3
edges from {{ur , vr } : r ∈ {1, . . . , 6}} form a matching. Let {ur1 , vr1}, {ur2 , vr2}
and {ur3 , vr3} be a matching of size 3, where {r1, r2, r3} ⊆ {1, . . . , 6}. Then, by
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Fig. 1 Illustration of Lemma 6.4. Figure on the left is the cycle C = [ur vr ]Q1[ur ′vr ′ ]Q2 and the one on

the right is the cycle C ′ = [ur ur ′ ]
←−
Q 1[vr vr ′ ]Q2

the pigeonhole principle there exist r , r ′ ∈ {r1, r2, r3} such that either ur , ur ′ ∈
f −1(L)orur , ur ′ ∈ f −1(L ′).Without loss of generality assume thatur , ur ′ ∈ f −1(L)

(otherwisewe rename cell L with L ′ and vice versa). That is,C = [urvr ]Q1[ur ′vr ′ ]Q2
such that ur , ur ′ ∈ f −1(L) and vr , vr ′ ∈ f −1(L ′). Then, since f −1(L) and f −1(L ′)
are cliques,C ′ = [urur ′ ]←−Q 1[vrvr ′ ]Q2 is a cycle of length k in H , such that the number
edges of E(C ′) whose endpoints are in different cells is less than that of E(C), which
is a contradiction to our assumption. See Fig. 1 for an illustration of C and C ′. This
completes the proof of the lemma. ��

Next we design a DP algorithm that finds a simplified cycle of length k, if it exists.

Lemma 6.5 Let (H , f : V (H) → [2k] × [2k], k) ∈ F be an instance of Exactk-
Cycle and P be a 7

√
k-NCPD of H. Then, given (H , f : V (H) → [2k] × [2k], k)

and P , there is an algorithm A which runs in time 2O(
√
k log k), and outputs Yes, if

there is simplified cycle of length k in H. Otherwise algorithm A will output No.

Proof Algorithm A is a DP algorithm over the 7
√
k-NCPD P = (X1, . . . Xq) of H .

For any � ∈ [q], we define H� to be the induced subgraph H
[⋃

i≤� Xi
]
of H . Define

C to be the set of all simplified cycles of length k in H . Let C ∈ C. Since P is a
7
√
k-NCPD and the fact that for any two distinct cells L and L ′ of f , the number

of edges of C with one endpoint in L and other in L ′ is at most 5 (because C is a
simplified cycle in H ), we have that for any bag X� of P , the number of vertices of
V (C) ∩ X� which has a neighbor in V (H) \ X� is bounded by O(

√
k). This allows

us to keep only 2O(
√
k log k) states in the DP algorithm.

For a set Q of paths (of length 0 or more) and cycles, we define Q̂ =
{{u, v} | there is a u − v path P in Q}. Fix any � ∈ [q] and define C� to be the set
of connected components when we restrict C to H�. That is, each element in C� is
a path (maybe of length 0) or C itself (in that case C� = {C}). We also use C� to
denote the subgraph of C restricted to H�. See Fig. 2 for an illustration. Notice that⋃

F∈Ĉ�
F is the set of vertices of degree 0 or 1 in H�(C) and

⋃
F∈Ĉ�

F ⊆ X�. Since

X� is a union of vertices from at most 7
√
k many cells of f , C is a simplified cycle,

and by property 2 of the clique-grid graph, we have that the cardinality of
⋃

F∈Ĉ�
F
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Xυ υ υ υ υ υ υ υ υ υ υ1 2 3 4 5 1 2 3 4 5 6υ6

Fig. 2 Illustration of cycle C intersecting X�. The figure in the right side represents C�. Here the set Ĉ� is
{{v1, v6}, {v2, v4}, {v5}}

is at most 5 · 24 · 7√k = 840
√
k. In our DP algorithm we will have a state indexed by

(�, Ĉ�, |E(C�)|) of Boolean value, which will be set to 1. Formally, for any � ∈ [q],
k′ ∈ [k] and a family Z of vertex-disjoint sets of size at most 2 of X� with the prop-
erty that the cardinality of

⋃
Z∈Z Z is at most 840

√
k, we will have a DP table entry

A[�,Z, k′]. For each � ∈ [q], we maintain the following correctness invariants.

Correctness Invariants:

(i) For every C ∈ C, A[�, Ĉ�, |E(C�)|] = 1,
(ii) for any family Z of vertex-disjoint sets of size at most 2 of X� with

0 <
∣
∣
⋃

Z∈Z Z
∣
∣ ≤ 840

√
k, k′ ∈ [k], andA[�,Z, k′] = 1, there is a set Q

of |Z| vertex-disjoint paths in H� where the endpoints of each path are
specified by a set in Z and |E(Q)| = k′, and

(iii) if A[�,∅, k] = 1, then there is a cycle of length k in H�.

The correctness of the algorithmwill follow from the correctness invariants for � =
q. In what follows we explain how to compute A[�,Z, k′] for every � ∈ [q], k′ ∈ [k]
and familyZ of vertex-disjoint sets of size at most 2 of X� with

∣
∣
⋃

Z∈Z Z
∣
∣ ≤ 840

√
k,

the running time to compute it from the previously computed DP table entries, and
prove the correctness invariants. While proving the correctness invariants for �, we
assume that the correctness invariants hold for � − 1. When � = 1, X1 = ∅ and the
DP table entries are defined as follows:

A[1,∅, k′] =
{
1 if k′ = 0,
0 otherwise.

(1)

Since H1 = (∅,∅), the correctness invariants follow. The values A[1, ∗, ∗] can be
computed in O(1) time. Now we move to the case where � > 1.
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Case 1: X� is a forget bag. Fix a family Z of vertex-disjoint sets of size at most 2 of
X� such that

∣
∣
⋃

Z∈Z Z
∣
∣ is at most 840

√
k and k′ ∈ [k].

A[�,Z, k′] = A[� − 1,Z, k′]. (2)

ClearlyA[�,Z, k′] can be computed inO(1) time using the previously computed DP
table entries. In this case the correctness invariants follow from the fact that H� = H�−1
and X� ⊆ X�−1.

Case 2: X� is an introduce bag. That is X� = X�−1 ∪ f −1(L) for some cell L . Fix a
family Z of vertex-disjoint sets of size at most 2 of X� such that

∣
∣⋃

Z∈Z Z
∣
∣ is at most

840
√
k and k′ ∈ [k]. Define Q�(r) to be the family of sets of vertex-disjoint paths in

H [X� \ X�−1] = H [ f −1(L)] as follows. Each set of paths Q ∈ Q�(r) has at most
120 endpoints and |E(Q)| = r . Any set Q that satisfies the above properties will be
in Q�(r). Recall that Q̂ = {{u, v} | there is a u − v path in Q}. Define Q̂�(r) = {Q̂ :
Q ∈ Q�(r)}.
Claim 2 |Q̂�(r)| = kO(1) and Q̂�(r) can be enumerated in time kO(1).

Proof We know that H [ f −1(L)] is a complete graph. For any family W of vertex-
disjoint sets of size at most 2 of f −1(L), one can easily get |W| paths with endpoints
being the one specified by the sets inW , where each path is of length 0 or 1. To get |W|
vertex-disjoint paths with endpoints being the one specified by the sets inW with total
number of edges r , there should be enough vertices in f −1(L) \ (⋃

W∈W W
)
. That

is, when one of the following conditions holds: (i) either |{W ∈ W : |W | = 2}| = r ,
or (ii) 1 ≤ |{W ∈ W : |W | = 2}| < r and |{W ∈ W : |W | = 2}| + | f −1(L) \⋃

W∈W W | ≥ r . Moreover, since the number of vertices in the union of endpoints
of paths in a set Q ∈ Q�(r) is at most 120 and |V (H)| = kO(1), we can enumerate
Q̂�(r) in time kO(1). ��

For any family Y of sets of size at most 2 in X�, we say that Y forms a family
of paths (respectively, a cycle) in K [X�], if the graph

(⋃
Y∈Y Y , {e ∈ Y : |e| = 2})

forms a family of paths (respectively, a cycle). Now we move to the computation of
A[�,Z, k′]. Consider the case when Z 	= ∅.

If Z ∈ Q̂�(k
′), then we set A[�,Z, k′] = 1. (3)

Otherwise,

A[�,Z, k′] = max

{

A[� − 1,Z ′, k′′] : Z ′ 	= ∅ and there exist r ∈ N, Q̂ ∈ Q̂�(r),

E ′ ⊆ E

( ⋃

Q∈Q̂
Q,

⋃

Z∈Ẑ ′
Z

)

such that |E ′|≤120, k′ = k′′+r+|E ′|,

Z ′ ∪ Q̂ ∪ E ′ forms a setR of paths in K [X�], and R̂ = Z
}

. (4)
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Now consider the case when Z = ∅.

If A[� − 1,∅, k′] = 1, then we set A[�,∅, k′] = 1. (5)

Otherwise

A[�,∅, k′] = max

{

A[� − 1,Z ′, k′′] : there exist r ∈ N, Q̂ ∈ Q̂�(r),

E ′ ⊆ E

( ⋃

Q∈Q̂
Q,

⋃

Z∈Ẑ ′
Z

)

such that k′ = k′′ + r + |E ′|,

|E ′| ≤ 120, and Z ′ ∪ Q̂ ∪ E ′ forms a cycle in K [X�]
}

. (6)

Notice that in the above computation [(4) and (6)] the number of potential choices
for Z ′ is bounded by 2O(

√
k log k). By Claim 2 we know that the cardinality of Q̂�(r)

is at most kO(1) and it can be enumerated in time kO(1). Since |X�| = kO(1), the
number of choices for E ′ in the above computation is bounded by kO(1). This implies
that we can compute A[�,Z, k′] using previously computed DP table entries in time
2O(

√
k log k).

Before proving the correctness invariants, we state the following simple claim.

Claim 3 For any � ∈ [q], A[�,∅, 0] = 1.

Proof When � = 1, the claim follows from (1). For � = 2, . . . , q, the claim follows
from (2) or (5). ��

Now we prove the correctness invariants. Let C ∈ C. We partition the set of edges
E(C�) into E1�E2�E ′ where E1 = E(C�)∩E(H�−1), E2 = E(C�)∩E(X�\X�−1)

and E ′ = E(C�)∩ E(X�−1, X� \ X�−1). We have two cases based on whether Ĉ� = ∅
or not.

Suppose Ĉ� 	= ∅. IfC� is a subgraphof H [X�\X�−1], then Ĉ� ∈ Q̂�(|E(C�)|). Then
by (3), we have thatA[�, Ĉ�, |E(C�)|] = 1. So now we have that C� is not a subgraph
of H [X�\X�−1]. This implies that either E1 	= ∅ or E ′ 	= ∅. In either case,we have that
Ĉ�−1 	= ∅. Since X�−1 is a union of vertices from 7

√
k cells, C ∈ C and by property 2

of clique-grid graphs, we have that |E(X�−1, V (H)\X�−1)| ≤ 5 ·24 ·7√k = 840
√
k.

This implies that
∣
∣⋃

D∈Ĉ�−1
D

∣
∣ ≤ 840

√
k. By statement (ii) of the correctness invariant

for �−1, we have that (a)A[�−1, Ĉ�−1, |E(C�−1)|] = 1. Consider the graph H [E2].
The graph H [E2] is a collection Q of paths in H [X� \ X�−1] = K [ f −1(L)]. Since
C ∈ C, the number of edges of C with one endpoint in f −1(L) and other in X�−1 is
at most 5 · 24 = 120. This implies that (b) |E ′| ≤ 120 and (c) Q̂ ∈ Q̂�(r), where
r = |E(Q)|. By facts (a), (b) and (c), using (4), we get A[�, Ĉ�, |E(C�)|] = 1.

Now consider the case when Ĉ� = ∅. In this case either E(C) ∩ E(H�) = ∅
or E(C) ⊆ E(H�). If E(C) ∩ E(H�) = ∅, then |E(C�)| = 0 and hence
A[�, Ĉ�, |E(C�)|] = A[�,∅, 0] = 1, by Claim 3. Now we have Ĉ� = ∅ and
E(C) ⊆ E(H�). This implies that |E(C�)| = k. If E(C�) = E(C�−1), then
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A[� − 1, Ĉ�, k] = A[� − 1,∅, k] = 1, by statement (i) of the correctness invariants
for � − 1. Then, by (5), A[�,∅, k] = 1. So, now we assume that E(C�) 	= E(C�−1).
This implies that either E2 	= ∅ or E ′ 	= ∅. Since | f −1(L)| < k, C� = {C} and
E(C�) 	= E(C�−1),wehave that Ĉ�−1 	= ∅. The graph H [E2] is a collectionQ of paths
in H [X� \ X�−1] = K [ f −1(L)]. As like before, we can bound (d)

∣
∣
⋃

D∈Ĉ�−1
D

∣
∣ ≤

840
√
k, (e) |E ′| ≤ 120 and (g) Q̂ ∈ Q̂�(r), where r = |E(Q)|. By (d) and statement

(ii) of the correctness invariants for �− 1, we get (h) A[�− 1, Ĉ�−1, |E(C�−1)|] = 1.
By facts (h), (e) and (d), using (6), we get A[�, Ĉ�, |E(C�)|] = A[�,∅, k] = 1. This
completes the proof of statement (i).

Now we need to prove statement (ii) of the correctness invariants. Let Z be a
family of vertex-disjoint sets of size at most 2 of X� with 0 <

∣
∣
⋃

Z∈Z Z
∣
∣≤ 840

√
k and

k′ ∈ [k]. Notice thatZ 	= ∅. Suppose in the above computationwe setA[�,Z, k′] = 1.
Either A[�,Z, k′] is set to 1 because of (3) or because of (4). If A[�,Z, k′] is set to
1 because of (3), then we know that Z ∈ Q̂�(k′). By the definition of Q̂�(k′), we get
that there is a set R of vertex-disjoint paths in H [X� \ X�−1], hence in H [X�] and
R̂ = Z . So, now we assume that A[�,Z, k′] is set to 1 because of (4). This implies
that there exist k′′, r ∈ N, a family Z ′ of vertex-disjoint sets of size at most 2 of
X�−1, Q̂ ∈ Q̂�(r), and E ′ ⊆ E

(⋃
Q∈Q̂ Q,

⋃
Z∈Ẑ ′ Z

)
such thatA[�−1,Z ′, k′′] = 1,

|E ′| ≤ 120, k′ = k′′ + r + |E ′|, Z ′ ∪ Q̂ ∪ E ′ forms a set of paths R in K [X�] with
R̂ = Z . Since A[� − 1,Z ′, k′′] = 1, by statement (ii) of the correctness invariants
for � − 1, we have that there is a set Y of |Z ′| vertex-disjoint paths in H�−1 where
the endpoints of each path are specified by a set in Z ′ and |E(Y)| = k′′. Let Q be
the set of paths in Q�(r) corresponding to the set Q̂. Thus by replacing each edge
of Z ′ in Z ′ ∪ Q̂ ∪ E ′ by the corresponding path in Y and each edge of Q̂ by a
corresponding path in Q, we can get a set W of vertex-disjoint paths in H�, because
the internal vertices of paths in Y are disjoint from (X� \ X�−1) ∪ ⋃

Z∈Z Z and the
internal vertices of paths in Q are disjoint from X�−1 ∪ ⋃

Z∈Z Z . Moreover, Ŵ = Z
and |E(W)| = |E(Y)| + |E(Q)| + |E ′| = k′′ + r + |E ′| = k′. This completes the
proof of statement (ii) in the correctness invariants.

Now we prove statement (iii) in the correctness invariants. Suppose we set
A[�,∅, k] = 1. Then either A[�,∅, k] is set to 1 because of (5) or because of (6).
If A[�,∅, k] is set to 1 because of (5), then we know that A[� − 1,∅, k] = 1, then
by statement (iii) of the correctness invariants for � − 1, we have that there is a cycle
of length k in H�−1 and hence in H�. Suppose A[�,∅, k] is set to 1 because of (6).
Now the arguments for the proof is similar to that of the case for statement (ii), when
A[�,Z, k′] is set to 1 because of (4). This completes the proof of statement (iii) in the
correctness invariants.

Algorithm A outputs Yes if A[q,∅, k] = 1 and a outputs No otherwise. The
correctness of the algorithm follows from the correctness invariants. Now we analyse
the total running time. Notice that |V (H)| = kO(1) and number of DP table entries
is bounded by 2O(

√
k log k). Each DP table entry can be computed in time 2O(

√
k log k)

using the previously stored values in the DP table. Hence the total running time of the
algorithm is 2O(

√
k log k). ��

Lemmata 6.2, 6.4 and 6.5 imply the following lemma.
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Lemma 6.6 Let (G, f : V (G) → [2k] × [2k], k) be an instance of Exactk-Cycle,
where G is a clique-grid graph with representation f , | f −1(L)| < k for all L ∈
[2k]× [2k]. There is an algorithm which given (G, f : V (G) → [2k]× [2k], k), runs
in time 2O(

√
k log k), and decides whether G has a cycle of length k or not.

Corollary 5.6 andLemma6.6 implyTheorem6.1.We can design a similar algorithm
to solve Longest Path in time 2O(

√
k log k)nO(1).

7 Longest Cycle

In this section, we show that Longest Cycle admits a subexponential-time param-
eterized algorithm. More precisely, we prove the following.

Theorem 7.1 Longest Cycle on unit disk/square graphs can be solved in time
2O(

√
k log k) · nO(1).

To prove Theorem 7.1 we first apply Corollary 5.6 and then solve the problem on
each output instance (Ĝ, f̂ , k) where f̂ is a representation of Ĝ. We start with the
definition of contractible edges and state some simple results to prove Theorem 7.1.

Definition 7.2 Let G be a clique-grid graph with a representation f . A pair (u, v) of
distinct vertices u, v ∈ V (G) is contractible if f (u) = f (v).

Note that if (u, v) is a contractible pair, then by Condition 1 in Definition 3.1, it
holds that {u, v} ∈ E(G). Now, given a contractible pair (u, v), denote e = {u, v}, and
define the function f/e : V (G/e) → [t] × [t ′] as follows. For all w ∈ V (G) \ {v, u},
define f/e(w) = f (w). Moreover, define f/e(x{u,v}) = f (u) (Recall that {x{u,v}} =
V (G/e) \ V (G)). By Definitions 3.1 and 4.6, we immediately have the following.

Observation 7.3 G/e is a clique-grid graph and the function f/e is a representation
of G/e. Furthermore, G and G/e have the same cell graph.

Now, we verify that in case there exists a cycle on at least 2k vertices, the operation
that contracts an edge also preserves the answer Yes for Longest Cycle.

Lemma 7.4 Let (G, f , k) be an instance of Longest Cycle on clique-grid graphs
such that G contains a cycle C on at least 2k vertices. Then, (G/e, f/e, k) is a Yes-
instance.

Proof Denote e = {u, v}. In case V (C) ∩ {u, v} = ∅, then C is also a cycle in G/e,
and in case |V (C) ∩ {u, v}| = 1, then by replacing the vertex in V (C) ∩ {u, v} by
x{u,v} in C , we obtain a cycle of the same length as C in G/e. In both of these cases,
the proof is complete, and thus we next suppose that {u, v} ⊆ V (C).

Let us denote C = v1 −v2 −v3 −· · ·−v� −v1, where v1 = u and vi = v for some
i ∈ [�] \ {1}. Note that � ≥ 2k. Without loss of generality, assume that i − 2 ≥ � − i
(else we replace each v j , except for v1, by v�+2− j , and obtain a cycle where this
property holds). Now, note that C ′ = x{u,v} − v2 − · · · − vi−1 − x{u,v} is a cycle in
G/e. Moreover, since i − 2 ≥ � − i , it holds that |V (C ′)| = i − 1 ≥ �

2 ≥ k. Thus,
(G/e, f/e, k) is a Yes-instance. ��
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Before we present our algorithm, we need two additional propositions, handling
the extreme cases where we either discover that our input graph contains a large grid
or, after a series of operations that contracted edges in G, we ended up with a graph
isomorhpic to the cell graph of G. For the first case, we need the following result (see
also [13,16]).

Observation 7.5 Let (G, k) be an instance of Longest Cycle on general graphs. If
G contains a �√k� × �√k� grid as a minor, then (G, k) is a Yes-instance.

For the second case, we need the following result.

Observation 7.6 Let (G, f , k) be an instance of Longest Cycle on clique-grid
graphs. Then, it can be determined in time 2O(tw(cell(G))) · nO(1) whether cell(G)

contains a cycle on at least k vertices, in which case (G, f , k) is a Yes-instance.

Proof There is an algorithm for Longest Cycle running in time 2O(tw(G)) ·nO(1) [6].
Since cell(G) is a minor of G, the proof of the observation follows. ��

We are now ready to present our algorithm. The proof of correctness and analysis
of running times are integrated in the description of the algorithm.

Proof of Theorem 7.1 Let (G, O, k) be an instance of Longest Cycle on unit
disk/square graphs. By using Corollary 5.6, in polynomial time we get a set I of
instances of Longest Cycle on clique-grid graphs such that (G, O, k) is a Yes-
instance if and only if at least one instance in I is a Yes-instance, and for all
(Ĝ, f̂ , k̂) ∈ I, it holds that Ĝ is either an induced subgraph of G or Kk̂ , t̂, t̂

′ ≤ 2̂k,
| f̂ −1(L)| < k̂ for any cell L ∈ [̂t] × [̂t ′] and k̂ = k.

Now we fix an instance (Ĝ, f̂ , k) ∈ I. In the rest of the proof we explain how
to solve the instance (Ĝ, f̂ , k). Next, by using Lemma 4.9 with the parameter � =
100·5993 ·�√k�, we either correctly conclude that Ĝ contains a �√k�×�√k� grid as a
minor, or compute a tree decomposition of cell(Ĝ) ofwidth atmost 500·5993 ·�√k� =
O(

√
k). In the first case, by Observation 7.5, we are done. In the latter case, by using

Observation 7.6, we determine in time 2O(
√
k) ·nO(1) whether cell(Ĝ) contains a cycle

on at least k vertices, where if the answer is positive, then we are done. Thus, we next
suppose that cell(Ĝ) does not contain a cycle on at least k vertices.

Now, as long as there exists a contractible pair (u, v), we perform the following
operation. First, by using Lemma 6.6, we determine in time 2O(

√
k log k) ·nO(1) whether

Ĝ contains a cycle whose number of vertices is between k and 2k. If the answer is
positive, then we are done (our final answer is Yes). If the answer is negative, then
we contract the edge {u, v}. We know that (i) either Ĝ has a cycle of length at least 2k
or it has no cycle of length at least k. That is, if Ĝ has a cycle C of length at least k,
then by statement (i), |V (C)| ≥ 2k, and hence by Lemma 7.4, we obtain an instance
(after contracting {u, v}) that has a cycle of length at least k. If Ĝ has no cycle of
length at least k, then clearly the instance (after contracting {u, v}) has no cycle of
length at least k. Note that the loop described in this paragraph can have at mostO(n2)

iterations, and therefore its total running time is bounded by 2O(
√
k log k) · nO(1). Once

there does not exist a contractible pair (u, v), as we have only modified the graph
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by contracting edges, one at a time, between contractible pairs, we are left with a
graph that is isomorphic to the cell graph of our original input graph. We have already
correctly concluded that this graph does not contain a cycle on at least k vertices. Thus,
at this point, we correctly conclude that (Ĝ, f̂ , k) is a No-instance. ��

8 Feedback Vertex Set

In this section, we show that Feedback Vertex Set admits a subexponential-time
parameterized algorithm. More precisely, we prove the following.

Theorem 8.1 Feedback Vertex Set on unit disk/square graphs can be solved in
time 2O(

√
k log k) · nO(1).

First, we prove that there is a 2O(
√
k log k) · nO(1) time algorithm which either con-

cludes that there is no feedback vertex set of size k or outputs an O(
√
k)-NCTD of

the input graph.

Lemma 8.2 Let (G, O, k) be an instance of Feedback Vertex Set on unit
disk/square graphs. Then, in time 2O(

√
k log k) ·nO(1), one can either solve (G, O, k) or

obtain an equivalent instance (G, f , k) of Feedback Vertex Set on clique-grid
graphs together with an O(

√
k)-NCTD of G such that | f −1(L)| ≤ k + 2 for any

cell L.

Proof First, by using Lemmata 3.2 or 3.3, we obtain a representation f of G. Notice
that if there is a cell L of f , such that | f −1(L)| ≥ k + 3, then there is no feedback
vertex set of size at most k in G, because f −1(L) is a clique of size at least k+3 in G.
Now, by using Corollary 4.10 with � = 200 · 5993 · (�√k� + 1) = O(

√
k), we either

correctly conclude that G contains a 2(�√k� + 1) × 2(�√k� + 1) grid as a minor, or
compute an O(

√
k)-NCTD of G. If there is a 2(�√k� + 1) × 2(�√k� + 1) grid as a

minor, then there are more than k vertex-disjoint cycles in G and hence (G, O, k) is
a No-instance. ��

Because of Lemma 8.2, to prove Theorem 8.1, we can focus on Feedback Vertex
Set on clique-grid graphs, where the input also contains an O(

√
k)-NCTD. That is,

the input of Feedback Vertex Set on clique-grid graphs is a tuple (G, f , k, T )

where G is a clique-grid graph with representation f , | f −1(L)| ≤ k + 2 for all cells
L of f and T = (T , β) is anO(

√
k)-NCTD of G. The following observation follows

from the fact that T = (T , β) is anO(
√
k)-NCTD and | f −1(L)| ≤ k + 2 for any cell

L of f .

Observation 8.3 For any v ∈ V (T ), |β(v)| = O(k1.5).

Notice that G has a feedback vertex set of size at most k if and only if there is a
vertex subset F ⊆ V (G) of cardinality at least |V (G)| − k such that G[F] is a forest.
Hence, instead of stating the problem as finding a k sized feedback vertex set in G, we
can state it as finding an induced subgraph H of G with maximum number of vertices
such that H is a forest.
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Max Induced Forest (MIF) Parameter: k
Input: A clique-grid graph G with representation f and an integer k such that T
is a c

√
k-NCTD of G and for any cell L in f , | f −1(L)| ≤ k + 2, where c is a

constant.
Question: Is there subset W ⊆ V (G) such that G[W ] is a forest and |W | ≥
|V (G)| − k?

Observation 8.4 Let (G, f , k, T ) be an instance of MIF. Then (G, f , k, T ) is aYes-
instance of MIF if and only if (G, f , k, T ) is a Yes-instance of Feedback Vertex
Set.

By Lemmas 8.2 and 8.4, to prove Theorem 8.1, it is sufficient that we prove the
following result (which is the focus of the rest of this section).

Lemma 8.5 MIF on clique-grid graphs can be solved in time 2O(
√
k log k) · nO(1).

Proof (Sketch) We explain a DP algorithm which given as input (G, f , k, T ) where
G is a clique-grid graph with representation f , T = (T , β) is a c

√
k-NCTD, c is a

constant and | f −1(L)| ≤ k + 2 for any cell L of f and outputs Yes if there is an
induced forest with at least |V (G)| − k vertices and outputs No otherwise. Here we
use the term solution for a vertex subset S ⊆ V (G) with the property that G[S] is a
forest. First notice that any solution S contains at most 2 vertices from f −1(L) for any
cell L of f . Now, the following claim follows from the fact that T is a c

√
k-NCTD

and any solution contains at most 2 vertices from f −1(L) for any cell L .

Claim 4 For any v ∈ V (T ) and any solution S, |S ∩ β(v)| ≤ 2c
√
k.

We first briefly explain what the table entries are in a standard DP algorithm for
our problem on graphs of bounded treewidth [13]. Then we explain that in fact many
of the entries we compute in the standard DP table is redundant in our case, because
of Observation 8.3 and Claim 4. That is, Observation 8.3 and Claim 4 show that
only 2O(

√
k log k) · |V (G)|O(1) many states in the DP table are relevant in our case.

Recall that for any v ∈ V (T ), γ (v) denotes the union of the bags of v and its
descendants. The standard DP table for our problem will have an entry indexed by
(v,U , {U1,U2, . . . ,U�})where v ∈ V (T ),U ⊆ β(v) andU1�U2�· · ·�U� = U . The
table entryA[v,U , {U1,U2, . . . ,U�}] stores the following information: themaximum
cardinality of a vertex subsetW ⊆ G[γ (v)] such thatW ∩β(v) = U ,G[W ] is a forest
with a set of connected components C and for any C ∈ C, either V (C) ∩ β(v) = ∅ or
V (C) ∩ β(v) = Ui for some i ∈ [�]. Notice that the total number of DP table entries
is bounded by twO(tw) · |V (G)|O(1) where tw is the width of the tree decomposition
T . One can easily show that the computation of the DP table at a node can be done in
time polynomial in the size of the tables of its children.

By Observation 8.3 and Claim 4, we know that for any bag β(v) in T , the
potential number of subsets of β(v) which can be part of any solution is at most
2O(

√
k log k). This implies that we only need to compute the DP table entries for indices

(v,U , {U1,U2, . . . ,U�}) where v ∈ V (T ), U ⊆ β(v) and |U | ≤ 2c
√
k. Thus, the

size of the DP table, and hence the time to compute it takes 2O(
√
k log k) · nO(1) time.

This concludes the description. ��
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9 Cycle Packing

In this section, we show that Cycle Packing admits a subexponential-time param-
eterized algorithm. More precisely, we prove the following.

Theorem 9.1 Cycle Packing on unit disk/square graphs can be solved in time
2O(

√
k log k) · nO(1).

First, we prove that there is a 2O(
√
k log k) · nO(1) time algorithm which either con-

cludes that there are k vertex-disjoint cycles or outputs anO(
√
k)-NCTD of the input

graph.

Lemma 9.2 Let (G, O, k) be an instance of Cycle Packing on unit disk/square
graphs. Then, in time 2O(

√
k log k) · nO(1), one can either solve (G, O, k) or obtain

an equivalent instance (G, f , k) of Cycle Packing on clique-grid graphs together
with an O(

√
k)-NCTD of G such that | f −1(L)| ≤ 3k for all cells L of f .

Proof First, by using Lemmata 3.2 or 3.3, we obtain a representation f of G. If there
exists a cell L of f such that | f −1(L)| ≥ 3k, then by Condition 1 in Definition 3.1,
G[ f −1(L)] is a clique on at least 3k vertices and thus it contains k pairwise vertex-
disjoint cycles (triangles). Now, by using Corollary 4.10 with � = 200 ·5993 · �√k� =
O(

√
k), we either correctly conclude that G contains a 2�√k� × 2�√k� grid as a

minor, or compute an O(
√
k)-NCTD of G. If G contains 2�√k� × 2�√k� grid as a

minor, then G has k vertex-disjoint cycles. ��
By Lemma 9.2 to prove Theorem 9.1, it is sufficient that we prove the following

result (which is the focus of the rest of this section).

Lemma 9.3 Cycle Packing on clique-grid graphs can be solved in time 2O(
√
k log k) ·

nO(1), assuming that the input includes anO(
√
k)-NCTD of G, and that for every cell

L of f , it holds that | f −1(L)| ≤ 3k.

Let (G, f : V (G) → [t] × [t ′], k) denote the input instance of Cycle Packing,
and let T = (T , β) denote our O(

√
k)-NCTD of G. For simplicity, from now on, let

L = [t] × [t ′]. Note that since T is an O(
√
k)-NCTD, and since for every L ∈ L, it

holds that | f −1(L)| ≤ 3k, we also have the following.

Observation 9.4 For all v ∈ V (T ), it holds that |β(v)| = O(k1.5).

We proceed by considering the “interaction” between cells in the context of the
manner inwhich cycles in a solution cross their boundaries. To be precise, byDefinition
3.1, we first observe the following.

Observation 9.5 Let C be an induced cycle in G. Then, there does not exist a cell
L ∈ L and two distinct vertices u, v ∈ V (C) ∩ f −1(L) such that {u, v} /∈ E(C). In
particular, for every cell L ∈ L, exactly one of the following conditions holds:

1. V (C) ⊆ f −1(L).
2. |V (C) ∩ f −1(L)| = 1.
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3. |V (C) ∩ f −1(L)| = 2 and the two vertices in V (C) ∩ f −1(L) are neighbors in
C.

That is, any induced cycle C in G can have at most 2 vertices in a cell and if there
are two vertices in a cell, then they are adjacent in C . Hence the interaction of an
induced cycle from a cell to the rest of the cells is at most 2 (in other words the number
of edges ofC with one endpoint in a cell L and other endpoint is not in L is at most 2).
Next, note that given a set C of pairwise vertex-disjoint cycles and a cycle C ∈ C that
is not an induced cycle in G, by replacing C in C by an induced cycle in G[V (C)], we
obtain another set of pairwise vertex-disjoint cycles. Thus, we have the following.

Observation 9.6 If (G, f , k) is aYes-instance, then G contains a set C of k pairwise-
disjoint induced cycles.

Definition 9.7 Given two distinct cells L, L ′ ∈ L, we say that C crosses (L, L ′) if
there exist (not necessarily distinct) u, v ∈ f −1(L) and distinct w, r ∈ f −1(L ′) such
that {u, w}, {v, r} ∈ E(C). Moreover, we say that C crosses {L, L ′} if it crosses at
least one of the pairs (L, L ′) and (L ′, L).

That is, when an induced cycle C crosses {L, L ′}, then there are exactly two edges
from C which are across L and L ′ (i.e., one endpoint is in L and other is in L ′). If
C crosses {L, L ′}, then by Observation 9.5, we know that for any “crossing edge” of
E(C) with one endpoint in L , the other must be in L ′ and vice versa. If an induced
cycleC crosses {L, L ′} for two distinct cells L, L ′ ∈ [t]×[t ′], then at least 3 vertices of
C are in f −1(L)∪ f −1(L ′). Now, because of Observation 9.5 if V (C)∩ f −1(L) 	= ∅
and there does not exist a cell L ′ such that C crosses {L, L ′}, then the cell L interacts
with two other cells. This case is captured in the following definition.

Definition 9.8 Given three distinct cells L1, L2, L3 ∈ L, we say that C crosses
(L1, L2, L3) if there exist u ∈ f −1(L1) (not necessarily distinct) v,w ∈ f −1(L2)

and r ∈ f −1(L3) such that {u, v}, {w, r} ∈ E(C). Moreover, we say that C crosses
{L1, L2, L3} if it crosses at least one of the tuples in {(Ls, Lr , Lt ) : {s, r , t} =
{1, 2, 3}}.

If an induced cycleC crosses {L1, L2, L3} for three distinct cells (L1, L2, L3) ∈ L,
then at least one vertex ofC is in f −1(Lr ) for any r ∈ [3]. Next, we use the definitions
above to capture the set of cycles which we would like to detect (if a solution exists).

Definition 9.9 A set C of pairwise vertex-disjoint induced cycles is simple if it satisfies
the following conditions:

– For every two distinct cells L, L ′ ∈ L, there exist at most two cycles in C that
cross {L, L ′}.

– For every three distinct cells L1, L2, L3 ∈ L, there exist at most two cycles in C
that cross {L1, L2, L3}.
Given a cycle C (in G), denote cross(C) = {{u, v} ∈ E(C) : f (u) 	= f (v)},

and given a set C of cycles, denote cross(C) = ⋃
C∈C cross(C). If {u, v} ∈ cross(C)

for some induced cycle C then either C crosses { f (u), f (v)} or there exists a cell
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L3 ∈ L \ { f (u), f (v)} such that C crosses { f (u), f (v), L3}. Next, we show that we
can focus on deciding whether a simple set, rather than a general set, of k pairwise-
disjoint cycles exists.

Lemma 9.10 If (G, f , k) is aYes-instance, then G contains a simple set of k pairwise-
disjoint induced cycles.

Proof Suppose that (G, f : V (G) → L, k) is a Yes-instance. Next, let C denote a set
of k pairwise vertex-disjoint induced cycles that minimizes |cross(C)| among all such
sets of cycles (the existence of at least one such set of induced cycles is guaranteed by
Observation 9.6). We will show that C is simple. In what follows, we implicitly rely
on Condition 1 in Definition 3.1.

First, suppose that there exist two distinct cells L, L ′ ∈ L and three cycles in C that
cross {L, L ′}. Let C1,C2 and C3 denote these three cycles. Notice that (a) for each
L∗ ∈ {L, L ′} and i ∈ {1, 2, 3}, |V (Ci ) ∩ f −1(L∗)| ≥ 1 and (b) |(V (C1) ∪ V (C2) ∪
V (C3)) ∩ ( f −1(L) ∪ f −1(L ′))| ≥ 9 (see Definition 9.7). Then, at least one of the
three following conditions is true.

1. |(V (C1) ∪ V (C2) ∪ V (C3)) ∩ f −1(L)| = 3. In this case |(V (C1) ∪ V (C2) ∪
V (C3))∩ f −1(L ′)| ≥ 6 (see statement (b) above). Here we replaceC1,C2 andC3
in C by some cycle on three vertices inG[(V (C1)∪V (C2)∪V (C3))∩ f −1(L)] and
two vertex-disjoint cycles, each on three vertices, inG[(V (C1)∪V (C2)∪V (C3))∩
f −1(L ′)]. We thus obtain a set of k pairwise vertex-disjoint induced cycles, C′,
such that |cross(C′)| < |cross(C)|, which is a contradiction to the choice of C.

2. |(V (C1)∪V (C2)∪V (C3))∩ f −1(L ′)| = 3: This case is symmetric to the previous
one.

3. The above two cases do not occur. First we claim that there exist distinct s, t ∈
{1, 2, 3} such that |(V (Cs) ∪ V (Ct )) ∩ f −1(L)| ≥ 3 and |(V (Cs) ∪ V (Ct )) ∩
f −1(L ′)| ≥ 3. Consider the cycles C1 and C2. If C1 and C2 are the two required
cycles, then |V (Ci ) ∩ f −1(L1)| ≥ 2 and |V (Ci ) ∩ f −1(L2)| = 1 for i ∈ {1, 2},
where {L1, L2} = {L, L ′}. If |V (C3)∩ f −1(L2)| ≥ 2, then C1 and C3 are the two
required cycles. Otherwise we have that |(V (C1)∪V (C2)∪V (C3))∩ f −1(L2)| =
3. This is a contradiction to our assumption. In this case, we replace Cs and Ct

in C by some cycle on three vertices in G[(V (Cs) ∪ V (Ct )) ∩ f −1(L)] and some
cycle on three vertices in G[(V (Cs) ∪ V (Ct )) ∩ f −1(L ′)]. We thus obtain a set of
k pairwise vertex-disjoint induced cycles, C′, such that |cross(C′)| < |cross(C)|,
which is a contradiction to the choice of C.
Second, suppose that there exist three distinct cells L1, L2, L3 ∈ L and three cycles

in C that cross {L1, L2, L3}. Let C1,C2 and C3 denote these three cycles. Then, it
holds that |(V (C1)∪V (C2)∪V (C3))∩ f −1(L1)| ≥ 3, |(V (C1)∪V (C2)∪V (C3))∩
f −1(L2)| ≥ 3 and |(V (C1)∪V (C2)∪V (C3))∩ f −1(L3)| ≥ 3.We replaceC1,C2 and
C3 in C by some cycle on three vertices in G[(V (C1) ∪ V (C2) ∪ V (C3)) ∩ f −1(L1)],
some cycle on three vertices in G[(V (C1) ∪ V (C2) ∪ V (C3)) ∩ f −1(L2)], and some
cycle on three vertices in G[(V (C1) ∪ V (C2) ∪ V (C3)) ∩ f −1(L3)]. This yields a
contradiction to the choice of C. ��

Now, we examine the information given by Lemma 9.10 to extract a form that
will be easier for us to exploit. To this end, we need the following. Given a set C of
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cycles and a cell L ∈ L, denote cross(C, L) = (V (cross(C))) ∩ f −1(L) (recall that
cross(C) = ⋃

C∈C cross(C) = {{u, v} ∈ E(C) : f (u) 	= f (v) and C ∈ C}).
Lemma 9.11 If (G, f : V (G) → L, k) is a Yes-instance, then G contains a set C
of k pairwise-disjoint induced cycles such that for every cell L ∈ L, it holds that
|cross(C, L)| ≤ 2304 = O(1).

Proof Suppose that (G, f , k) is aYes-instance. By Lemma 9.10, there exists a simple
set C of k pairwise-disjoint induced cycles. Let L ∈ L be some cell. Given a cell
L ′ ∈ L \ {L}, denote C(L ′) = {C ∈ C : C crosses {L, L ′}}. Moreover, given cells
L2, L3 ∈ L \ {L}, denote C(L2, L3) = {C ∈ C : C crosses {L, L2, L3}}. Now, we
define two sets of indices:

– I = {L ′ ∈ L \ {L} : C(L ′) 	= ∅}.
– I ′ = {(L2, L3) ∈ (L \ {L}) × (L \ {L}) : C(L2, L3) 	= ∅ and L2 	= L3}.
Then, by Observation 9.5 and Lemma 9.10, it holds that

|cross(C, L)| ≤ 2

⎛

⎝

∣
∣
∣
∣
∣

⋃

L ′∈I
C(L ′)

∣
∣
∣
∣
∣
+

∣
∣
∣
∣
∣
∣

⋃

(L2,L3)∈I ′
C(L2, L3)

∣
∣
∣
∣
∣
∣

⎞

⎠ ≤ 4(|I| + |I ′|).

Here, the first inequality follows from the fact that for any two cells L, L ′ and any
induced cycle C , the number of edges of C with one endpoint in L and other in L ′ is
at most 2 (by Observation 9.5). Note that for a cell L = (i, j) ∈ L, |{(i ′, j ′) = L ′ ∈
L \ {(i, j)} : |i − i ′| ≤ 2, | j − j ′| ≤ 2}| ≤ 24. Thus, by Condition 2 in Definition
3.1, we have that |I| ≤ 24 and |I ′| ≤ 24 · 23 = 552. Therefore, |cross(C, L)| ≤
4(24 + 552) = 2304. ��

Weare now ready to prove Lemma 9.3. Except for the argumentswherewe crucially
rely on Lemma 9.11 and the fact the we have anO(

√
k)-NCTD and not some general

nice tree decomposition, the description of the DP is standard (see, e.g., [13]). Thus,
we only give a sketch of the proof.

Proof (Sketch) of Lemma 9.3 Let us first examine a standardDP tableA to solveCycle
Packing when the parameter is tw(G). Here, we have an entryA[v,Z, k′] for every
node v ∈ V (T ), multiset Z of subsets of sizes 1 or 2 of β(v) and nonnegative integer
k′ ≤ k. Moreover, each set of size 1 in Z has only one occurrence and its vertex does
not appear in any set of size 2 in Z , and every vertex in β(v) appears in at most two
sets in Z . Each such entry stores either 0 or 1. The value is 1 if and only if there exist
a set S of k′ pairwise vertex-disjoint cycles in G[γ (v)] and exists a set P of internally
pairwise vertex-disjoint paths inG[γ (v)]−E(β(v)) such that the following conditions
are satisfied:

– (
⋃

C∈S V (C)) ∩ (
⋃

P∈P V (P)) = ∅.
– On the one hand, for every cycle C ∈ S, it holds that |V (C) ∩ β(v)| ≤ 1 and if

|V (C) ∩ β(v)| = 1 then there exists a set in Z that is equal to V (C) ∩ β(v). On
the other hand, if Z contains a set of size 1, then there exists a cycle C ∈ S such
that V (C) ∩ β(v) equals this set.
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– On the one hand, for every path P ∈ P , it holds that P contains at least three
vertices, both endpoints of P belong to a distinct occurrence of a set in Z (of size
2), and none of the internal vertices of P belongs to β(v). On the other hand, for
every occurrence X of a set of size 2 in Z , there exists a distinct path P in P such
that the set containing the two endpoints of P is equal to X .

The intuitive meaning for Z is as follows. We expect a set C of k vertex-disjoint
cycles in G with the following property. Let P ′ be the restriction of C on G[γ (v)] −
E(β(v)). Let P be the graph obtained after deleting isolated vertices from P ′. Then
P can be broken into (i) internally vertex-disjoint paths with endpoints in β(v) and
internal vertices in γ (v)\β(v), and (ii) k′ vertex-disjoint cycles containing at most one
vertex from β(v) for each cycle. Then Z will contain one set for each such path/cycle
(intersecting β(v)) with the elements in the set being the vertices in the intersection
of the path/cycle with β(v).

The entry A[v,Z, k′] can be computed by examining all the entries A[u, Ẑ, k̂]
where u is a child of v in T (recall that v can have at most two children). At the end of
the computation ofA, we conclude that the input instance is aYes-instance if and only
if A[r ,∅, k] contains 1 where r is the root of T . By Observation 9.4, we deduce that
A contains 2O(k log k) · n entries, where each entry can be computed in time 2O(k log k).

Now we explain that in our case it is enough to compute subexponentially many
entries unlike the standard DP. That is, we claim that for every v ∈ V (T ), it is
sufficient to compute only 2O(

√
k log k) entries. More precisely, for every v ∈ V (T ),

it is sufficient to compute only entries A[v,Z, k′] such that |⋃Z| = O(
√
k) (there

are only 2O(
√
k log k) such entries). Indeed, suppose that the input instance is a Yes-

instance. Then, by Lemma 9.11, there exists a set C of k pairwise vertex-disjoint
induced cycles such that for every cell L ∈ L, it holds that |cross(C, L)| = O(1).
Now, we sketch the main arguments that show that for every v ∈ V (T ), we still have
an entry that “captures” C (as explained below) and we are able to compute it in time
2O(

√
k log k), which would imply that eventually, we would still be able to deduce that

A[r ,∅, k] contains 1. For this purpose, consider some v ∈ V (T ). First, we notice that
since for every cell L ∈ L, it holds that |cross(C, L)| = O(1), by Observation 9.5,
and since T is an O(

√
k)-NCTD, we have that there exists a set U of at most O(

√
k)

vertices in β(v) such that every cycle C ∈ C satisfies at least one of the following
conditions:

1. V (C) ∩ β(v) ⊆ U ,
2. V (C) ⊆ γ (v) \ β(v),
3. V (C) ⊆ V (G) \ γ (v),
4. V (C) ⊆ f −1(L) ⊆ β(v) \U , for some cell L .

Now, we let S denote the set of cycles in C such that all of their vertices, except
at most one that belongs to β(v), belong to γ (v) \ β(v). Accordingly, we denote
k′ = |S|. Moreover, let P denote the set of every subpath of a cycle in C (which is not
fully contained in a cell) whose endpoints belong to β(v) and whose set of internal
vertices is a subset of size at least 1 of γ (v)\β(v). Finally, we defineZ as the multiset
{β(v) ∩ O | O ∈ S ∪ P}. Then, it holds that |⋃Z| = O(

√
k) and C witnesses

that A[v,Z, k′] should be 1. Overall, by the existence of the set U that is mentioned
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above, we conclude that the entry A[v,Z, k′] can be computed in time 2O(
√
k log k).

This completes the proof sketch. ��

10 Conclusion

In this paper, we gave subexponential algorithms of running time 2O(
√
k log k) · nO(1)

for a number of parameterized problems about cycles in unit disk graphs. The first
natural question is whether the log k factor in the exponent can be shaved off. While
wewere not able to do it, we do not exclude such a possibility. In particular, it would be
very interesting to build a theory for unit disk graphs, which is similar to the bidimen-
sionality theory for planar graphs. In this context, it will be useful to provide a general
characterization of parameterized problems admitting subexponential algorithms on
unit disk graphs.
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