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Abstract A rational distance set in the plane is a point set which has the property that
all pairwise distances between its points are rational. Erdős and Ulam conjectured in
1945 that there is no dense rational distance set in the plane. In this paper we associate
an algebraic surface in P3, that we call a distance surface, to any finite rational distance
set in the plane. Under a mild condition, we prove that a distance surface is always a
surface of general type. From this, we deduce that the Bombieri–Lang conjecture in
arithmetic algebraic geometry (restricted to the classes of surfaces) implies an answer
to the Erdős–Ulam problem. Combined with the results of Solymosi and de Zeeuw,
our proofs lead to the following stronger statement: for S a rational distance set with
infinitely many points, we have
• Either, all but at most four points of S are on a line,
• Or, all but at most three points of S are on a circle.
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1 Introduction

A rational (respectively, integral) distance set is a subset S of the plane R2 such that
for any pair of points s, t in S, the distance between s and t is a rational number
(respectively, is an integer). On any line L in R2, it is easy to give examples of dense
rational distance sets. The same is true for any circle of radius a positive rational
number. However, it is not known if there is a rational distance set with eight points
in general position, that is, no three of them on a line and no four of them on a circle.

In 1945,Anning andErdős [1] proved that any infinite integral setmust be contained
in a line. In the same year, Ulam conjectured that there is no everywhere dense rational
distance set in the plane, see [15, Pbm. III.5]. Erdős also states that an infinite rational
distance set has to be very restricted (see [7]).

Huff [9] considered rational distance sets S of the following form: given distinct
a, b ∈ Q

∗, S contains the four points (0,± a) and (0,± b) on the y-axis, plus points
(x, 0) on the x-axis, for some x ∈ Q

∗. Such a point (x, 0) must then satisfy the
equations x2 + a2 = u2 and x2 + b2 = v2 with u, v ∈ Q. The system of associated
homogeneous equations x2+a2z2 = u2 and x2+b2z2 = v2 defines a curveC(a2, b2)
of genus 1 in P

3. Huff [9] and Peeples [13] provided examples in which the elliptic
curve C(a2, b2) has a positive Mordell–Weil rank over Q, thus, exhibiting examples
of infinite rational distance sets that are contained neither on a line nor in a circle.
These examples remain to this day the “largest” known such examples, i.e., examples
of rational distance sets with infinite number of points not all on a line.

UsingMordell conjecture, proved by Faltings, Solymosi and de Zeeuw [14] proved
that lines and circles are the only irreducible algebraic curves that contain an infi-
nite rational distance set. They also showed that if a rational distance set S contains
infinitely many points on a line (respectively, on a circle), then all but four (respec-
tively, three) points of S are on the line (respectively, circle). For a rational distance
subset of the plane intersecting any line in finitely many points, it was conditionally
shown in our previous paper [12] that there is a uniform bound on the number of these
intersections. The main tool in [12] is a conditional uniform boundedness theorem on
the number of rational points of algebraic curves of genus at least 2 on a fixed number
field [6].

Assuming the Bombieri–Lang conjecture in arithmetic geometry, in this paper we
prove the abovementioned conjecture of Erdős andUlam. Our proof shows in addition
that the examples of Huff and Peeples, described above, should be in fact the largest
possible examples of rational distance sets not entirely contained in a line or in a circle,
cf. Corollary 1.4. We are thus able to answer Problem D20 in [8] (see also Sect. 5.11
in the book of Brass et al. [3]).

Statement of the Main Theorems. Let A = {(α1, β1), . . . , (αm, βm)} be a subset of
R
2. Assume that all the points of A are not on a line. Furthermore, supposem = 2g+2

is even with g ≥ 2.We associate an embedded surface SA in P3 to A, with the property
that the points in A play the role of rational points of SA over an appropriate finite
field extension of Q.

Let [x : y : z : w] be the projective coordinates in P
3.
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Definition 1.1 The distance surface of A is the hypersurface SA in P3 defined by the
equation

z2 =
m∏

i=1

{
(x − αi )

2 + (y − βi )
2}, (1.1)

in the affine chart w = 1.

Here is our main observation.

Theorem 1.2 Let m = 2g + 2 be even with g ≥ 2. For any subset A =
{(α1, β1), . . . , (αm, βm)} in the plane whose points are not all on a line, the distance
surface SA is of general type.

The above result is our key tool to deduce the following theorem.

Theorem 1.3 Assuming the Bombieri–Lang conjecture in arithmetic geometry (for
the case of surfaces of general type), there is no rational distance set that is (topolog-
ically) dense in the plane.

As a corollary of the proof of the above theorem, and combined with the results of
Solymosi and de Zeeuw [14] (see also Sect. 2), we will show that an infinite rational
distance set in the plane should be very restricted in the following sense.

Corollary 1.4 Let S be a rational distance set with infinitely many points. Then

• Either, all but at most four of the points of S are on a line,
• Or, all but at most three points of S are on a circle.

We will recall the definition of varieties of general type and the statement of the
Bombieri–Lang conjecture in Sect. 2. The results of this paper could be considered as
a witness to the power of the Bombieri–Lang conjecture. The proofs of Theorems 1.2
and 1.3, and Corollary 1.4 are given in Sect. 3.

In the final step of preparation of this paper, I learned that Tao has given an indepen-
dent conditional solution to the Erdős–Ulam problem (http://terrytao.wordpress.com/
2014/12/20/the-erdos-ulam-problem-varieties-of-general-type-and-the-bombieri-la
ng-conjecture). His example for a surface of general type is a complete intersection
of four hyper-surfaces in C

6, and the proofs are slightly more technical.

2 Varieties of General Type and the Bombieri–Lang Conjecture

Let X be a variety overC of dimension n and let �X be the sheaf of regular (holomor-
phic) n-forms over X . The determinant of�X is called the canonical sheaf of X , and is
denoted by K X . The canonical ring of X is defined by R(X) := ⊕

m≥0 H0(X, K ⊗m
X ),

where for a sheaf F , H0(X,F) denotes the set of global sections of F . The Kodaira
dimension of a variety X denoted by κ(X) is defined as the projective dimension of
the canonical ring R(X), i.e., κ(X) := tr(R(X))−1, where for a ring R, tr(R) denotes
the transcendental degree of R. Equivalently, the Kodaira dimension of the variety X
is the minimal integer κ ≥ − 1 for which the following limit

lim
m→∞

dim H0(X, mK X )

mκ
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exists. In another words, it is the rate of growth of the sequence of plurigenera
Pm := dim H0(X, mK X ). The Kodaira dimension is a birational invariant which
is an important tool in the classification of algebraic varieties.

If all the pluricanonical sheaves K ⊗m
X are not effective, i.e., if they do not have any

global section, then the Kodaira dimension is defined by κ(X) := −1 (note that some
people use κ := −∞). By definition, it is clear that the Kodaira dimension satisfies
the inequality − 1 ≤ κ(X) ≤ dim X , and it divides all varieties X of dimension n into
n + 1 classes, those of Kodaira dimensions − 1, 0, 1, . . . , n.

In some sense it is true that the Kodaira dimension of most varieties takes on the
maximal value κ(X) = dim X ; this prompts the following definition.

Definition 2.1 Asmoothvariety X isof general type ifκ(X) = dim X .Moregenerally
a singular variety X is of general type if a desingularization X̃ of X is a variety of
general type.

Example 2.2 Let X be a curve of genus g.

• If g = 0 then dim H0(X, mK X ) = 0 for all m ≥ 1 so κ(X) = −1.
• If g = 1 then dim H0(X, mK X ) = 1 for all m ≥ 1 so in this case we have

κ(X) = 0.
• If g ≥ 2 then dim H0(X, K X ) = g and by applying the Riemann–Roch theorem
for m ≥ 2 we have dim H0(X, mK X ) = (2m − 1)(g − 1). Hence for g ≥ 2 we
have κ(X) = 1.

Therefore as we can see from the above example for the case of curves, being general
type is equivalent to the condition g ≥ 2. Thus varieties of general type are a natural
generalization of the notion of hyperbolic curves, i.e., curves of genus g ≥ 2.

Example 2.3 A smooth hypersurface of degree d ≥ n + 2 in a projective space Pn is
of general type.

The Bombieri–Lang conjecture generalizes the Mordell conjecture to varieties of
higher dimension.

Conjecture 2.4 (Bombieri–Lang)Let X be a projective variety of general type defined
over a number field K . Then the set of rational points X (K ) of X is not Zariski dense
in X.

The fundamental Diophantine condition conjecturally satisfied by varieties of general
type is the Bombieri–Lang conjecture stated in the introduction.

Bombieri posed the above conjecture for surfaces of general type, and Lang (inde-
pendently) formulated the conjecture for higher dimensional varieties; in fact, he gave
a more precise and refined form to describe the distribution of rational points on the
varieties of general type.

One of the main interesting consequences of the Bombieri–Lang conjecture is the
following.

Theorem 2.5 (Uniformity Conjecture [6]) The Bombieri–Lang conjecture implies
that, for every number field K and for every g ≥ 2, there exists a number B(K , g)

such that no curve of genus g defined over K has more than B(K , g) points defined
over K .
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We refer to [2,11] for the main references on the conjecture, and to [4–6] for a discus-
sion of its consequences for the distribution of rational points on curves.

3 Proofs of the Main Theorems

Before giving the proofs of the theorems stated in the introduction, we recall some
known basic results.

First, we observe that rationality of distances in R
2 is clearly preserved by trans-

lations, rotations, and uniform scaling ((x, y) 	→ (λx, λy) with λ ∈ Q). We call a
transformation T : R2 → R

2 a similarity transformation if it can be written as the
composition of translations, rotations and uniform scaling.

Note that rational distance sets are also preserved by certain central inversions: an
inversion with respect to a point in the rational distance set and with a rational radius.
More precisely, we quote the following lemma from [14].

Lemma 3.1 Let A be a rational distance set in R
2. Let x be a point of A and consider

any inversion τ(x; r) in R
2 with center x and with a rational radius r ∈ Q+. Then

the image of A \ {x} under τ(x; r) is a rational distance set.

A priori, points in a rational distance set A might have arbitrary coordinates. How-
ever, after moving two of the points in A to two fixed rational points by a similarity
transformation, the points become almost rational points. More precisely, we have the
following basic lemma (see e.g. [10]).

Lemma 3.2 For any rational distance set A, there is a square free integer k ∈ Z+
such that if a similarity transformation T transforms two distinct points of A into
(0, 0) and (1, 0), then any point in T (A) is of the form (r1, r2

√
k) for r1, r2 ∈ Q.

3.1 Proof of Theorem 1.2

Let A = {(α1, β1), . . . , (αm, βm)} be a subset of R2, not all on a line, and assume m
is an even integer of the form m = 2g + 2 with g ≥ 2. We prove that the distance
surface SA ⊂ P

3 associated to A, defined by the equation

z2 =
m∏

i=1

{
(u − αi )

2 + (v − βi )
2}, (3.1)

is of general type.
First we analyse the singularities of SA. For each j = 1, . . . , m, define z j =

α j + i β j , where i = √−1. Rewriting the equation of SA in the form

z2 =
m∏

j=1

{
(x − α j ) + i (y − β j )}{(x − α j ) − i (y − β j )

}

=
m∏

j=1

(
x + i y − (α j + i β j )

)(
x − i y − (α j − i β j )

)
,
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and making a change of coordinates x + iy 	→ x and x − iy 	→ y, we get the equation
of SA in the new coordinates in the following form:

z2 = P(x)Q(y),

where P(x) = (x − z1) · · · (x − zm) , Q(x) = (x − z1) · · · (x − zm).
Assume that the coordinates in P3 are [x : y : z : w], so that the above equation of

SA is given in the affine part w = 1.
At a singular point lying in the affine part w = 1, all the partial derivatives are

vanishing, which yield to the following equations:

z = 0, P ′(x)Q(y) = 0, P(x)Q′(y) = 0.

Using that the singular point (x, y, z) is on the surface, and since the polynomials
P, Q have no multiple roots, we further get

z = 0, P(x) = 0, Q(y) = 0.

The part at infinity should be more elaborated. If we projectivize the equation of the
distance surface SA

z2 = P(x)Q(y),

we obtain the following projective surface:

z2w2m−2 = (x − z1w) · · · (x − zmw)(x − z1w) · · · (x − zmw)

in P3. If we put w = 0 in the above equation we obtain the two lines L1 := (x = w =
0) and L2 := (y = w = 0) intersecting at the point p = (0, 0, 1, 0) on the distance
surface. By computing the partial differentiation ∂x , ∂y, ∂z, ∂w one can easily see that
all points on the two lines L1 and L2 are singular points and therefore the singular
locus at infinity is the union of the two lines L1 and L2.

This gives

Proposition 3.3 The singular points of SA on the affine part (w = 1) are the m2

points (zi , z j , 0) for i, j = 1, . . . , m. In addition, each singular point (zi , z j , 0) is of
type z2 = xy. Furthermore, the singular locus of the surface SA at infinity is the union
of the two lines L1 and L2.

In the next stepwe show that the singular surface SA with equation z2 = P(x)Q(y),
for P and Q twopolynomials of the samedegree andwithoutmultiple roots, is a surface
of general type.

The surface SA gives a brancheddouble cover of the surfaceP1×P
1 by themorphism

π : (x, y, z) 	→ ( x
z ,

y
z

)
, which is obviously a rational morphism. This morphism is

branched along the locus z = 0, i.e., along P(x)Q(y) = 0, which is a union of the
2g + 2 fibers from each ruling of P1 × P

1.
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The m2 = (2g + 2)2 singular points (zi , z j , 0) of SA are lying over the double
points of the branched divisor.

The ramification divisor R of π is the zero divisor of the function z and we have
the equality

2R = (z2) = (P(x)) + (Q(y)).

Applying the Riemann–Hurwitz formula to the coverπ : SA → P
1×P

1 on the smooth
part of SA, we get

KSA = π∗(KP1×P1) ⊗ OSA (R)

= π∗(KP1×P1) ⊗ OP1×P1(g + 1, g + 1) = π∗(OP1×P1(g − 1, g − 1)),

which is ample.
The canonical differentials on SA can be written down as follows. Setting

ω := dy ∧ dx

z
,

we see that all the products

ωk,l := yk xlω,

for 0 ≤ k, l ≤ g − 1, give regular canonical differentials on the smooth locus of the
surface SA.

Now we need to deal with singular points of the surface SA. At the singular point
(zi , z j , 0) after replacing x and y by x − zi and y − z j respectively, the surface SA

will have the local equation z2 = xy. Hence by blowing up once, we obtain a smooth
surface S̃A. Moreover, in terms of local coordinates we have

z′ = z, x ′ = x

z
, y′ = y

z

on S̃A. The pullback of the form ω to the surface S̃A may be written as

ω′ = d(y′z′) ∧ d(x ′z′)
z′ = z′(dy′ ∧ dx ′) + x ′(dy′ ∧ dz′) + y′(dz′ ∧ dx ′),

which is regular on all of S̃A. Thus, all the forms ωk,l above pull back to regular forms
on S̃A.

Analysis of the Singular Locus at Infinity.We observed that the singular locus at infinity
of the projective surface SA is the union of the two lines L1 := (x = w = 0) and
L2 := (y = w = 0) intersecting at the point p = (0, 0, 1, 0). Now we should prove
that the pullback of the differential form ω := dx∧dy

z to the blow-up surface along the
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singular locus at infinity will be regular (similar to the singular points analysis in the
affine part).

To analyze the regularity of the differential form

ω := dx ∧ dy

z

over the singular locus at infinity first we have to represent the differential 2-form
ω in a neighborhood of infinity. We replace x, y, z by x

w
,

y
w

, z
w

to homogenize the
differential form ω. We obtain

ω = d( x
w

) ∧ d(
y
w

)
z
w

= wdx ∧ dy − ydx ∧ dw + xdy ∧ dw

zw2 .

Notice that checking the regularity property of a differential form and also the blow-up
procedure are both local properties and so it is enough to work in the affine neigh-
borhood U = A

3 = {(x, y, 1, w) | x, y, w ∈ C} of the intersection point p. We see
that the coordinate of the point p in this affine coordinate is (0, 0, 0). On the affine
coordinate U the above 2-form ω becomes

ω′ = wdx ∧ dy − ydx ∧ dw + xdy ∧ dw

w2 ,

and the equation of the surface SA in this affine neighborhood becomes

w2m−2 = (x − z1w) · · · (x − zmw)(x − z1w) · · · (x − zmw).

If we try to blow up either of the singular lines L1 and L2 we would see that it is not
a suitable way to analyze the blow-up surface. However we start by blowing up the
surface at intersection point p = (0, 0, 0) ∈ A

3 = {(x, y, w) | x, y, w ∈ C} of the two
lines L1 and L2. For doing this we compute in the w-chart by putting the coordinates
w = w1, x = x1w1 and y = y1w1. After applying this transformation (i.e. blow-up
procedure) to the equation of the surface SA we obtain the following equation for the
blow-up surface S̃0:

w2m−2
1 = (x1w1 − z1w1) · · · (x1w1 − zmw1)(x1w1 − z1w1) · · · (x1w1 − zmw1),

after simplification we obtain

1

w2
1

= (x1 − z1) · · · (x1 − zm)(y1 − z1) · · · (y1 − zm).

It can be easily seen that by applying the birational morphism (x1, y1, w1) 	→(
x1, y1,

1
w1

)
the above surface is isomorphic to the following surface:

w2
1 = (x1 − z1) · · · (x1 − zm)(y1 − z1) · · · (y1 − zm).
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We see that by blowing up the surface SA at the intersection point p we arrive at a
simpler surface with some mild isolated singularities (of type w2

1 = x1y1) which we
have already observed in the affine case. Now we should prove that the pullback of the
2-form ω′ is regular over the blow-up surface S̃0. By replacing the coordinates x, y, w

by x1, y1, w1 we have

dx = x1dw1 + w1dx1, dy = y1dw1 + w1dy1, dw = dw1

and therefore for the quantities dx ∧ dy, dx ∧ dw and dy ∧ dw in the numerator of
the formula for the 2-form ω′ we obtain

dx ∧ dy = x1w1dw1 ∧ dy1 + w1y1dx1 ∧ dw1 + w2
1dx1 ∧ dy1,

dx ∧ dw = w1dx1 ∧ dw1,

dy ∧ dw = w1dy1 ∧ dw1.

Plugging these quantities in the formula of the differential form ω′ we obtain

ω′ = x1w2
1dw1 ∧ dy1 + w2

1 y1dx1 ∧ dw1 + w3
1dx1 ∧ dy1 − y1w2

1dx1 ∧ dw1 + x1w2
1dy1 ∧ dw1

w2
1

= w3
1dx1 ∧ dy1

w2
1

= w1dx1 ∧ dy1

which is clearly regular on the blow-up surface S̃0. Thus, again all the forms ωk,l

(similar to the affine case) pull back to regular forms on S̃0 and therefore the analysis
of the singular locus of the distance surface at infinity is complete.

This shows that the Kodaira dimension of the distance surface SA is equal to two,
which completes the proof of Theorem 1.2. ��
It is plausible to pose the following question in Rn .

Question 3.4 Let n ≥ 3 be an integer, and let A = {A1, . . . , Am} be a finite subset of
points in R

n not all on a hyperplane. Define the distance hypersurface SA in P
n+1 by

x2n+1 =
m∏

i=1

(
(x1 − ai1)

2 + (x2 − ai2)
2 + · · · + (xn − ain)2

)
. (3.2)

Is it true that SA is of general type?

3.2 Proof of Theorem 1.3

Assume for the sake of a contradiction that A ⊂ R
2 is a dense rational distance subset

of R2, and assume without loss of generality (after possibly applying a similarity
transformation) that (0, 0), (1, 0) ∈ S. By Lemma 3.1, there exists a square free
integer k for which all the points in A are of the form (a, b

√
k), where a, b ∈ Q. Since

A is dense, we can choose six points B = {(a1, b1
√

k), . . . , (a6, b6
√

k)} in A which
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are not all on a line. Let SB be the distance surface associated to the subset B ⊂ A,
given by the equation

z2 =
6∏

i=1

{
(u − ai )

2 + (v − bi
√

k)2
}
. (3.3)

The surface SB is clearly defined over the number field K = Q(
√

k). By Theorem 1.2,
SB is a surface of general type. Assuming the Bombieri–Lang conjecture, the set of
K -rational points of SB is not Zariski dense. On the other hand, since A is a rational
distance set, any point in A gives a K -rational point of SB . By our assumption, A
is dense in R

2, which implies that it is Zariski dense in C
2, and consequently, A is

dense in P
1 × P

1. The surface SB is birationally a trivial double cover of P1 × P
1

outside the discriminant locus, so the Zariski dense subset A of P1 × P
1 generates a

Zariski dense subset of K -rational points in SB . This final contradiction proves the
theorem. ��

3.3 Proof of Corollary 1.4

As stated in the introduction, we need the following two theorems from [14]:

Theorem 3.5 ([14]) Every rational distance subset A of R2 has only finitely many
points in common with an algebraic curve defined over R, unless the curve has a line
or circle as a component.

Theorem 3.6 ([14]) If a rational distance set A has infinitely many points on a line
(respectively, circle), then all but four (respectively, three) points of A are on the line
(respectively, on the circle).

Proof of Corollary 1.4. By Theorem 1.3, the set A is not Zariski dense inR2. Hence A
should be contained in a union of finitelymany irreducible algebraic curvesC1, . . . , Cn

in the plane. According to Theorem 3.5, lines and circles are the only irreducible
algebraic curves that contain an infinite rational distance set, so one of the irreducible
curves Ci should be a line or a circle with infinitely many points of rational distance
set A. Theorem 3.6 then gives the result. ��
Remark 3.7 We believe that if the points in the subset B = {(α1, β1), . . . , (αn, βn)}
of A are chosen generically, then any rational curve in the corresponding distance
surface SB is contained in the subvariety D = {z = 0} ⊂ SB . To observe such a
property for the surface SB one way is to study the solutions of the functional equation
h2 = P( f )Q(g) for meromorphic functions f, g and h. By applying Nevanlinna
theory to the meromorphic functions f, g and h one can show that under a certain
generic condition on the roots of the polynomials P and Q the above functional
equation has no solution except for constant functions. This problem is interesting
enough to be dealt with in future research.

The above remark on rational curves on the surface SB leads us to pose the following
conjecture about the rational points on the surface z2 = P(x)Q(y).
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Conjecture 3.8 Assume P and Q are two generic polynomials of the same degree
d ≥ 6 defined over a number field K . Then there are only finitely many K -rational
points on the surface z2 = P(x)Q(y) with z �= 0.
The above conjecture might also be true for the surface of type zk = P(x, y) for a
generic polynomial P with sufficiently large degree.
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