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Abstract We provide a constructive proof of a face-to-face simplicial partition of a
d-dimensional space for arbitrary d by generalizing the idea of Sommerville, used to
create space-filling tetrahedra out of a triangular base, to any dimension. Each step
of construction that increases the dimension is determined up to a positive parameter,
d-dimensional simplicial partition is, therefore, parameterized by d parameters. We
show the shape optimal value of those parameters and reveal that the shape optimal
partition of d-dimensional space is constructed over that of (d−1)-dimensional space.

Keywords Simplicial tessellation · Simplicial mesh · Sommerville tetrahedron ·
Sommerville simplex · Mesh regularity · Shape optimization
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1 Introduction

Many tilings of a d-dimensional space have been introduced; see for example a thor-
ough summary of results on tilings by congruent simplices in [7]. It has been also
shown that any unit d-dimensional cube can be decomposed into d! simplices defined
by
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Sπ =
{
x ∈ R

d ; 0 ≤ xπ(1) ≤ · · · ≤ xπ(d) ≤ 1
}

, π ∈ �d , (1.1)

where�d is the set of all permutations of numbers 1, . . . , d.Moreover, these simplices
have the same volume, measd Sπ = (d!)−1. See Kuhn’s original paper [16] or the
papers of Brandts et al. [2,4].

But not all partitions of the space need to use congruent simplices. When a simpli-
cial partition of some general polyhedral domain satisfies the so-called face-to-face
property, it can be effectively used as a computational mesh for various computational
methods. A technique of such mesh generation can be found in [15].

A majority of today’s computations take place in two or three spatial dimensions,
while those in higher dimension still occur rather rarely. However, some elliptic prob-
lems are treated in higher dimension, see e.g. [22] for such example emanating from
stochastic analysis. In addition, for problems represented by evolutionary partial differ-
ential equations of the hyperbolic type in three spatial dimensions, one can understand
time as a fourth variable and use amesh in four-dimensional space, see e.g. the practical
examples [11,17].

In this paper we introduce a method for creating a d-parametric family of tilings.
Despite the set of parameters available, subsets of these tilings create only very rigid
meshes. However, some theoretical results suggest that for numerical methods to
be convergent, the numerical domain and target domain do not necessarily have to
coincide and that is where our meshes might find their use. Two different approaches
can be found in works of Feireisl et al. [8,9] and of Angot et al. [1,14].

Our result is strongly based on the (almost 100-year-old) construction developed
by Sommerville, which uses a regular triangle as a base for building a one-parametric
family of tetrahedral elements that tile the three-dimensional space, see [10,12] or
Sommerville’s original article [24]. Our tilings are definitely not performed by con-
gruent simplices and they do not cover d-dimensional cubes, thus they are clearly
distinct from those introduced in [7,16].

We start the construction fromone-dimensional simplices, i.e. segments, to increase
the dimension repeatedly and build a d-parametrical family of simplicial tessellations
of d-dimensional space. Its existence is stated in Theorem 2.1 and its proof covers
Sect. 2. Then, in Sect. 3 we determine the shape-optimizing vector of parameters with
the result summarized in Theorem 3.2. Section 4 introduces some concluding remarks
and open questions.

2 Construction of the Tessellation

We start with stating the existence result in the first of the central theorems of this
article.

Theorem 2.1 For any d-dimensional space there exists a d-parametric family of sim-
plicial tessellations Td(p), p = (p1, p2, . . . , pd), pi �= 0, i = 1, . . . , d. For p fixed,
all elements K ∈ Td(p) have the same d-dimensional measure equal to
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Fig. 1 Illustration of
Sommerville’s original
construction creating a
three-dimensional face-to-face
mesh above unilateral triangular
mesh. For the sake of clarity,
only elements K 0,0

2 and

L0,0,03 , L0,0,13 , L0,0,23 are shown

x1A1

B1

B4

B3

A0 = B0

x3

A2

B5

B2

x2

measd K =
d∏

i=1

|pi |. (2.1)

Moreover, every connected compact subset of the tessellation builds a face-to-face
mesh.

We introduce Sommerville’s original construction (see [10] or [24]), which cre-
ates a tessellation of an infinite triangular prism over an equilateral triangle (which
tessellates the two-dimensional space). In the construction, new vertices are created
above (and below) the three vertices of the triangle in the heights . . . , 0, 3p, 6p, . . . ;
. . . , p, 4p, 7p, . . . and . . . , 2p, 5p, . . . , respectively, with a positive parameter p.
Ordering these vertices with respect to their height (i.e. third component), tetrahedra
are defined as convex hulls of four consequent vertices. A sketch of this construction
is given by Fig. 1, with the notation given in upcoming Lemma 2.2, which is the key
ingredient of Theorem 2.1.

Lemma 2.2 (Induction step) Let d ≥ 2 and Td−1 = {Kk
d−1}k∈Zd−1 be a simplicial

tessellation of (d−1)-dimensional space such that the graph constructed from vertices
and edges of Td−1 is a d-vertex-colorable graph. Then

• there exists Td = {Ll
d}l∈Zd a simplicial tessellation of d-dimensional space with

additional shape parameter pd ,
• any connected compact subset of Td is a face-to-face mesh,
• Td is a (d + 1)-vertex-colorable graph.

Proof Take an element Kk
d−1 ∈ Td−1, Kk

d−1 = co {A0, A1, . . . Ad−1}. Thanks to the
d-vertex-colorability we can assume that the labels of vertices represent their color.
Let Ai = [Ai,1, Ai,2, . . . Ai,d−1] be the coordinates of Ai in (d − 1)-dimensional
space.

We define the following points in d-dimensional space:

Bj = [Ai( j),1, Ai( j),2, . . . , Ai( j),d−1, j pd ], j ∈ Z,
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Fig. 2 Illustration of creating a simplicial face-to-face mesh of two-dimensional space out of the one-
dimensional space, with the parameters p1 = 1, p2 = 1/2. The simplices K 2

1 and L2,12 are marked in bold
to clarify the notation defined by (2.2). For general values of the parameters there are two candidates for

diameter of Lk,z2 , equal to
√
p21 + p22 and 2|p2|. Notice also the vertex coloring, assigned through (2.4)

where i( j) ≡ j mod d and pd �= 0 is a parameter. Denote

Lk,z
d = co {Bz, Bz+1, . . . , Bz+d+1}, (2.2)

the d-simplex as a convex hull of d + 1 consequent vertices. Then {Lk,z
d }z∈Z is a

tessellation of an infinite d-dimensional prismwith the cross-section Kk
d−1, see Figs. 1

and 2 for illustration. As Td−1 = {Kk
d−1}k∈Zd−1 is a tessellation of (d−1)-dimensional

space, then the set Td := {Lk,z
d }(k,z)∈Zd−1×Zd forms a tessellation of d-dimensional

space.
The construction uses the colors from the previous tessellation. Thus, it is ensured

that from any vertex A j that is shared by more simplices in Td−1, we create new
vertices Vz of only one type, with the last coordinate of the form

Vz,d
1

pd
≡ cd−1(A j ) mod d = j. (2.3)

This implies the face-to-face property, i.e. the facet of a simplex in tessellation Td is
a facet of another simplex.

Finally, we define the new coloring with

cd(Bj ) ≡ j mod d + 1 for Bj = [Ai( j), j pd ]. (2.4)

Suchmapping is a vertex coloring, since edges of the graph are only edges in simplices
and vertices in any simplex Lk,z

d have a different last component, but the “height”
difference of two vertices connected by an edge does not exceed d|pd |. ��
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The part that proves the face-to-face property based on vertex coloring of a graph
was used already in [12]. Lemma 2.2 supplies the induction step, to complete the proof
of Theorem 2.1, we show the initial step.

Proof of Theorem 2.1 A one-dimensional Euclidean space (a line) can be divided into
intervals of the length |p1|. The color of a border point Az ∈ {zp1}z∈Z is given by

c1(Az) ≡ z mod 2.

The assumptions of Lemma 2.2 are satisfied, hence we have the initial step and the
induction step. For every use of Lemma 2.2 we use the coloring that was generated by
the lemma in its previous use, which finishes the proof. The equivolumetric property
is proved by Proposition 2.4. ��

Here a thoughtful reader might be confused why we stressed that for the next step
of construction the coloring produced by the previous use of the induction lemma is
used. Clearly, at every step the original coloring c j can be changed using any π j+1, a
permutation of numbers {0, . . . , j}. As a consequence, we may state the following.

Theorem 2.3 For any p = (p1, . . . , pd), pi �= 0, i = 1, . . . , d, and any vector
π = (π2, . . . , πd), where πi ∈ �i is a permutation of numbers {0, . . . , i − 1}, there
exists a tessellation Td(p,π) of a d-dimensional Euclidean space. For p fixed, all
elements K ∈ Td(p,π) have the same d-dimensional measure equal to

measd K =
d∏

i=1

|pi |. (2.5)

Moreover, every connected compact subset of the tessellation builds a face-to-face
mesh.

Clearly, for a vector of identical permutations we get the original tessellation from
Theorem 2.1, i.e. Td(p, (Id, . . . , Id)) = Td(p).

In general, the created simplices are not identical. However, the following propo-
sition shows that all elements of the tessellation Td(p) have the same volume, i.e. the
d-dimensional measure.

Proposition 2.4 (Equal volume of the elements) Let Td(p,π) be the tessellation con-
structed by the procedure introduced in the proof of Lemma 2.2, with parameter vector
p = (p1, p2, . . . , pd) and vector of permutations π = (π2, . . . , πd). Then for every
simplex L ∈ Td(p) we have

measd L =
d∏

i=1

|pi |. (2.6)

Proof In one-dimensional space, the situation is obvious; points zp1, z ∈ Z, divide a
line into segments of the same length |p1|. We prove the induction step. Let us assume
that there exists Md−1 > 0 such that measd−1K = Md−1 for any K ∈ Td−1.
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According to the construction, an element L ∈ Td is determined by the points

Bz = [A0, zpd ]; Bz+1 = [A1, (z + 1)pd ]; . . .

Bz+d−1 = [Ad−1, (z + d − 1)pd ]; Bz+d = [A0, (z + d)pd ], (2.7)

where co {A0, A1, . . . , Ad−1}) = K ∈ Td−1.
The d-dimensional measure of a simplex is determined by the determinant of a

matrix composed of the vectors that build the simplex, more precisely by the (d!)−1

multiple of its absolute value. We use (2.7) and performing operations that do not
affect the value of the determinant we obtain

measd L = 1

d!

∣∣∣∣∣∣∣∣∣∣∣

det

⎛
⎜⎜⎜⎜⎜⎝

A1 − A0 pd
A2 − A0 2pd

...
...

Ad−1 − A0 (d − 1)pd
0 dpd

⎞
⎟⎟⎟⎟⎟⎠

∣∣∣∣∣∣∣∣∣∣∣

= d|pd |
d!

∣∣∣∣∣∣∣∣∣
det

⎛
⎜⎜⎜⎝

A1 − A0
A2 − A0

...

Ad−1 − A0

⎞
⎟⎟⎟⎠

∣∣∣∣∣∣∣∣∣

= |pd | · measd−1K . (2.8)

The proof is concluded by repeated use of (2.8) up to d = 1, which yields (2.6). ��
Remark 2.5 In what follows, we consider only positive values of pi , shortly we write
p ∈ R

d+, where Rd+ = {v = (v1, . . . , vd) ∈ R
d ; vi ≥ 0, for all i ∈ {1, . . . , d}}. It is

rather a technical constraint, in fact one could allow pi ∈ R \ {0}. However, negative
parameters affect only the orientation of the elements, not their shape characteristics.
Therefore, for the regularity optimization we can restrict ourselves to p ∈ R

d+ which
also simplifies the process. One should bear in mind that if p� = (p�

1, . . . , p
�
d) is a

vector of shape optimal parameters, then also (δ1 p�
1, . . . , δd p

�
d) is shape optimal, for

δ j = ±1.

3 Regularity Optimization

We have constructed a d-parametric family of tessellations in d-dimensional space,
where the values of parameters pi , i = 1, . . . , d, influence their shape. We look for
a vector of parameters p� = (p�

1, . . . , p
�
d) for which the simplicial elements are shape

optimal. There are several regularity ratios with respect to which we might optimize.
Some of them have been shown to be equivalent in the sense of the strong regularity
even in general dimension, see [3], but not in the sense of their maximization.

For convenient calculation we use the following ratio:

ϑ(K ) = measd K

(diam K )d
, d ≥ 2, (3.1)

where measd is the d-dimensional Lebesgue measure and diam K is the maximal
distance between two points in K . The ratio ϑ(K ) can be interpreted as a similarity
of K to an equilateral simplex. In other words, we find p� and K �, which realize
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sup
p∈Rd+

min
K∈Td (p)

ϑ(K ). (3.2)

As the simplices in Td(p) are not identical, the optimization focuses on the worst
simplex only. Since we proved by Proposition 2.4 that all elements in Td(p) have the
same d-measure, this worst case in the sense of (3.1) occurs when the diameter is
maximal.

3.1 Difficulties with the Optimization

One can think through that Sommerville’s construction enables us to rewrite (3.5)
using (2.6) as

sup
p∈Rd+

min
w∈W̃d

∏d
i=1 pi(∑d

i=1 w2
i p

2
i

)d/2 , (3.3)

where W̃d ⊆ Ŵd , which is defined by

Ŵd :=
⎧
⎨
⎩w ∈ (N ∪ {0})d

∣∣∣∣ ∃ k ∈ {1, . . . , d}

:
⎧
⎨
⎩

wk = k,
wi = 0, for 1 ≤ i < k,
w j ∈ {1, . . . , j − 1}, for k < j ≤ d

⎫
⎬
⎭ . (3.4)

For example W̃3 = Ŵ3 = {(0, 0, 3), (0, 2, 1), (0, 2, 2), (1, 1, 2), (1, 1, 1)} and W̃2 =
Ŵ2 = {(0, 2), (1, 1)}. However, in general W̃d �= Ŵd as the following lemma shows.

Lemma 3.1 For d = 4, the vector (1, 1, 2, 3) ∈ Ŵ4 \ W̃4. In other words, there is no
element K ∈ T4(p) such that ±p1e1 ± p2e2 ± 2p3e3 ± 3p4e4 in any combination of
the signs is an edge of K .

Proof Let p′ = (p1, p2, p3) and p = (p′, p4). Clearly there exists Lz1,z2,z3
3 ∈ T3(p′)

such that
−→
UV = ±p1e1 ± p2e2 ±2p3e3 (in some combination of the signs) is an edge

of Lz1,z2,z3
3 . (One of such elements is L0,0,0

3 , see Fig. 1, for which U = B3, V = B1.)
Then necessarily verticesU, V have the height difference equal to 2p3, i.e. c3(U )−

c3(V ) ≡ 2 mod 4 and vertices created above U and V that belong to any 4-simplex
K z1,z2,z3,z4
4 ∈ T4(p′, p4) have the difference vector equal to ±p1e1 ± p2e2 ±2p3e3 ±

2p4e4. As the construction in each step affects only the last component of the vector
w, we conclude that w /∈ W̃4. ��

The fact that W̃d �= Ŵd and problematic determination of their difference makes
the optimization severely difficult. However, as the proof of the above lemma suggests,
the difficulties are caused by inheriting the coloring from the preceding step of the
construction. Removing this constraint by allowing recoloring before every step of the
construction (as in Theorem 2.3), we find out that
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sup
p∈Rd+

min
π∈�2×···×�d
K∈Td (p,π)

ϑ(K ) (3.5)

is equivalent to

sup
p∈Rd+

min
w∈Ŵd

∏d
i=1 pi(∑d

i=1 w2
i p

2
i

)d/2 , (3.6)

and also to

sup
p∈Rd+

min
w∈Wd

∏d
i=1 pi(∑d

i=1 w2
i p

2
i

)d/2 , (3.7)

where Wd is defined by

Wd :=
⎧⎨
⎩w ∈ (N ∪ {0})d

∣∣∣∣ ∃ k ∈ {1, . . . , d} :
⎧⎨
⎩

wk = k,
wi = 0, for 1 ≤ i < k,
w j = j − 1, for k < j ≤ d

⎫⎬
⎭ .

(3.8)
The equivalence of the optimization problems (3.6) and (3.7) is based on the fact

that (w1, . . . , wd) �→ ∑d
i=1 w2

i p
2
i is increasing in each component and that elements

in Wd dominate those in Ŵd componentwise.
For example, for d = 3 we have W3 = {{1, 1, 2}, {0, 2, 2}, {0, 0, 3}}.
Since |Wd | = d, we can also label its elements as w j = (w j,1, w j,2, . . . , w j,d),

where j is its first nonzero coordinate. We also define

Dj (p) =
√√√√ d∑

i=1

w2
j,i p

2
i and D(p) = max

j∈{1,...,d} Dj (p), (3.9)

so that (3.7) can be rewritten as

sup
p∈Rd+

min
k∈{1,...,d}

∏d
i=1 pi

Dk(p)d
. (3.10)

For illustration, we write out the “worst diameter candidates” Dj explicitly,

D1(p)2 = p21 + p22 + 4p23 + · · · +(d − 1)2 p2d ,
D2(p)2 = 4p22 + 4p23 + · · · +(d − 1)2 p2d ,
D3(p)2 = 9p23 + · · · +(d − 1)2 p2d ,

...

Dj−1(p)2 = ( j − 1)2 p2j−1 + ( j − 1)2 p2j + j2 p2j+1 + · · · +(d − 1)2 p2d ,
Dj (p)2 = j2 p2j + j2 p2j+1 + · · · +(d − 1)2 p2d ,

...

Dd(p)2 = d2 p2d .

(3.11)
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3.2 Optimal Parameters

Now we can state the central theorem of this chapter.

Theorem 3.2 (Optimal parameters) Let d ≥ 2 and let Td(p,π) be a tessellation
constructed through the procedure in the proof of Theorem 2.3. Then there exists a
unique one-dimensional vector half-space

P� =
{

p�
κ ∈ R

d+
∣∣∣∣p�

κ = κp�, κ > 0, p� = (p�
1, . . . , p

�
d),

p�
1 = 1, p�

2 = 1√
3
, p�

j = 1

j − 1

√
2

3
, j ∈ {3, . . . , d}

}
,

(3.12)

of optimal parameters that realize

sup
p∈Rd+

min
π∈�2×···×�d
K∈Td (p,π)

measd K

(diam K )d
, (3.13)

for some π ∈ �2 × · · · × �d .

Remark 3.3 Notice that we do not care much about ideal vector of permutations π

nor the element K . The above result could also be interpreted as a lower bound on
regularity ratio of elements K (p�, Id) = K (p�) for (in some sense) shape optimal
value p�.

The rest of this section is devoted to the proof of Theorem 3.2, which consists of
three main steps. First, we prove the existence of the maximizer p�, then we show
the particular form of the largest possible diameter that corresponds to the “most
deformed” simplex in Td(p�,π�) and conclude the proof with determining the values
of the components of p� through constrained optimization.

We would like to recall that we have three equivalent formulations of the optimiza-
tion problem; (3.7), (3.10) and (3.13).

Lemma 3.4 (Existence of the maximizer) Let d ≥ 2. Then there exists a one-
dimensional vector half-space

P� = {
p�

κ ∈ R
d+ | p�

κ = κp�, κ > 0
}
, (3.14)

of optimal parameters that realize

sup
p∈Rd+

min
w∈Wd

∏d
i=2 pi(∑d

i=1 w2
i p

2
i

)d/2 . (3.15)

Proof As for the above discussion, (3.13) is equivalent to (3.15). We observe that
the ratio in (3.15) is 0-homogeneous, thus without loss of generality we fix p1 = 1.
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We continue with denoting the parametric vector by p ∈ R
d+, keeping in mind that

due to its first component being fixed, p may be considered as (p2, . . . , pd) ∈ R
d−1+ .

Defining

F(p) := min
w∈Wd

∏d
i=2 pi(∑d

i=1 w2
i p

2
i

)d/2 ,

we can rewrite (3.15) as supp∈Rd−1+
and for F(p) we observe that

lim
p j→0+ F(p) = 0, lim

p j→∞ F(p) = 0,

for any j ∈ {2, . . . , d}. Moreover, F ∈ C(Rd−1+ ) and F > 0. Thus, we infer that
for any (sufficiently small) ε the set 	ε := {F(p) ≥ ε} is a non-empty, bounded and
closed subset of Rd−1+ and due to the continuity of F , it must attain its maximum in
	ε, which necessarily coincides with the maximum of F in Rd−1+ . ��

In the next step we show which element of Wd in (3.7) or equivalently which Dk

in (3.10) realizes the maximal diameter.

Lemma 3.5 Let p� = (1, p�
2, . . . , p

�
d) be the maximizer of (3.10). Then it holds that

D(p�) := max
k∈{1,...,d} Dk(p�) = D1(p�).

Proof We proceed via contradiction. Let D1(p�) < Dk(p�) = D(p�) for some k ∈
{2, . . . , d}. Then we define p′ = (p′

1, . . . , p
′
d) with

p′
1 = 1, p′

j = p�
j · 1

1 + δ
, j ∈ {2, . . . , d}, (3.16)

where δ > 0 is chosen small enough to ensure D1(p′) < Dk(p′) = D(p′). Then it
holds that

D(p′) = Dk(p′) = Dk(p�)
1

1 + δ
= D(p�)

1

1 + δ
, (3.17)

as w j = 0 for j < k, recall (3.9), the definition of Dk . Substitution from (3.16) and
(3.17) into (3.7) yields

∏d
i=1 p

′
i

Dk(p′)d
=

∏d
i=1 p

�
i

Dk(p�)d
· (1 + δ)d

(1 + δ)d−1 = (1 + δ)

∏d
i=1 p

�
i

Dk(p�)d
,

which contradicts the assumption of the maximality of Dk(p�). ��
By virtue of Lemma 3.5, the maximization problem (3.10), which is equivalent to

(3.13), reduces to the optimization of a C1 function with inequality constraints,

max

{ ∏d
i=1 pi

D1(p)d

∣∣∣∣∣ p ∈ R
d+, p1 = 1, D1(p)2 ≥ Dj (p)2, for all j ∈ {2, . . . , d}

}
.

(3.18)
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To prove Theorem 3.2 it suffices to show that problem (3.18) has a unique solu-
tion, which is p� in (3.12). By virtue of Lemma 3.5 the optimization problem (3.18)
is equivalent to (3.7) and further to the original problem (3.13), hence Lemma 3.4
guarantees it has a solution.

The function

F1(p) = F1(p2, . . . , pd) =
∏d

i=2 pi
D1(1, p2, . . . , pd)d

(3.19)

is continuously differentiable in R
d−1+ , hence its constrained maximizer p� satisfies

the necessary Karush–Kuhn–Tucker conditions. They read as follows:

∂

∂p j
F1(p) =

d∑
i=2

μi
∂

∂p j

(
Di (p)2 − D1(p)2

)
, (3.20)

μ j
(
Dj (p)2 − D1(p)2

) = 0, (3.21)

μ j ≥ 0, Dj (p) ≤ D1(p), (3.22)

for j = {2, . . . , d}.
Let us focus on the right-hand side of (3.20). Recalling (3.11) with p1 = 1, one

can express

∂

∂p j

(
Di (p)2 − D1(p)2

) =

⎧⎪⎨
⎪⎩

−2( j − 1)2 p j for j < i,

2(2 j − 1)p j for j = i,

0 for j > i.

(3.23)

Then, by virtue of (3.19) and (3.8) with (3.9) and just derived (3.23), we can rewrite
(3.20) as

∏d
i=2 pi

D1(p)2d

(
1

p j
D1(p)d − d( j − 1)2D1(p)d−2 p j

)

− 2μ j (2 j − 1)p j + 2( j − 1)2 p j

d∑
i= j+1

μi = 0, j ∈ {2, . . . , d}.
(3.24)

It is not obvious how to get a solution of (3.20–3.22) or its equivalent (3.21, 3.22,
3.24), nor its uniqueness. At the end, we show that μ j = 0 for j ∈ {3, . . . , d} and
μ2 > 0, which is then enough to determine uniquely the solution. To get this, we
proceed in three steps. We show that

• there exists k ∈ {2, . . . , d} such that μk > 0,
• this k is unique,
• k = 2.

We introduce three lemmas, each corresponding to one of the items at thementioned
list.
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Lemma 3.6 (Existence of an active constraint) Let d ≥ 2 and p� be the maximizer of
(3.18). Then p� is a solution of (3.20–3.22) with (μ2, . . . , μd) �= 0, i.e. there exists
k ∈ {2, . . . , d} such that μk > 0.

Proof We proceed via contradiction. Assume that μ j = 0 for all j ∈ {2, . . . , d}. In
such case (3.24), which is a consequence of (3.20), implies

p�
j = D1(p�)

( j − 1)
√
d

, j ∈ {2, . . . , d},

which substituted into D2(p)2 yields

D2(p�)2 = 4

d
D1(p�)2 +

d∑
i=3

D1(p�)2

d
= d + 2

d
D1(p�)2 > D1(p�)2,

which contradicts (3.22). Thus, there is some k ∈ {2, . . . , d} for which μk > 0. ��
For d = 2 Lemma 3.6 implies directly that k = 2. For d ≥ 3 we supply the

following lemma.

Lemma 3.7 (One active constraint) Let d ≥ 3 and p� be a maximizer in (3.18), which
satisfies (3.20–3.22) with μk > 0 for some k ∈ {3, . . . , d}. Then μ j = 0 for all
j ∈ {2, . . . , k − 1, k + 1, . . . , d} and p� = (1, p�

2, . . . , p
�
d) fulfills

p�
j =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Dk(p�)

( j − 1)
√
dk

√
2k − 1

k − 1
for j ∈ {2, . . . , k − 1},

Dk(p�)√
dk

for j = k,

Dk(p�)

( j − 1)
√
d

for j ∈ {k + 1, . . . , d}.

(3.25)

Proof Let us take the largest k ∈ {3, . . . , d} for which μk > 0. Then for j ∈ {k +
1, . . . , d} we have μ j = 0. This enables us to deduce directly from (3.24) that

p�
j = D1(p�)

( j − 1)
√
d

, j ∈ {k + 1, . . . , d}. (3.26)

As D1 = Dk (this follows from the assumption μk > 0 and (3.21)) we can use
(3.26) for computing p�

k from definition of Dk (3.9). The computation

Dk(p�)2 = k2(p�
k)

2 +
d∑

j=k+1

( j − 1)2(p�
j )
2 = k2(p�

k)
2 + d − k

d
Dk(p�)2 (3.27)
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yields

p�
k = Dk(p�)√

dk
. (3.28)

Notice that (3.28) holds even if k = d and the summation in (3.27) is void.
Since D(p�) = D1(p�) = Dk(p�), then the constrained maximization problem

(3.18) is equivalent to a constrained optimization, where Dk is taken as the diameter,
i.e.

max

{ ∏d
i=1 pi

Dk(p)d

∣∣∣∣∣ p ∈ R
d+, p1 = 1, Dk(p)2 ≥ Dj (p)2, for all j ∈ {1, . . . , d}

}
.

(3.29)
Arguing as before, themaximizer in (3.29) exists and fulfills the following necessary

Karush–Kuhn–Tucker conditions:

∂

∂p j

∏d
i=2 pi

Dk(p)d
=

d∑
i=1
i �=k

νi
∂

∂p j

(
Di (p)2 − Dk(p)2

)
(3.30)

for j ∈ {2, . . . , d} and

νi
(
Di (p)2 − Dk(p)2

) = 0, (3.31)

νi ≥ 0, Di (p) ≤ Dk(p), (3.32)

for i ∈ {1, . . . , k−1, k+1, . . . , d} and, moreover, we know that D1(p) = Dk(p). As
we already settled j ∈ {k + 1, . . . , d}, we need to focus on j ∈ {2, . . . , k − 1} only,
hence we consider only those.

We know that

∂

∂p j

∏d
i=2 pi

Dk(p)d
=

∏d
i=2 pi

Dk(p)d

1

p j
, j ∈ {2, . . . , k − 1}, (3.33)

and using (3.11) we compute the right-hand side of (3.30) for j ∈ {2, . . . , k − 1} as

∂

∂p j

(
Di (p)2 − Dk(p)2

) =

⎧⎪⎨
⎪⎩

2( j − 1)2 p j for i < j,

2 j2 p j for i = j,

0 for i > j.

(3.34)

Collecting (3.33–3.34) together with νi = 0 for i > k (as Di (p) < Dk(p) by
assumption), we can rewrite (3.30) in the form

∏d
i=2 pi

Dk(p)d

1

p j
= 2ν j j

2 p j + 2( j − 1)2 p j

j−1∑
i=1

νi , j ∈ {2, . . . , k − 1}. (3.35)

Take any j ∈ {2, . . . , k − 1}, we have either ν j = 0 or ν j > 0.
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First assume ν j = 0. Then, from (3.35) we deduce

p2j = p2j,u =
∏d

i=2 pi
2Dk(p)d

1

( j − 1)2
∑ j−1

i=1 νi
. (3.36)

If ν j > 0, then

p2j = p2j,c =
∏d

i=2 pi
2Dk(p)d

1

j2ν j + ( j − 1)2
∑ j−1

i=1 νi
.

We observe that p j,c < p j,u and p� is supposed to maximize
∏d

i=2 pi · (Dk(p))−d ,
where Dk(p) is independent of p j for j ∈ {1, . . . , k −1}. Thus p�

j needs to maximize

only
∏d

i=2 pi , i.e. only its value. Since p j,u > p j,c, we choose its unconstrained
version p�

j = p j,u from (3.36), i.e. ν j = 0 for any j ∈ {2, . . . , k − 1}. This enables
to rewrite (3.36) into

p2j = p2j,u =
∏d

i=2 pi
2ν1Dk(p)d

1

( j − 1)2
. (3.37)

Computing (3.30) also for j = k, one gets

1

Dk(p)2d

(
d∏

i=2

pi Dk(p)d
1

pk
− d

d∏
i=2

pi Dk(p)d−2k2 pk

)
= ν12(−2k + 1)pk,

(3.38)
and after substituting p�

k from (3.28) into (3.38) we can express ν1 as

ν1 = dk
∏d

i=2 pi
2Dk(p)d+2

k − 1

2k − 1
. (3.39)

Collecting (3.26), (3.28) and substituting from (3.39) into (3.37) we get (3.25),
which concludes the proof. ��

Lemmas 3.6 and 3.7 give rise to the following corollary.

Corollary 3.8 Let d ≥ 2 and p� be a maximizer in (3.18). Then there exists a unique
k ∈ {2, . . . , d} such that Dk(p�) = D1(p�) = D(p�) and (3.25) holds.

Proof Lemma 3.6 together with (3.21) gives existence of k ∈ {2, . . . , d} such that
Dk(p�) = D1(p�) = D(p�). For d = 2 we get directly k = 2. For k ≥ 3, Lemma 3.7
gives uniqueness of such k and also (3.25). Using the procedure from the beginning
of the proof of Lemma 3.7, one recovers (3.25) also for d = 2. ��

Finally, we show that k from the previous lemma is equal to 2, which will enable
us to determine also the values of p�

i .
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Lemma 3.9 Let d ≥ 2 and p� be a maximizer in (3.18). Then it holds that

D(p�) = D1(p�) = D2(p�), (3.40)

and

p�
2 =

√
1

3
, p�

j =
√
2

3

1

j − 1
, j ∈ {3, . . . , d}. (3.41)

Proof Let d = 2. Then Lemma 3.6 implies (3.40), which can be written explicitly as
1 + (p�

2)
2 = 4(p�

2)
2. Thus, we infer p�

2 = 3−1/2.
Let further d ≥ 3. Then from Corollary 3.8 we get a unique existence of some

k ∈ {2, . . . , d} for which D(p�) = D1(p�) = Dk(p�) and the relation (3.25) for p�.
We prove k = 2 via contradiction. Let us assume that k ≥ 3. Then, D(p�) =

D1(p�) = Dk(p�) > D2(p�). Writing out D2(p�) explicitly using (3.25), we get

D2 > D2
2 = D2

d

(
4(2k − 1)

k(k − 1)
+ (k − 2)(2k − 1)

k(k − 1)
+ (k − 1)2

k
+(d−k)

)
, (3.42)

wherewe skipped the argumentp� for the sakeof brevity.Direct computation simplifies
inequality (3.42) into

6k2 + 6k − 1

k(k − 1)
< 0,

which is not true for any k ∈ N, a contradiction. Thus, k = 2, and from (3.25) we get

p�
2 = D(p�)√

2d
, p�

j = D(p�)

( j − 1)
√
d

, j ∈ {3, . . . , d}, (3.43)

which we substitute into D1(p)2 to get

D(p�)2 = D1(p�)2 = 1 + D(p�)2

2d
+ (d − 2)

D(p�)2

d
. (3.44)

From (3.44) we deduce D(p�)2 = 2
3d which, substituted into (3.43) yields (3.41). ��

Proof of Theorem 3.2 The optimization problem (3.13) can be equivalently rewritten
to (3.7) and also to (3.10). Lemma 3.4 yields existence of the half-space of maximizers
to (3.7). Then, factoring the problem by fixing p1 = 1, Lemma 3.5 reduces (3.10) to
a constraint optimization problem (3.18). This problem is shown to have exactly one
active constraint (Lemmas 3.6, 3.7 and Corollary 3.8). Further, the active constraint
is identified and the maximizer of (3.18) is determined in Lemma 3.9. Equivalence of
the optimization problems concludes the proof. ��

4 Concluding Remarks

We conclude with four remarks on various topics.
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4.1 Optimization at Each Step

Notice that the optimal values of parameters (3.41) are independent of the dimension
d. This can be interpreted that the most regular partition of d-dimensional space is
constructed above the most regular partition of (d−1)-dimensional space. As a conse-
quence, the shape optimizationwe performed is equivalent to the shape optimization at
every dimension, which gives a sequence of one-dimensional optimization problems
that is technically much less demanding.

4.2 Integer Sequence for OEIS

One can easily see that for suitable κ it is possible to express the squares of the com-
ponents of p�

κ from (3.12) as a fraction with unit numerator and integer denominator.
Largest such κ , yielding the smallest possible integers in those fractions, is κ = 2−1/2.
For this value, the denominators give the following values: 2, 6, 12, 27, 48, 75, 108,
147, 192, 243, 300, . . . , having the formula for j-th item a j = 3( j − 1)2 for j ≥ 3.
This sequence has been upon the suggestion of the author indexed in Sloane’s database
of integer sequences [23] as sequence A289443.

4.3 Shape Optimality of the Partition

It is not obvious whether there exists any better simplicial tiling that cannot be con-
structed by our method. However, in 2D there is no triangle with better ratio ϑ than the
equilateral one. Similarly, in 3D, our method gives the standard Sommerville tetrahe-
dron (see [13, Fig. 2]), which as for Naylor [21] is the best one among space-filling
tetrahedra when considering the regularity ratio ϑ .

Moreover, we have computed that the regularity ratio of theworst element in Td(p�)

is greater or equal to that of Td(p�,π�), which is, see (3.12),

∏d
i=1 p

�
i

D1(p�)d
=

√
3
2

( 2
3

)d 1
(d−1)!( 2d

3

)d/2 =
√
3

2
d · 1

dd/2d! , (4.1)

while for Kuhn’s partition (1.1) we have

ϑ(Sπ ) = (
dd/2d!)−1

. (4.2)

From this we can conclude that the elements of Td(p�) are at least
√
3
2 d times more

regular than those of Kuhn.

4.4 Non-Euclidean Geometries

We devote the last remark to the fact that the construction is independent of the
underlying geometry and thus might be used also for computations in non-Euclidean
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spaces. However, we cannot apply the optimization result directly, as it uses the
equivolumetricity property. This is based on translation invariance which does not
hold in non-Euclidean geometries. More on tessellations of hyperbolic spaces can be
found in works of Coxeter [5] or [6], andMargenstern [18–20]. AsMargenstern points
out, these works might find a use in computational problems of theory of relativity or
cosmological research, but such results had not been published before 2003 and to the
best author’s knowledge not even since then.
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