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Abstract Consider 2n points on the unit circle and a reference dissection D◦ of the
convex hull of the odd points. The accordion complex of D◦ is the simplicial complex
of non-crossing subsets of the diagonals with even endpoints that cross a connected
subset of diagonals of D◦. In particular, this complex is an associahedron when D◦
is a triangulation and a Stokes complex when D◦ is a quadrangulation. In this paper,
we provide geometric realizations (by polytopes and fans) of the accordion complex
of any reference dissection D◦, generalizing known constructions arising from cluster
algebras.
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1 Introduction

The (n − 3)-dimensional associahedron is a simple polytope whose face poset is
isomorphic to the reverse inclusion poset of non-crossing subsets of diagonals of
a convex n-gon. Introduced in early works of Tamari [44] and Stasheff [42], it
was first realized as a convex polytope by Haiman [23] and Lee [28], and later
constructed by more systematic methods developed by several authors, in par-
ticular [8,21,25,29]. Various relevant generalizations of the associahedron were
introduced and studied, in particular secondary polytopes and fiber polytopes [4,21],
generalized associahedra [10,18,24,26,43] in connection to cluster algebras [16,17],
graph associahedra [7,13,30,33,37,45], or brick polytopes [35,36].

In a different context, Baryshnikov [2] introduced the simplicial complex of
crossing-free subsets of the set of diagonals of a polygon that are in some sense
compatible with a reference quadrangulation Q◦. Although the precise definition of
compatibility is a bit technical in [2], it turns out that a diagonal is compatible with Q◦
if and only if it crosses a connected subset of diagonals of Q◦ that we call accordion
of Q◦. We thus call Baryshnikov’s simplicial complex the accordion complexAC(Q◦).
A polytopal realization ofAC(Q◦) was announced in [2], but the explicit construction
and its proof were never published as far as we know. Revisiting some combinato-
rial and algebraic properties of AC(Q◦), Chapoton [9, Intro. p.4] raised three explicit
challenges: first prove that the oriented dual graph of AC(Q◦) has a lattice structure
extending the Tamari and Cambrian lattices [31,38]; second construct geometric real-
izations of AC(Q◦) as fans and polytopes generalizing the known constructions of
the associahedron; third show that the facets of AC(Q◦) are in bijection with other
combinatorial objects called serpent nests [9, Sect. 4].

In [20], Garver andMcConville defined and studied the accordion complexAC(D◦)
of any reference dissection D◦ (their presentation slightly differs as they use a com-
patibility condition on the dual tree of the dissection D◦, but the simplicial complex
is the same). In this context, they settled Chapoton’s lattice question, using lattice
quotients of a lattice of biclosed sets. In this paper, we present geometric realiza-
tions ofAC(D◦) for any reference dissection D◦, providing in particular an answer to
Chapoton’s geometric question. In fact, we present three methods to realize AC(D◦)
based on constructions of the classical associahedron.

Our first method is based on the g-vector fan. It belongs to a series of constructions
of the (generalized) associahedra initiated by Shnider and Sternberg [41], popularised
by Loday [29], developed by Hohlweg et al. [25,26] using works of Reading and
Speyer [38–40], and revisited by Stella [43] and by Pilaud et al. [35,36]. It was
recently extended by Hohlweg et al. [27] to construct an associahedron parametrized
by any initial triangulation. Here, we first extend to theD◦-accordion complexAC(D◦)
the g-vectors and c-vectors defined in the context of cluster algebras by Fomin and
Zelevinski [19]. Note that c-vectors were already implicitly considered in [20], while
g-vectors are new in this context. When D◦ is a triangulation, our definitions coincide
with those given in terms of triangulations and laminations for cluster algebras from
surfaces by Fomin and Thurston [15]. We then show that the g-vectors with respect to
the dissectionD◦ support a complete simplicial fanFg(D◦) realizing theD◦-accordion
complex AC(D◦). Finally, we construct a D◦-accordiohedron Acco(D◦) realizing
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the g-vector fan Fg(D◦) by deleting inequalities from the facet description of the
D◦-zonotope Zono(D◦) obtained as the Minkowski sum of all c-vectors. See Fig. 7 for
an illustration of D◦-accordiohedra.

Our second method is based on the d-vector fan. This construction is inspired from
the original cluster fan of Fomin and Zelevinsky [17] later realized as a polytope by
Chapoton et al. [10], and from the generalization of Ceballos et al. [8] to construct a
compatibility fan and an associahedron fromany initial triangulation. For any reference
dissection D◦, we associate to each diagonal a d-vector which records the crossings
of this diagonal with those of D◦. We show that the d-vectors support a complete
simplicial fan realizing the D◦-accordion complex AC(D◦) if and only if D◦ contains
no even interior cell. The polytopality of the resulting fan remains open in general,
but was shown for arbitrary triangulations in [8].

Finally, our third method is based on projections of associahedra. Namely, for any
dissection D◦ and triangulation T◦ such that D◦ ⊆ T◦, the accordion complexAC(D◦)
is a subcomplex of the simplicial associahedronAC(T◦). It turns out that the g-vector
fan Fg(D◦) is then a section of the g-vector fan Fg(T◦) by a coordinate subspace.
Therefore, the accordion complex AC(D◦) is realized by a projection of the associa-
hedron Asso(T◦) of [27]. This point of view provides a complementary perspective on
accordion complexes that leads on the one hand to more concise but less instructive
proofs of combinatorial and geometric properties of the accordion complex (pseudo-
manifold, g-vector fan, accordiohedron), and on the other hand to natural extensions
to coordinate sections of the g-vector fan in arbitrary cluster algebras.

As recently observed in [5,20,32,34], accordion complexes are prototypes of sup-
port τ -tilting complexes introduced in [1], for certain associative algebras called gentle
algebras. In this context, g-vectors have a deep algebraic meaning and still define a
g-vector fan.Although this fan is still polytopal for finite support τ -tilting complexes, it
is not in general obtained by deleting inequalities in the facet description of a zonotope.
We refer to [32, Part 4] for details.

The paper is organized as follows. Section 2 introduces the accordion complex
and accordion lattice of a dissection D◦. We essentially follow the definitions and
arguments of Garver and McConville [20], except that we prefer to work on the dis-
section D◦ rather than on its dual graph. Section 3 is devoted to the generalization
of the g-vector fan and the associahedra of [25,27]. Section 4 discusses the gener-
alization of the construction of the d-vector fan and associahedra of [8,17]. Finally,
Sect. 5 shows that the accordion complex is realized by a projection of a well-chosen
associahedron and presents related questions on cluster algebras, subcomplexes of the
cluster complex, and sections of the g-vector fan.

2 The Accordion Complex and the Accordion Lattice

In this section, we define the accordion complexAC(D◦) of a dissection D◦, show that
it is a pseudomanifold, and define an orientation of its dual graph. Our definitions and
proofs are essentially translations of the arguments of Garver and McConville [20]
given in terms of the dual tree of the dissection D◦. However our presentation in terms
of dissections is more convenient for our purposes.
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Fig. 1 A dissection D (left) and three accordions whose zigzags are bolded (middle and right)

2.1 The Accordion Complex

Let P be a convex polygon. We call diagonals of P the segments connecting two
vertices of P. This includes both the internal diagonals and the external diagonals (or
boundary edges) of P. A dissection of P is a set D of non-crossing internal diagonals
of P. The cells of D are the closures of the connected components of P minus the
diagonals of D. A triangulation (resp. quadrangulation) is a dissection whose cells are
all triangles (resp. quadrangles).

We denote by D the dissection D together with all boundary edges of P. A cut
of D is the subset of D intersected by a line crossing two boundary edges of P. An
accordion is a connected cut. By definition, an accordion is a tree and contains two
boundary edges of P. The zigzag of an accordion A is the chain obtained by deleting all
degree 1 vertices of A. A subaccordion of D is a connected subset of D intersected by a
segment in the interior of P. Note that any subaccordion of an accordion A consists of
the diagonals of A between two internal diagonals of A. Note that we include boundary
edges of P in the accordions of D, but not in the subaccordions nor in the zigzags of D.
See Fig. 1.

Let 1◦, 2•, . . . , (2n − 1)◦, (2n)• be 2n points clockwise on a circle. We say
that 1◦, . . . , (2n − 1)◦ are the hollow vertices while 2•, . . . , (2n)• are the solid ver-
tices. The hollow polygon is the convex hull P◦ of 1◦, . . . , (2n − 1)◦ while the solid
polygon is the convex hull P• of 2•, . . . , (2n)•. We simultaneously consider hollow
diagonals δ◦ (with two hollow vertices) and solid diagonals δ• (with two solid ver-
tices), but we never consider diagonals with one hollow vertex and one solid vertex.
Similarly, we consider hollow dissectionsD◦ (of the hollow polygon, with only hollow
diagonals) and solid dissections D• (of the solid polygon, with only solid diagonals),
but never mix hollow and solid diagonals in a dissection. To help distinguish them,
hollow (resp. solid) vertices and diagonals appear red (resp. blue) in all pictures.

We fix an arbitrary reference hollow dissection D◦. A solid diagonal δ• is a
D◦-accordion diagonal if the hollow diagonals of D◦ crossed by δ• form an accordion
of D◦. In other words, δ• cannot enter and exit a cell of D◦ using two non-incident
diagonals. For example, note that for any hollow diagonal i◦ j◦ ∈ D◦, the solid diag-
onals (i − 1)•( j − 1)• and (i + 1)•( j + 1)• are D◦-accordion diagonals (here and
throughout, labels are considered modulo 2n). In particular, all boundary edges of
the solid polygon are D◦-accordion diagonals. A D◦-accordion dissection is a set of
non-crossing internal D◦-accordion diagonals. We define the D◦-accordion complex
to be the simplicial complex AC(D◦) of D◦-accordion dissections.
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Fig. 2 A hollow dissection Dex◦ , a solid Dex◦ -accordion diagonal whose corresponding hollow accordion
is bolded, and two maximal solid Dex◦ -accordion dissections

Fig. 3 The Dex◦ -accordion complex (left) and the Dex◦ -accordion lattice (right), oriented from bottom to
top, for the reference hollow dissection Dex◦ of Fig. 2 (left)

Example 2.1 As a running example, we consider the reference dissection Dex◦ of
Fig. 2 (left). Examples ofmaximalDex◦ -accordion dissections are given in Fig. 2 (right).
The Dex◦ -accordion complex is illustrated in Fig. 3 (left).

Example 2.2 Special reference hollow dissections D◦ give rise to special accordion
complexes AC(D◦):

• If D◦ is the empty dissectionwith thewhole hollow polygon as unique cell, then the
D◦-accordion complex AC(D◦) is reduced to the empty D◦-accordion dissection.

• If D◦ has a unique internal diagonal, then the D◦-accordion complex AC(D◦)
consists of only two points.

• For a hollow triangulation T◦, all solid diagonals are T◦-accordions, so that the
T◦-accordion complex AC(T◦) is the simplicial associahedron.

• For a hollow quadrangulation Q◦, a solid diagonal is a Q◦-accordion if and only
if it does not cross two opposite edges of a quadrangle of Q◦. The Q◦-accordion
complex AC(Q◦) is thus the Stokes complex defined by Baryshnikov [2] and
studied by Chapoton [9].

Remark 2.3 Following the original definition of the non-crossing complex of Garver
andMcConville [20], the accordion complex could equivalently be defined in terms of

123



512 Discrete Comput Geom (2019) 61:507–540

the dual tree D�◦ of D◦ (with one node in each cell of D and one edge connecting two
adjacent cells). More precisely, the duality provides the following dictionary between
the two definitions:

Present paper Garver and McConville [20]

Reference dissection D◦ ←→ Embedded tree D�◦
Diagonal u•v• of P• ←→ Path connecting the leaves u�• and v�• of D�◦
D◦-accordion diagonal ←→ Arc (path where any two consecutive edges belong to

the boundary of a face of the complement of D�◦ in the
unit disk)

D◦-subaccordion ←→ Segment
D◦-accordion complex ←→ Non-crossing complex of D�◦

The g-, c- and d-vectors defined in Sect. 3.1 could as well be defined in terms of D�◦. In
fact, c-vectors were already implicitly considered in [20], while g- and d-vectors are
new in this context. For this paper, we find more convenient to work directly with dis-
sections, in particular in Sects. 4 and 5.

2.2 Two Structural Observations

Before studying the accordion complex in details in Sect. 2.3, we present two simple
structural observations. For this, let us recall two classical notions on simplicial com-
plexes. The join of two simplicial complexes �,�′ with disjoint ground sets X, X ′ is
the simplicial complex �∗�′ with ground set X 	 X ′ whose faces are disjoint unions
of faces of � with faces of �′. For a face D in a simplicial complex � on X , the link
of D is the simplicial complex on X �Dwhose faces are the subsets D′ of X �D such
that D ∪ D′ is a face of �.

Proposition 2.4 If the reference hollow dissection D◦ has a cell containing p bound-
ary edges of the hollow polygon P◦, then the D◦-accordion complex AC(D◦) is the
join of p accordion complexes.

Proof Assume that D◦ has a cell C◦ containing p boundary edges of the hollow
polygon P◦. Let C1◦, . . . ,C

p◦ denote the p (possibly empty) connected components
of the hollow polygon minus C◦. For i ∈ [p] := {1, . . . , p}, let Di◦ denote the
dissection formed by the cell C◦ together with the cells of D◦ contained in the
closure of Ci◦. Observe that for i �= j , the internal diagonals of Di◦ are not inci-

dent to the internal diagonals of D j◦ . Thus, no D◦-accordion can contain internal
diagonals from distinct dissections Di◦ and D j◦ . Therefore, the set of D◦-accordion
diagonals is the union of the sets of Di◦-accordion diagonals for i ∈ [p]. Moreover,

for i �= j , the Di◦-accordion diagonals do not cross the D j◦-accordion diagonals.
It follows that the D◦-accordion complex is the join of the Di◦-accordion com-
plexes: AC(D◦) = AC(D1◦) ∗ · · · ∗ AC(Dp◦ ). �	
Remark 2.5 In view of Proposition 2.4, we can do the following reductions:
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(i) If a non-triangular cell of D◦ has two consecutive boundary edges γ◦, δ◦ of the
hollow polygon, then contracting γ◦ and δ◦ to a single boundary edge preserves
the D◦-accordion complex.

(ii) If a cell of D◦ has two non-consecutive boundary edges of the hollow polygon,
then the D◦-accordion complex is a join of smaller accordion complexes.

In all the examples of the paper, we therefore only consider dissections where any non-
triangular cell of D◦ has at most one boundary edge. All of our constructions work in
general, but are just obtained as products or joins of the non-degenerate situation.

Proposition 2.6 The links in an accordion complex are joins of accordion complexes.

Proof Consider a D◦-accordion dissection D• with cells C1•, . . . ,C
p• . Let Di◦ denote

the hollow dissection obtained from D◦ by contracting all hollow boundary edges
which do not cross Ci•. Then a diagonal δ• of a cell Ci• is a D◦-accordion diagonal if
and only if it is a Di◦-accordion diagonal. Moreover, for i �= j , the diagonals of Ci• do
not cross the diagonals of C j• . It follows that the link of D• in AC(D◦) is isomorphic
to the join AC(D1◦) ∗ · · · ∗ AC(Dp◦ ). �	

2.3 Pseudo-Manifold

We now prove that the accordion complexAC(D◦) is a pseudomanifold, i.e. that it is:

(i) pure: all maximal D◦-accordion dissections have the same number of diagonals
as D◦, and

(ii) thin: any codimension 1 simplex of AC(D◦) is contained in exactly two maximal
D◦-accordion dissections.

We follow the arguments of Garver and McConville [20] (except that they work on
the dual tree of the dissection D◦). A much more concise but less instructive proof
of the pseudomanifold property will be derived from geometric considerations in
Remark 5.8.

Recall that we denote by D◦ the set formed by D◦ together with all boundary
edges of the hollow polygon. An angle u◦v◦w◦ of D◦ is a pair {u◦v◦, v◦w◦} of two
consecutive diagonals of D◦ around a common vertex v◦, called the apex. Note that D◦
has 2|D◦| + n = 2|D◦| − n angles. Observe also that an accordion A◦ of D◦ can be
seen as a sequence of |A◦| − 1 angles where two consecutive angles are separated by
a diagonal of A◦. We say that a solid vertex p• belongs to an angle u◦v◦w◦ if it lies in
the cone generated by the edges v◦u◦ and v◦w◦ of the angle. The main observation is
given in the following statement.

Lemma 2.7 Let D• be a maximal D◦-accordion dissection, and let p•, q•, r•, s•
denote four consecutive vertices of a cell C• of D• (with possibly p• = s• if C•
is a triangle). Then p• and s• belong to the same angle of the accordion of D◦ which
is crossed by q•r•.

Proof Let A◦ be the accordion of D◦ which is crossed by q•r•. Assume that p• and s•
belong to distinct angles of A◦. Then they are separated by a diagonal ε◦ of A◦.
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Therefore, there are two boundary edges q•r• and u•v• of C• with distinct vertices
such that the hollow diagonal ε◦ separates the vertices q•, u• from the vertices r•, v•.
Let γ 1◦ , . . . , γ i◦ = ε◦, . . . , γ a◦ (resp. δ1◦, . . . , δ

j◦ = ε◦, . . . , δb◦ ) denote the diagonals
of D◦ crossed by q•r• from q• to r• (resp. crossed by u•v• from u• to v•). Then the
hollow diagonals γ 1◦ , . . . , γ i◦ = ε◦ = δ

j◦ , . . . , δb◦ which are crossed by q•v• also form
an accordion. It follows that D• is not maximal as we can still include q•v•. �	

Consider now an angle u◦v◦w◦ of D◦. In any maximal D◦-accordion dissection D•,
the set X• of diagonals of D• that cross both u◦v◦ and v◦w◦ is non-empty (since it
contains the boundary edge (v − 1)•(v + 1)•) and totally ordered (since the diagonals
of D• do not cross). Let δ• be the largest diagonal of X• (meaning the farthest from v◦).
We say that the diagonal δ• closes the angle u◦v◦w◦. Note that each angle of D◦ is
closed by precisely one diagonal of D•. The following lemma is stated and proved
in [20] in terms of the dual tree D�◦ of the dissection D◦.

Lemma 2.8 [20] For any maximal D◦-accordion dissection D•, each internal diag-
onal δ• of D• closes two angles of D◦ (one apex on each side of δ•) while each
boundary edge of the solid polygon closes one angle of D◦. Therefore the accordion
complex AC(D◦) is pure of dimension |D◦|.
Proof The first sentence is a consequence of Lemma 2.7: for any four consecutive
vertices p•, q•, r•, s• of a cell of D•, the diagonal q•r• closes the unique angle of
the accordion of D◦ crossed by q•r• that contains the vertices p• and s•. Therefore,
q•r• closes precisely two angles (resp. one angle) of D◦ if it is an internal diagonal
(resp. a boundary edge of the solid polygon). We finally obtain by double-counting
that 2|D◦| + n = |{angles of D◦}| = 2|D•| + n and thus |D•| = |D◦| for any maximal
D◦-accordion dissection D•. �	

We are now ready to prove that the D◦-accordion complex is thin, i.e. that each
internal diagonal of a maximal D◦-accordion dissection can be flipped into a unique
other internal diagonal to form a new maximal D◦-accordion dissection. Here and
throughout the paper, X  Y denotes the symmetric difference of two sets X,Y defined
by X  Y := (X � Y ) ∪ (Y � X).

The following notations are illustrated in Fig. 4. Let D• be a maximal D◦-accordion
dissection and δ• be a diagonal of D•. Let u◦ and v◦ be the apices of the angles of D◦
closed by δ•, let μ• and ν• denote the edges of the cells of D• containing δ•, which
separate δ• from u◦ and v◦ respectively, and let Q• denote the quadrilateral defined by
the four vertices of μ• and ν•. Note that δ• is a diagonal of Q•, and let δ′• denote the
other diagonal.

Lemma 2.9 [20] With the previous notations, the collection of diagonals
D′• := D•  {δ•, δ′•} is a maximal D◦-accordion dissection, and D• and D′• are the
only maximal D◦-accordion dissections containing D• � {δ•}. In other words, the
accordion complex AC(D◦) is thin.

Proof We first observe that δ′• is a D◦-accordion diagonal, since the edges of D◦
crossed by δ′• are obtained by merging three subaccordions of D◦: the subaccordion
formed by the diagonals of D◦ crossed by μ• but not δ• nor ν•, the subaccordion
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Fig. 4 Two maximal D◦-accordion dissections D• (left) and D′• (right) related by the flip of δ• to δ′•. The
angles of D◦ closed by δ• and δ′• are shaded. The flip is oriented from D• to D′•

formed by the diagonals of D◦ crossed by δ•, μ• and ν•, and the subaccordion formed
by the diagonals of D◦ crossed by ν• but not δ• nor μ•. Moreover, δ• and δ′• are
the only D◦-accordion diagonals compatible with D• � {δ•}. Indeed, any other such
diagonal would cross δ• and δ′• (by maximality of D• and D′•), and thus also the
subaccordion A◦ of D◦ crossed by δ• and δ′• (because it cannot cross μ and ν). But it
would then improperly intersect the two cells of D◦ containing precisely one diagonal
of A◦. �	

The D◦-accordion flip graph is the dual graph AFG(D◦) of the D◦-accordion
complex: its vertices are the maximal D◦-accordion dissections, and its edges are
the flips between them, i.e. the pairs {D•,D′•} of maximal D◦-accordion dissections
with D• � {δ•} = D′• � {δ′•}. See Fig. 3 (right).

2.4 The Accordion Lattice

We now define a natural orientation on the D◦-accordion flip graph. We use the same
notations as in Lemma 2.9 (see also Fig. 4), where D• � {δ•} = D′• � {δ′•} and δ•, δ′•
are the two diagonals of the quadrilateral defined by μ•, ν•. Observe that one of the
pathsμ•δ•ν• andμ•δ′•ν• forms a Zwhile the other forms a Z, see Fig. 4.We then orient
the flip from the dissection containing the Zto that containing the Z. See Fig. 3 (right)
for an illustration of D◦-accordion oriented flip graph (where the graph is oriented
from bottom to top).

Garver and McConville introduced a natural closure on sets of D◦-subaccordions,
and showed that the inclusion poset of biclosed sets of D◦-subaccordions is a well-
behaved lattice (namely, semidistributive, congruence-uniform and polygonal). Then,
they introduced a lattice quotient map from biclosed sets of D◦-subaccordions to
maximal D◦-accordion dissections, which imply the following statement.

Theorem 2.10 [20] The D◦-accordion oriented flip graph is the Hasse diagram of a
lattice, that we call the D◦-accordion lattice and denote by AL(D◦).

In particular, the D◦-accordion oriented flip graph is connected and acyclic, and has
a unique source D−• := {(i−1)•( j−1)• | i◦ j◦ ∈ D◦} (obtained by slightly rotating D◦
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counterclockwise) and a unique sink D+• := {(i + 1)•( j + 1)• | i◦ j◦ ∈ D◦} (obtained
by slightly rotating D◦ clockwise).

Example 2.11 Following Example 2.2, note that special reference hollow dissec-
tions D◦ give rise to special accordion lattices AL(D◦), as it was already observed
in [20]:

• For a fan triangulation F◦ (i.e. where all internal diagonals are incident to a com-
mon vertex), the F◦-accordion latticeAL(F◦) is the famous Tamari lattice [31,44]
defined equivalently by slope increasing flips on triangulations of a convex poly-
gon, by right rotations on binary trees, or by flips on Dyck paths.

• In general, accordion lattices of accordion triangulations (i.e. with no interior
triangle) precisely correspond to type ACambrian lattices defined byReading [38].

• For an arbitrary triangulation T◦ (with or without interior triangle), the
T◦-accordion oriented flip graph AFG(A◦) is a particular instance of the ori-
ented exchange graphs of 2-acyclic quivers defined by Brüstle et al. [6]. These
oriented exchange graphs are far more general and their transitive closures are in
general not lattices.

• For a quadrangulation Q◦, the Q◦-accordion latticeAL(Q◦) is the Stokes poset on
Q◦-compatible quadrangulations studied by Chapoton [9].

The following statement is a direct consequence of Proposition 2.4.

Proposition 2.12 If the reference hollow dissectionD◦ has a cell containing p bound-
ary edges of the hollow polygon P◦, then the D◦-accordion lattice AL(D◦) is a
Cartesian product of p accordion lattices.

Proof Consider the dissections D1◦, . . . ,D
p◦ as in the proof of Proposition 2.4. Since

any increasing flip in AC(D◦) is an increasing flip in one of the AC(Di◦), we
obtain that the D◦-accordion lattice is the Cartesian product of the Di◦-accordion lat-
tices: AL(D◦) = AL(D1◦) × · · · × AL(Dp◦ ). �	

In particular, if two consecutive boundary edges γ◦, δ◦ of the hollowpolygon belong
to the same non-triangular cell of D◦, then contracting γ◦ and δ◦ to a single boundary
edge preserves the D◦-accordion lattice. This shows the following statement conjec-
tured for quadrangulations in [9] and proved in [3].

Corollary 2.13 Consider an accordion dissection A◦, i.e. a dissection where each
cell has at most 2 edges which are internal diagonals of P◦. Then the A◦-accordion
lattice is a Cambrian lattice.

Remark 2.14 Call cell-sequence of a dissection the sequence whose i th entry
is its number of (i + 2)-cells. For example, the dissection of Fig. 2 (left) has
cell-sequence 3, 1, 0∞ and all (p + 2)-angulations of a (pm + 2)-gon have cell-
sequence 0p−1,m, 0∞. Observe that the flip preserves the cell-sequence. Thus, all
maximal D◦-accordion dissections have the same cell-sequence as D◦.

We conclude this section with a reciprocity result on accordion dissections.
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Proposition 2.15 LetD◦ be a hollow dissection andD• be a solid dissection. ThenD•
is a maximal D◦-accordion dissection if and only if D◦ is a maximal D•-accordion
dissection.

Proof As

D−• := {(i − 1)•( j − 1)• | i◦ j◦ ∈ D◦} and D+• := {(i + 1)•( j + 1)• |i◦ j◦ ∈ D◦}

are both D◦-accordion dissections, we already know that D◦ is a D−• -accordion dissec-
tion. Observe now in Fig. 4 that if D• and D′• are maximal
D◦-accordion dissections connected by a flip, then D◦ is a D•-accordion dissection if
and only if it is a D′•-accordion dissection. Indeed, if δ• belongs to the zigzag of the
D•-accordion A• of a hollow diagonal δ◦, then δ◦ crosses both μ• and ν•, but then
δ◦ also crosses δ′•, and thus δ◦ crosses the D′•-accordion A•  {δ•, δ′•}. Since the
D◦-accordion flip graph is connected, we obtain that D◦ is a D•-accordion dissec-
tion for any maximal D◦-accordion dissection D•. Finally, maximality follows since
all maximal D◦-accordion dissections have |D◦| diagonals. The equivalence follows
by symmetry. �	

3 The g-Vector Fan

In this section, we construct accordiohedra using g- and c-vectors. Our construction
is in the same spirit as the Cambrian fans of Reading and Speyer [38–40] and their
polytopal realizations by Hohlweg et al. [25,26], recently extended in [27] to any
initial triangulation, acyclic or not. A different approach to the g-vector fan together
with an alternative polytopal realization will be presented in Sect. 5.

3.1 g- and c-Vectors

Consider a hollow dissection D◦ and a solid dissection D• that are maximal accordion
dissections of each other (see Proposition 2.15), and let δ◦ ∈ D◦ and δ• ∈ D•. When δ◦
crosses δ•, we let μ◦ and ν◦ be the other diagonals of D◦ crossed by δ• in the two
cells of D◦ containing δ◦. We say that δ• slaloms on δ◦ if μ◦δ◦ν◦ forms a path, and we
define ε◦

(
δ◦ ∈ D◦ | δ•

)
to be 1, −1, or 0 depending on whether μ◦δ◦ν◦ forms a Z, a Z,

or a VI . Similarly we let μ• and ν• be the other diagonals of D• crossed by δ◦ in the
two cells of D• containing δ•, we say that δ◦ slaloms on δ• if μ•δ•ν• forms a path, and
we define ε•

(
δ◦ | δ• ∈ D•

)
to be 1, −1, or 0 depending on whether μ•δ•ν• forms a Z,

a Z, or a VI . Note that the sign convention for ε◦
(
δ◦ ∈ D◦ | δ•

)
and ε•

(
δ◦ | δ• ∈ D•

)
is

opposite: the reciprocity already observed in Proposition 2.15 naturally reverses the
orientation. More informally, we exchange the role of hollow and solid dissections by
looking at the picture from the opposite side of the blackboard,which of course reverses
the orientation. Finally, if δ◦ and δ• do not cross, then we let ε◦

(
δ◦ ∈ D◦ | δ•

) =
ε•

(
δ◦ | δ• ∈ D•

) = 0. Let (eδ◦)δ◦∈D◦ denote the canonical basis of R
D◦ . As in [27],

we define the following vectors:
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(i) the g-vector of δ• with respect toD◦ is g
(
D◦ | δ•

) := ∑
δ◦∈D◦ ε◦

(
δ◦ ∈ D◦ | δ•

)
eδ◦ .

We also define g
(
D◦ |D•

) := {
g
(
D◦ | δ•

)| δ• ∈ D•
}
.

(ii) the c-vector of δ• ∈ D• with respect to D◦ is c
(
D◦ | δ• ∈ D•

) := ∑
δ◦∈D◦

ε•
(
δ◦ | δ• ∈ D•

)
eδ◦ .We denote by c

(
D◦ |D•

) := {
c
(
D◦ | δ• ∈ D•

)| δ• ∈ D•
}
the

set of c-vectors of the diagonals of D• and by C(D◦) := ⋃
D• c

(
D◦ |D•

)
the set

of all c-vectors with respect to D◦.

Example 3.1 Consider the hollow dissection Dex◦ = {3◦7◦, 3◦13◦, 9◦13◦} and the
rightmost solid dissection Dex• = {2•6•, 2•10•, 10•14•} of Fig. 2. Then we have for
example

• ε◦
(
3◦13◦ ∈ Dex◦ | 2•10•

) = 1 since the path 1◦ − 3◦ − 13◦ − 9◦ forms a Z,
• ε◦

(
9◦13◦ ∈ Dex◦ | 2•10•

) = −1 since the path 3◦ − 13◦ − 9◦ − 11◦ forms a Z, and
• ε◦

(
3◦13◦ ∈ Dex◦ | 2•6•

) = 0 since 3◦ connects 1◦, 13◦, 7◦ as a VI .

Moreover, we have

g
(
Dex◦ | 2•6•

) = e3◦7◦ , c
(
Dex◦ | 2•6• ∈ Dex•

) = e3◦7◦,
g
(
Dex◦ | 2•10•

) = e3◦13◦ − e9◦13◦, c
(
Dex◦ | 2•10• ∈ Dex•

) = e3◦13◦,
g
(
Dex◦ | 10•14•

) = −e9◦13◦, c
(
Dex◦ | 10•14• ∈ Dex•

) = −e3◦13◦ − e9◦13◦ .

Example 3.2 For any hollow diagonal i◦ j◦ ∈ D◦, we have

g
(
D◦ | (i − 1)•( j − 1)•

) = −ei◦ j◦ , c
(
D◦ | (i − 1)•( j − 1)• ∈ D−•

) = −ei◦ j◦,
g
(
D◦ | (i + 1)•( j + 1)•

) = ei◦ j◦ , c
(
D◦ | (i + 1)•( j + 1)• ∈ D+•

) = ei◦ j◦ .

Remark 3.3 For a hollow triangulation T◦, our definitions of g- and c-vectors coincide
with the shear coordinates of Fomin and Thurston [15], defined in the much more
general context of cluster algebras on surfaces [14].

Remark 3.4 Consider the quiver Q(D◦) of the reference dissection D◦, with one node
on each internal diagonal of D◦ and one arrow between two diagonals counter-
clockwise consecutive around a cell of D◦. Let W(D◦) be the reflection group
whose Dynkin diagram is the underlying graph of Q(D◦). Then all g-vectors of
the D◦-accordion diagonals are weights of W(D◦) and all c-vectors of C(D◦) are
roots of W(D◦).

Remark 3.5 Informally, the g- and c-vectors can be interpreted as follows:

(i) The g-vector g(D◦ | δ•) has coordinate 1 and −1 alternating along the zigzag of
the accordion crossed by δ• in D◦, and coordinate 0 on all other diagonals of D◦.

(ii) The c-vector c(D◦ | δ• ∈ D•) is, up to a sign, the characteristic vector of the
diagonals of the subaccordion of D◦ crossed by both diagonals μ• and ν• of
Lemma 2.9 (see also Fig. 4). Thus, any c-vector is either positive (only non-
negative coordinates) or negative (only non-positive coordinates).

In fact, the g-vectors are clearly in bijectionwith the accordions andwith the zigzags
in D◦. In contrast, many pairs (δ•,D•) produce the same c-vector c(D◦ | δ• ∈ D•). For
example, if two dissections D•,D′• contain δ• and have the same cells incident to δ•,
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then c(D◦ | δ• ∈ D•) = c(D◦ | δ• ∈ D′•). The set of c-vectorsC(D◦)without repetitions
can be understood as follows.

Lemma 3.6 There are bijections between:

• the negative (resp. positive) c-vectors of C(D◦),
• the subaccordions of D◦,
• the D◦-accordion diagonals that are not in the source (resp. sink) dissection.

Proof ByRemark 3.5 (ii), the support of any c-vector is a subaccordion ofD◦. Recipro-
cally, letA◦ be a subaccordionofD◦, letC◦ andC′◦ denote the twocells ofD◦ containing
exactly one diagonal of A◦, and let p◦, q◦, r◦, s◦ (resp. p′◦, q ′◦, r ′◦, s′◦) denote the four
consecutive vertices in clockwise order around C◦ (resp. around C′◦) such that q◦r◦
(resp. q ′◦r ′◦) is the diagonal of A◦ in C◦ (resp. in C′◦). Let δ• := (s − 1)•(s′ − 1)•,
μ• := (p + 1)•(s′ − 1)• and ν• := (p′ + 1)•(s − 1)• and consider any D◦-accordion
dissection D• containing {μ•, δ•, ν•}. Then A◦ is precisely the support of the negative
c-vector c(D◦ | δ• ∈ D•). Finally, we have associated to the subaccordion A◦ of D◦ a
D◦-diagonal δ• = (s − 1)•(s′ − 1)• which cannot be in D−• as otherwise s◦s′◦ would
cross q◦r◦. Reciprocally, A◦ is precisely the set of diagonals of D◦ crossed by δ• and
not incident to s◦ or s′◦. �	

The g-vectors and c-vectors are connected in the following two statements, inspired
and motivated by classical analogues in cluster algebra theory.

Proposition 3.7 For any maximal D◦-accordion dissection D•, the set of g-vectors
g(D◦ |D•) and the set of c-vectors c(D◦ |D•) form dual bases.

Proof Let 〈 · | · 〉 denote the standard Euclidean inner product of R
D◦ . Given two

solid diagonals γ•, δ• of D•, we want to compute 〈 g(D◦ | γ•) | c(D◦ | δ• ∈ D•) 〉.
By Remark 3.5 (i), the g-vector g(D◦ | γ•) has coordinate ±1 alternating along the
zigzag Z◦ of the accordion crossed by γ• in D◦, and coordinate 0 on all other diagonals
of D◦.Moreover, byRemark 3.5 (ii), the c-vector c(D◦ | δ• ∈ D•) has coordinate±1 on
the diagonals of D◦ which slalom on δ• in D•, and coordinate 0 on all other diagonals
of D◦. We thus need to understand how the diagonals of Z◦ slalom on δ• in D•. See
Fig. 5 for a schematic illustration. Observe that there is an even (resp. odd) number
of hollow diagonals of Z◦ that slalom on δ• when δ• �= γ• (resp. when δ• = γ•).
Moreover, since they are non-crossing, all hollow diagonals of Z◦ slaloming on δ• do
it the same way (either all as a Zor all as a Z). Finally, when γ• = δ•, consider the
first hollow diagonal δ◦ of the zigzag Z◦ which slaloms on δ•. Then δ◦ slaloms on δ•
in the opposite way as δ• slaloms on δ◦. This shows that

〈
g
(
D◦ | γ•

) ∣∣ c
(
D◦ | δ• ∈ D•

) 〉 =
∑

δ◦∈D◦
ε◦

(
δ◦ ∈ D◦ | γ•

) · ε•
(
δ◦ | δ• ∈ D•

) = 11γ=δ,

since we sum an even number of alternating ±1 when γ• �= δ•, and an odd number of
alternating±1 starting by a 1 when γ• �= δ•. In other words, g(D◦ |D•) and c(D◦ |D•)
form dual bases. �	
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Fig. 5 Illustration of the proof of Proposition 3.7. The red hollow diagonals form the zigzag of γ•, and the
bolded ones are slaloming on δ•. There are an even number of bolded diagonals when γ• �= δ• (left) and
an odd number when γ• = δ• (right)

Proposition 3.8 Let D◦ be a hollow dissection and D• be a solid dissection such
thatD◦ andD• aremaximal accordion dissections of each other (seeProposition 2.15).
Then

g
(
D◦ |D•

) = −c
(
D• |D◦

)t
and c

(
D◦ |D•

) = −g
(
D• |D◦

)t
,

wherewe consider the sets of g-vectors g(D◦ |D•) and c-vectors c(D◦ |D•) asmatrices
in R

D◦×D• , and Mt denotes the transpose of a matrix M.

Proof We immediately derive from the definitions that for any δ◦ ∈ D◦ and δ• ∈ D•,

g
(
D◦ |D•

)
(δ◦,δ•) = ε◦

(
δ◦ ∈ D◦ | δ•

) = −ε•
(
δ• | δ◦ ∈ D◦

) = −c
(
D• |D◦

)
(δ•,δ◦),

which shows g(D◦ |D•) = −c(D• |D◦)t . The other equality follows by exchang-
ing D◦ and D•. �	
Corollary 3.9 For any maximal D◦-accordion dissection D•, we have the following
sign coherence:

(i) for any δ• ∈ D•, all coordinates of c(D◦ | δ• ∈ D•) have the same sign,
(ii) for any δ◦ ∈ D◦, the δ◦-coordinates of all g(D◦ | δ•) for δ• ∈ D• have the same

sign.

Proof Point (i) was already seen in Remark 3.5 (ii), and Point (ii) follows by Propo-
sition 3.8. �	

3.2 c-Vector Fan and D◦-Zonotope

Define the c-vector fan of D◦ to be the complete polyhedral fan Fc(D◦) given by
the arrangement of the linear hyperplanes orthogonal to the c-vectors of C(D◦). Be
careful: in contrast to the g- and d-vector fans defined later, the c-vectors are not
the rays of Fc(D◦) but the normal vectors of the hyperplanes supporting the facets
of Fc(D◦).
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We call D◦-zonotope the Minkowski sum Zono(D◦) of all c-vectors:

Zono(D◦) :=
∑

c∈C(D◦)
c.

The normal fan of the D◦-zonotope Zono(D◦) is the c-vector fan Fc(D◦). Note that
the c-vector fan is not always simplicial, and thus the D◦-zonotope Zono(D◦) is not
always simple. See Fig. 7.

Example 3.10 Consider an accordion dissection A◦ (where each cell has at most 2
edges which are internal diagonals of P◦). Label its internal diagonals by δ1◦, . . . , δ

|A◦|◦
such that δk◦ and δk+1◦ belong to the same cell of A◦ for all k. Identifying eδk◦
to the simple root fk − fk+1 of type A|A◦|, the c-vectors of C(A◦) are all roots
±(fi − f j ) = ±∑

i≤k≤ j eδk◦ of type A|A◦|. Therefore, the c-vector fan is the type A|A◦|
Coxeter fan and the A◦-zonotope is a permutahedron. More precisely,

Zono(A◦) =
∑

k∈[|A◦|+1]
k(|A◦| + 1 − k) [−eδk◦ , eδk◦ ]

= 2 Perm(|A◦|) − (|A◦| + 2)
∑

i∈[|A◦|+1]
fi ,

where Perm(|A◦|) := conv
{∑

i∈[|A◦|+1] σ(i) fi
∣
∣ σ ∈ S|A◦|+1

}
is the classical per-

mutahedron.

The vertices of Zono(D◦) correspond to separable subsets ofC(D◦), i.e. thosewhich
can be strictly separated from their complement by a hyperplane. Although we could
work out all facets of Zono(D◦), we will only need the following specific inequalities.

Proposition 3.11 For any D◦-accordion diagonal γ•, the D◦-zonotope Zono(D◦) has
a facet defined by the inequality

〈
g
(
D◦ | γ•

) ∣
∣ x

〉 ≤ ω
(
D◦ | γ•

)
,

where ω(D◦ | γ•) is the D◦-height of γ•, i.e. the number of D◦-accordion diagonals
that cross γ•.

Proof Let ω(D◦ | γ•) denote the maximum of 〈 g(D◦ | γ•) | x 〉 over Zono(D◦). As
Zono(D◦) is the Minkowski sum of all c-vectors, we have

ω
(
D◦ | γ•

) =
∑

c∈C(D◦)〈 g(D◦ | γ•) | c 〉>0

〈
g
(
D◦ | γ•

) ∣∣ c
〉
.

By Remark 3.5, we have 〈 g(D◦ | γ•) | c 〉 ∈ {−1, 0, 1} for any c ∈ C(D◦). We thus
just need to count the distinct c-vectors c such that 〈 g(D◦ | γ•) | c 〉 > 0. It turns
out that it is more convenient and equivalent (since C(D◦) = −C(D◦)) to count
the distinct c-vectors c such that 〈 g(D◦ | γ•) | c 〉 < 0. For that, let Z◦ denote the
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zigzag of the accordion crossed by γ• in D◦, and decompose Z◦ = Z−◦ 	 Z+◦ such
that g(D◦ | γ•) = 11Z+◦ − 11Z−◦ (where 11X◦ := ∑

δ◦∈X◦ eδ◦ for X◦ ⊆ D◦).
Let δ• be a D◦-accordion diagonal. Let A−◦ (resp. A+◦ ) denote the accordion crossed

by δ• = u•v• in D◦ and not including (u + 1)◦ or (v + 1)◦ (resp. (u − 1)◦ or
(v − 1)◦). Let c−(δ•) := −11A−◦ and c+(δ•) := 11A+◦ . Recall from Lemma 3.6 that the
negative (resp. positive) c-vectors of C(D◦) are given by c−(δ•) (resp. c+(δ•)) for all
D◦-accordion diagonal δ• not in D−• (resp. D+• ). We let the reader check that:

• If γ• and δ• do not cross and have no common endpoint, then both |Z◦ ∩A−◦ | and
|Z◦ ∩ A+◦ | are even. Thus 〈

g(D◦ | γ•)
∣∣ c−(δ•)

〉 = 〈
g(D◦ | γ•)

∣∣ c+(δ•)
〉 = 0.

• If γ• and δ• have a common endpoint, and γ•δ• form a counterclockwise angle,
then |Z◦ ∩ A−◦ | is even while Z◦ ∩ A+◦ is empty or starts and ends in Z+◦ . Thus〈
g(D◦ | γ•)

∣∣ c−(δ•)
〉 = 0while

〈
g(D◦ | γ•)

∣∣ c+(δ•)
〉 ≥ 0. The situation is similar

if γ•δ• form a clockwise angle.
• If γ• and δ• cross, Z◦ ∩A−◦ and Z◦ ∩ A+◦ are empty or start and end both in Z−◦ or
both in Z+◦ . Thus, either

〈
g(D◦ | γ•)

∣∣ c−(δ•)
〉
< 0 and

〈
g(D◦ | γ•)

∣∣ c+(δ•)
〉 ≥ 0

or conversely.

We conclude from this case analysis that

ω(D◦ | γ•) = | {c ∈ C(D◦) | 〈 g(D◦ | γ•) | c 〉 < 0}|
= |{D◦ − accordion diagonals crossing γ•}|.

Finally, the inequality 〈 g(D◦ | γ•) | x 〉 ≤ ω(D◦ | γ•) defines a priori a face F(γ•)
of the zonotope Zono(D◦). This face F(γ•) is the Minkowski sum of the c-vectors
ofC(D◦) orthogonal to g(D◦ | γ•). Proposition 3.7 ensures that any D◦-accordion dis-
section D• containing γ• already provides |D•|−1 linearly independent such c-vectors
c(D◦ | δ• ∈ D•) for δ• ∈ D• � {γ•}. We therefore obtain that F(γ•) has dimension
|D•| − 1 = |D◦| − 1 and is therefore a facet of the zonotope Zono(D◦). �	

Define the half-space and the hyperplane corresponding to a solid D◦-accordion
diagonal γ• by

H≤(
D◦ | γ•

) := {
x ∈ R

D◦ ∣∣ 〈
g
(
D◦ | γ•

) ∣∣ x
〉 ≤ ω

(
D◦ | γ•

)}
,

and H=(
D◦ | γ•

) := {
x ∈ R

D◦ ∣∣ 〈
g
(
D◦ | γ•

) ∣∣ x
〉 = ω

(
D◦ | γ•

)}
.

3.3 g-Vector Fan and D◦-Accordiohedron

In this section, we give a geometric realization of the D◦-accordion complex. We start
by realizing this simplicial complex as a complete simplicial fan in R

D◦ . We denote
by R≥0R the nonnegative span of a set R of vectors in R

D◦ .

Theorem 3.12 The collection of cones

Fg(D◦) := {
R≥0g

(
D◦ |D•

) ∣∣ D• any D◦-accordion dissection
}

forms a complete simplicial fan, that we call the g-vector fan of D◦.
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The proof uses the following characterization of complete simplicial fans [11,
Cor. 4.5.20]. We will provide as well an alternative proof in Remark 5.8 based on
sections of Cambrian fans.

Proposition 3.13 Consider a pseudomanifold � on a finite vertex set X and a set of
vectors R := (rx )x∈X of R

d . For D ∈ �, define the cone RD := {rx | x ∈ D}. The
collection of cones

{
R≥0RD

∣∣ D ∈ �
}
forms a complete simplicial fan if and only if

(1) there exists a facet D of � such that RD is a basis of R
d and such that the open

cones R>0RD and R>0RD′ are disjoint for any facet D′ of � distinct from D;
(2) for two adjacent facets D,D′ of � with D � {x} = D′

� {x ′}, there is a linear
dependence

α rx + α′ rx ′ +
∑

y∈D∩D′
βy ry = 0

on RD∪D′ where the coefficients α and α′ have the same sign. (When these con-
ditions hold, these coefficients do not vanish and the linear dependence is unique
up to rescaling.)

Proof of Theorem 3.12 By Corollary 3.9, the cone R≥0g(D◦ |D−• ) is the only cone
ofFg(D◦) intersecting the interior of the positive orthant (R≥0)

D◦ . Consider now two
adjacent maximal D◦-accordion dissections D•,D′•. Let δ• ∈ D• and δ′• ∈ D′• be such
that D• � {δ•} = D′• � {δ′•}, and let μ• and ν• be the other diagonals as in Lemma 2.9
(see also Fig. 4). Note that a diagonal of D◦ crosses none of (resp. one of, resp. both)
the diagonals δ•, δ′• if and only if it crosses none of (resp. one of, resp. both) the
diagonals μ•, ν•. The same holds for a Z or a Zof D◦. Therefore, we have the linear
dependence g(D◦ | δ•)+g(D◦ | δ′•) = g(D◦ | μ•)+g(D◦ | μ•). This shows thatFg(D◦)
satisfies the two conditions of Proposition 3.13, and thus concludes the proof. �	

Remark 3.14 The linear dependence g(D◦ | δ•)+g(D◦ | δ′•) = g(D◦ | μ•)+g(D◦ | μ•)
relating the g-vectors of two adjacent maximal D◦-accordion dissections D•,D′•
with D• � {δ•} = D′• � {δ′•} shows that det

(
g(D◦ |D•)

) = − det
(
g(D◦ |D′•)

)
. Since

the initial cone R≥0g(D◦ |D−• ) is generated by the coordinate vectors (see Exam-
ple 3.2), we obtain that det

(
g(D◦ |D•)

) = ±1 for all D◦-accordion dissection D•, so
that the g-vector fan Fg(D◦) is always smooth.

By Proposition 3.7, any non-maximal cone ofFg(D◦) is supported by a hyperplane
orthogonal to a c-vector of C(D◦). We thus obtain the following consequence.

Corollary 3.15 The g-vector fan Fg(D◦) coarsens the c-vector fan Fc(D◦).

Example 3.16 Following Example 2.2, we observe that special reference dissections
give rise to the following relevant fans:

• For an accordion triangulation A◦ (i.e. with no interior triangle), the g-vector
fan Fg(A◦) coincides with a type A Cambrian fan of Reading and Speyer [40].
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Fig. 6 Stereographic projections of the g-vector fansFg(D◦) for various reference hollow dissections D◦.
See Fig. 9 for alternative simplicial fan realizations of these accordion complexes

• For an arbitrary triangulation T◦ (with or without interior triangle), the g-vector
fan Fg(T◦) was recently constructed in [27].

Example 3.17 Figure 6 illustrates the g-vector fans Fg(D◦) for various reference dis-
sections D◦: the fan, the snake, and the cyclic triangulation of the hexagon, and a
dissection of the heptagon. More precisely, we have represented the stereographic
projection of the fans from the point [ 1, 1, 1 ]. Therefore, the external face of the pro-
jection corresponds to the D◦-accordion dissection D−• . We have labeled all vertices of
the projection (i.e. the rays of the fan) by the corresponding D◦-accordion diagonals.

We now provide a first polytopal realization of the g-vector fan Fg(D◦) (see also
Sect. 5). This fan has a maximal cone for each maximal D◦-accordion dissection and
a ray for each D◦-accordion diagonal. For a maximal D◦-accordion dissection D•, we
define a point p

(
D◦ |D•

) ∈ R
D◦ by

p
(
D◦ |D•

) :=
∑

δ•∈D•
ω

(
D◦ | δ•

) · c(D◦ | δ• ∈ D•
)
,
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where ω(D◦ | δ•) still denotes the D◦-height of δ• defined as the number of
D◦-accordion diagonals that cross δ•.Wewill need the following two technical lemmas
in the proof of Theorem 3.20.

Lemma 3.18 For any maximal D◦-accordion dissection D•, the point p(D◦ |D•) is
the intersection of all hyperplanes H=(D◦ | δ•) with δ• ∈ D•.

Proof Observe first that the hyperplanesH=(D◦ | δ•)with δ• ∈ D• have a unique inter-
section point, since g(D◦ |D•) is a basis. Moreover, since g(D◦ |D•) and c(D◦ |D•)
form dual bases by Proposition 3.7, we have for any γ• ∈ D•:

〈
g
(
D◦ | γ•

) ∣
∣ p

(
D◦ |D•

) 〉 =
∑

δ•∈D•
ω

(
D◦ | δ•

) · 〈
g
(
D◦ | γ•

) ∣
∣ c

(
D◦ | δ• ∈ D•

) 〉

=
∑

δ•∈D•
ω

(
D◦ | δ•

) · 11γ•=δ• = ω
(
D◦ | γ•

)
. �	

Lemma 3.19 If D•,D′• are two adjacent maximal D◦-accordion dissections, and
δ• ∈ D• and δ′• ∈ D′• are such that D• � {δ•} = D′• � {δ′•}, then

c
(
D◦ | δ• ∈ D•

) = −c
(
D◦ | δ′• ∈ D′•

)
and

p
(
D◦ |D′•

) − p
(
D◦ |D•

) ∈ Z<0 · c(D◦ | δ• ∈ D•
)
.

Proof Let D•,D′• be two adjacent maximal D◦-accordion dissections, let δ• ∈ D•
and δ′• ∈ D′• be such that D• � {δ•} = D′• � {δ′•}, and let μ• and ν• be the other
diagonals as in Lemma 2.9 (see also Fig. 4). A quick case analysis then shows that

c
(
D◦ | γ• ∈ D′•

) =

⎧
⎪⎨

⎪⎩

c
(
D◦ | γ• ∈ D•

)
if γ• ∈ D• � {δ•, μ•, ν•},

−c
(
D◦ | δ• ∈ D•

)
if γ• = δ′•,

c
(
D◦ | γ• ∈ D•

) + c
(
D◦ | δ• ∈ D•

)
if γ• ∈ {μ•, ν•}.

Summing the contribution of all c-vectors with their coefficientsω(D◦ | γ•), we obtain

p
(
D◦ |D′•

) − p
(
D◦ |D•

) = (
ω

(
D◦ | μ•

) + ω
(
D◦ | ν•

) − ω
(
D◦ | δ•

)

−ω
(
D◦ | δ′•

)) · c(D◦ | δ• ∈ D•
)
.

Finally, note that any diagonal of P• that crosses one of (resp. both) the diagonalsμ•, ν•
also crosses one of (resp. both) the diagonals δ•, δ′•. Moreover, δ• and δ′• cross each
other but do not cross μ• and ν•. It follows that

ω(D◦ | μ•) + ω(D◦ | ν•) − ω(D◦ | δ•) − ω(D◦ | δ′•) ≤ −2 < 0. �	
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Theorem 3.20 The g-vector fan is the normal fan of theD◦-accordiohedron Acco(D◦)
defined equivalently as

• the convex hull of the points p(D◦ |D•) for all maximal D◦-accordion dissec-
tion D•, or

• the intersection of the half-spacesH≤(D◦ | γ•) for all D◦-accordion diagonals γ•.

Thus, the polar dual of Acco(D◦) is a polytopal realization of the D◦-accordion com-
plex AC(D◦).

The proof of Theorem 3.20 is based on the following characterization of poly-
topal realizations of a complete simplicial fan, whose proof can be found e.g. in [26,
Thm. 4.1].

Theorem 3.21 Given a complete simplicial fan F in R
d , consider for each ray r

of F a half-space H≤
r of R

d containing the origin and defined by a hyperplane H=
r

orthogonal to r. For each maximal cone C of F , let a(C) ∈ R
d be the intersection of

all hyperplanes H=
r with r ∈ C. Then the following assertions are equivalent:

(i) The vector a(C′)−a(C) points fromC toC′ for any two adjacent maximal conesC,
C′ of F .

(ii) The polytopes

conv {a(C) |C maximal cone of F} and
⋂

r ray of F
H≤

r

coincide and their normal fan is F .

Proof of Theorem 3.20 The g-vector fan Fg(D◦) has a ray g(D◦ | δ•) for each
D◦-accordion diagonal δ• and a maximal cone C(D•) = R≥0g(D◦ |D•) for each
maximal D◦-accordion dissection D•. Consider the half-spaces H≤(D◦ | γ•) for all
D◦-accordion diagonals γ•. Lemma 3.18 ensures that the point a(C(D•)) coincides
with p(D◦ |D•) for each maximal D◦-accordion dissection D•. Finally, Lemma 3.19
shows that the conditions of application of Theorem 3.21 are fulfilled. �	
Example 3.22 Following Example 2.2, observe that special reference hollow dissec-
tions give rise to the following relevant polytopes, illustrated in Fig. 7:

• For a fan triangulation T◦, the T◦-accordiohedron Acco(T◦) is the classical asso-
ciahedron constructed by Shnider and Sternberg [41] and Loday [29].

• The A◦-accordiohedra Acco(A◦) for all accordion triangulations A◦ are precisely
the associahedra constructed by Hohlweg and Lange in [25].

• For a triangulation T◦ with an interior triangle, the T◦-accordiohedron Acco(T◦)
was recently constructed in [27]. For example, for the triangulation of the hexagon
with an interior triangle, this associahedron appeared as a mysterious realization
in [8].

• For a quadrangulation Q◦, the Q◦-accordiohedron Acco(Q◦) is a realization of the
Stokes polytope announced by Baryshnikov [2] and discussed by Chapoton in [9].
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D

Zono(D

Zono(D

Acco(D

Acco(D

Para(D

Para(D )
)
)

)

)

)

Fig. 7 The zonotope Zono(D◦), D◦-accordiohedron Acco(D◦) and parallelepiped Para(D◦) for different
reference dissections D◦. The first column is Loday’s associahedron [29], the second column is one of
Hohlweg and Lange’s associahedra [25], the third column appeared in a discussion in Ceballos et al. survey
on associahedra [8, Fig. 3] and was explained in Hohlweg et al. recent paper [27], and the last column is a
Stokes complex discussed by Chapoton in [9] and illustrated in Fig. 3

We conclude this section by an immediate consequence of Theorem 3.20. To our
knowledge, this property of accordion complexes was not observed before. However,
using the connection between accordion complexes and support τ -tilting complexes [5,
20,32,34], it can also be obtained from [12, Thm. 1.7].

Corollary 3.23 For any reference dissection D◦, the D◦-accordion complex AC(D◦)
is shellable.

3.4 Some Properties of Acco(D◦)

We conclude this section by pointing out some relevant combinatorial and geometric
properties and observations on the D◦-accordiohedron.
Proposition 3.24 The graph of the D◦-accordiohedron Acco(D◦) linearly oriented
in the direction −11 := −∑

δ◦∈D◦ eδ◦ is the Hasse diagram of the accordion lat-
tice AL(D◦).
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Proof Consider two adjacent maximal D◦-accordion dissections D•,D′• such that
the flip from D• to D′• is increasing. Let δ• ∈ D• and δ′• ∈ D′• be such
that D• � {δ•} = D′• � {δ′•}. As observed in Remark 3.5 (ii), the c-vector
c(D◦ | δ• ∈ D•) is the characteristic vector 11A◦ of the set A◦ of diagonals of D◦
crossed by both δ• and δ′•. Applying Lemma 3.19, we therefore obtain that

〈 −11
∣∣ p

(
D◦ |D′•

) − p
(
D◦ |D•

) 〉 = 〈−11
∣∣ λ · c(D◦ | δ• ∈ D•

) 〉

= λ · 〈−11
∣
∣ 11A◦

〉 = −λ · |A◦|,

for some λ ∈ Z<0. Thus, the linear functional−11 indeed orients the edge [p(D◦ |D•),
p(D◦ |D′•)] from p(D◦ |D•) to p(D◦ |D′•). �	
Remark 3.25 Since the c-vector fan Fc(D◦) refines the g-vector fan Fg(D◦), there is
a natural projection π from the vertices of the D◦-zonotope Zono(D◦) to that of the
D◦-accordiohedron Acco(D◦). In analogy to the acyclic case, one could hope to obtain
the accordion lattice as a lattice quotient through this projection. However, the transi-
tive closure of the graph of the D◦-zonotope Zono(D◦) oriented in the direction −11 is
not a lattice in general (the first counter-example is the dissection with a central square
surrounded by 4 triangles). As shown in [20], the right objects are not the separable
subsets of c-vectors (i.e. the vertices of Zono(D◦)) but the biclosed subsets of c-vectors.

Proposition 3.26 The accordiohedron Acco(D◦) has precisely |D◦| pairs of parallel
facets.

Proof Two facets of Acco(D◦) are parallel if and only if the corresponding g-vectors
are opposite. We therefore want to prove that the pairs of opposite coordinate vectors
are the only pairs of opposite g-vectors. Assume by contradiction that there exist two
hollow diagonals δ◦, δ′◦ ∈ D◦ and two solid D◦-diagonals δ•, δ′• such that g(D◦ | δ•)
and g(D◦ | δ′•) have non-zero opposite coordinate both on δ◦ and δ′◦. Then both δ•
and δ′• cross both δ◦ and δ′◦. But this implies that they both slalom on δ◦ (and on δ′◦)
in the same way. Contradiction. �	

Recall from Example 3.2 that the g-vectors of the diagonals of D−• (resp. D+• )
are the coordinate vectors (resp. negative of the coordinate vectors). Consider the
D◦-parallelepiped

Para(D◦) :=
{
x ∈ R

D◦ | 〈 g(D◦ | δ•) | x 〉 | ≤ ω(D◦ | δ•) for all δ• ∈ D−• ∪ D+•
}

defined by the inequalities of the D◦-zonotope Zono(D◦) corresponding to the positive
and negative basis vectors. Our next statement follows from Proposition 3.26 and is
illustrated in Fig. 7.

Corollary 3.27 For any D◦, we have matriochka polytopes:

Zono(D◦) ⊆ Acco(D◦) ⊆ Para(D◦).
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In fact, each polytope in this chain is obtained by deleting facets from the previous
one.

Consider now an isometry σ of the plane that preserves the hollow polygon P◦ and
the solid polygon P•. For any diagonals and dissections δ• ∈ D• and δ◦ ∈ D◦, we have
• δ• is a D◦-accordion diagonal ⇐⇒ σ(δ•) is a σ(D◦)-accordion diagonal,
• D• is a D◦-accordion dissection ⇐⇒ σ(D•) is a σ(D◦)-accordion dissection,
• if � : R

D◦ → R
σ(D◦) denotes the isometry defined by

(
�(x)

)
σ(δ◦) := ε(σ ) · xδ◦ ,

(where ε(σ ) = 1 if σ is direct and −1 if σ is indirect), then we have

g
(
σ(D◦) | σ(δ•)

) = �
(
g(D◦ | δ•)

)
,

c
(
σ(D◦) | σ(δ•) ∈ σ(D•)

) = �
(
c(D◦ | δ• ∈ D•)

)
,

ω
(
σ(D◦) | σ(δ•)

) = ω
(
D◦ | δ•

)
, and p

(
σ(D◦) | σ(D•)

) = �
(
p(D◦ |D•)

)
.

This immediately implies the following statement.

Proposition 3.28 Any P◦-preserving isometry σ : R
2 → R

2 induces an isometry
� : R

D◦ → R
σ(D◦) with

�
(
Zono(D◦)

) = Zono
(
σ(D◦)

)
,

�
(
Acco(D◦)

) = Acco
(
σ(D◦)

)
and

�
(
Para(D◦)

) = Para
(
σ(D◦)

)
.

We say that a dissection D is σ -invariant when σ(D) = D. Assume now that σ

is a rotation and D◦ is σ -invariant. We call σ -invariant D◦-accordion complex
the simplicial complex ACσ (D◦) whose vertices are the crossing-free σ -orbits of
D◦-accordion diagonals, and whose faces are sets of such orbits whose union is
crossing-free. In other words, the faces of ACσ (D◦) are σ -invariant D◦-accordion
dissections, seen as sets of σ -orbits of diagonals.

Lemma 3.29 The σ -invariantD◦-accordion complexACσ (D◦) is a pseudomanifold.
Proof Assume first that σ is the central symmetry. In this case, there are two possible
types of orbits: the long D◦-accordion diagonals and the centrally symmetric pairs of
D◦-accordion diagonals. One can check that any facet ofACσ (D◦) has a long diagonal
if and only if D◦ has, and has as many centrally symmetric pairs of diagonals as D◦.
Finally, any orbit in any facet of ACσ (D◦) can be flipped: long diagonals can already
be flipped in AC(D◦), and a centrally symmetric pair of diagonals can be flipped by
flipping one after the other its two diagonals in AC(D◦).

Finally, the general statement follows from this special case. Indeed, ifσ is not a cen-
tral symmetry, let C◦ denote the cell of D◦ containing the center of P◦, let u◦ be a vertex
of C◦, let D◦ be the set of diagonals of D◦ whose endpoints are between u◦ and σ(u◦),
and let ρ be the central symmetry around the middle of u◦σ(u◦). Then ACσ (D◦) is
isomorphic to ACρ

(
D◦ ∪ ρ(D◦)

)
. �	

Let� : R
D◦ → R

D◦ denote the isometry defined by (�(x))σ(δ◦) := xδ◦ and Fix(�)

denote the linear subspace of fixed points of�. According to the previous discussion, a
maximalD◦-accordion dissectionD• is σ -invariant if and only ifp(D◦ |D•) ∈ Fix(�).
We obtain the following statement.
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Proposition 3.30 For a σ -invariant dissection D◦, the polytope Accoσ (D◦) defined
equivalently as

• the convex hull of the points p(D◦ |D•) for all σ -invariant maximal D◦-accordion
dissections D•,

• the intersection of the D◦-accordiohedron Acco(D◦) with the fixed space Fix(�),

is a polytopal realization of the σ -invariant accordion complex ACσ (D◦).

Proof Denote by

P = conv {p(D◦ |D•) | σ -invariant maximal D◦-accordion dissections D•}

and by Q = Acco(D◦) ∩ Fix(�). The inclusion P ⊆ Q is clear since D• is σ -invariant
if and only if p(D◦ |D•) ∈ Fix(�). We now prove the reverse inclusion. For that, con-
sider an arbitrary σ -invariant maximal D◦-accordion dissection D•. Its corresponding
point p(D◦ |D•) is a common vertex of P and Q. Moreover, any edge e of Q incident
to p(D◦ |D•) is the intersection of Fix(�) with a face F of Acco(D◦) that corresponds
to a σ -invariant D◦-dissection. Since ACσ (D◦) is a pseudomanifold, this dissection
can be refined into another maximal σ -invariant D◦-accordion dissection D′•. The
point p(D◦ |D′•) belongs to F and to Fix(�) and thus to e. We conclude that if v is a
common vertex of P and Q, then so are all neighbors of v in the graph of Q. Propagat-
ing this property, we obtain that all vertices of Q are also vertices of P , so that P = Q.
Finally, there is a clear injection from the σ -invariant accordion complex ACσ (D◦)
to the boundary complex of P = Q, thus a bijection (since these complexes are two
spheres with the same vertex set). �	

4 The d-Vector Fan

In this section, we discuss the generalization to the D◦-accordion complex of another
classical geometric realization of the associahedron coming from the theory of clus-
ter algebras [8,10,16,17]. Namely, we define compatibility vectors in analogy with
the denominator vectors of cluster variables, and we characterize the reference dis-
sections D◦ for which these vectors support a complete simplicial fan realizing the
D◦-accordion complex.

4.1 d-Vectors

Fix a dissection D◦ of the hollow n-gon. For a hollow diagonal δ◦ = i◦ j◦ and a solid
diagonal δ•, we denote by

(δ◦ | δ•) :=

⎧
⎪⎨

⎪⎩

−1 if δ• = (i − 1)•( j − 1)•,
0 if δ• and (i − 1)•( j − 1)• do not cross,

1 if δ• and (i − 1)•( j − 1)• cross.
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For any D◦-accordion diagonal δ•, the d-vector of δ• with respect to D◦ is the vector

d
(
D◦ | δ•

) =
∑

δ◦∈D◦
(δ◦ | δ•) eδ◦ .

In other words, our d-vector d(D◦ | δ•) records the compatibility of the diagonal δ•
with the dissection D−• . For a D◦-accordion dissection D•, we define

d
(
D◦ |D•

) := {
d
(
D◦ | δ•

) ∣∣ δ• ∈ D•
}
.

Example 4.1 Consider the hollow dissection Dex◦ = {3◦7◦, 3◦13◦, 9◦13◦} and the
rightmost solid dissection Dex• = {2•6•, 2•10•, 10•14•} of Fig. 2. Its d-vectors are
given by

d
(
Dex◦ | 2•6•

) = −e3◦7◦,

d
(
Dex◦ | 2•10•

) = e9◦13◦, and

d
(
Dex◦ | 10•14•

) = e3◦13◦ + e9◦13◦ .

4.2 d-Vector Fan

We now consider the set of cones

{
R≥0d

(
D◦ |D•

) ∣∣ D• any D◦-accordion dissection
}

generated by the d-vectors of the D◦-accordion dissections. We want to characterize
the reference hollow dissections D◦ for which these cones form a complete simplicial
fan realizing the D◦-accordion complex. We start with a negative result. An even
interior cell of a dissection D is a cell with an even number of edges which are all
internal diagonals of D.

Proposition 4.2 If the reference hollow dissection D◦ contains an even interior cell,
then the d-vectors cannot realize the D◦-accordion complex.

Proof Assume that D◦ contains an even interior cell C◦. Denote its vertices
by i1◦ , . . . , i2p◦ (in clockwise order) and its edges δk◦ := i k◦ i k+1◦ for k ∈ [2p]
(where i2p+1 = i1 by convention). Denote by Dk◦ the set of diagonals of D◦ sepa-
rated form C◦ by δk◦ (including δk◦ itself), and let Dk• := {(i −1)•( j −1)• | i◦ j◦ ∈ Dk◦}.
Consider the solid diagonals δk• := (i k + 1)•(i k+1 + 1)• for k ∈ [2p]. Observe that δk•
only crosses diagonals of Dk−1• and Dk•, and that δk• and δk+1• cross precisely the same
diagonals of Dk•. Since the cell is even, it ensures that the d-vectors of the diagonals δk•
for k ∈ [2p] satisfy the linear dependence

∑

k∈[2p]
k even

d
(
D◦ | δk•

) =
∑

k∈[2p]
k odd

d
(
D◦ | δk•

)
.
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However, as already mentioned in Sect. 2.4, the diagonals δk• for k ∈ [2p] all
belong to the D◦-accordion dissection D+• := {(i + 1)•( j + 1)• | i◦ j◦ ∈ D◦}. There-
fore, the cone R≥0d(D◦ |D+• ) is degenerate, so that the d-vectors cannot realize the
D◦-accordion complex. �	
Example 4.3 Consider a hollow octagon together with the reference dissection
D◦ := {1◦5◦, 5◦9◦, 9◦13◦, 13◦1◦} with an interior square cell 1◦5◦9◦13◦. Then we
have

d
(
D◦ | 2•6•

) = e1◦5◦ + e5◦9◦ d
(
D◦ | 6•10•

) = e5◦9◦ + e9◦13◦
d
(
D◦ | 10•14•

) = e9◦13◦ + e13◦1◦ d
(
D◦ | 14•2•

) = e13◦1◦ + e1◦5◦

so that there is already a linear dependence

d
(
D◦ | 2•6•

) + d
(
D◦ | 10•14•

) = d
(
D◦ | 6•10•

) + d
(
D◦ | 14•2•

)

among thed-vectors of theD◦-accordiondissectionD+• ={2•6•,6•10•,10•14•,14•2•}.
On the negative side, we have seen that the presence of even interior cells prohibits

the d-vectors from forming a complete simplicial fan. The positive side is that the
even interior cells are the only obstructions.

Theorem 4.4 The collection of cones

Fd(D◦) := {
R≥0d

(
D◦ |D•

) ∣
∣ D• any D◦-accordion dissection

}

forms a complete simplicial fan, that we call the d-vector fan of D◦, if and only if D◦
contains no even interior cell.

Proof We use the characterization of complete simplicial fans presented in Proposi-
tion 3.13.

Observe first that d(D◦ |D−• ) = (R≤0)
D◦ is the only cone of Fd(D◦) intersecting

the interior of the negative orthant (R≤0)
D◦ . Therefore, Fd(D◦) fulfills Condition (1)

in Proposition 3.13.
To check Condition (2), consider two adjacent maximal D◦-accordion dissec-

tions D• and D′• and let δ• ∈ D• and δ′• ∈ D′• be such that D• � {δ•} = D′• � {δ′•}.
Let μ• and ν• be the diagonals of D• ∩ D

′
• as in Lemma 2.9 (see also Fig. 4). In

other words, μ• and ν• are incident to both δ• and δ′•, and they are crossed by the
hollow diagonal which intersect δ• and δ′•. Let γ◦ = i◦ j◦ be such a hollow diagonals
crossing δ•, δ′•, μ• and ν•, and let γ• = (i − 1)•( j − 1)•. We now distinguish three
cases:

• Assume that γ• still crosses μ• and ν•. In this case, any diagonal of D−• crossing
both (resp. either) δ• and (resp. or) δ′• also crosses both (resp. either) μ• and
(resp. or) ν•. See Fig. 8 (left). Therefore, the d-vectors of D• ∪D′• satisfy the linear
dependence

d(D◦ | δ•) + d(D◦ | δ′•) = d(D◦ | μ•) + d(D◦ | ν•).
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Fig. 8 Illustration of the notations and of the different cases in the proof of Theorem 4.4

• Assume that γ• crosses neitherμ• nor ν•. Then γ• is incident to bothμ• and ν•, and
therefore is either δ• or δ′•, say γ• = δ•. Then d(γ◦ | δ•) = −1 while d(γ◦ | δ′•) = 1
(since δ′• crosses δ• = γ•), so that d(γ◦ | δ•) + d(γ◦ | δ′•) = 0. Moreover, we
have d(γ◦ | δ′•) = 0 for any diagonal ε• ∈ D• ∩ D′• since δ• = γ• cannot cross ε•
as they both belongs to D•. Therefore, the set

{
d(D◦ | δ•) + d(D◦ | δ•)

} ∪ d(D◦ |D• ∩ D′•)

contains |D◦| vectors of R
D◦ whose γ◦-coordinate all vanish, so that it admits a

linear dependence.

• Otherwise, we can assume that γ• crosses μ• but not ν•. Then γ• has a common
endpoint with ν• and δ• (or δ′•, but we then permute notations). Changing our
initial choice of γ◦, we can assume that no diagonal of D−• separates γ• from δ•.
We now denote clockwise
– by ν• =: λ0•, λ1•, . . . , λ�• := δ• the edges of the cell C• of D• containing ν•
and δ•,

– by γ• =: γ 0• , γ 1• , . . . , γ k• the edges of the cell C−• of D−• containing γ• and
crossed by δ•.

These notations are illustrated in Fig. 8. We still distinguish two subcases as in
Fig. 8:
– If γ i• crosses λi• for all i as in Fig. 8 (middle), then � = k and we have the linear
dependence

2d(D◦ | δ•) + d(D◦ | δ′•) = d(D◦ | μ•) +
∑

i∈[�−1]
(−1)(i−1)d(D◦ | λi•).

It is essential here that � = k is even. This is guarantied by the assumption
that D◦ (and thus D−• ) has no even interior cell, since C−• is an interior cell
of D−• of size k.

– Otherwise, we are in a situation similar to Fig. 8 (right). Considering the max-
imal index m such that γ i• crosses λi• for all i ≤ m, and we have the linear
dependence
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Fig. 9 Stereographic projections of the d-vector fansFd(D◦) for various reference hollow dissections D◦.
See Fig. 6 for alternative simplicial fan realizations of these accordion complexes

d(D◦ | δ•) + d(D◦ | δ′•) = d(D◦ | μ•) +
∑

i∈[m]
(−1)(i−1)d(D◦ | λi•). �	

Example 4.5 Following Example 2.2, we observe that special reference dissections
give rise to the following relevant fans:

• For a snake triangulation Z◦, the d-vector fan Fd( Z◦) coincides with the type A
cluster fan of Fomin and Zelevinsky [17].

• For any triangulation T◦, the d-vector fan Fd(T◦) was already constructed in [8].
• For a quadrangulationQ◦ with no interior quadrangle (equivalently, with no cross),
we obtain an alternative realization of the Stokes complexes studied in [2,9]. This
was observed by Bateni, Manneville and Pilaud in [3].

Figure 9 illustrates the d-vector fansFd(D◦) for the same reference dissections D◦
as in Fig. 6. More precisely, we have represented the stereographic projection of
the fans from the point [ −1,−1,−1 ]. Therefore, the external face of the projection
corresponds to the D◦-accordion dissection D−• . We have labeled all vertices of the
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projection (i.e. the rays of the fan) by the corresponding D◦-accordion diagonals.
Compare with Fig. 6.

Remark 4.6 To prove that the d-vector fan Fd(D◦) is polytopal, we would need to
find suitable hyperplanes orthogonal to their rays in order to apply Theorem 3.21. For
the g-vector fan, these hyperplanes were defined using the height function ω(D◦ | δ•).
It would be natural to use the same height function for the d-vector fan as well.
Unfortunately, for this choice of height function, we can only prove Condition (i) of
Theorem 3.21 when D◦ is a triangulation (see also [8]). We were not able to find
suitable right hand sides for any dissection D◦.
Remark 4.7 Our d-vectors record the compatibility with the dissection D−• . A pri-
ori, we could compute compatibility vectors with respect to any other maximal
D◦-accordion dissection Dini• . Experiments suggest that the d-vector construction pro-
vides a complete simplicial fan as long as neither D◦ nor Dini• contain no even interior
cell. We checked it for reference quadrangulations with at most 5 diagonals. The linear
dependences involved seem however much more complicated than those of the proof
of Theorem 4.4 (in particular, they may involve d-vectors of diagonals not included
in the cells containing δ• and δ′•).

5 Sections and Projections

Recall that for a fanF ofR
d and a linear subspace V ofR

d , the section ofF by V is the
fan F ∣∣

V := {C ∩ V |C ∈ F}. For a polytope P ⊆ R
d and a projection π : R

d → V ,
the normal fan of the projected polytopeπ(P) is the section of the normal fan of P byV
[46, Lem. 7.11]. We now consider sections of the g- and d-vector fans by coordinate
subspaces. For two dissections D◦ ⊂ D′◦, we naturally identify R

D◦ with the subspace
spanned by {eδ◦ | δ◦ ∈ D◦} in R

D′◦ .

5.1 Coordinate Sections of the d-Vector Fan

We start by presenting sections of the d-vector fan which are not very surprising. The
following lemma is immediate from the definition of d-vectors.

Lemma 5.1 Consider two dissections D◦ ⊂ D′◦, and a D′◦-accordion diagonal δ•.
Then we have d(D◦ | δ•) ∈ R

D◦ if and only if δ• does not cross any diagonal
of {(i − 1)•( j − 1)• | i◦ j◦ ∈ D′◦ � D◦}.
Corollary 5.2 For any two dissectionsD◦ ⊂ D′◦, the face complex of the section of the
d-vector fan Fd(D′◦) by the subspace RD◦ is isomorphic to the link of the dissection
{(i − 1)•( j − 1)• | i◦ j◦ ∈ D′◦ � D◦} in the D′◦-accordion complex AC(D′◦).

5.2 Coordinate Sections of the g-Vector Fan

More relevant are the sections of the g-vector fan. They provide an alternative approach
to polytopal realizations of the accordion complex based on projected associahedra.
This approach relies on the following crucial observation.
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Fig. 10 Projecting accordiohedra on coordinate planes yields smaller accordiohedra

Lemma 5.3 Consider two dissections D◦ ⊂ D′◦, and a D′◦-accordion diagonal δ•.
Then we have g(D′◦ | δ•) ∈ R

D◦ if and only if δ• is aD◦-accordion diagonal. Moreover,
in this case, the g-vectors g(D◦ | δ•) and g(D′◦ | δ•) coincide.

Proof Let δ◦ ∈ D′◦ � D◦. By definition, a D′◦-accordion diagonal δ• does not slalom
on δ◦ if and only if the δ◦-coordinate of g(D◦ | δ•) vanishes. Thus, δ• is a D◦-accordion
diagonal if and only if the δ◦-coordinate of g(D′◦ | δ•) vanishes for all δ◦ ∈ D′◦ �D◦. �	

Basedon this lemma,weobtain in the following statements an alternative realization
on the g-vector fan, which is illustrated in Fig. 10.

Theorem 5.4 For two dissections D◦ ⊂ D′◦, the g-vector fan Fg(D◦) is precisely the
set of cones {C ∈ Fg(D′◦) |C ⊂ R

D◦} and coincides with the section of the g-vector
fan Fg(D′◦) by R

D◦ .

Proof Lemma 5.3 immediately implies that Fg(D◦) = {C ∈ Fg(D′◦) |C ⊂ R
D◦ }.

A priori, it is a subfan of the section Fg(D′◦)
∣
∣
RD◦ = {C ∩ R

D◦ |C ∈ Fg(D′◦)}.
However, since Fg(D◦) is already a complete simplicial fan of R

D◦ , it coincides
with Fg(D′◦)

∣∣
RD◦ . �	

Theorem 5.5 For any two dissections D◦ ⊂ D′◦, the g-vector fan Fg(D◦) is realized
by the orthogonal projection of the D′◦-accordiohedron Acco(D′◦) on R

D◦ , which is
equivalently described by:

• the convex hull of the points
∑

δ•∈D• ω(D′◦ | δ•) · c(D◦ | δ• ∈ D•) for all
D◦-accordion dissections D•,

• the intersection of the half-spaces {x ∈ R
D◦ | 〈 g(D◦ | γ•) | x 〉 ≤ ω(D′◦ | δ◦)} for

all D◦-accordion diagonals γ•.

Proof Since Fg(D′◦) is the normal fan of Acco(D′◦), Theorem 5.4 implies that
Fg(D◦) = Fg(D′◦)

∣∣
RD◦ is the normal fan of the orthogonal projection of Acco(D′◦)

on R
D◦ [46, Lem. 7.11]. We therefore just need to prove the given vertex and facet

descriptions of this projection. First, since Fg(D◦) = Fg(D′◦)
∣
∣
RD◦ , the inequalities

of the projection of Acco(D′◦) on R
D◦ are just the inequalities of Acco(D′◦) whose nor-

mal vectors are in R
D◦ . Finally, the vertex description follows from the inequality

description using the same argument as in Lemma 3.18. �	
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Remark 5.6 The projection of the accordiohedron Acco(D′◦) on R
D◦ differs from the

accordiohedron Acco(D◦): they have both Fg(D◦) as normal fan, but their precise
geometry is different.

Corollary 5.7 For any hollow dissection D◦, the g-vector fan Fg(D◦) is realized by
a projection of an associahedron of [27].

Proof Apply Theorem 5.5 to any triangulation T◦ that refines D◦. �	
Remark 5.8 Approaching accordion complexes as coordinate sections of g-vector
fans actually provides more concise (but also less instructive) proofs for Sects. 2.3
and 3.3. Namely, consider any dissection D◦ and let T◦ be a triangulation that
refines D◦. The sign coherence property for triangulations (see Corollary 3.9) shows
that the section Fg(T◦)

∣
∣
RD◦ = {C ∩ R

D◦ |C ∈ Fg(T◦)} actually coincides with
{C ∈ Fg(T◦) |C ⊂ R

D◦ }. Therefore, this gives an alternative concise proof that
the collection of cones {C ∈ Fg(T◦) |C ⊂ R

D◦ } forms a complete simplicial fan.
Moreover, this fan has the same combinatorics as the D◦-accordion complexAC(D◦)
by Lemma 5.3. We conclude directly that AC(D◦) is a pseudomanifold realized by
the fan {C ∈ Fg(T◦) |C ⊂ R

D◦} and by the orthogonal projection of the associahe-
dron Asso(T◦) on R

D◦ .

5.3 Cluster Algebra Analogues

The perspective on accordion complexes developed in this section also opens the door
to generalizations on arbitrary cluster algebras (finite type or not). Namely, consider
an arbitrary cluster X◦ = (x1◦ , . . . , xm◦ ) in an arbitrary cluster algebra A. For any
cluster variable y ∈ A, we denote by g(X◦ | y) ∈ R

m and d(X◦ | y) ∈ R
m the

g- and d-vectors of y computed with respect to X◦, see [16,19]. Fix a non-empty
proper subset I of [m]. We consider two natural subcomplexes of the cluster complex
of A:

• the subcomplex �d(X◦, I ) induced by the variables y such that d(X◦ | y)i = 0
for all i ∈ I ,

• the subcomplex �g(X◦, I ) induced by the variables y such that g(X◦ | y)i = 0 for
all i ∈ I .

It is well-known that the subcomplex �d(X◦, I ) is the cluster complex obtained by
freezing all variables xi for i ∈ I . For example in type A, it is a join of simplicial
associahedra and it can therefore be realized by a product of smaller associahedra. In
contrast, we do not know whether the subcomplex �g(X◦, I ) has been investigated.
The present paper dealt with the type A situation.

Example 5.9 Let T◦ be a triangulation, with internal diagonals labeled by 1, . . . ,m.
Consider the corresponding type Am cluster X◦. Then for any non-empty proper
subset I of [m], the subcomplex�g(X◦, I ) is isomorphic to theD◦-accordion complex,
where D◦ is the dissection obtained by deleting in T◦ the diagonals labeled by I .

Example 5.10 Example 5.9 extends to cluster algebras on surfaces [14,15], using
accordions of dissections of surfaces.
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The following statement extends Theorem 5.4 to arbitrary cluster algebras.

Theorem 5.11 The subset {C ∈ Fg(X◦) |C ⊆ R
[m]�I } of the g-vector fan Fg(X◦)

of X◦ coincides with the section Fg(X◦)
∣∣
R[m]�I = {C ∩ R

[m]�I |C ∈ Fg(X◦)}.
Proof The inclusion {C ∈ Fg(X◦) |C ⊆ R

[m]�I } ⊆ Fg(X◦)
∣∣
R[m]�I is clear. For the

reverse inclusion, we use the sign coherence property of g-vectors in cluster algebras,
whichwas conjectured in [19, Conj. 6.13] and proved in [22, Thm. 5.1] in general. This
property implies that the coordinate plane R

[m]�I intersects any cone C of Fg(X◦) in
a face C ′. This shows that C ∩ R

[m]�I = C ′ belongs to {C ∈ Fg(X◦) |C ⊆ R
[m]�I }.

�	
Corollary 5.12 The subcomplex �g(X◦, I ) induced by the variables y such that
g(X◦ | y)i = 0 for all i ∈ I is a pseudomanifold.

Moreover, extending the result of Hohlweg et al. [26] in the acyclic case,
C. Hohlweg, V. Pilaud and S. Stella recently constructed a polytope Asso(X◦) real-
izing the g-vector fan Fg(X◦) in [27]. We can use this associahedron to realize the
subcomplex �g(X◦, I ) as a convex polytope, extending Theorem 5.5.

Corollary 5.13 The orthogonal projection of Asso(X◦) on R
[m]�I is a realization

of �g(X◦, I ).
Finally, when oriented in the suitable direction v (the sum of the positive roots,

or equivalently the sum of the fundamental weights), the graph of the generalized
associahedron Asso(X◦) is the Hasse diagram of a Cambrian lattice [38]. One can
similarly orient the graph of the projection of Asso(X◦) on R

[m]�I in the direction of
the projection of v on R

[m]�I . Is the resulting graph the Hasse diagram of a lattice?
Combining the results of [20] with that of the present paper shows that this property
holds in type A. We also computationally verified the statement in types B4, B5, D4
and D5. Following [20] it seems promising to construct first a lattice structure on
biclosed sets of c-vectors, and to obtain then the graph of the projection of Asso(X◦)
on R

[m]�I as the Hasse diagram of a lattice quotient.
To conclude, let usmention that the ideas developed in this section have also inspired

further investigation of sections of g-vector fans of support τ -tilting complexes of
associative algebras, see [34] and [32, Sect. 4.2.6].
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