

Geometric Realizations of the Accordion Complex of a Dissection

Thibault Manneville¹ · Vincent Pilaud²

Received: 22 June 2017 / Revised: 29 March 2018 / Accepted: 21 April 2018 /

Published online: 29 May 2018

© Springer Science+Business Media, LLC, part of Springer Nature 2018

Abstract Consider 2n points on the unit circle and a reference dissection D_{\circ} of the convex hull of the odd points. The accordion complex of D_{\circ} is the simplicial complex of non-crossing subsets of the diagonals with even endpoints that cross a connected subset of diagonals of D_{\circ} . In particular, this complex is an associahedron when D_{\circ} is a triangulation and a Stokes complex when D_{\circ} is a quadrangulation. In this paper, we provide geometric realizations (by polytopes and fans) of the accordion complex of any reference dissection D_{\circ} , generalizing known constructions arising from cluster algebras.

Keywords Permutahedra · Zonotopes · Associahedra · g-, c- and d-Vectors

Mathematics Subject Classification 52B11 · 52B12 · 13F60

Editor in Charge: Kenneth Clarkson

Partially supported by the French ANR Grant SC3A (15 CE40 0004 01).

Thibault Manneville thibault.manneville@lix.polytechnique.fr

Vincent Pilaud vincent.pilaud@lix.polytechnique.fr

LIX, École Polytechnique, 91128 Palaiseau, France

² CNRS & LIX, École Polytechnique, 91128 Palaiseau, France

1 Introduction

The (n-3)-dimensional associahedron is a simple polytope whose face poset is isomorphic to the reverse inclusion poset of non-crossing subsets of diagonals of a convex n-gon. Introduced in early works of Tamari [44] and Stasheff [42], it was first realized as a convex polytope by Haiman [23] and Lee [28], and later constructed by more systematic methods developed by several authors, in particular [8,21,25,29]. Various relevant generalizations of the associahedron were introduced and studied, in particular secondary polytopes and fiber polytopes [4,21], generalized associahedra [10,18,24,26,43] in connection to cluster algebras [16,17], graph associahedra [7,13,30,33,37,45], or brick polytopes [35,36].

In a different context, Baryshnikov [2] introduced the simplicial complex of crossing-free subsets of the set of diagonals of a polygon that are in some sense compatible with a reference quadrangulation Q_{\circ} . Although the precise definition of compatibility is a bit technical in [2], it turns out that a diagonal is compatible with Q_{\circ} if and only if it crosses a connected subset of diagonals of Q_{\circ} that we call *accordion* of Q_{\circ} . We thus call Baryshnikov's simplicial complex the *accordion complex* $\mathcal{AC}(Q_{\circ})$. A polytopal realization of $\mathcal{AC}(Q_{\circ})$ was announced in [2], but the explicit construction and its proof were never published as far as we know. Revisiting some combinatorial and algebraic properties of $\mathcal{AC}(Q_{\circ})$, Chapoton [9, Intro. p.4] raised three explicit challenges: first prove that the oriented dual graph of $\mathcal{AC}(Q_{\circ})$ has a lattice structure extending the Tamari and Cambrian lattices [31,38]; second construct geometric realizations of $\mathcal{AC}(Q_{\circ})$ as fans and polytopes generalizing the known constructions of the associahedron; third show that the facets of $\mathcal{AC}(Q_{\circ})$ are in bijection with other combinatorial objects called serpent nests [9, Sect. 4].

In [20], Garver and McConville defined and studied the accordion complex $\mathcal{AC}(D_\circ)$ of any reference dissection D_\circ (their presentation slightly differs as they use a compatibility condition on the dual tree of the dissection D_\circ , but the simplicial complex is the same). In this context, they settled Chapoton's lattice question, using lattice quotients of a lattice of biclosed sets. In this paper, we present geometric realizations of $\mathcal{AC}(D_\circ)$ for any reference dissection D_\circ , providing in particular an answer to Chapoton's geometric question. In fact, we present three methods to realize $\mathcal{AC}(D_\circ)$ based on constructions of the classical associahedron.

Our first method is based on the **g**-vector fan. It belongs to a series of constructions of the (generalized) associahedra initiated by Shnider and Sternberg [41], popularised by Loday [29], developed by Hohlweg et al. [25,26] using works of Reading and Speyer [38–40], and revisited by Stella [43] and by Pilaud et al. [35,36]. It was recently extended by Hohlweg et al. [27] to construct an associahedron parametrized by any initial triangulation. Here, we first extend to the D_{\circ} -accordion complex $\mathcal{AC}(D_{\circ})$ the **g**-vectors and **c**-vectors defined in the context of cluster algebras by Fomin and Zelevinski [19]. Note that **c**-vectors were already implicitly considered in [20], while **g**-vectors are new in this context. When D_{\circ} is a triangulation, our definitions coincide with those given in terms of triangulations and laminations for cluster algebras from surfaces by Fomin and Thurston [15]. We then show that the **g**-vectors with respect to the dissection D_{\circ} support a complete simplicial fan $\mathcal{F}^{\mathbf{g}}(D_{\circ})$ realizing the D_{\circ} -accordion complex $\mathcal{AC}(D_{\circ})$. Finally, we construct a D_{\circ} -accordiohedron $Acco(D_{\circ})$ realizing

the **g**-vector fan $\mathcal{F}^{\mathbf{g}}(D_{\circ})$ by deleting inequalities from the facet description of the D_{\circ} -zonotope $\mathsf{Zono}(D_{\circ})$ obtained as the Minkowski sum of all **c**-vectors. See Fig. 7 for an illustration of D_{\circ} -accordiohedra.

Our second method is based on the **d**-vector fan. This construction is inspired from the original cluster fan of Fomin and Zelevinsky [17] later realized as a polytope by Chapoton et al. [10], and from the generalization of Ceballos et al. [8] to construct a compatibility fan and an associahedron from any initial triangulation. For any reference dissection D_{\circ} , we associate to each diagonal a **d**-vector which records the crossings of this diagonal with those of D_{\circ} . We show that the **d**-vectors support a complete simplicial fan realizing the D_{\circ} -accordion complex $\mathcal{AC}(D_{\circ})$ if and only if D_{\circ} contains no even interior cell. The polytopality of the resulting fan remains open in general, but was shown for arbitrary triangulations in [8].

Finally, our third method is based on projections of associahedra. Namely, for any dissection D_\circ and triangulation T_\circ such that $D_\circ \subseteq T_\circ$, the accordion complex $\mathcal{AC}(D_\circ)$ is a subcomplex of the simplicial associahedron $\mathcal{AC}(T_\circ)$. It turns out that the **g**-vector fan $\mathcal{F}^g(D_\circ)$ is then a section of the **g**-vector fan $\mathcal{F}^g(T_\circ)$ by a coordinate subspace. Therefore, the accordion complex $\mathcal{AC}(D_\circ)$ is realized by a projection of the associahedron $\mathsf{Asso}(T_\circ)$ of [27]. This point of view provides a complementary perspective on accordion complexes that leads on the one hand to more concise but less instructive proofs of combinatorial and geometric properties of the accordion complex (pseudomanifold, **g**-vector fan, accordiohedron), and on the other hand to natural extensions to coordinate sections of the **g**-vector fan in arbitrary cluster algebras.

As recently observed in [5,20,32,34], accordion complexes are prototypes of support τ -tilting complexes introduced in [1], for certain associative algebras called gentle algebras. In this context, **g**-vectors have a deep algebraic meaning and still define a **g**-vector fan. Although this fan is still polytopal for finite support τ -tilting complexes, it is not in general obtained by deleting inequalities in the facet description of a zonotope. We refer to [32, Part 4] for details.

The paper is organized as follows. Section 2 introduces the accordion complex and accordion lattice of a dissection D_{\circ} . We essentially follow the definitions and arguments of Garver and McConville [20], except that we prefer to work on the dissection D_{\circ} rather than on its dual graph. Section 3 is devoted to the generalization of the **g**-vector fan and the associahedra of [25,27]. Section 4 discusses the generalization of the construction of the **d**-vector fan and associahedra of [8,17]. Finally, Sect. 5 shows that the accordion complex is realized by a projection of a well-chosen associahedron and presents related questions on cluster algebras, subcomplexes of the cluster complex, and sections of the **g**-vector fan.

2 The Accordion Complex and the Accordion Lattice

In this section, we define the accordion complex $\mathcal{AC}(D_\circ)$ of a dissection D_\circ , show that it is a pseudomanifold, and define an orientation of its dual graph. Our definitions and proofs are essentially translations of the arguments of Garver and McConville [20] given in terms of the dual tree of the dissection D_\circ . However our presentation in terms of dissections is more convenient for our purposes.

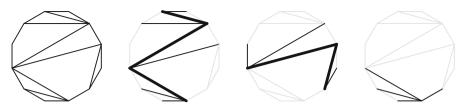


Fig. 1 A dissection D (left) and three accordions whose zigzags are bolded (middle and right)

2.1 The Accordion Complex

Let P be a convex polygon. We call *diagonals* of P the segments connecting two vertices of P. This includes both the internal diagonals and the external diagonals (or boundary edges) of P. A *dissection* of P is a set D of non-crossing internal diagonals of P. The *cells* of D are the closures of the connected components of P minus the diagonals of D. A *triangulation* (resp. quadrangulation) is a dissection whose cells are all triangles (resp. quadrangles).

We denote by \overline{D} the dissection D together with all boundary edges of P. A *cut* of D is the subset of \overline{D} intersected by a line crossing two boundary edges of P. An *accordion* is a connected cut. By definition, an accordion is a tree and contains two boundary edges of P. The *zigzag* of an accordion A is the chain obtained by deleting all degree 1 vertices of A. A *subaccordion* of D is a connected subset of D intersected by a segment in the interior of P. Note that any subaccordion of an accordion A consists of the diagonals of A between two internal diagonals of A. Note that we include boundary edges of P in the accordions of D, but not in the subaccordions nor in the zigzags of D. See Fig. 1.

Let $1_{\circ}, 2_{\bullet}, \ldots, (2n-1)_{\circ}, (2n)_{\bullet}$ be 2n points clockwise on a circle. We say that $1_{\circ}, \ldots, (2n-1)_{\circ}$ are the *hollow vertices* while $2_{\bullet}, \ldots, (2n)_{\bullet}$ are the *solid vertices*. The *hollow polygon* is the convex hull P_{\circ} of $1_{\circ}, \ldots, (2n-1)_{\circ}$ while the *solid polygon* is the convex hull P_{\bullet} of $2_{\bullet}, \ldots, (2n)_{\bullet}$. We simultaneously consider *hollow diagonals* δ_{\circ} (with two hollow vertices) and *solid diagonals* δ_{\bullet} (with two solid vertices), but we never consider diagonals with one hollow vertex and one solid vertex. Similarly, we consider *hollow dissections* D_{\circ} (of the hollow polygon, with only hollow diagonals) and *solid dissections* D_{\bullet} (of the solid polygon, with only solid diagonals), but never mix hollow and solid diagonals in a dissection. To help distinguish them, hollow (resp. solid) vertices and diagonals appear red (resp. blue) in all pictures.

We fix an arbitrary reference hollow dissection D_\circ . A solid diagonal δ_\bullet is a D_\circ -accordion diagonal if the hollow diagonals of \overline{D}_\circ crossed by δ_\bullet form an accordion of D_\circ . In other words, δ_\bullet cannot enter and exit a cell of D_\circ using two non-incident diagonals. For example, note that for any hollow diagonal $i_\circ j_\circ \in \overline{D}_\circ$, the solid diagonals $(i-1)_\bullet (j-1)_\bullet$ and $(i+1)_\bullet (j+1)_\bullet$ are D_\circ -accordion diagonals (here and throughout, labels are considered modulo 2n). In particular, all boundary edges of the solid polygon are D_\circ -accordion diagonals. A D_\circ -accordion dissection is a set of non-crossing internal D_\circ -accordion diagonals. We define the D_\circ -accordion complex to be the simplicial complex $\mathcal{AC}(D_\circ)$ of D_\circ -accordion dissections.

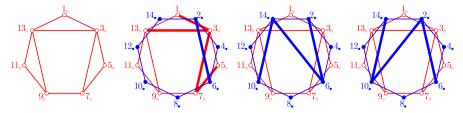


Fig. 2 A hollow dissection D_o^{ex} , a solid D_o^{ex} -accordion diagonal whose corresponding hollow accordion is bolded, and two maximal solid D_o^{ex} -accordion dissections

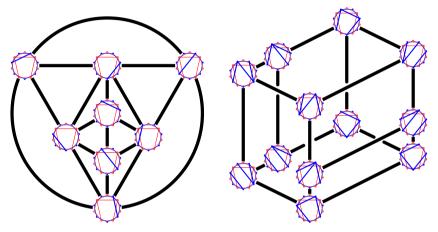


Fig. 3 The D_o^{ex} -accordion complex (left) and the D_o^{ex} -accordion lattice (right), oriented from bottom to top, for the reference hollow dissection D_o^{ex} of Fig. 2 (left)

Example 2.1 As a running example, we consider the reference dissection D_{\circ}^{ex} of Fig. 2 (left). Examples of maximal D_{\circ}^{ex} -accordion dissections are given in Fig. 2 (right). The D_{\circ}^{ex} -accordion complex is illustrated in Fig. 3 (left).

Example 2.2 Special reference hollow dissections D_o give rise to special accordion complexes $\mathcal{AC}(D_o)$:

- If D_\circ is the empty dissection with the whole hollow polygon as unique cell, then the D_\circ -accordion complex $\mathcal{AC}(D_\circ)$ is reduced to the empty D_\circ -accordion dissection.
- If D_\circ has a unique internal diagonal, then the D_\circ -accordion complex $\mathcal{AC}(D_\circ)$ consists of only two points.
- For a hollow triangulation T_{\circ} , all solid diagonals are T_{\circ} -accordions, so that the T_{\circ} -accordion complex $\mathcal{AC}(T_{\circ})$ is the simplicial associahedron.
- For a hollow quadrangulation Q_o , a solid diagonal is a Q_o -accordion if and only if it does not cross two opposite edges of a quadrangle of Q_o . The Q_o -accordion complex $\mathcal{AC}(Q_o)$ is thus the Stokes complex defined by Baryshnikov [2] and studied by Chapoton [9].

Remark 2.3 Following the original definition of the non-crossing complex of Garver and McConville [20], the accordion complex could equivalently be defined in terms of

the dual tree D_{\circ}^{\star} of D_{\circ} (with one node in each cell of D and one edge connecting two adjacent cells). More precisely, the duality provides the following dictionary between the two definitions:

Present paper		Garver and McConville [20]
Reference dissection D _o Diagonal $u_{\bullet}v_{\bullet}$ of P _{\ullet}	$\longleftrightarrow \longleftrightarrow \longleftrightarrow$	Embedded tree D_{\circ}^{\star} Path connecting the leaves u_{\bullet}^{\star} and v_{\bullet}^{\star} of D_{\circ}^{\star}
D _o -accordion diagonal	\longleftrightarrow	Arc (path where any two consecutive edges belong to the boundary of a face of the complement of D_{\circ}^{\star} in the
		unit disk)
D _o -subaccordion	\longleftrightarrow	Segment
Do-accordion complex	\longleftrightarrow	Non-crossing complex of D _⋄ *

The \mathbf{g} -, \mathbf{c} - and \mathbf{d} -vectors defined in Sect. 3.1 could as well be defined in terms of D_{\circ}^{\star} . In fact, \mathbf{c} -vectors were already implicitly considered in [20], while \mathbf{g} - and \mathbf{d} -vectors are new in this context. For this paper, we find more convenient to work directly with dissections, in particular in Sects. 4 and 5.

2.2 Two Structural Observations

Before studying the accordion complex in details in Sect. 2.3, we present two simple structural observations. For this, let us recall two classical notions on simplicial complexes. The *join* of two simplicial complexes Δ , Δ' with disjoint ground sets X, X' is the simplicial complex $\Delta * \Delta'$ with ground set $X \sqcup X'$ whose faces are disjoint unions of faces of Δ with faces of Δ' . For a face D in a simplicial complex Δ on X, the *link* of D is the simplicial complex on $X \setminus D$ whose faces are the subsets D' of $X \setminus D$ such that $D \cup D'$ is a face of Δ .

Proposition 2.4 If the reference hollow dissection D_o has a cell containing p boundary edges of the hollow polygon P_o , then the D_o -accordion complex $\mathcal{AC}(D_o)$ is the join of p accordion complexes.

Proof Assume that D_o has a cell C_o containing p boundary edges of the hollow polygon P_o . Let C_o^1, \ldots, C_o^p denote the p (possibly empty) connected components of the hollow polygon minus C_o . For $i \in [p] := \{1, \ldots, p\}$, let D_o^i denote the dissection formed by the cell C_o together with the cells of D_o contained in the closure of C_o^i . Observe that for $i \neq j$, the internal diagonals of D_o^i are not incident to the internal diagonals of D_o^i . Thus, no D_o -accordion can contain internal diagonals from distinct dissections D_o^i and D_o^j . Therefore, the set of D_o -accordion diagonals is the union of the sets of D_o^i -accordion diagonals for $i \in [p]$. Moreover, for $i \neq j$, the D_o^i -accordion diagonals do not cross the D_o^j -accordion diagonals. It follows that the D_o -accordion complex is the join of the D_o^i -accordion complexes: $\mathcal{AC}(D_o) = \mathcal{AC}(D_o^1) * \cdots * \mathcal{AC}(D_o^p)$.

Remark 2.5 In view of Proposition 2.4, we can do the following reductions:

- (i) If a non-triangular cell of D_{\circ} has two consecutive boundary edges γ_{\circ} , δ_{\circ} of the hollow polygon, then contracting γ_{\circ} and δ_{\circ} to a single boundary edge preserves the D_{\circ} -accordion complex.
- (ii) If a cell of D_{\circ} has two non-consecutive boundary edges of the hollow polygon, then the D_{\circ} -accordion complex is a join of smaller accordion complexes.

In all the examples of the paper, we therefore only consider dissections where any non-triangular cell of D_{\circ} has at most one boundary edge. All of our constructions work in general, but are just obtained as products or joins of the non-degenerate situation.

Proposition 2.6 The links in an accordion complex are joins of accordion complexes.

Proof Consider a D_{\circ} -accordion dissection D_{\bullet} with cells $C_{\bullet}^{1}, \ldots, C_{\bullet}^{p}$. Let D_{\circ}^{i} denote the hollow dissection obtained from D_{\circ} by contracting all hollow boundary edges which do not cross C_{\bullet}^{i} . Then a diagonal δ_{\bullet} of a cell C_{\bullet}^{i} is a D_{\circ} -accordion diagonal if and only if it is a D_{\circ}^{i} -accordion diagonal. Moreover, for $i \neq j$, the diagonals of C_{\bullet}^{i} do not cross the diagonals of C_{\bullet}^{j} . It follows that the link of D_{\bullet} in $\mathcal{AC}(D_{\circ})$ is isomorphic to the join $\mathcal{AC}(D_{\circ}^{1}) * \cdots * \mathcal{AC}(D_{\circ}^{p})$.

2.3 Pseudo-Manifold

We now prove that the accordion complex $\mathcal{AC}(D_{\circ})$ is a *pseudomanifold*, *i.e.* that it is:

- (i) pure: all maximal D_{\circ} -accordion dissections have the same number of diagonals as D_{\circ} , and
- (ii) *thin*: any codimension 1 simplex of $\mathcal{AC}(D_\circ)$ is contained in exactly two maximal D_\circ -accordion dissections.

We follow the arguments of Garver and McConville [20] (except that they work on the dual tree of the dissection D_{\circ}). A much more concise but less instructive proof of the pseudomanifold property will be derived from geometric considerations in Remark 5.8.

Recall that we denote by \overline{D}_{\circ} the set formed by D_{\circ} together with all boundary edges of the hollow polygon. An $angle\ u_{\circ}v_{\circ}w_{\circ}$ of \overline{D}_{\circ} is a pair $\{u_{\circ}v_{\circ},v_{\circ}w_{\circ}\}$ of two consecutive diagonals of \overline{D}_{\circ} around a common vertex v_{\circ} , called the apex. Note that \overline{D}_{\circ} has $2|D_{\circ}|+n=2|\overline{D}_{\circ}|-n$ angles. Observe also that an accordion A_{\circ} of D_{\circ} can be seen as a sequence of $|A_{\circ}|-1$ angles where two consecutive angles are separated by a diagonal of A_{\circ} . We say that a solid vertex p_{\bullet} belongs to an angle $u_{\circ}v_{\circ}w_{\circ}$ if it lies in the cone generated by the edges $v_{\circ}u_{\circ}$ and $v_{\circ}w_{\circ}$ of the angle. The main observation is given in the following statement.

Lemma 2.7 Let D_{\bullet} be a maximal D_{\circ} -accordion dissection, and let $p_{\bullet}, q_{\bullet}, r_{\bullet}, s_{\bullet}$ denote four consecutive vertices of a cell C_{\bullet} of D_{\bullet} (with possibly $p_{\bullet} = s_{\bullet}$ if C_{\bullet} is a triangle). Then p_{\bullet} and s_{\bullet} belong to the same angle of the accordion of \overline{D}_{\circ} which is crossed by $q_{\bullet}r_{\bullet}$.

Proof Let A_{\circ} be the accordion of \overline{D}_{\circ} which is crossed by $q_{\bullet}r_{\bullet}$. Assume that p_{\bullet} and s_{\bullet} belong to distinct angles of A_{\circ} . Then they are separated by a diagonal ε_{\circ} of A_{\circ} .

Therefore, there are two boundary edges $q_{\bullet}r_{\bullet}$ and $u_{\bullet}v_{\bullet}$ of C_{\bullet} with distinct vertices such that the hollow diagonal ε_{\circ} separates the vertices q_{\bullet} , u_{\bullet} from the vertices r_{\bullet} , v_{\bullet} . Let $\gamma_{\circ}^{1}, \ldots, \gamma_{\circ}^{i} = \varepsilon_{\circ}, \ldots, \gamma_{\circ}^{a}$ (resp. $\delta_{\circ}^{1}, \ldots, \delta_{\circ}^{j} = \varepsilon_{\circ}, \ldots, \delta_{\circ}^{b}$) denote the diagonals of D_{\circ} crossed by $q_{\bullet}r_{\bullet}$ from q_{\bullet} to r_{\bullet} (resp. crossed by $u_{\bullet}v_{\bullet}$ from u_{\bullet} to v_{\bullet}). Then the hollow diagonals $\gamma_{\circ}^{1}, \ldots, \gamma_{\circ}^{i} = \varepsilon_{\circ} = \delta_{\circ}^{j}, \ldots, \delta_{\circ}^{b}$ which are crossed by $q_{\bullet}v_{\bullet}$ also form an accordion. It follows that D_{\bullet} is not maximal as we can still include $q_{\bullet}v_{\bullet}$.

Consider now an angle $u_{\circ}v_{\circ}w_{\circ}$ of \overline{D}_{\circ} . In any maximal D_{\circ} -accordion dissection D_{\bullet} , the set X_{\bullet} of diagonals of \overline{D}_{\bullet} that cross both $u_{\circ}v_{\circ}$ and $v_{\circ}w_{\circ}$ is non-empty (since it contains the boundary edge $(v-1)_{\bullet}(v+1)_{\bullet}$) and totally ordered (since the diagonals of D_{\bullet} do not cross). Let δ_{\bullet} be the largest diagonal of X_{\bullet} (meaning the farthest from v_{\circ}). We say that the diagonal δ_{\bullet} closes the angle $u_{\circ}v_{\circ}w_{\circ}$. Note that each angle of \overline{D}_{\circ} is closed by precisely one diagonal of \overline{D}_{\bullet} . The following lemma is stated and proved in [20] in terms of the dual tree D_{\circ}^{\star} of the dissection D_{\circ} .

Lemma 2.8 [20] For any maximal D_{\circ} -accordion dissection D_{\bullet} , each internal diagonal δ_{\bullet} of D_{\bullet} closes two angles of \overline{D}_{\circ} (one apex on each side of δ_{\bullet}) while each boundary edge of the solid polygon closes one angle of \overline{D}_{\circ} . Therefore the accordion complex $\mathcal{AC}(D_{\circ})$ is pure of dimension $|D_{\circ}|$.

Proof The first sentence is a consequence of Lemma 2.7: for any four consecutive vertices p_{\bullet} , q_{\bullet} , r_{\bullet} , s_{\bullet} of a cell of \overline{D}_{\bullet} , the diagonal $q_{\bullet}r_{\bullet}$ closes the unique angle of the accordion of \overline{D}_{\circ} crossed by $q_{\bullet}r_{\bullet}$ that contains the vertices p_{\bullet} and s_{\bullet} . Therefore, $q_{\bullet}r_{\bullet}$ closes precisely two angles (resp. one angle) of D_{\circ} if it is an internal diagonal (resp. a boundary edge of the solid polygon). We finally obtain by double-counting that $2|D_{\circ}| + n = |\{\text{angles of }\overline{D}_{\circ}\}| = 2|D_{\bullet}| + n$ and thus $|D_{\bullet}| = |D_{\circ}|$ for any maximal D_{\circ} -accordion dissection D_{\bullet} .

We are now ready to prove that the D_\circ -accordion complex is thin, *i.e.* that each internal diagonal of a maximal D_\circ -accordion dissection can be flipped into a unique other internal diagonal to form a new maximal D_\circ -accordion dissection. Here and throughout the paper, $X \triangle Y$ denotes the symmetric difference of two sets X, Y defined by $X \triangle Y := (X \setminus Y) \cup (Y \setminus X)$.

The following notations are illustrated in Fig. 4. Let D_{\bullet} be a maximal D_{\circ} -accordion dissection and δ_{\bullet} be a diagonal of D_{\bullet} . Let u_{\circ} and v_{\circ} be the apices of the angles of D_{\circ} closed by δ_{\bullet} , let μ_{\bullet} and v_{\bullet} denote the edges of the cells of D_{\bullet} containing δ_{\bullet} , which separate δ_{\bullet} from u_{\circ} and v_{\circ} respectively, and let Q_{\bullet} denote the quadrilateral defined by the four vertices of μ_{\bullet} and v_{\bullet} . Note that δ_{\bullet} is a diagonal of Q_{\bullet} , and let δ_{\bullet}' denote the other diagonal.

Lemma 2.9 [20] With the previous notations, the collection of diagonals $D'_{\bullet} := D_{\bullet} \triangle \{\delta_{\bullet}, \delta'_{\bullet}\}$ is a maximal D_{\circ} -accordion dissection, and D_{\bullet} and D'_{\bullet} are the only maximal D_{\circ} -accordion dissections containing $D_{\bullet} \setminus \{\delta_{\bullet}\}$. In other words, the accordion complex $\mathcal{AC}(D_{\circ})$ is thin.

Proof We first observe that δ'_{\bullet} is a D_{\circ} -accordion diagonal, since the edges of \overline{D}_{\circ} crossed by δ'_{\bullet} are obtained by merging three subaccordions of D_{\circ} : the subaccordion formed by the diagonals of \overline{D}_{\circ} crossed by μ_{\bullet} but not δ_{\bullet} nor ν_{\bullet} , the subaccordion



Fig. 4 Two maximal D_{\circ} -accordion dissections D_{\bullet} (left) and D'_{\bullet} (right) related by the flip of δ_{\bullet} to δ'_{\bullet} . The angles of D_{\circ} closed by δ_{\bullet} and δ'_{\bullet} are shaded. The flip is oriented from D_{\bullet} to D'_{\bullet}

formed by the diagonals of \overline{D}_{\circ} crossed by δ_{\bullet} , μ_{\bullet} and ν_{\bullet} , and the subaccordion formed by the diagonals of \overline{D}_{\circ} crossed by ν_{\bullet} but not δ_{\bullet} nor μ_{\bullet} . Moreover, δ_{\bullet} and δ'_{\bullet} are the only D_{\circ} -accordion diagonals compatible with $D_{\bullet} \setminus \{\delta_{\bullet}\}$. Indeed, any other such diagonal would cross δ_{\bullet} and δ'_{\bullet} (by maximality of D_{\bullet} and D'_{\bullet}), and thus also the subaccordion A_{\circ} of D_{\circ} crossed by δ_{\bullet} and δ'_{\bullet} (because it cannot cross μ and ν). But it would then improperly intersect the two cells of D_{\circ} containing precisely one diagonal of A_{\circ} .

The D_\circ -accordion flip graph is the dual graph $\mathcal{AFG}(D_\circ)$ of the D_\circ -accordion complex: its vertices are the maximal D_\circ -accordion dissections, and its edges are the flips between them, i.e. the pairs $\{D_\bullet, D'_\bullet\}$ of maximal D_\circ -accordion dissections with $D_\bullet \setminus \{\delta_\bullet\} = D'_\bullet \setminus \{\delta'_\bullet\}$. See Fig. 3 (right).

2.4 The Accordion Lattice

We now define a natural orientation on the D_{\circ} -accordion flip graph. We use the same notations as in Lemma 2.9 (see also Fig. 4), where $D_{\bullet} \setminus \{\delta_{\bullet}\} = D'_{\bullet} \setminus \{\delta'_{\bullet}\}$ and δ_{\bullet} , δ'_{\bullet} are the two diagonals of the quadrilateral defined by μ_{\bullet} , ν_{\bullet} . Observe that one of the paths $\mu_{\bullet}\delta_{\bullet}\nu_{\bullet}$ and $\mu_{\bullet}\delta'_{\bullet}\nu_{\bullet}$ forms a Σ while the other forms a Σ , see Fig. 4. We then orient the flip from the dissection containing the Σ to that containing the Σ . See Fig. 3 (right) for an illustration of D_{\circ} -accordion oriented flip graph (where the graph is oriented from bottom to top).

Garver and McConville introduced a natural closure on sets of D_{\circ} -subaccordions, and showed that the inclusion poset of biclosed sets of D_{\circ} -subaccordions is a well-behaved lattice (namely, semidistributive, congruence-uniform and polygonal). Then, they introduced a lattice quotient map from biclosed sets of D_{\circ} -subaccordions to maximal D_{\circ} -accordion dissections, which imply the following statement.

Theorem 2.10 [20] The D_o -accordion oriented flip graph is the Hasse diagram of a lattice, that we call the D_o -accordion lattice and denote by $\mathcal{AL}(D_o)$.

In particular, the D_\circ -accordion oriented flip graph is connected and acyclic, and has a unique source $D_\bullet^- := \{(i-1)_\bullet (j-1)_\bullet \mid i_\circ j_\circ \in D_\circ\}$ (obtained by slightly rotating D_\circ

counterclockwise) and a unique sink $D^+_{\bullet} := \{(i+1)_{\bullet}(j+1)_{\bullet} | i_{\circ}j_{\circ} \in D_{\circ}\}$ (obtained by slightly rotating D_{\circ} clockwise).

Example 2.11 Following Example 2.2, note that special reference hollow dissections D_o give rise to special accordion lattices $\mathcal{AL}(D_o)$, as it was already observed in [20]:

- For a fan triangulation F_o (i.e. where all internal diagonals are incident to a common vertex), the F_o-accordion lattice AL(F_o) is the famous Tamari lattice [31,44] defined equivalently by slope increasing flips on triangulations of a convex polygon, by right rotations on binary trees, or by flips on Dyck paths.
- In general, accordion lattices of accordion triangulations (*i.e.* with no interior triangle) precisely correspond to type A Cambrian lattices defined by Reading [38].
- For an arbitrary triangulation T_\circ (with or without interior triangle), the T_\circ -accordion oriented flip graph $\mathcal{AFG}(A_\circ)$ is a particular instance of the oriented exchange graphs of 2-acyclic quivers defined by Brüstle et al. [6]. These oriented exchange graphs are far more general and their transitive closures are in general not lattices.
- For a quadrangulation Q_o , the Q_o -accordion lattice $\mathcal{AL}(Q_o)$ is the Stokes poset on Q_o -compatible quadrangulations studied by Chapoton [9].

The following statement is a direct consequence of Proposition 2.4.

Proposition 2.12 If the reference hollow dissection D_o has a cell containing p boundary edges of the hollow polygon P_o , then the D_o -accordion lattice $\mathcal{AL}(D_o)$ is a Cartesian product of p accordion lattices.

Proof Consider the dissections $D^1_\circ, \ldots, D^p_\circ$ as in the proof of Proposition 2.4. Since any increasing flip in $\mathcal{AC}(D_\circ)$ is an increasing flip in one of the $\mathcal{AC}(D^i_\circ)$, we obtain that the D_\circ -accordion lattice is the Cartesian product of the D^i_\circ -accordion lattices: $\mathcal{AL}(D_\circ) = \mathcal{AL}(D^1_\circ) \times \cdots \times \mathcal{AL}(D^p_\circ)$.

In particular, if two consecutive boundary edges γ_o , δ_o of the hollow polygon belong to the same non-triangular cell of D_o , then contracting γ_o and δ_o to a single boundary edge preserves the D_o -accordion lattice. This shows the following statement conjectured for quadrangulations in [9] and proved in [3].

Corollary 2.13 Consider an accordion dissection A_o , i.e. a dissection where each cell has at most 2 edges which are internal diagonals of P_o . Then the A_o -accordion lattice is a Cambrian lattice.

Remark 2.14 Call cell-sequence of a dissection the sequence whose *i*th entry is its number of (i + 2)-cells. For example, the dissection of Fig. 2(left) has cell-sequence $3, 1, 0^{\infty}$ and all (p + 2)-angulations of a (pm + 2)-gon have cell-sequence $0^{p-1}, m, 0^{\infty}$. Observe that the flip preserves the cell-sequence. Thus, all maximal D_{\circ} -accordion dissections have the same cell-sequence as D_{\circ} .

We conclude this section with a reciprocity result on accordion dissections.

Proposition 2.15 Let D_{\circ} be a hollow dissection and D_{\bullet} be a solid dissection. Then D_{\bullet} is a maximal D_{\circ} -accordion dissection if and only if D_{\circ} is a maximal D_{\bullet} -accordion dissection.

Proof As

$$D_{\bullet}^{-} := \{(i-1)_{\bullet}(j-1)_{\bullet} | i_{\circ}j_{\circ} \in D_{\circ}\} \text{ and } D_{\bullet}^{+} := \{(i+1)_{\bullet}(j+1)_{\bullet} | i_{\circ}j_{\circ} \in D_{\circ}\}$$

are both D_\circ -accordion dissections, we already know that D_\circ is a D_\bullet^- -accordion dissection. Observe now in Fig. 4 that if D_\bullet and D'_\bullet are maximal D_\circ -accordion dissections connected by a flip, then D_\circ is a D_\bullet -accordion dissection if and only if it is a D'_\bullet -accordion dissection. Indeed, if δ_\bullet belongs to the zigzag of the D_\bullet -accordion A_\bullet of a hollow diagonal δ_\circ , then δ_\circ crosses both μ_\bullet and ν_\bullet , but then δ_\circ also crosses δ'_\bullet , and thus δ_\circ crosses the D'_\bullet -accordion $A_\bullet \triangle \{\delta_\bullet, \delta'_\bullet\}$. Since the D_\circ -accordion flip graph is connected, we obtain that D_\circ is a D_\bullet -accordion dissection for any maximal D_\circ -accordion dissection D_\bullet . Finally, maximality follows since all maximal D_\circ -accordion dissections have $|D_\circ|$ diagonals. The equivalence follows by symmetry.

3 The g-Vector Fan

In this section, we construct accordiohedra using **g**- and **c**-vectors. Our construction is in the same spirit as the Cambrian fans of Reading and Speyer [38–40] and their polytopal realizations by Hohlweg et al. [25,26], recently extended in [27] to any initial triangulation, acyclic or not. A different approach to the **g**-vector fan together with an alternative polytopal realization will be presented in Sect. 5.

3.1 g- and c-Vectors

Consider a hollow dissection D_{\circ} and a solid dissection D_{\bullet} that are maximal accordion dissections of each other (see Proposition 2.15), and let $\delta_{\circ} \in D_{\circ}$ and $\delta_{\bullet} \in D_{\bullet}$. When δ_{\circ} crosses δ_{\bullet} , we let μ_{\circ} and ν_{\circ} be the other diagonals of \overline{D}_{\circ} crossed by δ_{\bullet} in the two cells of D_{\circ} containing δ_{\circ} . We say that δ_{\bullet} slaloms on δ_{\circ} if $\mu_{\circ}\delta_{\circ}\nu_{\circ}$ forms a path, and we define $\varepsilon_{\circ}(\delta_{\circ} \in D_{\circ} \mid \delta_{\bullet})$ to be 1, -1, or 0 depending on whether $\mu_{\circ}\delta_{\circ}\nu_{\circ}$ forms a Z, a Z, or a V. Similarly we let μ_{\bullet} and ν_{\bullet} be the other diagonals of \overline{D}_{\bullet} crossed by δ_{\circ} in the two cells of D_{\bullet} containing δ_{\bullet} , we say that δ_{\circ} slaloms on δ_{\bullet} if $\mu_{\bullet}\delta_{\bullet}\nu_{\bullet}$ forms a path, and we define $\varepsilon_{\bullet}(\delta_{\circ} \mid \delta_{\bullet} \in D_{\bullet})$ to be 1, -1, or 0 depending on whether $\mu_{\bullet}\delta_{\bullet}\nu_{\bullet}$ forms a Z, a Z, or a V. Note that the sign convention for $\varepsilon_{\circ}(\delta_{\circ} \in D_{\circ} \mid \delta_{\bullet})$ and $\varepsilon_{\bullet}(\delta_{\circ} \mid \delta_{\bullet} \in D_{\bullet})$ is opposite: the reciprocity already observed in Proposition 2.15 naturally reverses the orientation. More informally, we exchange the role of hollow and solid dissections by looking at the picture from the opposite side of the blackboard, which of course reverses the orientation. Finally, if δ_{\circ} and δ_{\bullet} do not cross, then we let $\varepsilon_{\circ}(\delta_{\circ} \in D_{\circ} \mid \delta_{\bullet}) = \varepsilon_{\bullet}(\delta_{\circ} \mid \delta_{\bullet} \in D_{\bullet}) = 0$. Let $(e_{\delta_{\circ}})_{\delta_{\circ} \in D_{\circ}}$ denote the canonical basis of $\mathbb{R}^{D_{\circ}}$. As in [27], we define the following vectors:

- (i) the **g**-vector of δ_{\bullet} with respect to D_{\circ} is $\mathbf{g}(D_{\circ} \mid \delta_{\bullet}) := \sum_{\delta_{\circ} \in D_{\circ}} \varepsilon_{\circ} (\delta_{\circ} \in D_{\circ} \mid \delta_{\bullet}) \mathbf{e}_{\delta_{\circ}}$. We also define $\mathbf{g}(D_{\circ} \mid D_{\bullet}) := \{\mathbf{g}(D_{\circ} \mid \delta_{\bullet}) \mid \delta_{\bullet} \in D_{\bullet}\}$.
- (ii) the **c**-vector of $\delta_{\bullet} \in D_{\bullet}$ with respect to D_{\circ} is $\mathbf{c}(D_{\circ} | \delta_{\bullet} \in D_{\bullet}) := \sum_{\delta_{\circ} \in D_{\circ}} \varepsilon_{\bullet}(\delta_{\circ} | \delta_{\bullet} \in D_{\bullet}) \mathbf{e}_{\delta_{\circ}}$. We denote by $\mathbf{c}(D_{\circ} | D_{\bullet}) := \{\mathbf{c}(D_{\circ} | \delta_{\bullet} \in D_{\bullet}) | \delta_{\bullet} \in D_{\bullet}\}$ the set of **c**-vectors of the diagonals of D_{\bullet} and by $\mathbf{C}(D_{\circ}) := \bigcup_{D_{\bullet}} \mathbf{c}(D_{\circ} | D_{\bullet})$ the set of all **c**-vectors with respect to D_{\circ} .

Example 3.1 Consider the hollow dissection $D_{\circ}^{ex} = \{3_{\circ}7_{\circ}, 3_{\circ}13_{\circ}, 9_{\circ}13_{\circ}\}$ and the rightmost solid dissection $D_{\bullet}^{ex} = \{2_{\bullet}6_{\bullet}, 2_{\bullet}10_{\bullet}, 10_{\bullet}14_{\bullet}\}$ of Fig. 2. Then we have for example

- $\varepsilon_{\circ}(3_{\circ}13_{\circ} \in D_{\circ}^{ex} \mid 2_{\bullet}10_{\bullet}) = 1$ since the path $1_{\circ} 3_{\circ} 13_{\circ} 9_{\circ}$ forms a Z,
- $\varepsilon_{\circ}(9_{\circ}13_{\circ} \in D_{\circ}^{ex} \mid 2_{\bullet}10_{\bullet}) = -1$ since the path $3_{\circ} 13_{\circ} 9_{\circ} 11_{\circ}$ forms a Σ , and
- $\varepsilon_{\circ}(3_{\circ}13_{\circ} \in D_{\circ}^{ex} \mid 2_{\bullet}6_{\bullet}) = 0$ since 3_{\circ} connects $1_{\circ}, 13_{\circ}, 7_{\circ}$ as a \forall .

Moreover, we have

$$\begin{array}{ll} \textbf{g}\big(D_{\circ}^{ex} \mid 2_{\bullet}6_{\bullet}\big) = \textbf{e}_{3_{\circ}7_{\circ}}, & \textbf{c}\big(D_{\circ}^{ex} \mid 2_{\bullet}6_{\bullet} \in D_{\bullet}^{ex}\big) = \textbf{e}_{3_{\circ}7_{\circ}}, \\ \textbf{g}\big(D_{\circ}^{ex} \mid 2_{\bullet}10_{\bullet}\big) = \textbf{e}_{3_{\circ}13_{\circ}} - \textbf{e}_{9_{\circ}13_{\circ}}, & \textbf{c}\big(D_{\circ}^{ex} \mid 2_{\bullet}10_{\bullet} \in D_{\bullet}^{ex}\big) = \textbf{e}_{3_{\circ}13_{\circ}}, \\ \textbf{g}\big(D_{\circ}^{ex} \mid 10_{\bullet}14_{\bullet}\big) = -\textbf{e}_{9_{\circ}13_{\circ}}, & \textbf{c}\big(D_{\circ}^{ex} \mid 10_{\bullet}14_{\bullet} \in D_{\bullet}^{ex}\big) = -\textbf{e}_{3_{\circ}13_{\circ}} - \textbf{e}_{9_{\circ}13_{\circ}}. \end{array}$$

Example 3.2 For any hollow diagonal $i_{\circ} j_{\circ} \in D_{\circ}$, we have

$$\begin{split} \mathbf{g}\big(\mathrm{D}_{\circ} \mid (i-1)_{\bullet}(j-1)_{\bullet}\big) &= -\mathbf{e}_{i_{\circ}j_{\circ}}, \\ \mathbf{g}\big(\mathrm{D}_{\circ} \mid (i+1)_{\bullet}(j+1)_{\bullet}\big) &= \mathbf{e}_{i_{\circ}j_{\circ}}, \\ \end{split} \qquad \begin{aligned} \mathbf{c}\big(\mathrm{D}_{\circ} \mid (i-1)_{\bullet}(j-1)_{\bullet} \in \mathrm{D}_{\bullet}^{-}\big) &= -\mathbf{e}_{i_{\circ}j_{\circ}}, \\ \mathbf{c}\big(\mathrm{D}_{\circ} \mid (i+1)_{\bullet}(j+1)_{\bullet} \in \mathrm{D}_{\bullet}^{+}\big) &= \mathbf{e}_{i_{\circ}j_{\circ}}. \end{aligned}$$

Remark 3.3 For a hollow triangulation T_o , our definitions of g- and c-vectors coincide with the shear coordinates of Fomin and Thurston [15], defined in the much more general context of cluster algebras on surfaces [14].

Remark 3.4 Consider the quiver $Q(D_\circ)$ of the reference dissection D_\circ , with one node on each internal diagonal of D_\circ and one arrow between two diagonals counter-clockwise consecutive around a cell of D_\circ . Let $W(D_\circ)$ be the reflection group whose Dynkin diagram is the underlying graph of $Q(D_\circ)$. Then all **g**-vectors of the D_\circ -accordion diagonals are weights of $W(D_\circ)$ and all **c**-vectors of $C(D_\circ)$ are roots of $W(D_\circ)$.

Remark 3.5 Informally, the g- and c-vectors can be interpreted as follows:

- (i) The **g**-vector $\mathbf{g}(D_{\circ} \mid \delta_{\bullet})$ has coordinate 1 and -1 alternating along the zigzag of the accordion crossed by δ_{\bullet} in D_{\circ} , and coordinate 0 on all other diagonals of D_{\circ} .
- (ii) The **c**-vector $\mathbf{c}(D_{\circ} | \delta_{\bullet} \in D_{\bullet})$ is, up to a sign, the characteristic vector of the diagonals of the subaccordion of D_{\circ} crossed by both diagonals μ_{\bullet} and ν_{\bullet} of Lemma 2.9 (see also Fig. 4). Thus, any **c**-vector is either *positive* (only nonnegative coordinates) or *negative* (only nonnegative coordinates).

In fact, the **g**-vectors are clearly in bijection with the accordions and with the zigzags in D_{\circ} . In contrast, many pairs $(\delta_{\bullet}, D_{\bullet})$ produce the same **c**-vector $\mathbf{c}(D_{\circ} \mid \delta_{\bullet} \in D_{\bullet})$. For example, if two dissections D_{\bullet} , D'_{\bullet} contain δ_{\bullet} and have the same cells incident to δ_{\bullet} ,

then $\mathbf{c}(D_{\circ} \mid \delta_{\bullet} \in D_{\bullet}) = \mathbf{c}(D_{\circ} \mid \delta_{\bullet} \in D'_{\bullet})$. The set of \mathbf{c} -vectors $\mathbf{C}(D_{\circ})$ without repetitions can be understood as follows.

Lemma 3.6 There are bijections between:

- the negative (resp. positive) c-vectors of $C(D_o)$,
- the subaccordions of D_o,
- the D_{\circ} -accordion diagonals that are not in the source (resp. sink) dissection.

Proof By Remark 3.5 (ii), the support of any **c**-vector is a subaccordion of D_o . Reciprocally, let A_o be a subaccordion of D_o , let C_o and C'_o denote the two cells of D_o containing exactly one diagonal of A_o , and let p_o , q_o , r_o , s_o (resp. p'_o , q'_o , r'_o , s'_o) denote the four consecutive vertices in clockwise order around C_o (resp. around C'_o) such that $q_o r_o$ (resp. $q'_o r'_o$) is the diagonal of A_o in C_o (resp. in C'_o). Let $\delta_o := (s-1)_o(s'-1)_o$, $\mu_o := (p+1)_o(s'-1)_o$ and $\nu_o := (p'+1)_o(s-1)_o$ and consider any D_o -accordion dissection D_o containing $\{\mu_o, \delta_o, \nu_o\}$. Then A_o is precisely the support of the negative **c**-vector $\mathbf{c}(D_o \mid \delta_o \in D_o)$. Finally, we have associated to the subaccordion A_o of D_o a D_o -diagonal $\delta_o = (s-1)_o(s'-1)_o$ which cannot be in D_o as otherwise $s_o s'_o$ would cross $q_o r_o$. Reciprocally, A_o is precisely the set of diagonals of D_o crossed by δ_o and not incident to s_o or s'_o .

The **g**-vectors and **c**-vectors are connected in the following two statements, inspired and motivated by classical analogues in cluster algebra theory.

Proposition 3.7 For any maximal D_{\circ} -accordion dissection D_{\bullet} , the set of g-vectors $g(D_{\circ} | D_{\bullet})$ and the set of c-vectors $c(D_{\circ} | D_{\bullet})$ form dual bases.

Proof Let ⟨· |·⟩ denote the standard Euclidean inner product of \mathbb{R}^{D_\circ} . Given two solid diagonals γ_\bullet , δ_\bullet of D_\bullet , we want to compute $\langle \mathbf{g}(D_\circ | \gamma_\bullet) | \mathbf{c}(D_\circ | \delta_\bullet \in D_\bullet) \rangle$. By Remark 3.5(i), the **g**-vector $\mathbf{g}(D_\circ | \gamma_\bullet)$ has coordinate ±1 alternating along the zigzag Z_\circ of the accordion crossed by γ_\bullet in D_\circ , and coordinate 0 on all other diagonals of D_\circ . Moreover, by Remark 3.5(ii), the **c**-vector $\mathbf{c}(D_\circ | \delta_\bullet \in D_\bullet)$ has coordinate ±1 on the diagonals of D_\circ which slalom on δ_\bullet in D_\bullet , and coordinate 0 on all other diagonals of D_\circ . We thus need to understand how the diagonals of Z_\circ slalom on δ_\bullet in D_\bullet . See Fig. 5 for a schematic illustration. Observe that there is an even (resp. odd) number of hollow diagonals of Z_\circ that slalom on δ_\bullet when $\delta_\bullet \neq \gamma_\bullet$ (resp. when $\delta_\bullet = \gamma_\bullet$). Moreover, since they are non-crossing, all hollow diagonals of Z_\circ slaloming on δ_\bullet do it the same way (either all as a Σ or all as a Σ). Finally, when $\gamma_\bullet = \delta_\bullet$, consider the first hollow diagonal δ_\circ of the zigzag Z_\circ which slaloms on δ_\bullet . Then δ_\circ slaloms on δ_\bullet in the opposite way as δ_\bullet slaloms on δ_\circ . This shows that

$$\left\langle \left. \mathbf{g} \big(D_\circ \mid \gamma_\bullet \big) \; \right| \; \mathbf{c} \big(D_\circ \mid \delta_\bullet \in D_\bullet \big) \right\rangle = \sum_{\delta_\circ \in D_\circ} \varepsilon_\circ \big(\delta_\circ \in D_\circ \mid \gamma_\bullet \big) \cdot \varepsilon_\bullet \big(\delta_\circ \mid \delta_\bullet \in D_\bullet \big) = 1\!\!1_{\gamma = \delta},$$

since we sum an even number of alternating ± 1 when $\gamma_{\bullet} \neq \delta_{\bullet}$, and an odd number of alternating ± 1 starting by a 1 when $\gamma_{\bullet} \neq \delta_{\bullet}$. In other words, $\mathbf{g}(D_{\circ} \mid D_{\bullet})$ and $\mathbf{c}(D_{\circ} \mid D_{\bullet})$ form dual bases.

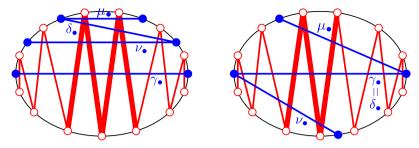


Fig. 5 Illustration of the proof of Proposition 3.7. The red hollow diagonals form the zigzag of γ_{\bullet} , and the bolded ones are slaloming on δ_{\bullet} . There are an even number of bolded diagonals when $\gamma_{\bullet} \neq \delta_{\bullet}$ (left) and an odd number when $\gamma_{\bullet} = \delta_{\bullet}$ (right)

Proposition 3.8 Let D_{\circ} be a hollow dissection and D_{\bullet} be a solid dissection such that D_{\circ} and D_{\bullet} are maximal accordion dissections of each other (see Proposition 2.15). Then

$$\mathbf{g}\big(\mathrm{D}_{\circ}\,|\,\mathrm{D}_{\bullet}\big) = -\mathbf{c}\big(\mathrm{D}_{\bullet}\,|\,\mathrm{D}_{\circ}\big)^{t} \quad \text{ and } \quad \mathbf{c}\big(\mathrm{D}_{\circ}\,|\,\mathrm{D}_{\bullet}\big) = -\mathbf{g}\big(\mathrm{D}_{\bullet}\,|\,\mathrm{D}_{\circ}\big)^{t},$$

where we consider the sets of \mathbf{g} -vectors $\mathbf{g}(D_{\circ} \mid D_{\bullet})$ and \mathbf{c} -vectors $\mathbf{c}(D_{\circ} \mid D_{\bullet})$ as matrices in $\mathbb{R}^{D_{\circ} \times D_{\bullet}}$, and M^t denotes the transpose of a matrix M.

Proof We immediately derive from the definitions that for any $\delta_{\circ} \in D_{\circ}$ and $\delta_{\bullet} \in D_{\bullet}$,

$$\mathbf{g}\big(\mathrm{D}_{\circ}\,|\,\mathrm{D}_{\bullet}\big)_{(\delta_{\circ},\delta_{\bullet})} = \varepsilon_{\circ}\big(\delta_{\circ}\in\mathrm{D}_{\circ}\,|\,\delta_{\bullet}\big) = -\varepsilon_{\bullet}\big(\delta_{\bullet}\,|\,\delta_{\circ}\in\mathrm{D}_{\circ}\big) = -\mathbf{c}\big(\mathrm{D}_{\bullet}\,|\,\mathrm{D}_{\circ}\big)_{(\delta_{\bullet},\delta_{\circ})},$$

which shows $\mathbf{g}(D_{\circ} | D_{\bullet}) = -\mathbf{c}(D_{\bullet} | D_{\circ})^{t}$. The other equality follows by exchanging D_{\circ} and D_{\bullet} .

Corollary 3.9 For any maximal D_o -accordion dissection D_{\bullet} , we have the following sign coherence:

- (i) for any $\delta_{\bullet} \in D_{\bullet}$, all coordinates of $\mathbf{c}(D_{\circ} | \delta_{\bullet} \in D_{\bullet})$ have the same sign,
- (ii) for any $\delta_{\circ} \in D_{\circ}$, the δ_{\circ} -coordinates of all $\mathbf{g}(D_{\circ} \mid \delta_{\bullet})$ for $\delta_{\bullet} \in D_{\bullet}$ have the same sign.

Proof Point (i) was already seen in Remark 3.5 (ii), and Point (ii) follows by Proposition 3.8.

3.2 c-Vector Fan and D_o-Zonotope

Define the **c**-vector fan of D_o to be the complete polyhedral fan $\mathcal{F}^{\mathbf{c}}(D_o)$ given by the arrangement of the linear hyperplanes orthogonal to the **c**-vectors of $\mathbf{C}(D_o)$. Be careful: in contrast to the **g**- and **d**-vector fans defined later, the **c**-vectors are not the rays of $\mathcal{F}^{\mathbf{c}}(D_o)$ but the normal vectors of the hyperplanes supporting the facets of $\mathcal{F}^{\mathbf{c}}(D_o)$.

We call D_o -zonotope the Minkowski sum $Zono(D_o)$ of all **c**-vectors:

$$\mathsf{Zono}(D_\circ) := \sum_{\boldsymbol{c} \in \boldsymbol{C}(D_\circ)} \boldsymbol{c}.$$

The normal fan of the D_\circ -zonotope $\mathsf{Zono}(D_\circ)$ is the \mathbf{c} -vector fan $\mathcal{F}^{\mathbf{c}}(D_\circ)$. Note that the \mathbf{c} -vector fan is not always simplicial, and thus the D_\circ -zonotope $\mathsf{Zono}(D_\circ)$ is not always simple. See Fig. 7.

Example 3.10 Consider an accordion dissection A_{\circ} (where each cell has at most 2 edges which are internal diagonals of P_{\circ}). Label its internal diagonals by $\delta_{\circ}^{1}, \ldots, \delta_{\circ}^{|A_{\circ}|}$ such that δ_{\circ}^{k} and δ_{\circ}^{k+1} belong to the same cell of A_{\circ} for all k. Identifying $\mathbf{e}_{\delta_{\circ}^{k}}$ to the simple root $\mathbf{f}_{k} - \mathbf{f}_{k+1}$ of type $A_{|A_{\circ}|}$, the \mathbf{c} -vectors of $\mathbf{C}(A_{\circ})$ are all roots $\pm(\mathbf{f}_{i}-\mathbf{f}_{j})=\pm\sum_{i\leq k\leq j}\mathbf{e}_{\delta_{\circ}^{k}}$ of type $A_{|A_{\circ}|}$. Therefore, the \mathbf{c} -vector fan is the type $A_{|A_{\circ}|}$ Coxeter fan and the A_{\circ} -zonotope is a permutahedron. More precisely,

$$\begin{split} \mathsf{Zono}(\mathbf{A}_\circ) &= \sum_{k \in [|\mathbf{A}_\circ|+1]} k(|\mathbf{A}_\circ|+1-k) \left[-\mathbf{e}_{\delta_\circ^k}, \, \mathbf{e}_{\delta_\circ^k} \right] \\ &= 2 \, \mathsf{Perm}(|\mathbf{A}_\circ|) - (|\mathbf{A}_\circ|+2) \sum_{i \in [|\mathbf{A}_\circ|+1]} \mathbf{f}_i, \end{split}$$

where $\operatorname{Perm}(|\mathcal{A}_{\circ}|) := \operatorname{conv}\left\{\sum_{i \in [|\mathcal{A}_{\circ}|+1]} \sigma(i) \mathbf{f}_{i} \mid \sigma \in \mathfrak{S}_{|\mathcal{A}_{\circ}|+1}\right\}$ is the classical permutahedron.

The vertices of $\mathsf{Zono}(D_\circ)$ correspond to *separable* subsets of $\mathbb{C}(D_\circ)$, *i.e.* those which can be strictly separated from their complement by a hyperplane. Although we could work out all facets of $\mathsf{Zono}(D_\circ)$, we will only need the following specific inequalities.

Proposition 3.11 For any D_{\circ} -accordion diagonal γ_{\bullet} , the D_{\circ} -zonotope $\mathsf{Zono}(D_{\circ})$ has a facet defined by the inequality

$$\langle \mathbf{g}(\mathbf{D}_{\circ} \mid \gamma_{\bullet}) \mid \mathbf{x} \rangle \leq \omega(\mathbf{D}_{\circ} \mid \gamma_{\bullet}),$$

where $\omega(D_{\circ} | \gamma_{\bullet})$ is the D_{\circ} -height of γ_{\bullet} , i.e. the number of D_{\circ} -accordion diagonals that cross γ_{\bullet} .

Proof Let $\omega(D_{\circ} | \gamma_{\bullet})$ denote the maximum of $\langle \mathbf{g}(D_{\circ} | \gamma_{\bullet}) | \mathbf{x} \rangle$ over $\mathsf{Zono}(D_{\circ})$. As $\mathsf{Zono}(D_{\circ})$ is the Minkowski sum of all \mathbf{c} -vectors, we have

$$\omega \big(D_{\circ} \mid \gamma_{\bullet} \big) = \sum_{\substack{\mathbf{c} \in C(D_{\circ}) \\ \langle \, \mathbf{g}(D_{\circ} \mid \gamma_{\bullet}) \mid \, \mathbf{c} \, \rangle > 0}} \big\langle \, \mathbf{g} \big(D_{\circ} \mid \gamma_{\bullet} \big) \mid \mathbf{c} \, \big\rangle.$$

By Remark 3.5, we have $\langle \mathbf{g}(D_{\circ} | \gamma_{\bullet}) | \mathbf{c} \rangle \in \{-1, 0, 1\}$ for any $\mathbf{c} \in \mathbf{C}(D_{\circ})$. We thus just need to count the distinct \mathbf{c} -vectors \mathbf{c} such that $\langle \mathbf{g}(D_{\circ} | \gamma_{\bullet}) | \mathbf{c} \rangle > 0$. It turns out that it is more convenient and equivalent (since $\mathbf{C}(D_{\circ}) = -\mathbf{C}(D_{\circ})$) to count the distinct \mathbf{c} -vectors \mathbf{c} such that $\langle \mathbf{g}(D_{\circ} | \gamma_{\bullet}) | \mathbf{c} \rangle < 0$. For that, let Z_{\circ} denote the

zigzag of the accordion crossed by γ_{\bullet} in D_{\circ} , and decompose $Z_{\circ} = Z_{\circ}^{-} \sqcup Z_{\circ}^{+}$ such that $\mathbf{g}(D_{\circ} \mid \gamma_{\bullet}) = 1\!\!1_{Z_{\circ}^{+}} - 1\!\!1_{Z_{\circ}^{-}}$ (where $1\!\!1_{X_{\circ}} := \sum_{\delta_{\circ} \in X_{\circ}} \mathbf{e}_{\delta_{\circ}}$ for $X_{\circ} \subseteq D_{\circ}$).

Let δ_{\bullet} be a D_{\circ} -accordion diagonal. Let A_{\circ}^{-} (resp. A_{\circ}^{+}) denote the accordion crossed by $\delta_{\bullet} = u_{\bullet}v_{\bullet}$ in D_{\circ} and not including $(u+1)_{\circ}$ or $(v+1)_{\circ}$ (resp. $(u-1)_{\circ}$) or $(v-1)_{\circ}$). Let $\mathbf{c}^{-}(\delta_{\bullet}) := -\mathbb{1}_{A_{\circ}^{-}}$ and $\mathbf{c}^{+}(\delta_{\bullet}) := \mathbb{1}_{A_{\circ}^{+}}$. Recall from Lemma 3.6 that the negative (resp. positive) \mathbf{c} -vectors of $\mathbf{C}(D_{\circ})$ are given by $\mathbf{c}^{-}(\delta_{\bullet})$ (resp. $\mathbf{c}^{+}(\delta_{\bullet})$) for all D_{\circ} -accordion diagonal δ_{\bullet} not in D_{\bullet}^{-} (resp. D_{\bullet}^{+}). We let the reader check that:

- If γ_{\bullet} and δ_{\bullet} do not cross and have no common endpoint, then both $|Z_{\circ} \cap A_{\circ}^{-}|$ and $|Z_{\circ} \cap A_{\circ}^{+}|$ are even. Thus $\langle \mathbf{g}(D_{\circ} \mid \gamma_{\bullet}) \mid \mathbf{c}^{-}(\delta_{\bullet}) \rangle = \langle \mathbf{g}(D_{\circ} \mid \gamma_{\bullet}) \mid \mathbf{c}^{+}(\delta_{\bullet}) \rangle = 0$.
- If γ_{\bullet} and δ_{\bullet} have a common endpoint, and $\gamma_{\bullet}\delta_{\bullet}$ form a counterclockwise angle, then $|Z_{\circ} \cap A_{\circ}^{-}|$ is even while $Z_{\circ} \cap A_{\circ}^{+}$ is empty or starts and ends in Z_{\circ}^{+} . Thus $\langle \mathbf{g}(D_{\circ} | \gamma_{\bullet}) | \mathbf{c}^{-}(\delta_{\bullet}) \rangle = 0$ while $\langle \mathbf{g}(D_{\circ} | \gamma_{\bullet}) | \mathbf{c}^{+}(\delta_{\bullet}) \rangle \geq 0$. The situation is similar if $\gamma_{\bullet}\delta_{\bullet}$ form a clockwise angle.
- If γ_{\bullet} and δ_{\bullet} cross, $Z_{\circ} \cap A_{\circ}^{-}$ and $Z_{\circ} \cap A_{\circ}^{+}$ are empty or start and end both in Z_{\circ}^{-} or both in Z_{\circ}^{+} . Thus, either $\langle \mathbf{g}(D_{\circ} \mid \gamma_{\bullet}) \mid \mathbf{c}^{-}(\delta_{\bullet}) \rangle < 0$ and $\langle \mathbf{g}(D_{\circ} \mid \gamma_{\bullet}) \mid \mathbf{c}^{+}(\delta_{\bullet}) \rangle \geq 0$ or conversely.

We conclude from this case analysis that

$$\begin{split} \omega(D_{\circ} \,|\, \gamma_{\bullet}) &= |\, \{ \boldsymbol{c} \in \boldsymbol{C}(D_{\circ}) \,|\, \langle\, \boldsymbol{g}(D_{\circ} \,|\, \gamma_{\bullet}) \,|\, \boldsymbol{c}\, \rangle < 0 \} | \\ &= |\{ D_{\circ} - \text{accordion diagonals crossing } \gamma_{\bullet} \} |. \end{split}$$

Finally, the inequality $\langle \mathbf{g}(D_{\circ} \mid \gamma_{\bullet}) \mid \mathbf{x} \rangle \leq \omega(D_{\circ} \mid \gamma_{\bullet})$ defines a priori a face $\mathbf{F}(\gamma_{\bullet})$ of the zonotope $\mathsf{Zono}(D_{\circ})$. This face $\mathbf{F}(\gamma_{\bullet})$ is the Minkowski sum of the \mathbf{c} -vectors of $\mathbf{C}(D_{\circ})$ orthogonal to $\mathbf{g}(D_{\circ} \mid \gamma_{\bullet})$. Proposition 3.7 ensures that any D_{\circ} -accordion dissection D_{\bullet} containing γ_{\bullet} already provides $|D_{\bullet}|-1$ linearly independent such \mathbf{c} -vectors $\mathbf{c}(D_{\circ} \mid \delta_{\bullet} \in D_{\bullet})$ for $\delta_{\bullet} \in D_{\bullet} \setminus \{\gamma_{\bullet}\}$. We therefore obtain that $\mathbf{F}(\gamma_{\bullet})$ has dimension $|D_{\bullet}|-1=|D_{\circ}|-1$ and is therefore a facet of the zonotope $\mathsf{Zono}(D_{\circ})$.

Define the half-space and the hyperplane corresponding to a solid D_{\circ} -accordion diagonal γ_{\bullet} by

$$\begin{split} \mathbf{H}^{\leq}\big(\mathrm{D}_{\circ}\mid\gamma_{\bullet}\big) &:= \big\{\mathbf{x}\in\mathbb{R}^{\mathrm{D}_{\circ}}\;\big|\;\big\langle\mathbf{g}\big(\mathrm{D}_{\circ}\mid\gamma_{\bullet}\big)\;\big|\;\mathbf{x}\big\rangle \leq \omega\big(\mathrm{D}_{\circ}\mid\gamma_{\bullet}\big)\big\},\\ \text{and} \quad \mathbf{H}^{=}\big(\mathrm{D}_{\circ}\mid\gamma_{\bullet}\big) &:= \big\{\mathbf{x}\in\mathbb{R}^{\mathrm{D}_{\circ}}\;\big|\;\big\langle\mathbf{g}\big(\mathrm{D}_{\circ}\mid\gamma_{\bullet}\big)\;\big|\;\mathbf{x}\big\rangle = \omega\big(\mathrm{D}_{\circ}\mid\gamma_{\bullet}\big)\big\}. \end{split}$$

3.3 g-Vector Fan and D₀-Accordiohedron

In this section, we give a geometric realization of the D_\circ -accordion complex. We start by realizing this simplicial complex as a complete simplicial fan in \mathbb{R}^{D_\circ} . We denote by $\mathbb{R}_{\geq 0}\mathbf{R}$ the nonnegative span of a set \mathbf{R} of vectors in \mathbb{R}^{D_\circ} .

Theorem 3.12 The collection of cones

$$\mathcal{F}^{\mathbf{g}}(D_{\circ}) := \left\{ \mathbb{R}_{\geq 0} \mathbf{g}(D_{\circ} \mid D_{\bullet}) \mid D_{\bullet} \text{ any } D_{\circ}\text{-accordion dissection} \right\}$$

forms a complete simplicial fan, that we call the g-vector fan of D_{\circ} .

The proof uses the following characterization of complete simplicial fans [11, Cor. 4.5.20]. We will provide as well an alternative proof in Remark 5.8 based on sections of Cambrian fans.

Proposition 3.13 Consider a pseudomanifold Δ on a finite vertex set X and a set of vectors $\mathbf{R} := (\mathbf{r}_x)_{x \in X}$ of \mathbb{R}^d . For $D \in \Delta$, define the cone $\mathbf{R}_D := \{\mathbf{r}_x \mid x \in D\}$. The collection of cones $\{\mathbb{R}_{>0}\mathbf{R}_D \mid D \in \Delta\}$ forms a complete simplicial fan if and only if

- (1) there exists a facet D of Δ such that \mathbf{R}_D is a basis of \mathbb{R}^d and such that the open cones $\mathbb{R}_{>0}\mathbf{R}_D$ and $\mathbb{R}_{>0}\mathbf{R}_{D'}$ are disjoint for any facet D' of Δ distinct from D;
- (2) for two adjacent facets D, D' of Δ with D \setminus {x} = D' \setminus {x'}, there is a linear dependence

$$\alpha \mathbf{r}_x + \alpha' \mathbf{r}_{x'} + \sum_{y \in D \cap D'} \beta_y \mathbf{r}_y = 0$$

on $\mathbf{R}_{D\cup D'}$ where the coefficients α and α' have the same sign. (When these conditions hold, these coefficients do not vanish and the linear dependence is unique up to rescaling.)

Proof of Theorem 3.12 By Corollary 3.9, the cone $\mathbb{R}_{\geq 0}\mathbf{g}(D_{\circ} \mid D_{\bullet}^{-})$ is the only cone of $\mathcal{F}^{\mathbf{g}}(D_{\circ})$ intersecting the interior of the positive orthant $(\mathbb{R}_{\geq 0})^{D_{\circ}}$. Consider now two adjacent maximal D_{\circ} -accordion dissections D_{\bullet} , D'_{\bullet} . Let $\delta_{\bullet} \in D_{\bullet}$ and $\delta'_{\bullet} \in D'_{\bullet}$ be such that $D_{\bullet} \setminus \{\delta_{\bullet}\} = D'_{\bullet} \setminus \{\delta'_{\bullet}\}$, and let μ_{\bullet} and ν_{\bullet} be the other diagonals as in Lemma 2.9 (see also Fig. 4). Note that a diagonal of D_{\circ} crosses none of (resp. one of, resp. both) the diagonals δ_{\bullet} , δ'_{\bullet} if and only if it crosses none of (resp. one of, resp. both) the diagonals μ_{\bullet} , ν_{\bullet} . The same holds for a Z or a Z of D_{\circ} . Therefore, we have the linear dependence $\mathbf{g}(D_{\circ} \mid \delta_{\bullet}) + \mathbf{g}(D_{\circ} \mid \delta'_{\bullet}) = \mathbf{g}(D_{\circ} \mid \mu_{\bullet}) + \mathbf{g}(D_{\circ} \mid \mu_{\bullet})$. This shows that $\mathcal{F}^{\mathbf{g}}(D_{\circ})$ satisfies the two conditions of Proposition 3.13, and thus concludes the proof. □

Remark 3.14 The linear dependence $\mathbf{g}(D_{\circ} \mid \delta_{\bullet}) + \mathbf{g}(D_{\circ} \mid \delta_{\bullet}') = \mathbf{g}(D_{\circ} \mid \mu_{\bullet}) + \mathbf{g}(D_{\circ} \mid \mu_{\bullet})$ relating the **g**-vectors of two adjacent maximal D_{\circ} -accordion dissections D_{\bullet} , D_{\bullet}' with $D_{\bullet} \setminus \{\delta_{\bullet}\} = D_{\bullet}' \setminus \{\delta_{\bullet}'\}$ shows that $\det\left(\mathbf{g}(D_{\circ} \mid D_{\bullet})\right) = -\det\left(\mathbf{g}(D_{\circ} \mid D_{\bullet}')\right)$. Since the initial cone $\mathbb{R}_{\geq 0}\mathbf{g}(D_{\circ} \mid D_{\bullet}^{-})$ is generated by the coordinate vectors (see Example 3.2), we obtain that $\det\left(\mathbf{g}(D_{\circ} \mid D_{\bullet})\right) = \pm 1$ for all D_{\circ} -accordion dissection D_{\bullet} , so that the **g**-vector fan $\mathcal{F}^{\mathbf{g}}(D_{\circ})$ is always *smooth*.

By Proposition 3.7, any non-maximal cone of $\mathcal{F}^{\mathbf{g}}(D_{\circ})$ is supported by a hyperplane orthogonal to a **c**-vector of $\mathbf{C}(D_{\circ})$. We thus obtain the following consequence.

Corollary 3.15 The **g**-vector fan $\mathcal{F}^{\mathbf{g}}(D_{\circ})$ coarsens the **c**-vector fan $\mathcal{F}^{\mathbf{c}}(D_{\circ})$.

Example 3.16 Following Example 2.2, we observe that special reference dissections give rise to the following relevant fans:

• For an accordion triangulation A_{\circ} (*i.e.* with no interior triangle), the **g**-vector fan $\mathcal{F}^{\mathbf{g}}(A_{\circ})$ coincides with a type A Cambrian fan of Reading and Speyer [40].

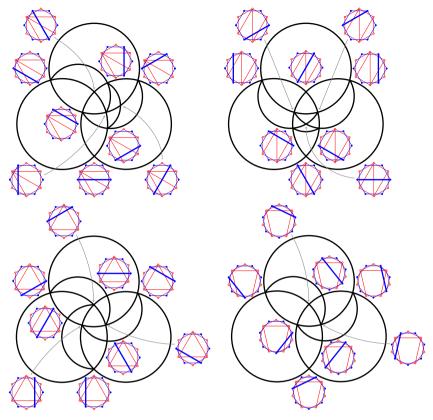


Fig. 6 Stereographic projections of the g-vector fans $\mathcal{F}^{\mathbf{g}}(D_{\circ})$ for various reference hollow dissections D_{\circ} . See Fig. 9 for alternative simplicial fan realizations of these accordion complexes

• For an arbitrary triangulation T_{\circ} (with or without interior triangle), the **g**-vector fan $\mathcal{F}^{\mathbf{g}}(T_{\circ})$ was recently constructed in [27].

Example 3.17 Figure 6 illustrates the **g**-vector fans $\mathcal{F}^{\mathbf{g}}(D_{\circ})$ for various reference dissections D_{\circ} : the fan, the snake, and the cyclic triangulation of the hexagon, and a dissection of the heptagon. More precisely, we have represented the stereographic projection of the fans from the point [1, 1, 1]. Therefore, the external face of the projection corresponds to the D_{\circ} -accordion dissection D_{\bullet}^{-} . We have labeled all vertices of the projection (*i.e.* the rays of the fan) by the corresponding D_{\circ} -accordion diagonals.

We now provide a first polytopal realization of the **g**-vector fan $\mathcal{F}^{\mathbf{g}}(D_{\circ})$ (see also Sect. 5). This fan has a maximal cone for each maximal D_{\circ} -accordion dissection and a ray for each D_{\circ} -accordion diagonal. For a maximal D_{\circ} -accordion dissection D_{\bullet} , we define a point $\mathbf{p}(D_{\circ} \mid D_{\bullet}) \in \mathbb{R}^{D_{\circ}}$ by

$$p\big(D_\circ\,|\,D_\bullet\big) := \sum_{\delta_\bullet \in D_\bullet} \omega\big(D_\circ\,|\,\delta_\bullet\big) \cdot c\big(D_\circ\,|\,\delta_\bullet \in D_\bullet\big),$$

where $\omega(D_{\circ} | \delta_{\bullet})$ still denotes the D_{\circ} -height of δ_{\bullet} defined as the number of D_{\circ} -accordion diagonals that cross δ_{\bullet} . We will need the following two technical lemmas in the proof of Theorem 3.20.

Lemma 3.18 For any maximal D_{\circ} -accordion dissection D_{\bullet} , the point $\mathbf{p}(D_{\circ} \mid D_{\bullet})$ is the intersection of all hyperplanes $\mathbf{H}^{=}(D_{\circ} \mid \delta_{\bullet})$ with $\delta_{\bullet} \in D_{\bullet}$.

Proof Observe first that the hyperplanes $\mathbf{H}^{=}(D_{\circ} \mid \delta_{\bullet})$ with $\delta_{\bullet} \in D_{\bullet}$ have a unique intersection point, since $\mathbf{g}(D_{\circ} \mid D_{\bullet})$ is a basis. Moreover, since $\mathbf{g}(D_{\circ} \mid D_{\bullet})$ and $\mathbf{c}(D_{\circ} \mid D_{\bullet})$ form dual bases by Proposition 3.7, we have for any $\gamma_{\bullet} \in D_{\bullet}$:

$$\begin{split} \left\langle \mathbf{g} \big(\mathrm{D}_{\circ} \, | \, \gamma_{\bullet} \big) \, \left| \, \mathbf{p} \big(\mathrm{D}_{\circ} \, | \, \mathrm{D}_{\bullet} \big) \, \right\rangle &= \sum_{\delta_{\bullet} \in \mathrm{D}_{\bullet}} \omega \big(\mathrm{D}_{\circ} \, | \, \delta_{\bullet} \big) \cdot \left\langle \mathbf{g} \big(\mathrm{D}_{\circ} \, | \, \gamma_{\bullet} \big) \, \right| \, \mathbf{c} \big(\mathrm{D}_{\circ} \, | \, \delta_{\bullet} \in \mathrm{D}_{\bullet} \big) \, \right\rangle \\ &= \sum_{\delta_{\bullet} \in \mathrm{D}_{\bullet}} \omega \big(\mathrm{D}_{\circ} \, | \, \delta_{\bullet} \big) \cdot \mathbb{1}_{\gamma_{\bullet} = \delta_{\bullet}} \, = \, \omega \big(\mathrm{D}_{\circ} \, | \, \gamma_{\bullet} \big). \end{split}$$

Lemma 3.19 If D_{\bullet} , D'_{\bullet} are two adjacent maximal D_{\circ} -accordion dissections, and $\delta_{\bullet} \in D_{\bullet}$ and $\delta'_{\bullet} \in D'_{\bullet}$ are such that $D_{\bullet} \setminus \{\delta_{\bullet}\} = D'_{\bullet} \setminus \{\delta'_{\bullet}\}$, then

$$\begin{split} \mathbf{c}\big(D_\circ\,|\,\delta_\bullet\in D_\bullet\big) &= -\mathbf{c}\big(D_\circ\,|\,\delta_\bullet'\in D_\bullet'\big) \ \ \text{and} \\ \mathbf{p}\big(D_\circ\,|\,D_\bullet'\big) &- \mathbf{p}\big(D_\circ\,|\,D_\bullet\big) \in \mathbb{Z}_{<0} \cdot \mathbf{c}\big(D_\circ\,|\,\delta_\bullet\in D_\bullet\big). \end{split}$$

Proof Let D_{\bullet} , D'_{\bullet} be two adjacent maximal D_{\circ} -accordion dissections, let $\delta_{\bullet} \in D_{\bullet}$ and $\delta'_{\bullet} \in D'_{\bullet}$ be such that $D_{\bullet} \setminus \{\delta_{\bullet}\} = D'_{\bullet} \setminus \{\delta'_{\bullet}\}$, and let μ_{\bullet} and ν_{\bullet} be the other diagonals as in Lemma 2.9 (see also Fig. 4). A quick case analysis then shows that

$$\mathbf{c}\big(\mathrm{D}_{\circ}\,|\,\gamma_{\bullet}\in\mathrm{D}_{\bullet}'\big) = \begin{cases} \mathbf{c}\big(\mathrm{D}_{\circ}\,|\,\gamma_{\bullet}\in\mathrm{D}_{\bullet}\big) & \text{if }\gamma_{\bullet}\in\mathrm{D}_{\bullet}\smallsetminus\{\delta_{\bullet},\,\mu_{\bullet},\,\nu_{\bullet}\},\\ -\mathbf{c}\big(\mathrm{D}_{\circ}\,|\,\delta_{\bullet}\in\mathrm{D}_{\bullet}\big) & \text{if }\gamma_{\bullet}=\delta_{\bullet}',\\ \mathbf{c}\big(\mathrm{D}_{\circ}\,|\,\gamma_{\bullet}\in\mathrm{D}_{\bullet}\big) + \mathbf{c}\big(\mathrm{D}_{\circ}\,|\,\delta_{\bullet}\in\mathrm{D}_{\bullet}\big) & \text{if }\gamma_{\bullet}\in\{\mu_{\bullet},\,\nu_{\bullet}\}. \end{cases}$$

Summing the contribution of all **c**-vectors with their coefficients $\omega(D_{\circ} | \gamma_{\bullet})$, we obtain

$$\mathbf{p}(\mathbf{D}_{\circ} \mid \mathbf{D}_{\bullet}') - \mathbf{p}(\mathbf{D}_{\circ} \mid \mathbf{D}_{\bullet}) = (\omega(\mathbf{D}_{\circ} \mid \mu_{\bullet}) + \omega(\mathbf{D}_{\circ} \mid \nu_{\bullet}) - \omega(\mathbf{D}_{\circ} \mid \delta_{\bullet}) - \omega(\mathbf{D}_{\circ} \mid \delta_{\bullet}) \cdot \mathbf{c}(\mathbf{D}_{\circ} \mid \delta_{\bullet} \in \mathbf{D}_{\bullet}).$$

Finally, note that any diagonal of P_{\bullet} that crosses one of (resp. both) the diagonals μ_{\bullet} , ν_{\bullet} also crosses one of (resp. both) the diagonals δ_{\bullet} , δ'_{\bullet} . Moreover, δ_{\bullet} and δ'_{\bullet} cross each other but do not cross μ_{\bullet} and ν_{\bullet} . It follows that

$$\omega(D_{\circ} \mid \mu_{\bullet}) + \omega(D_{\circ} \mid \nu_{\bullet}) - \omega(D_{\circ} \mid \delta_{\bullet}) - \omega(D_{\circ} \mid \delta_{\bullet}') \leq -2 < 0.$$

Theorem 3.20 The **g**-vector fan is the normal fan of the D_{\circ} -accordiohedron $Acco(D_{\circ})$ defined equivalently as

- the convex hull of the points p(D₀ | D₀) for all maximal D₀-accordion dissection D₀, or
- the intersection of the half-spaces $\mathbf{H}^{\leq}(D_{\circ} \mid \gamma_{\bullet})$ for all D_{\circ} -accordion diagonals γ_{\bullet} .

Thus, the polar dual of $Acco(D_o)$ is a polytopal realization of the D_o -accordion complex $\mathcal{AC}(D_o)$.

The proof of Theorem 3.20 is based on the following characterization of polytopal realizations of a complete simplicial fan, whose proof can be found e.g. in [26, Thm. 4.1].

Theorem 3.21 Given a complete simplicial fan \mathcal{F} in \mathbb{R}^d , consider for each ray \mathbf{r} of \mathcal{F} a half-space $\mathbf{H}^{\leq}_{\mathbf{r}}$ of \mathbb{R}^d containing the origin and defined by a hyperplane $\mathbf{H}^{=}_{\mathbf{r}}$ orthogonal to \mathbf{r} . For each maximal cone \mathbf{C} of \mathcal{F} , let $\mathbf{a}(\mathbf{C}) \in \mathbb{R}^d$ be the intersection of all hyperplanes $\mathbf{H}^{=}_{\mathbf{r}}$ with $\mathbf{r} \in \mathbf{C}$. Then the following assertions are equivalent:

- (i) The vector $\mathbf{a}(C') \mathbf{a}(C)$ points from C to C' for any two adjacent maximal cones C, C' of \mathcal{F} .
- (ii) The polytopes

$$\operatorname{conv} \{a(C) \mid C \text{ maximal cone of } \mathcal{F}\} \quad and \quad \bigcap_{\mathbf{r} \text{ ray of } \mathcal{F}} \mathbf{H}_{\mathbf{r}}^{\leq}$$

coincide and their normal fan is \mathcal{F} .

Proof of Theorem 3.20 The **g**-vector fan $\mathcal{F}^{\mathbf{g}}(D_{\circ})$ has a ray $\mathbf{g}(D_{\circ} | \delta_{\bullet})$ for each D_{\circ} -accordion diagonal δ_{\bullet} and a maximal cone $C(D_{\bullet}) = \mathbb{R}_{\geq 0}\mathbf{g}(D_{\circ} | D_{\bullet})$ for each maximal D_{\circ} -accordion dissection D_{\bullet} . Consider the half-spaces $\mathbf{H}^{\leq}(D_{\circ} | \gamma_{\bullet})$ for all D_{\circ} -accordion diagonals γ_{\bullet} . Lemma 3.18 ensures that the point $\mathbf{a}(C(D_{\bullet}))$ coincides with $\mathbf{p}(D_{\circ} | D_{\bullet})$ for each maximal D_{\circ} -accordion dissection D_{\bullet} . Finally, Lemma 3.19 shows that the conditions of application of Theorem 3.21 are fulfilled.

Example 3.22 Following Example 2.2, observe that special reference hollow dissections give rise to the following relevant polytopes, illustrated in Fig. 7:

- For a fan triangulation T_o, the T_o-accordiohedron Acco(T_o) is the classical associahedron constructed by Shnider and Sternberg [41] and Loday [29].
- The A₀-accordiohedra Acco(A₀) for all accordion triangulations A₀ are precisely the associahedra constructed by Hohlweg and Lange in [25].
- For a triangulation T_o with an interior triangle, the T_o-accordiohedron Acco(T_o) was recently constructed in [27]. For example, for the triangulation of the hexagon with an interior triangle, this associahedron appeared as a mysterious realization in [8].
- For a quadrangulation Q_o, the Q_o-accordiohedron Acco(Q_o) is a realization of the Stokes polytope announced by Baryshnikov [2] and discussed by Chapoton in [9].

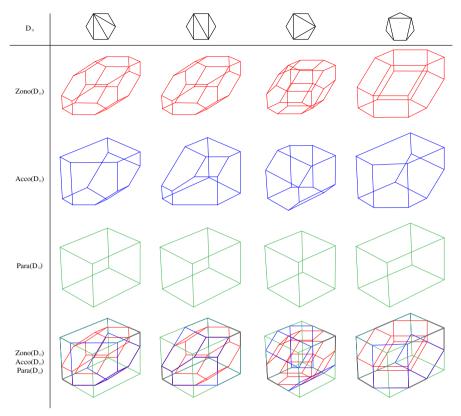


Fig. 7 The zonotope $Zono(D_o)$, D_o -accordiohedron $Acco(D_o)$ and parallelepiped $Para(D_o)$ for different reference dissections D_o . The first column is Loday's associahedron [29], the second column is one of Hohlweg and Lange's associahedra [25], the third column appeared in a discussion in Ceballos et al. survey on associahedra [8, Fig. 3] and was explained in Hohlweg et al. recent paper [27], and the last column is a Stokes complex discussed by Chapoton in [9] and illustrated in Fig. 3

We conclude this section by an immediate consequence of Theorem 3.20. To our knowledge, this property of accordion complexes was not observed before. However, using the connection between accordion complexes and support τ -tilting complexes [5, 20,32,34], it can also be obtained from [12, Thm. 1.7].

Corollary 3.23 For any reference dissection D_o , the D_o -accordion complex $\mathcal{AC}(D_o)$ is shellable.

3.4 Some Properties of Acco(D_o)

We conclude this section by pointing out some relevant combinatorial and geometric properties and observations on the D_{\circ} -accordiohedron.

Proposition 3.24 The graph of the D_\circ -accordiohedron $Acco(D_\circ)$ linearly oriented in the direction -1: $= -\sum_{\delta_\circ \in D_\circ} e_{\delta_\circ}$ is the Hasse diagram of the accordion lattice $\mathcal{AL}(D_\circ)$.

Proof Consider two adjacent maximal D_{\circ} -accordion dissections D_{\bullet} , D'_{\bullet} such that the flip from D_{\bullet} to D'_{\bullet} is increasing. Let $\delta_{\bullet} \in D_{\bullet}$ and $\delta'_{\bullet} \in D'_{\bullet}$ be such that $D_{\bullet} \setminus \{\delta_{\bullet}\} = D'_{\bullet} \setminus \{\delta'_{\bullet}\}$. As observed in Remark 3.5(ii), the **c**-vector $\mathbf{c}(D_{\circ} \mid \delta_{\bullet} \in D_{\bullet})$ is the characteristic vector $\mathbb{1}_{A_{\circ}}$ of the set A_{\circ} of diagonals of D_{\circ} crossed by both δ_{\bullet} and δ'_{\bullet} . Applying Lemma 3.19, we therefore obtain that

$$\langle -11 \mid \mathbf{p}(D_{\circ} \mid D'_{\bullet}) - \mathbf{p}(D_{\circ} \mid D_{\bullet}) \rangle = \langle -11 \mid \lambda \cdot \mathbf{c}(D_{\circ} \mid \delta_{\bullet} \in D_{\bullet}) \rangle$$

$$= \lambda \cdot \langle -11 \mid 11_{A_{\circ}} \rangle = -\lambda \cdot |A_{\circ}|,$$

for some $\lambda \in \mathbb{Z}_{<0}$. Thus, the linear functional -1 indeed orients the edge $[\mathbf{p}(D_{\circ} \mid D_{\bullet}), \mathbf{p}(D_{\circ} \mid D_{\bullet}')]$ from $\mathbf{p}(D_{\circ} \mid D_{\bullet})$ to $\mathbf{p}(D_{\circ} \mid D_{\bullet}')$.

Remark 3.25 Since the \mathbf{c} -vector fan $\mathcal{F}^{\mathbf{c}}(D_{\circ})$ refines the \mathbf{g} -vector fan $\mathcal{F}^{\mathbf{g}}(D_{\circ})$, there is a natural projection π from the vertices of the D_{\circ} -zonotope $\mathsf{Zono}(D_{\circ})$ to that of the D_{\circ} -accordiohedron $\mathsf{Acco}(D_{\circ})$. In analogy to the acyclic case, one could hope to obtain the accordion lattice as a lattice quotient through this projection. However, the transitive closure of the graph of the D_{\circ} -zonotope $\mathsf{Zono}(D_{\circ})$ oriented in the direction -1 is not a lattice in general (the first counter-example is the dissection with a central square surrounded by 4 triangles). As shown in [20], the right objects are not the separable subsets of \mathbf{c} -vectors (*i.e.* the vertices of $\mathsf{Zono}(D_{\circ})$) but the biclosed subsets of \mathbf{c} -vectors.

Proposition 3.26 The accordiohedron $Acco(D_o)$ has precisely $|D_o|$ pairs of parallel facets.

Proof Two facets of $\mathsf{Acco}(\mathsf{D}_\circ)$ are parallel if and only if the corresponding $\mathsf{g}\text{-vectors}$ are opposite. We therefore want to prove that the pairs of opposite coordinate vectors are the only pairs of opposite $\mathsf{g}\text{-vectors}$. Assume by contradiction that there exist two hollow diagonals δ_\circ , $\delta_\circ' \in \mathsf{D}_\circ$ and two solid $\mathsf{D}_\circ\text{-diagonals}\ \delta_\bullet$, δ_\bullet' such that $\mathsf{g}(\mathsf{D}_\circ \mid \delta_\bullet)$ and $\mathsf{g}(\mathsf{D}_\circ \mid \delta_\bullet')$ have non-zero opposite coordinate both on δ_\circ and δ_\circ' . Then both δ_\bullet and δ_\circ' cross both δ_\circ and δ_\circ' . But this implies that they both slalom on δ_\circ (and on δ_\circ') in the same way. Contradiction.

Recall from Example 3.2 that the **g**-vectors of the diagonals of D_{\bullet}^- (resp. D_{\bullet}^+) are the coordinate vectors (resp. negative of the coordinate vectors). Consider the D_{\circ} -parallelepiped

$$\mathsf{Para}(D_\circ) := \left\{ x \in \mathbb{R}^{D_\circ} \, | \, \left\langle \, \mathbf{g}(D_\circ \, | \, \delta_\bullet) \, \, | \, \, \mathbf{x} \, \right\rangle \, | \leq \omega(D_\circ \, | \, \delta_\bullet) \text{ for all } \delta_\bullet \in D_\bullet^- \cup D_\bullet^+ \right\}$$

defined by the inequalities of the D_{\circ} -zonotope Zono(D_{\circ}) corresponding to the positive and negative basis vectors. Our next statement follows from Proposition 3.26 and is illustrated in Fig. 7.

Corollary 3.27 For any D_o, we have matriochka polytopes:

$$\mathsf{Zono}(D_{\circ}) \subseteq \mathsf{Acco}(D_{\circ}) \subseteq \mathsf{Para}(D_{\circ}).$$

In fact, each polytope in this chain is obtained by deleting facets from the previous one.

Consider now an isometry σ of the plane that preserves the hollow polygon P_{\bullet} and the solid polygon P_{\bullet} . For any diagonals and dissections $\delta_{\bullet} \in D_{\bullet}$ and $\delta_{\circ} \in D_{\circ}$, we have

- δ_{\bullet} is a D_{\circ} -accordion diagonal $\iff \sigma(\delta_{\bullet})$ is a $\sigma(D_{\circ})$ -accordion diagonal,
- D• is a Do-accordion dissection $\iff \sigma(D_{\bullet})$ is a $\sigma(D_{\circ})$ -accordion dissection,
- if $\Sigma : \mathbb{R}^{D_o} \to \mathbb{R}^{\sigma(D_o)}$ denotes the isometry defined by $(\Sigma(\mathbf{x}))_{\sigma(\delta_o)} := \varepsilon(\sigma) \cdot \mathbf{x}_{\delta_o}$, (where $\varepsilon(\sigma) = 1$ if σ is direct and -1 if σ is indirect), then we have

$$\begin{split} \mathbf{g} \Big(\sigma(\mathrm{D}_{\circ}) \, | \, \sigma(\delta_{\bullet}) \Big) &= \Sigma \Big(\mathbf{g}(\mathrm{D}_{\circ} \, | \, \delta_{\bullet}) \Big), \\ \mathbf{c} \Big(\sigma(\mathrm{D}_{\circ}) \, | \, \sigma(\delta_{\bullet}) \in \sigma(\mathrm{D}_{\bullet}) \Big) &= \Sigma \Big(\mathbf{c}(\mathrm{D}_{\circ} \, | \, \delta_{\bullet} \in \mathrm{D}_{\bullet}) \Big), \\ \omega \Big(\sigma(\mathrm{D}_{\circ}) \, | \, \sigma(\delta_{\bullet}) \Big) &= \omega \Big(\mathrm{D}_{\circ} \, | \, \delta_{\bullet} \Big), \quad \text{and} \quad \mathbf{p} \Big(\sigma(\mathrm{D}_{\circ}) \, | \, \sigma(\mathrm{D}_{\bullet}) \Big) &= \Sigma \Big(\mathbf{p}(\mathrm{D}_{\circ} \, | \, \mathrm{D}_{\bullet}) \Big). \end{split}$$

This immediately implies the following statement.

Proposition 3.28 Any P_{\circ} -preserving isometry $\sigma \colon \mathbb{R}^2 \to \mathbb{R}^2$ induces an isometry $\Sigma \colon \mathbb{R}^{D_{\circ}} \to \mathbb{R}^{\sigma(D_{\circ})}$ with

$$\begin{split} &\Sigma \big(\mathsf{Zono}(D_\circ)\big) = \mathsf{Zono}\big(\sigma(D_\circ)\big), \\ &\Sigma \big(\mathsf{Acco}(D_\circ)\big) = \mathsf{Acco}\big(\sigma(D_\circ)\big) \, and \\ &\Sigma \big(\mathsf{Para}(D_\circ)\big) = \mathsf{Para}\big(\sigma(D_\circ)\big). \end{split}$$

We say that a dissection D is σ -invariant when $\sigma(D) = D$. Assume now that σ is a rotation and D_{\circ} is σ -invariant. We call σ -invariant D_{\circ} -accordion complex the simplicial complex $\mathcal{AC}^{\sigma}(D_{\circ})$ whose vertices are the crossing-free σ -orbits of D_{\circ} -accordion diagonals, and whose faces are sets of such orbits whose union is crossing-free. In other words, the faces of $\mathcal{AC}^{\sigma}(D_{\circ})$ are σ -invariant D_{\circ} -accordion dissections, seen as sets of σ -orbits of diagonals.

Lemma 3.29 The σ -invariant D_\circ -accordion complex $\mathcal{AC}^\sigma(D_\circ)$ is a pseudomanifold.

Proof Assume first that σ is the central symmetry. In this case, there are two possible types of orbits: the long D_\circ -accordion diagonals and the centrally symmetric pairs of D_\circ -accordion diagonals. One can check that any facet of $\mathcal{AC}^\sigma(D_\circ)$ has a long diagonal if and only if D_\circ has, and has as many centrally symmetric pairs of diagonals as D_\circ . Finally, any orbit in any facet of $\mathcal{AC}^\sigma(D_\circ)$ can be flipped: long diagonals can already be flipped in $\mathcal{AC}(D_\circ)$, and a centrally symmetric pair of diagonals can be flipped by flipping one after the other its two diagonals in $\mathcal{AC}(D_\circ)$.

Finally, the general statement follows from this special case. Indeed, if σ is not a central symmetry, let C_{\circ} denote the cell of D_{\circ} containing the center of P_{\circ} , let u_{\circ} be a vertex of C_{\circ} , let \underline{D}_{\circ} be the set of diagonals of D_{\circ} whose endpoints are between u_{\circ} and $\sigma(u_{\circ})$, and let ρ be the central symmetry around the middle of $u_{\circ}\sigma(u_{\circ})$. Then $\mathcal{AC}^{\sigma}(D_{\circ})$ is isomorphic to $\mathcal{AC}^{\rho}(\underline{D}_{\circ}) \cup \rho(\underline{D}_{\circ})$.

Let $\Sigma \colon \mathbb{R}^{D_\circ} \to \mathbb{R}^{D_\circ}$ denote the isometry defined by $(\Sigma(x))_{\sigma(\delta_\circ)} := x_{\delta_\circ}$ and $Fix(\Sigma)$ denote the linear subspace of fixed points of Σ . According to the previous discussion, a maximal D_\circ -accordion dissection D_\bullet is σ -invariant if and only if $\mathbf{p}(D_\circ \mid D_\bullet) \in Fix(\Sigma)$. We obtain the following statement.

Proposition 3.30 For a σ -invariant dissection D_o , the polytope $Acco^{\sigma}(D_o)$ defined equivalently as

- the convex hull of the points p(D_o | D_o) for all σ-invariant maximal D_o-accordion dissections D_o,
- the intersection of the D_0 -accordiohedron $Acco(D_0)$ with the fixed space $Fix(\Sigma)$,

is a polytopal realization of the σ -invariant accordion complex $\mathcal{AC}^{\sigma}(D_{\circ})$.

Proof Denote by

$$P = \text{conv} \{ \mathbf{p}(D_{\circ} \mid D_{\bullet}) \mid \sigma \text{-invariant maximal } D_{\circ} \text{-accordion dissections } D_{\bullet} \}$$

and by $Q = \mathsf{Acco}(\mathsf{D}_\circ) \cap \mathsf{Fix}(\Sigma)$. The inclusion $P \subseteq Q$ is clear since D_\bullet is σ -invariant if and only if $\mathbf{p}(\mathsf{D}_\circ \mid \mathsf{D}_\bullet) \in \mathsf{Fix}(\Sigma)$. We now prove the reverse inclusion. For that, consider an arbitrary σ -invariant maximal D_\circ -accordion dissection D_\bullet . Its corresponding point $\mathbf{p}(\mathsf{D}_\circ \mid \mathsf{D}_\bullet)$ is a common vertex of P and Q. Moreover, any edge e of Q incident to $\mathbf{p}(\mathsf{D}_\circ \mid \mathsf{D}_\bullet)$ is the intersection of $\mathsf{Fix}(\Sigma)$ with a face F of $\mathsf{Acco}(\mathsf{D}_\circ)$ that corresponds to a σ -invariant D_\circ -dissection. Since $\mathcal{AC}^\sigma(\mathsf{D}_\circ)$ is a pseudomanifold, this dissection can be refined into another maximal σ -invariant D_\circ -accordion dissection D'_\bullet . The point $\mathbf{p}(\mathsf{D}_\circ \mid \mathsf{D}'_\bullet)$ belongs to F and to $\mathsf{Fix}(\Sigma)$ and thus to e. We conclude that if v is a common vertex of P and Q, then so are all neighbors of v in the graph of Q. Propagating this property, we obtain that all vertices of Q are also vertices of P, so that P = Q. Finally, there is a clear injection from the σ -invariant accordion complex $\mathcal{AC}^\sigma(\mathsf{D}_\circ)$ to the boundary complex of P = Q, thus a bijection (since these complexes are two spheres with the same vertex set).

4 The d-Vector Fan

In this section, we discuss the generalization to the D_\circ -accordion complex of another classical geometric realization of the associahedron coming from the theory of cluster algebras [8,10,16,17]. Namely, we define compatibility vectors in analogy with the denominator vectors of cluster variables, and we characterize the reference dissections D_\circ for which these vectors support a complete simplicial fan realizing the D_\circ -accordion complex.

4.1 d-Vectors

Fix a dissection D_{\circ} of the hollow *n*-gon. For a hollow diagonal $\delta_{\circ} = i_{\circ} j_{\circ}$ and a solid diagonal δ_{\bullet} , we denote by

$$(\delta_{\circ} \mid \delta_{\bullet}) := \begin{cases} -1 & \text{if } \delta_{\bullet} = (i-1)_{\bullet}(j-1)_{\bullet}, \\ 0 & \text{if } \delta_{\bullet} \text{ and } (i-1)_{\bullet}(j-1)_{\bullet} \text{ do not cross,} \\ 1 & \text{if } \delta_{\bullet} \text{ and } (i-1)_{\bullet}(j-1)_{\bullet} \text{ cross.} \end{cases}$$

For any D_o -accordion diagonal δ_{\bullet} , the **d**-vector of δ_{\bullet} with respect to D_o is the vector

$$\mathbf{d}\big(\mathrm{D}_{\circ} \,|\, \delta_{\bullet}\big) = \sum_{\delta_{\circ} \in \mathrm{D}_{\circ}} (\delta_{\circ} \,|\, \delta_{\bullet}) \, \mathbf{e}_{\delta_{\circ}}.$$

In other words, our **d**-vector $\mathbf{d}(D_{\circ} \mid \delta_{\bullet})$ records the compatibility of the diagonal δ_{\bullet} with the dissection D_{\bullet}^- . For a D_{\circ} -accordion dissection D_{\bullet} , we define

$$\mathbf{d}(D_{\circ} \mid D_{\bullet}) := \{ \mathbf{d}(D_{\circ} \mid \delta_{\bullet}) \mid \delta_{\bullet} \in D_{\bullet} \}.$$

Example 4.1 Consider the hollow dissection $D_{\circ}^{ex} = \{3_{\circ}7_{\circ}, 3_{\circ}13_{\circ}, 9_{\circ}13_{\circ}\}$ and the rightmost solid dissection $D_{\bullet}^{ex} = \{2_{\bullet}6_{\bullet}, 2_{\bullet}10_{\bullet}, 10_{\bullet}14_{\bullet}\}$ of Fig. 2. Its **d**-vectors are given by

$$\mathbf{d}(\mathbf{D}_{\circ}^{\mathrm{ex}} \mid \mathbf{2}_{\bullet} \mathbf{6}_{\bullet}) = -\mathbf{e}_{3_{\circ} 7_{\circ}},$$

$$\mathbf{d}(\mathbf{D}_{\circ}^{\mathrm{ex}} \mid \mathbf{2}_{\bullet} \mathbf{10}_{\bullet}) = \mathbf{e}_{9_{\circ} \mathbf{13}_{\circ}}, \text{ and}$$

$$\mathbf{d}(\mathbf{D}_{\circ}^{\mathrm{ex}} \mid \mathbf{10}_{\bullet} \mathbf{14}_{\bullet}) = \mathbf{e}_{3_{\circ} \mathbf{13}_{\circ}} + \mathbf{e}_{9_{\circ} \mathbf{13}_{\circ}}.$$

4.2 d-Vector Fan

We now consider the set of cones

$$\{\mathbb{R}_{>0}\mathbf{d}(D_{\circ} \mid D_{\bullet}) \mid D_{\bullet} \text{ any } D_{\circ}\text{-accordion dissection}\}$$

generated by the **d**-vectors of the D_\circ -accordion dissections. We want to characterize the reference hollow dissections D_\circ for which these cones form a complete simplicial fan realizing the D_\circ -accordion complex. We start with a negative result. An *even interior cell* of a dissection D is a cell with an even number of edges which are all internal diagonals of D.

Proposition 4.2 If the reference hollow dissection D_o contains an even interior cell, then the **d**-vectors cannot realize the D_o -accordion complex.

Proof Assume that D_{\circ} contains an even interior cell C_{\circ} . Denote its vertices by $i_{\circ}^{1}, \ldots, i_{\circ}^{2p}$ (in clockwise order) and its edges $\delta_{\circ}^{k} := i_{\circ}^{k} i_{\circ}^{k+1}$ for $k \in [2p]$ (where $i^{2p+1} = i^{1}$ by convention). Denote by D_{\circ}^{k} the set of diagonals of D_{\circ} separated form C_{\circ} by δ_{\circ}^{k} (including δ_{\circ}^{k} itself), and let $D_{\bullet}^{k} := \{(i-1)_{\bullet}(j-1)_{\bullet} \mid i_{\circ}j_{\circ} \in D_{\circ}^{k}\}$. Consider the solid diagonals $\delta_{\bullet}^{k} := (i^{k}+1)_{\bullet}(i^{k+1}+1)_{\bullet}$ for $k \in [2p]$. Observe that δ_{\bullet}^{k} only crosses diagonals of D_{\bullet}^{k-1} and D_{\bullet}^{k} , and that δ_{\bullet}^{k} and δ_{\bullet}^{k+1} cross precisely the same diagonals of D_{\bullet}^{k} . Since the cell is even, it ensures that the **d**-vectors of the diagonals δ_{\bullet}^{k} for $k \in [2p]$ satisfy the linear dependence

$$\sum_{\substack{k \in [2p] \\ k \text{ even}}} \mathbf{d} (D_{\circ} \mid \delta_{\bullet}^{k}) = \sum_{\substack{k \in [2p] \\ k \text{ odd}}} \mathbf{d} (D_{\circ} \mid \delta_{\bullet}^{k}).$$

However, as already mentioned in Sect. 2.4, the diagonals δ^k_{\bullet} for $k \in [2p]$ all belong to the D_{\circ} -accordion dissection $D^+_{\bullet} := \{(i+1)_{\bullet}(j+1)_{\bullet} | i_{\circ}j_{\circ} \in D_{\circ}\}$. Therefore, the cone $\mathbb{R}_{\geq 0}\mathbf{d}(D_{\circ} | D^+_{\bullet})$ is degenerate, so that the **d**-vectors cannot realize the D_{\circ} -accordion complex.

Example 4.3 Consider a hollow octagon together with the reference dissection $D_o := \{1_o 5_o, 5_o 9_o, 9_o 13_o, 13_o 1_o\}$ with an interior square cell $1_o 5_o 9_o 13_o$. Then we have

$$\mathbf{d}(D_{\circ} | 2_{\bullet}6_{\bullet}) = \mathbf{e}_{1_{\circ}5_{\circ}} + \mathbf{e}_{5_{\circ}9_{\circ}} \qquad \mathbf{d}(D_{\circ} | 6_{\bullet}10_{\bullet}) = \mathbf{e}_{5_{\circ}9_{\circ}} + \mathbf{e}_{9_{\circ}13_{\circ}}$$
$$\mathbf{d}(D_{\circ} | 10_{\bullet}14_{\bullet}) = \mathbf{e}_{9_{\circ}13_{\circ}} + \mathbf{e}_{13_{\circ}1_{\circ}} \qquad \mathbf{d}(D_{\circ} | 14_{\bullet}2_{\bullet}) = \mathbf{e}_{13_{\circ}1_{\circ}} + \mathbf{e}_{15_{\circ}5_{\circ}}$$

so that there is already a linear dependence

$$\mathbf{d}(D_{\circ} \mid 2_{\bullet} 6_{\bullet}) + \mathbf{d}(D_{\circ} \mid 10_{\bullet} 14_{\bullet}) = \mathbf{d}(D_{\circ} \mid 6_{\bullet} 10_{\bullet}) + \mathbf{d}(D_{\circ} \mid 14_{\bullet} 2_{\bullet})$$

among the **d**-vectors of the D_{\circ} -accordion dissection $D_{\bullet}^+ = \{2_{\bullet}6_{\bullet}, 6_{\bullet}10_{\bullet}, 10_{\bullet}14_{\bullet}, 14_{\bullet}2_{\bullet}\}.$

On the negative side, we have seen that the presence of even interior cells prohibits the **d**-vectors from forming a complete simplicial fan. The positive side is that the even interior cells are the only obstructions.

Theorem 4.4 The collection of cones

$$\mathcal{F}^{\mathbf{d}}(D_{\circ}) := \{\mathbb{R}_{\geq 0} \mathbf{d}(D_{\circ} \mid D_{\bullet}) \mid D_{\bullet} \text{ any } D_{\circ}\text{-accordion dissection}\}$$

forms a complete simplicial fan, that we call the d-vector fan of D_\circ , if and only if D_\circ contains no even interior cell.

Proof We use the characterization of complete simplicial fans presented in Proposition 3.13.

Observe first that $\mathbf{d}(D_{\circ} \mid D_{\bullet}^{-}) = (\mathbb{R}_{\leq 0})^{D_{\circ}}$ is the only cone of $\mathcal{F}^{\mathbf{d}}(D_{\circ})$ intersecting the interior of the negative orthant $(\mathbb{R}_{\leq 0})^{D_{\circ}}$. Therefore, $\mathcal{F}^{\mathbf{d}}(D_{\circ})$ fulfills Condition (1) in Proposition 3.13.

To check Condition (2), consider two adjacent maximal D_{\circ} -accordion dissections D_{\bullet} and D'_{\bullet} and let $\delta_{\bullet} \in D_{\bullet}$ and $\delta'_{\bullet} \in D'_{\bullet}$ be such that $D_{\bullet} \setminus \{\delta_{\bullet}\} = D'_{\bullet} \setminus \{\delta'_{\bullet}\}$. Let μ_{\bullet} and ν_{\bullet} be the diagonals of $\overline{D}_{\bullet} \cap \overline{D}'_{\bullet}$ as in Lemma 2.9 (see also Fig. 4). In other words, μ_{\bullet} and ν_{\bullet} are incident to both δ_{\bullet} and δ'_{\bullet} , and they are crossed by the hollow diagonal which intersect δ_{\bullet} and δ'_{\bullet} . Let $\gamma_{\circ} = i_{\circ} j_{\circ}$ be such a hollow diagonals crossing δ_{\bullet} , δ'_{\bullet} , μ_{\bullet} and ν_{\bullet} , and let $\gamma_{\bullet} = (i-1)_{\bullet}(j-1)_{\bullet}$. We now distinguish three cases:

• Assume that γ_{\bullet} still crosses μ_{\bullet} and ν_{\bullet} . In this case, any diagonal of D_{\bullet}^- crossing both (resp. either) δ_{\bullet} and (resp. or) δ'_{\bullet} also crosses both (resp. either) μ_{\bullet} and (resp. or) ν_{\bullet} . See Fig. 8 (left). Therefore, the **d**-vectors of $D_{\bullet} \cup D'_{\bullet}$ satisfy the linear dependence

$$\mathbf{d}(D_{\circ} \mid \delta_{\bullet}) + \mathbf{d}(D_{\circ} \mid \delta_{\bullet}') = \mathbf{d}(D_{\circ} \mid \mu_{\bullet}) + \mathbf{d}(D_{\circ} \mid \nu_{\bullet}).$$

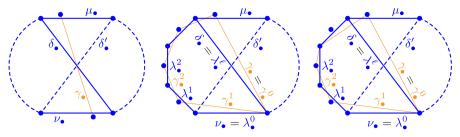


Fig. 8 Illustration of the notations and of the different cases in the proof of Theorem 4.4

• Assume that γ_{\bullet} crosses neither μ_{\bullet} nor ν_{\bullet} . Then γ_{\bullet} is incident to both μ_{\bullet} and ν_{\bullet} , and therefore is either δ_{\bullet} or δ'_{\bullet} , say $\gamma_{\bullet} = \delta_{\bullet}$. Then $\mathbf{d}(\gamma_{\circ} \mid \delta_{\bullet}) = -1$ while $\mathbf{d}(\gamma_{\circ} \mid \delta'_{\bullet}) = 1$ (since δ'_{\bullet} crosses $\delta_{\bullet} = \gamma_{\bullet}$), so that $\mathbf{d}(\gamma_{\circ} \mid \delta_{\bullet}) + \mathbf{d}(\gamma_{\circ} \mid \delta'_{\bullet}) = 0$. Moreover, we have $\mathbf{d}(\gamma_{\circ} \mid \delta'_{\bullet}) = 0$ for any diagonal $\varepsilon_{\bullet} \in D_{\bullet} \cap D'_{\bullet}$ since $\delta_{\bullet} = \gamma_{\bullet}$ cannot cross ε_{\bullet} as they both belongs to D_{\bullet} . Therefore, the set

$$\big\{ \mathbf{d}(D_\circ \,|\, \delta_\bullet) + \mathbf{d}(D_\circ \,|\, \delta_\bullet) \big\} \cup \mathbf{d}(D_\circ \,|\, D_\bullet \cap D_\bullet')$$

contains $|D_o|$ vectors of \mathbb{R}^{D_o} whose γ_o -coordinate all vanish, so that it admits a linear dependence.

- Otherwise, we can assume that γ_{\bullet} crosses μ_{\bullet} but not ν_{\bullet} . Then γ_{\bullet} has a common endpoint with ν_{\bullet} and δ_{\bullet} (or δ'_{\bullet} , but we then permute notations). Changing our initial choice of γ_{\circ} , we can assume that no diagonal of D^{-}_{\bullet} separates γ_{\bullet} from δ_{\bullet} . We now denote clockwise
 - by $\nu_{\bullet} =: \lambda_{\bullet}^{0}, \lambda_{\bullet}^{1}, \dots, \lambda_{\bullet}^{\ell} := \delta_{\bullet}$ the edges of the cell C_{\bullet} of D_{\bullet} containing ν_{\bullet} and δ_{\bullet} .
 - by $\gamma_{\bullet} =: \gamma_{\bullet}^{0}, \gamma_{\bullet}^{1}, \dots, \gamma_{\bullet}^{k}$ the edges of the cell C_{\bullet}^{-} of D_{\bullet}^{-} containing γ_{\bullet} and crossed by δ_{\bullet} .

These notations are illustrated in Fig. 8. We still distinguish two subcases as in Fig. 8:

– If γ^i_{ullet} crosses λ^i_{ullet} for all i as in Fig. 8 (middle), then $\ell=k$ and we have the linear dependence

$$2\mathbf{d}(\mathbf{D}_{\circ} \mid \delta_{\bullet}) + \mathbf{d}(\mathbf{D}_{\circ} \mid \delta_{\bullet}') = \mathbf{d}(\mathbf{D}_{\circ} \mid \mu_{\bullet}) + \sum_{i \in [\ell-1]} (-1)^{(i-1)} \mathbf{d}(\mathbf{D}_{\circ} \mid \lambda_{\bullet}^{i}).$$

It is essential here that $\ell=k$ is even. This is guarantied by the assumption that D_{\circ} (and thus D_{\bullet}^{-}) has no even interior cell, since C_{\bullet}^{-} is an interior cell of D_{\bullet}^{-} of size k.

- Otherwise, we are in a situation similar to Fig. 8 (right). Considering the maximal index m such that γ^i_{\bullet} crosses λ^i_{\bullet} for all $i \leq m$, and we have the linear dependence

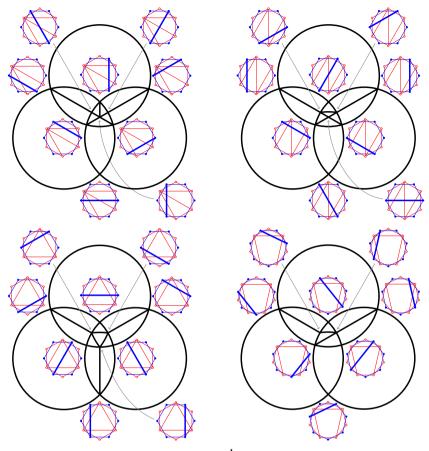


Fig. 9 Stereographic projections of the **d**-vector fans $\mathcal{F}^{\mathbf{d}}(D_o)$ for various reference hollow dissections D_o . See Fig. 6 for alternative simplicial fan realizations of these accordion complexes

$$\mathbf{d}(\mathbf{D}_{\circ} \mid \delta_{\bullet}) + \mathbf{d}(\mathbf{D}_{\circ} \mid \delta_{\bullet}') = \mathbf{d}(\mathbf{D}_{\circ} \mid \mu_{\bullet}) + \sum_{i \in [m]} (-1)^{(i-1)} \mathbf{d}(\mathbf{D}_{\circ} \mid \lambda_{\bullet}^{i}). \qquad \Box$$

Example 4.5 Following Example 2.2, we observe that special reference dissections give rise to the following relevant fans:

- For a snake triangulation Σ_{\circ} , the **d**-vector fan $\mathcal{F}^{\mathbf{d}}(\Sigma_{\circ})$ coincides with the type *A* cluster fan of Fomin and Zelevinsky [17].
- For any triangulation T_o , the **d**-vector fan $\mathcal{F}^{\mathbf{d}}(T_o)$ was already constructed in [8].
- For a quadrangulation Q_o with no interior quadrangle (equivalently, with no cross), we obtain an alternative realization of the Stokes complexes studied in [2,9]. This was observed by Bateni, Manneville and Pilaud in [3].

Figure 9 illustrates the **d**-vector fans $\mathcal{F}^{\mathbf{d}}(D_{\circ})$ for the same reference dissections D_{\circ} as in Fig. 6. More precisely, we have represented the stereographic projection of the fans from the point [-1, -1, -1]. Therefore, the external face of the projection corresponds to the D_{\circ} -accordion dissection D_{\bullet}^{-} . We have labeled all vertices of the

projection (*i.e.* the rays of the fan) by the corresponding D_o -accordion diagonals. Compare with Fig. 6.

Remark 4.6 To prove that the **d**-vector fan $\mathcal{F}^{\mathbf{d}}(D_{\circ})$ is polytopal, we would need to find suitable hyperplanes orthogonal to their rays in order to apply Theorem 3.21. For the **g**-vector fan, these hyperplanes were defined using the height function $\omega(D_{\circ} \mid \delta_{\bullet})$. It would be natural to use the same height function for the **d**-vector fan as well. Unfortunately, for this choice of height function, we can only prove Condition (i) of Theorem 3.21 when D_{\circ} is a triangulation (see also [8]). We were not able to find suitable right hand sides for any dissection D_{\circ} .

Remark 4.7 Our **d**-vectors record the compatibility with the dissection D_{\bullet}^- . A priori, we could compute compatibility vectors with respect to any other maximal D_{\circ} -accordion dissection D_{\bullet}^{ini} . Experiments suggest that the **d**-vector construction provides a complete simplicial fan as long as neither D_{\circ} nor D_{\bullet}^{ini} contain no even interior cell. We checked it for reference quadrangulations with at most 5 diagonals. The linear dependences involved seem however much more complicated than those of the proof of Theorem 4.4 (in particular, they may involve **d**-vectors of diagonals not included in the cells containing δ_{\bullet} and δ_{\bullet}').

5 Sections and Projections

Recall that for a fan \mathcal{F} of \mathbb{R}^d and a linear subspace V of \mathbb{R}^d , the *section* of \mathcal{F} by V is the fan $\mathcal{F}|_V := \{C \cap V \mid C \in \mathcal{F}\}$. For a polytope $P \subseteq \mathbb{R}^d$ and a projection $\pi : \mathbb{R}^d \to V$, the normal fan of the projected polytope $\pi(P)$ is the section of the normal fan of P by V [46, Lem. 7.11]. We now consider sections of the \mathbf{g} - and \mathbf{d} -vector fans by coordinate subspaces. For two dissections $D_o \subset D'_o$, we naturally identify \mathbb{R}^{D_o} with the subspace spanned by $\{\mathbf{e}_{\delta_o} \mid \delta_o \in D_o\}$ in $\mathbb{R}^{D'_o}$.

5.1 Coordinate Sections of the d-Vector Fan

We start by presenting sections of the **d**-vector fan which are not very surprising. The following lemma is immediate from the definition of **d**-vectors.

Lemma 5.1 Consider two dissections $D_{\circ} \subset D'_{\circ}$, and a D'_{\circ} -accordion diagonal δ_{\bullet} . Then we have $\mathbf{d}(D_{\circ} | \delta_{\bullet}) \in \mathbb{R}^{D_{\circ}}$ if and only if δ_{\bullet} does not cross any diagonal of $\{(i-1)_{\bullet}(j-1)_{\bullet} | i_{\circ}j_{\circ} \in D'_{\circ} \setminus D_{\circ}\}$.

Corollary 5.2 For any two dissections $D_{\circ} \subset D'_{\circ}$, the face complex of the section of the **d**-vector fan $\mathcal{F}^{\mathbf{d}}(D'_{\circ})$ by the subspace $R^{D_{\circ}}$ is isomorphic to the link of the dissection $\{(i-1)_{\bullet}(j-1)_{\bullet} \mid i_{\circ}j_{\circ} \in D'_{\circ} \setminus D_{\circ}\}$ in the D'_{\circ} -accordion complex $\mathcal{AC}(D'_{\circ})$.

5.2 Coordinate Sections of the g-Vector Fan

More relevant are the sections of the **g**-vector fan. They provide an alternative approach to polytopal realizations of the accordion complex based on projected associahedra. This approach relies on the following crucial observation.

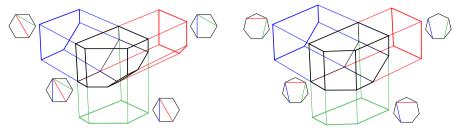


Fig. 10 Projecting accordiohedra on coordinate planes yields smaller accordiohedra

Lemma 5.3 Consider two dissections $D_{\circ} \subset D'_{\circ}$, and a D'_{\circ} -accordion diagonal δ_{\bullet} . Then we have $\mathbf{g}(D'_{\circ} | \delta_{\bullet}) \in \mathbb{R}^{D_{\circ}}$ if and only if δ_{\bullet} is a D_{\circ} -accordion diagonal. Moreover, in this case, the \mathbf{g} -vectors $\mathbf{g}(D_{\circ} | \delta_{\bullet})$ and $\mathbf{g}(D'_{\circ} | \delta_{\bullet})$ coincide.

Proof Let $\delta_{\circ} \in D'_{\circ} \setminus D_{\circ}$. By definition, a D'_{\circ} -accordion diagonal δ_{\bullet} does not slalom on δ_{\circ} if and only if the δ_{\circ} -coordinate of $\mathbf{g}(D_{\circ} \mid \delta_{\bullet})$ vanishes. Thus, δ_{\bullet} is a D_{\circ} -accordion diagonal if and only if the δ_{\circ} -coordinate of $\mathbf{g}(D'_{\circ} \mid \delta_{\bullet})$ vanishes for all $\delta_{\circ} \in D'_{\circ} \setminus D_{\circ}$. \square

Based on this lemma, we obtain in the following statements an alternative realization on the **g**-vector fan, which is illustrated in Fig. 10.

Theorem 5.4 For two dissections $D_o \subset D'_o$, the **g**-vector fan $\mathcal{F}^{\mathbf{g}}(D_o)$ is precisely the set of cones $\{C \in \mathcal{F}^{\mathbf{g}}(D'_o) \mid C \subset \mathbb{R}^{D_o}\}$ and coincides with the section of the **g**-vector fan $\mathcal{F}^{\mathbf{g}}(D'_o)$ by \mathbb{R}^{D_o} .

Proof Lemma 5.3 immediately implies that $\mathcal{F}^{\mathbf{g}}(\mathsf{D}_{\circ}) = \{C \in \mathcal{F}^{\mathbf{g}}(\mathsf{D}'_{\circ}) \mid C \subset \mathbb{R}^{\mathsf{D}_{\circ}}\}$. A priori, it is a subfan of the section $\mathcal{F}^{\mathbf{g}}(\mathsf{D}'_{\circ})\big|_{\mathbb{R}^{\mathsf{D}_{\circ}}} = \{C \cap \mathbb{R}^{\mathsf{D}_{\circ}} \mid C \in \mathcal{F}^{\mathbf{g}}(\mathsf{D}'_{\circ})\}$. However, since $\mathcal{F}^{\mathbf{g}}(\mathsf{D}_{\circ})$ is already a complete simplicial fan of $\mathbb{R}^{\mathsf{D}_{\circ}}$, it coincides with $\mathcal{F}^{\mathbf{g}}(\mathsf{D}'_{\circ})\big|_{\mathbb{P}^{\mathsf{D}_{\circ}}}$.

Theorem 5.5 For any two dissections $D_{\circ} \subset D'_{\circ}$, the **g**-vector fan $\mathcal{F}^{\mathbf{g}}(D_{\circ})$ is realized by the orthogonal projection of the D'_{\circ} -accordiohedron $\mathsf{Acco}(D'_{\circ})$ on $\mathbb{R}^{D_{\circ}}$, which is equivalently described by:

- the convex hull of the points $\sum_{\delta_{\bullet} \in D_{\bullet}} \omega(D'_{\circ} | \delta_{\bullet}) \cdot \mathbf{c}(D_{\circ} | \delta_{\bullet} \in D_{\bullet})$ for all D_{\circ} -accordion dissections D_{\bullet} ,
- the intersection of the half-spaces $\{x \in \mathbb{R}^{D_o} \mid \langle g(D_o \mid \gamma_{\bullet}) \mid x \rangle \leq \omega(D'_o \mid \delta_o) \}$ for all D_o -accordion diagonals γ_{\bullet} .

Proof Since $\mathcal{F}^{\mathbf{g}}(D_{\circ}')$ is the normal fan of $\mathsf{Acco}(D_{\circ}')$, Theorem 5.4 implies that $\mathcal{F}^{\mathbf{g}}(D_{\circ}) = \mathcal{F}^{\mathbf{g}}(D_{\circ}')\big|_{\mathbb{R}^{D_{\circ}}}$ is the normal fan of the orthogonal projection of $\mathsf{Acco}(D_{\circ}')$ on $\mathbb{R}^{D_{\circ}}$ [46, Lem. 7.11]. We therefore just need to prove the given vertex and facet descriptions of this projection. First, since $\mathcal{F}^{\mathbf{g}}(D_{\circ}) = \mathcal{F}^{\mathbf{g}}(D_{\circ}')\big|_{\mathbb{R}^{D_{\circ}}}$, the inequalities of the projection of $\mathsf{Acco}(D_{\circ}')$ on $\mathbb{R}^{D_{\circ}}$ are just the inequalities of $\mathsf{Acco}(D_{\circ}')$ whose normal vectors are in $\mathbb{R}^{D_{\circ}}$. Finally, the vertex description follows from the inequality description using the same argument as in Lemma 3.18. □

Remark 5.6 The projection of the accordiohedron $\mathsf{Acco}(D_\circ')$ on \mathbb{R}^{D_\circ} differs from the accordiohedron $\mathsf{Acco}(D_\circ)$: they have both $\mathcal{F}^\mathbf{g}(D_\circ)$ as normal fan, but their precise geometry is different.

Corollary 5.7 For any hollow dissection D_o , the **g**-vector fan $\mathcal{F}^{\mathbf{g}}(D_o)$ is realized by a projection of an associahedron of [27].

Proof Apply Theorem 5.5 to any triangulation T_{\circ} that refines D_{\circ} .

Remark 5.8 Approaching accordion complexes as coordinate sections of **g**-vector fans actually provides more concise (but also less instructive) proofs for Sects. 2.3 and 3.3. Namely, consider any dissection D_{\circ} and let T_{\circ} be a triangulation that refines D_{\circ} . The sign coherence property for triangulations (see Corollary 3.9) shows that the section $\mathcal{F}^{\mathbf{g}}(T_{\circ})\big|_{\mathbb{R}^{D_{\circ}}} = \{C \cap \mathbb{R}^{D_{\circ}} \mid C \in \mathcal{F}^{\mathbf{g}}(T_{\circ})\}$ actually coincides with $\{C \in \mathcal{F}^{\mathbf{g}}(T_{\circ}) \mid C \subset \mathbb{R}^{D_{\circ}}\}$. Therefore, this gives an alternative concise proof that the collection of cones $\{C \in \mathcal{F}^{\mathbf{g}}(T_{\circ}) \mid C \subset \mathbb{R}^{D_{\circ}}\}$ forms a complete simplicial fan. Moreover, this fan has the same combinatorics as the D_{\circ} -accordion complex $\mathcal{AC}(D_{\circ})$ by Lemma 5.3. We conclude directly that $\mathcal{AC}(D_{\circ})$ is a pseudomanifold realized by the fan $\{C \in \mathcal{F}^{\mathbf{g}}(T_{\circ}) \mid C \subset \mathbb{R}^{D_{\circ}}\}$ and by the orthogonal projection of the associahedron $\mathsf{Asso}(T_{\circ})$ on $\mathbb{R}^{D_{\circ}}$.

5.3 Cluster Algebra Analogues

The perspective on accordion complexes developed in this section also opens the door to generalizations on arbitrary cluster algebras (finite type or not). Namely, consider an arbitrary cluster $X_{\circ} = (x_{\circ}^{1}, \dots, x_{\circ}^{m})$ in an arbitrary cluster algebra \mathcal{A} . For any cluster variable $y \in \mathcal{A}$, we denote by $\mathbf{g}(X_{\circ} \mid y) \in \mathbb{R}^{m}$ and $\mathbf{d}(X_{\circ} \mid y) \in \mathbb{R}^{m}$ the \mathbf{g} - and \mathbf{d} -vectors of y computed with respect to X_{\circ} , see [16,19]. Fix a non-empty proper subset I of [m]. We consider two natural subcomplexes of the cluster complex of \mathcal{A} :

- the subcomplex $\Delta^{\mathbf{d}}(X_{\circ}, I)$ induced by the variables y such that $\mathbf{d}(X_{\circ} | y)_i = 0$ for all $i \in I$,
- the subcomplex $\Delta^{\mathbf{g}}(X_{\circ}, I)$ induced by the variables y such that $\mathbf{g}(X_{\circ} | y)_i = 0$ for all $i \in I$.

It is well-known that the subcomplex $\Delta^{\mathbf{d}}(X_{\circ}, I)$ is the cluster complex obtained by freezing all variables x_i for $i \in I$. For example in type A, it is a join of simplicial associahedra and it can therefore be realized by a product of smaller associahedra. In contrast, we do not know whether the subcomplex $\Delta^{\mathbf{g}}(X_{\circ}, I)$ has been investigated. The present paper dealt with the type A situation.

Example 5.9 Let T_{\circ} be a triangulation, with internal diagonals labeled by $1, \ldots, m$. Consider the corresponding type A_m cluster X_{\circ} . Then for any non-empty proper subset I of [m], the subcomplex $\Delta^{\mathbf{g}}(X_{\circ}, I)$ is isomorphic to the D_{\circ} -accordion complex, where D_{\circ} is the dissection obtained by deleting in T_{\circ} the diagonals labeled by I.

Example 5.10 Example 5.9 extends to cluster algebras on surfaces [14,15], using accordions of dissections of surfaces.

The following statement extends Theorem 5.4 to arbitrary cluster algebras.

Theorem 5.11 The subset $\{C \in \mathcal{F}^{\mathbf{g}}(X_{\circ}) \mid C \subseteq \mathbb{R}^{[m] \setminus I}\}$ of the **g**-vector fan $\mathcal{F}^{\mathbf{g}}(X_{\circ})$ of X_{\circ} coincides with the section $\mathcal{F}^{\mathbf{g}}(X_{\circ})|_{\mathbb{R}^{[m] \setminus I}} = \{C \cap \mathbb{R}^{[m] \setminus I} \mid C \in \mathcal{F}^{\mathbf{g}}(X_{\circ})\}.$

Proof The inclusion $\{C \in \mathcal{F}^{\mathbf{g}}(X_\circ) \mid C \subseteq \mathbb{R}^{[m] \setminus I}\} \subseteq \mathcal{F}^{\mathbf{g}}(X_\circ)\big|_{\mathbb{R}^{[m] \setminus I}}$ is clear. For the reverse inclusion, we use the sign coherence property of **g**-vectors in cluster algebras, which was conjectured in [19, Conj. 6.13] and proved in [22, Thm. 5.1] in general. This property implies that the coordinate plane $\mathbb{R}^{[m] \setminus I}$ intersects any cone C of $\mathcal{F}^{\mathbf{g}}(X_\circ)$ in a face C'. This shows that $C \cap \mathbb{R}^{[m] \setminus I} = C'$ belongs to $\{C \in \mathcal{F}^{\mathbf{g}}(X_\circ) \mid C \subseteq \mathbb{R}^{[m] \setminus I}\}$.

Corollary 5.12 The subcomplex $\Delta^{\mathbf{g}}(X_{\circ}, I)$ induced by the variables y such that $\mathbf{g}(X_{\circ} | y)_i = 0$ for all $i \in I$ is a pseudomanifold.

Moreover, extending the result of Hohlweg et al. [26] in the acyclic case, C. Hohlweg, V. Pilaud and S. Stella recently constructed a polytope $\mathsf{Asso}(X_\circ)$ realizing the **g**-vector fan $\mathcal{F}^{\mathbf{g}}(X_\circ)$ in [27]. We can use this associahedron to realize the subcomplex $\Delta^{\mathbf{g}}(X_\circ, I)$ as a convex polytope, extending Theorem 5.5.

Corollary 5.13 The orthogonal projection of $Asso(X_o)$ on $\mathbb{R}^{[m] \setminus I}$ is a realization of $\Delta^{\mathbf{g}}(X_o, I)$.

Finally, when oriented in the suitable direction v (the sum of the positive roots, or equivalently the sum of the fundamental weights), the graph of the generalized associahedron $\mathsf{Asso}(X_\circ)$ is the Hasse diagram of a Cambrian lattice [38]. One can similarly orient the graph of the projection of $\mathsf{Asso}(X_\circ)$ on $\mathbb{R}^{[m] \setminus I}$ in the direction of the projection of v on $\mathbb{R}^{[m] \setminus I}$. Is the resulting graph the Hasse diagram of a lattice? Combining the results of [20] with that of the present paper shows that this property holds in type A. We also computationally verified the statement in types B_4 , B_5 , D_4 and D_5 . Following [20] it seems promising to construct first a lattice structure on biclosed sets of \mathbf{c} -vectors, and to obtain then the graph of the projection of $\mathsf{Asso}(X_\circ)$ on $\mathbb{R}^{[m] \setminus I}$ as the Hasse diagram of a lattice quotient.

To conclude, let us mention that the ideas developed in this section have also inspired further investigation of sections of g-vector fans of support τ -tilting complexes of associative algebras, see [34] and [32, Sect. 4.2.6].

Acknowledgements We thank C. Hohlweg and S. Stella for many helpful discussions on realizations of the associahedron [27] which were the starting point of this paper. We are grateful to F. Chapoton for various conversations on quadrangulations and Stokes posets, and to A. Garver and T. McConville for introducing us with the accordion complexes during FPSAC'16. Their works [9,20] were highly inspiring and motivating. We also thank N. Thiery for a question which led to the approach of Sect. 5.2, and to P.-G. Plamondon for discussions on the generalization to cluster algebras presented in Sect. 5.3. Finally, we are grateful to two anonymous referees for their attentive reading and their suggestions on the content and presentation which largely improved our original draft.

References

- 1. Adachi, T., Iyama, O., Reiten, I.: τ-Tilting theory. Compos. Math. 150(3), 415–452 (2014)
- Baryshnikov, Y.: On stokes sets. In: Siersma, D., et al. (eds.) New Developments in Singularity Theory (Cambridge, 2000). NATO Science Series II: Mathematics, Physics and Chemistry, vol. 21, pp. 65–86.
 Kluwer, Dordrecht (2001)

- Bateni, A.H., Manneville, T., Pilaud, V.: A note on quadrangulations and Stokes complexes (2016). In preparation
- Billera, L.J., Filliman, P., Sturmfels, B.: Constructions and complexity of secondary polytopes. Adv. Math. 83(2), 155–179 (1990)
- Brüstle, T., Douville, G., Mousavand, K., Thomas, H., Yıldırım, E.: On the combinatorics of gentle algebras (2017). arXiv:1707.07665
- Brüstle, T., Dupont, G., Pérotin, M.: On maximal green sequences. Int. Math. Res. Not. IMRN 2014(16), 4547–4586 (2014)
- Carr, M.P., Devadoss, S.L.: Coxeter complexes and graph-associahedra. Topol. Appl. 153(12), 2155– 2168 (2006)
- Ceballos, C., Santos, F., Ziegler, G.M.: Many non-equivalent realizations of the associahedron. Combinatorica 35(5), 513–551 (2015)
- Chapoton, F.: Stokes posets and serpent nests. Discret. Math. Theor. Comput. Sci. 18(3), Art. No. 18 (2016)
- Chapoton, F., Fomin, S., Zelevinsky, A.: Polytopal realizations of generalized associahedra. Can. Math. Bull. 45(4), 537–566 (2002)
- De Loera, J.A., Rambau, J., Santos, F.: Triangulations: Structures for Algorithms and Applications. Algorithms and Computation in Mathematics, vol. 25. Springer, Berlin (2010)
- Demonet, L., Iyama, O., Jasso, G.: τ-Tilting finite algebras, bricks, and g-vectors. Int. Math. Res. Not. IMRN. https://doi.org/10.1093/imrn/rnx135
- Feichtner, E.M., Sturmfels, B.: Matroid polytopes, nested sets and Bergman fans. Port. Math. 62(4), 437–468 (2005)
- Fomin, S., Shapiro, M., Thurston, D.: Cluster algebras and triangulated surfaces I. Cluster complexes. Acta Math. 201(1), 83–146 (2008)
- Fomin, S., Thurston, D.: Cluster algebras and triangulated surfaces. Part II: Lambda lengths (2012). arXiv:1210.5569
- 16. Fomin, S., Zelevinsky, A.: Cluster algebras. I. Foundations. J. Am. Math. Soc. 15(2), 497–529 (2002)
- Fomin, S., Zelevinsky, A.: Cluster algebras. II. Finite type classification. Invent. Math. 154(1), 63–121 (2003)
- 18. Fomin, S., Zelevinsky, A.: *Y*-systems and generalized associahedra. Ann. Math. **158**(3), 977–1018 (2003)
- 19. Fomin, S., Zelevinsky, A.: Cluster algebras. IV. Coefficients. Compos. Math. 143(1), 112–164 (2007)
- 20. Garver, A., McConville, T.: Oriented flip graphs and noncrossing tree partitions (2016). arXiv:1604.06009
- Gelfand, I.M., Kapranov, M.M., Zelevinsky, A.V.: Discriminants, Resultants and Multidimensional Determinants. Modern Birkhäuser Classics. Birkhäuser, Boston (2008). Reprint of the 1994 edition
- 22. Gross, M., Hacking, P., Keel, S., Kontsevich, M.: Canonical bases for cluster algebras. J. Am. Math. Soc. 31(2), 497–608 (2018)
- 23. Haiman, M.: Constructing the associahedron (1984). http://www.math.berkeley.edu/~mhaiman/ftp/assoc/manuscript.pdf
- 24. Hohlweg, C.: Permutahedra and associahedra, pp. 129–159 in [31]
- Hohlweg, C., Lange, C.E.M.C.: Realizations of the associahedron and cyclohedron. Discret. Comput. Geom. 37(4), 517–543 (2007)
- 26. Hohlweg, C., Lange, C.E.M.C., Thomas, H.: Permutahedra and generalized associahedra. Adv. Math. **226**(1), 608–640 (2011)
- Hohlweg, C., Pilaud, V., Stella, S.: Polytopal realizations of finite type g-vector fans. Adv. Math. 328, 713–749 (2018)
- 28. Lee, C.W.: The associahedron and triangulations of the n-gon. Eur. J. Comb. 10(6), 551–560 (1989)
- 29. Loday, J.-L.: Realization of the Stasheff polytope. Arch. Math. 83(3), 267–278 (2004)
- Manneville, T., Pilaud, V.: Compatibility fans for graphical nested complexes. J. Comb. Theory Ser. A 150, 36–107 (2017)
- Müller-Hoissen, F., Pallo, J.M., Stasheff, J. (eds.): Associahedra, Tamari Lattices and Related Structures. Tamari Memorial Festschrift. Progress in Mathematical Physics, vol. 299. Springer, Basel (2012)
- 32. Palu, Y., Pilaud, V., Plamondon, P.-G.: Non-kissing complexes and τ -tilting for gentle algebras (2017). arXiv:1707.07574
- 33. Pilaud, V.: Signed tree associahedra (2013). arXiv:1309.5222

- Pilaud, V., Plamondon, P.-G., Stella, S.: A τ-tilting approach to dissections of polygons (2017). arXiv:1710.02119
- 35. Pilaud, V., Santos, F.: The brick polytope of a sorting network. Eur. J. Comb. 33(4), 632–662 (2012)
- Pilaud, V., Stump, C.: Brick polytopes of spherical subword complexes and generalized associahedra. Adv. Math. 276, 1–61 (2015)
- Postnikov, A.: Permutohedra, associahedra, and beyond. Int. Math. Res. Not. IMRN 2009(6), 1026– 1106 (2009)
- 38. Reading, N.: Cambrian lattices. Adv. Math. 205(2), 313-353 (2006)
- 39. Reading, N.: Sortable elements and Cambrian lattices. Algebra Univers. 56(3-4), 411-437 (2007)
- 40. Reading, N., Speyer, D.E.: Cambrian fans. J. Eur. Math. Soc. 11(2), 407–447 (2009)
- 41. Shnider, S., Sternberg, S.: Quantum Groups: From Coalgebras to Drinfeld Algebras. Graduate Texts in Mathematical Physics, vol. 2. International Press, Cambridge (1993)
- 42. Stasheff, J.: Homotopy associativity of H-spaces I, II. Trans. Am. Math. Soc. 108(2), 293–312 (1963)
- 43. Stella, S.: Polyhedral models for generalized associahedra via Coxeter elements. J. Algebr. Comb. **38**(1), 121–158 (2013)
- 44. Tamari, D.: Monoides préordonnés et chaînes de Malcev. Ph.D. thesis, Université Paris Sorbonne (1951)
- Zelevinsky, A.: Nested complexes and their polyhedral realizations. Pure Appl. Math. Q. 2(3), 655–671 (2006)
- Ziegler, G.M.: Lectures on Polytopes. Graduate texts in Mathematics, vol. 152. Springer, New York (1995)

