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Abstract We consider the problem of optimality in manifold reconstruction. A ran-
dom sample Xn = {X1, . . . , Xn} ⊂ R

D composed of points close to a d-dimensional
submanifold M , with or without outliers drawn in the ambient space, is observed.
Based on the tangential Delaunay complex (Discrete Comput Geom 51(1):221–267
2014), we construct an estimator ̂M that is ambient isotopic and Hausdorff-close to M
with high probability. The estimator ̂M is built from existing algorithms. In a model
with additive noise of small amplitude, we show that this estimator is asymptotically
minimax optimal for the Hausdorff distance over a class of submanifolds satisfying a
reach constraint. Therefore, even with no a priori information on the tangent spaces
of M , our estimator based on Tangential Delaunay Complexes is optimal. This shows
that the optimal rate of convergence can be achieved through existing algorithms. A
similar result is also derived in a model with outliers. A geometric interpolation result
is derived, showing that the Tangential Delaunay Complex is stable with respect to
noise and perturbations of the tangent spaces. In the process, a decluttering procedure
and a tangent space estimator both based on local principal component analysis (PCA)
are studied.
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1 Introduction

Throughout many fields of applied science, data in R
D can naturally be modeled

as lying on a d-dimensional submanifold M . As M may carry a lot of information
about the studied phenomenon, it is then natural to consider the problem of either
approximating M geometrically, recovering it topologically, or both from a point
sample Xn = {X1, . . . , Xn}. It is of particular interest in high codimension (d � D)
where it can be used as a preliminary processing of the data for reducing its dimension,
and then avoiding the curse of dimensionality. This problem is usually referred to as
manifold reconstruction in the computational geometry community, and rather called
set/support estimation or manifold learning in the statistics literature.

The computational geometry community has now been active on manifold recon-
struction for many years, mainly in deterministic frameworks. In dimension 3, [18]
provides a survey of the state of the art. In higher dimension, the employed meth-
ods rely on variants of the ambient Delaunay triangulation [4,13]. The geometric and
topological guarantees are derived under the assumption that the point cloud—fixed
and nonrandom—densely samples M at scale ε, with ε small enough or going to 0.

In the statistics literature, most of the attention has been paid to approximation
guarantees, rather than topological ones. The approximation bounds are given in terms
of the sample size n, that is assumed to be large enough or going to infinity. To
derive these bounds, a broad variety of assumptions on M have been considered. For
instance, if M is a bounded convex set and Xn does not contain outliers, a natural
idea is to consider the convex hull ̂M = Conv(Xn) to be the estimator. Conv(Xn)

provides optimal rates of approximation for several loss functions [20,29]. These rates
depend crudely on the regularity of the boundary of the convex set M . In addition,
Conv(Xn) clearly is ambient isotopic to M so that it has both good geometric and
topological properties. Generalizations of the notion of convexity based on rolling
ball-type assumptions such as r -convexity and reach bounds [15,24] yield rich classes
of sets with good geometric properties. In particular, the reach, as introduced by
Federer [22], appears to be a key regularity and scale parameter [11,24,28].

This paper mainly follows up the two articles [4,24], both dealing with the case of
a d-dimensional submanifold M ⊂ R

D with a reach regularity condition and where
the dimension d is known.

Onone hand, [4] focuses on a deterministic analysis and proposes a provably faithful
reconstruction. The authors introduce a weighted Delaunay triangulation restricted
to tangent spaces, the so-called Tangential Delaunay Complex. This paper gives a
reconstruction up to ambient isotopy with approximation bounds for the Hausdorff
distance alongwith computational complexity bounds. Thiswork provides a simplicial
complex based on the input point cloud and tangent spaces. However, it lacks stability
up to now, in the sense that the assumptions used in the proofs of [4] do not resist
ambient perturbations. Indeed, it heavily relies on the knowledge of the tangent spaces
at each point and on the absence of noise.
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On the other hand, [24] takes a statistical approach in a model possibly corrupted
by additive noise, or containing outlier points. The authors derive an estimator that
is proved to be minimax optimal for the Hausdorff distance dH . Roughly speaking,
minimax optimality of the proposed estimator means that it performs best in the worst
possible case up to numerical constants, when the sample size n is large enough.
Although theoretically optimal, the proposed estimator appears to be intractable in
practice. At last, [28] proposes a manifold estimator based on local linear patches that
is tractable but fails to achieve the optimal rates.

1.1 Contribution

Our main contributions (Theorems 2.7, 2.8 and 2.9) make a two-way link between the
approaches of [4] and [24].

From a geometric perspective, Theorem 2.7 shows that the Tangential Delaunay
Complex of [4] can be combined with local PCA to provide a manifold estimator that
is optimal in the sense of [24]. This remains possible even if data is corrupted with
additive noise of small amplitude. Also, Theorems 2.8 and 2.9 show that, if outlier
points are present (clutter noise), the Tangential Delaunay Complex of [4] still yields
the optimal rates of [24], at the price of an additional decluttering procedure.

From a statistical point of view, our results show that the optimal rates described
in [24] can be achieved by a tractable estimator ̂M that (1) is a simplicial complex of
which vertices are the data points, and (2) such that ̂M is ambient isotopic to M with
high probability.

In the process, a stability result for the Tangential Delaunay Complex (Theorem
4.4) is proved. Let us point out that this stability is derived using an interpolation result
(Theorem 4.1) which is interesting in its own right. Theorem 4.1 states that if a point
cloudP lies close to a submanifold M , and if estimated tangent spaces at each sample
point are given, then there is a submanifold M ′ (ambient isotopic, and close to M for
the Hausdorff distance) that interpolates P , with TpM ′ agreeing with the estimated
tangent spaces at each point p ∈ P . Moreover, the construction can be done so that
the reach of M ′ is bounded in terms of the reach of M , provided that P is sparse,
points ofP lie close to M , and error on the estimated tangent spaces is small. Hence,
Theorem 4.1 essentially allows to consider a noisy sample with estimated tangent
spaces as an exact sample with exact tangent spaces on a proxy submanifold. This
approach can provide stability for any algorithm that takes point cloud and tangent
spaces as input, such as the so-called cocone complex [13].

1.2 Outline

This paper deals with the case where a sample Xn = {X1, . . . , Xn} ⊂ R
D of

size n is randomly drawn on/around M . First, the statistical framework is described
(Sect. 2.1) together with minimax optimality (Sect. 2.2). Then, the main results are
stated (Sect. 2.3).

Two models are studied, one where Xn is corrupted with additive noise, and one
whereXn contains outliers.We build a simplicial complex ̂MTDC(Xn) ambient isotopic
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toM andwederive the rate of approximation for theHausdorff distancedH (M, ̂MTDC),
with bounds holding uniformly over a class of submanifolds satisfying a reach regu-
larity condition. The derived rate of convergence is minimax optimal if the amplitude
σ of the additive noise is small. With outliers, similar estimators ̂MTDCδ and ̂MTDC+
are built. ̂MTDC, ̂MTDCδ and ̂MTDC+ are based on the Tangential Delaunay Complex
(Sect. 3), that is first proved to be stable (Sect. 4) via an interpolation result. A method
to estimate tangent spaces and to remove outliers based on local Principal Component
Analysis (PCA) is proposed (Sect. 5). We conclude with general remarks and possible
extensions (Sect. 6). For ease of exposition, all the proofs are placed in the Appendix.

1.3 Notation

In what follows, we consider a compact d-dimensional submanifold without boundary
M ⊂ R

D to be reconstructed. For all p ∈ M , TpM designates the tangent space ofM at
p. Tangent spaceswill either be considered vectorial or affine depending on the context.
The standard inner product in R

D is denoted by 〈·, ·〉 and the Euclidean distance ‖·‖.
We let B(p, r) denote the closed Euclidean ball of radius r > 0 centered at p. We
let ∧ and ∨ denote respectively the minimum and the maximum of real numbers.
As introduced in [22], the reach of M , denoted by reach(M) is the maximal offset
radius for which the projection πM onto M is well defined. Denoting by d(·, M) the
distance to M , the medial axis of M med(M) = {x ∈ R

D | ∃a �= b ∈ M, ‖x − a‖ =
‖x − b‖ = d(x, M)} is the set of points which have at least two nearest neighbors on
M . Then, reach(M) = inf p∈M d(p,med(M)). We simply write π for πM when there
is no possibility of confusion. For any smooth function� : RD → R

D , we let da� and
d2a� denote the first and second order differentials of� at a ∈ R

D . For a linear map A,
At designates its transpose. Let ‖A‖op = supx

‖Ax‖
‖x‖ and ‖A‖F = √trace(At A) denote

respectively the operator norm induced by theEuclidean norm and the Frobenius norm.
The distance between two linear subspaces U, V ⊂ R

D of the same dimension is
measured by the sine � (U, V ) = maxu∈U maxv′∈V⊥

〈u,v′〉
‖u‖‖v′‖ = ‖πU − πV ‖op of their

largest principal angle. The Hausdorff distance between two compact subsets K , K ′
of RD is denoted by dH (K , K ′) = supx∈RD |d(x, K ) − d(x, K ′)|. Finally, we let ∼=
denote the ambient isotopy relation in R

D .
Throughout this paper, Cα will denote a generic constant depending on the param-

eter α. For clarity’s sake, cα and Kα may also be used when several constants are
involved.

2 Minimax Risk and Main Results

2.1 Statistical Model

Let us describe the general statistical setting we will use to define optimality for
manifold reconstruction. A statistical model D is a set of probability distributions on
R

D . In any statistical experiment, D is fixed and known. We observe an independent
and identically distributed sample of size n (or i.i.d. n-sample) Xn = {X1, . . . , Xn}
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drawn according to some unknown distribution P ∈ D . If no noise is allowed, the
problem is to recover the support of P , that is, the smallest closed set C ⊂ R

D such
that P(C) = 1. Let us give two examples of such models D by describing those of
interest in this paper.

LetMD,d,ρ be the set of all compact d-dimensional connected submanifolds M ⊂
R

D without boundary satisfying reach(M) ≥ ρ. The reach assumption is crucial
to avoid arbitrarily curved and pinched shapes [15]. From a reconstruction point of
view, ρ gives a minimal feature size on M , and then a minimal scale for geometric
information. Every M ∈ MD,d,ρ inherits a measure induced by the d-dimensional
Hausdorff measure on RD ⊃ M . We denote this induced measure by vM . Beyond the
geometric restrictions induced by the lower bound ρ on the reach, it also requires the
natural measure vM to behave like a d-dimensional measure, up to uniform constants.
Denote by UM ( fmin, fmax) the set of probability distributions Q having a density f
with respect to vM such that 0 < fmin ≤ f (x) ≤ fmax < ∞ for all x ∈ M . In
particular, notice that such distributions Q ∈ UM ( fmin, fmax) all have support M .
Roughly speaking, when Q ∈ UM ( fmin, fmax), points are drawn almost uniformly
on M . This is to ensure that the sample visits all the areas of M with high probability.
The noise-free model GD,d, fmin, fmax,ρ consists of the set of all these almost uniform
measures on submanifolds of dimension d having reach greater than a fixed value
ρ > 0.

Definition 2.1 (Noise-free model) GD,d, fmin, fmax,ρ =
⋃

M∈MD,d,ρ
UM ( fmin, fmax).

Notice that we do not explicitly impose a bound on the diameter of M . Actually, a
bound is implicitly present in the model, as stated in the next lemma, the proof of
which follows from a volume argument.

Lemma 2.2 There is Cd > 0 such that for all Q ∈ GD,d, fmin, fmax,ρ with associated
M,

diam(M) ≤ Cd

ρd−1 fmin
=: Kd, fmin,ρ .

Observed random variables with distribution belonging to the noise-free model
GD,d, fmin, fmax,ρ lie exactly on the submanifold of interest M . A more realistic model
should allow some measurement error, as illustrated by Fig. 1 (a). We formalize this
idea with the following additive noise model.

Definition 2.3 (Additive noise model) For σ < ρ, we let GD,d, fmin, fmax,ρ,σ denote
the set of distributions of random variables X = Y + Z , where Y has distribution
Q ∈ GD,d, fmin, fmax,ρ , and ‖Z‖ ≤ σ almost surely.

Let us emphasize that we do not require Y and Z to be independent, nor Z to be
orthogonal to TY M , as done for the “perpendicular” noise model of [24,30]. This
model is also slightly more general than the one considered in [28]. Notice that the
noise-free model can be thought of as a particular instance of the additive noise model,
since GD,d, fmin, fmax,ρ = GD,d, fmin, fmax,ρ,σ=0.

Eventually, we may include distributions contaminated with outliers uniformly
drawn in a ballB0 containing M , as illustrated in Fig. 1 (b). Up to translation, we can
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(a) (b)

Fig. 1 Point clouds Xn drawn from distributions in GD,d, fmin, fmax,ρ,σ (left) and OD,d, fmin, fmax,ρ,β

(right). (a) Circle with noise: d = 1, D = 2, σ > 0. (b) Torus with outliers: d = 2, D = 3, β > 0

always assume that M � 0. To avoid boundary effects, B0 will be taken to contain
M amply, so that the outlier distribution surrounds M everywhere. Since M has at
most diameter Kd, fmin,ρ from Lemma 2.2 we arbitrarily fix B0 = B(0, K0), where
K0 = Kd, fmin,ρ + ρ. Notice that the larger the radius of B0, the easier to label the
outlier points since they should be very far away from each other.

Definition 2.4 (Model with outliers/Clutter noise model) For 0 < fmin ≤ fmax <

∞, 0 < β ≤ 1, and ρ > 0, we define OD,d, fmin, fmax,ρ,β to be the set of mixture
distributions

P = βQ + (1− β)UB0 ,

where Q ∈ GD,d, fmin, fmax,ρ has support M such that 0 ∈ M , and UB0 is the uniform
distribution onB0 = B(0, K0).

Alternatively, a random variable X with distribution P ∈ OD,d, fmin, fmax,ρ,β can be
represented as X = V X ′ + (1 − V )X ′′ , where V ∈ {0, 1} is a Bernoulli random
variable with parameter β, X ′ has distribution in GD,d, fmin, fmax,ρ and X ′′ has a uniform
distribution overB0, and such that V, X ′, X ′′ are independent. In particular for β = 1,
OD,d, fmin, fmax,ρ,β=1 = GD,d, fmin, fmax,ρ .

2.2 Minimax Risk

For a probability measure P ∈ D , denote by EP—or simply E—the expectation
with respect to the product measure P(n). The quantity we will be interested in is the
minimax risk associated to the model D . For n ≥ 0,

Rn(D) = inf
̂M

sup
P∈D

EP
[

dH (M, ̂M)
]

,

where the infimum is taken over all the estimators ̂M = ̂M(X1, . . . , Xn) computed
over an n-sample. Rn(D) is the best risk that an estimator based on an n-sample can
achieve uniformly over the class D . It is clear from the definition that if D ′ ⊂ D
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then Rn(D ′) ≤ Rn(D). It follows the intuition that the broader the class of consid-
ered manifolds, the more difficult it is to estimate them uniformly well. Studying
Rn(D) for a fixed n is a difficult task that can rarely be carried out. We will focus on
the semi-asymptotic behavior of this risk. As Rn(D) cannot be surpassed, its rate of
convergence to 0 as n → ∞ may be seen as the best rate of approximation that an
estimator can achieve. We will say that two sequences (an)n and (bn)n are asymptot-
ically comparable, denoted by an � bn , if there exist c,C > 0 such that for n large
enough, cbn ≤ an ≤ Cbn .

Definition 2.5 An estimator ̂M is said to be (asymptotically) minimax optimal over
D if

sup
P∈D

EP
[

dH (M, ̂M)
] � Rn(D).

In other words, ̂M is (asymptotically) minimax optimal if it achieves, up to constants,
the best possible rate of convergence in the worst case.

Studying aminimax rate of convergence is twofold. On one hand, deriving an upper
bound on Rn boils down to provide an estimator and to study its quality uniformly on
D . On the other hand, bounding Rn from below amounts to study the worst possible
case in D . This part is usually achieved with standard Bayesian techniques [27]. For
the models considered in the present paper, the rates were given in [24,26].

Theorem 2.6 ([26, Thm. 3])We have

Rn
(

GD,d, fmin, fmax,ρ

) �
(

log n

n

)2/d

(Noise-free)

and for 0 < β ≤ 1 fixed,

Rn
(

OD,d, fmin, fmax,ρ,β

) �
(

log n

βn

)2/d

. (Clutter noise)

Since the additive noise model GD,d, fmin, fmax,ρ,σ has not yet been considered in the
literature, the behavior of the associated minimax risk is not known. Beyond this the-
oretical result, an interesting question is to know whether these minimax rates can
be achieved by a tractable algorithm. Indeed, that proposed in [24] especially rely
on a minimization problem over the class of submanifolds MD,d,ρ , which is compu-
tationally costly. In addition, the proposed estimators are themselves submanifolds,
which raises storage problems. Moreover, no guarantee is given on the topology of the
estimators. Throughout the present paper, we will build estimators that address these
issues.

2.3 Main Results

Let us start with the additive noise model GD,d, fmin, fmax,ρ,σ , that includes in par-
ticular the noise-free case σ = 0. The estimator ̂MTDC is based on the Tangential
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Delaunay Complex (Sect. 3), with a tangent space estimation using a local PCA
(Sect. 5).

Theorem 2.7 ̂MTDC = ̂MTDC(Xn) is a simplicial complex with vertices included in
Xn such that the following holds. There exists λd, fmin, fmax > 0 such that if σ ≤
λ(log n/n)1/d with λ ≤ λd, fmin, fmax , then

lim
n→∞P

(

dH (M, ̂MTDC) ≤ Cd, fmin, fmax,ρ

{(

log n

n

)2/d

∨ λ2
}

and M ∼= ̂MTDC

)

= 1.

Moreover, for n large enough,

sup
Q∈GD,d, fmin, fmax,ρ,σ

EQdH (M, ̂MTDC) ≤ C ′d, fmin, fmax,ρ

{(

log n

n

)2/d

∨ λ2
}

.

It is interesting to note that the constants appearing in Theorem 2.7 do not depend
on the ambient dimension D. Since Rn

(

GD,d, fmin, fmax,ρ,σ

) ≥ Rn
(

GD,d, fmin, fmax,ρ

)

,
we obtain immediately from Theorem 2.7 that ̂MTDC achieves the minimax opti-
mal rate (log n/n)2/d over GD,d, fmin, fmax,ρ,σ when σ ≤ cd, fmin, fmax(log n/n)2/d .
Note that the estimator of [28] achieves the rate (log n/n)2/(d+2) when σ ≤
cd, fmin, fmax(log n/n)2/(d+2), so does the estimator of [25] for σ < ρ if the noise is
centered and perpendicular to the submanifold. As a consequence, ̂MTDC outperforms
these two existing procedures whenever σ � (log n/n)2/(d+2), with the additional
feature of exact topology recovery. Still, for σ � (log n/n)1/d , ̂MTDC may perform
poorly compared to [25]. This might be due to the fact that the vertices of ̂MTDC are
sample points themselves, while for higher noise levels, a pre-process of the data based
on local averaging could be more relevant.

In themodel with outliersOD,d, fmin, fmax,ρ,β , with the same procedure used to derive
Theorem 2.7 and an additional iterative pre-processing of the data based on local PCA
to remove outliers (Sect. 5), we design an estimator of M that achieves a rate as close
as wanted to the noise-free rate. Namely, for any positive δ < 1/(d(d + 1)), we build
̂MTDCδ that satisfies the following similar statement.

Theorem 2.8 ̂MTDCδ = ̂MTDCδ(Xn) is a simplicial complex with vertices included in
Xn such that

lim
n→∞P

(

dH (M, ̂MTDCδ) ≤ Cd, fmin, fmax,ρ

(

log n

βn

)2/d−2δ
and M ∼= ̂MTDCδ

)

= 1.

Moreover, for n large enough,

sup
P∈OD,d, fmin, fmax,ρ,β

EPdH (M, ̂MTDCδ) ≤ C ′d, fmin, fmax,ρ

(

log n

βn

)2/d−2δ
.

̂MTDCδ converges at the rate at least (log n/n)2/d−2δ , which is not the minimax
optimal rate according to Theorem 2.6, but that can be set as close as desired to it.
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To our knowledge, ̂MTDCδ is the first explicit estimator to provably achieve such a
rate in the presence of outliers. Again, it is worth noting that the constants involved
in Theorem 2.8 do not depend on the ambient dimension D. The construction and
computation of ̂MTDCδ is the same as ̂MTDC, with an extra pre-processing of the
point cloud allowing to remove outliers. This decluttering procedure leads to com-
pute, at each sample point, at most log(1/δ) local PCA’s, instead of a single one for
̂MTDC.
From a theoretical point of view, there exists a (random) number of iterations of

this decluttering process, from which an estimator ̂MTDC+ can be built to satisfy the
following.

Theorem 2.9 ̂MTDC+ = ̂MTDC+(Xn) is a simplicial complex of vertices contained in
Xn such that

lim
n→∞P

(

dH (M, ̂MTDC+) ≤ Cd, fmin, fmax,ρ

(

log n

βn

)2/d

and M ∼= ̂MTDC+
)

= 1.

Moreover, for n large enough,

sup
P∈OD,d, fmin, fmax,ρ,β

EPdH (M, ̂MTDC+) ≤ C ′d, fmin, fmax,ρ

(

log n

βn

)2/d

.

̂MTDC+ may be thought of as a limit of ̂MTDCδ when δ goes to 0. As it will be
proven in Sect. 5, this limit will be reached for δ close enough to 0. Unfortunately
this convergence threshold is also random, hence unknown.

The statistical analysis of the reconstruction problem is postponed to Sect. 5.
Beforehand, let us describe the Tangential Delaunay Complex in a deterministic
and idealized framework where the tangent spaces are known and no outliers are
present.

3 Tangential Delaunay Complex

Let P be a finite subset of RD . In this section, we denote the point cloud P to
emphasize the fact that it is considered nonrandom. For ε, δ > 0, P is said to be ε-
dense in M if supx∈M d(x,P) ≤ ε, and δ-sparse if d(p,P\{p}) ≥ δ for all p ∈P .
A (δ, ε)-net (of M) is a δ-sparse and ε-dense point cloud.

3.1 Restricted Weighted Delaunay Triangulations

We now assume that P ⊂ M . A weight assignment to P is a function ω : P →
[0,∞). Theweighted Voronoi diagram is defined to be theVoronoi diagram associated
to the weighted distance d(x, pω)2 = ‖x − p‖2−ω(p)2. Every p ∈P is associated
to its weighted Voronoi cell Vorω(p). For τ ⊂P , let
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Vorω(τ) =
⋂

p∈τ

Vorω(p)

be the common face of the weighted Voronoi cells of the points of τ . The weighted
Delaunay triangulationDelω(P) is the dual triangulation to the decomposition given
by theweightedVoronoi diagram. In otherwords, for τ ⊂P , the simplexwith vertices
τ , also denoted by τ , satisfies

τ ∈ Delω(P) ⇐⇒ Vorω(τ) �= ∅.

Note that for a constantweight assignmentω(p) ≡ ω0,Delω(P) is the usualDelaunay
triangulation ofP . Under genericity assumptions onP and bounds onω, Delω(P) is
an embedded triangulationwith vertex setP [4]. The reconstructionmethod proposed
in this paper is based on Delω(P) for some weights ω to be chosen later. As it is a
triangulation of thewhole convex hull ofP and fails to recover the geometric structure
of M , we take restrictions of it in the following manner.

Given a family R = {Rp}p∈P of subsets Rp ⊂ R
D indexed by P , the weighted

Delaunay complex restricted to R is the sub-complex of Delω(P) defined by

τ ∈ Delω(P, R) ⇐⇒ Vorω(τ) ∩
(

⋃

p∈τ

Rp

)

�= ∅.

In particular, we define the Tangential Delaunay Complex Delω(P, T ) by taking
R = T = {TpM}p∈P , the family of tangent spaces taken at the points ofP ⊂ M [4].
Delω(P, T ) is a pruned version of Delω(P)where only the simplices with directions
close to the tangent spaces are kept. Indeed, TpM being the best linear approximation
ofM at p, it is very unlikely for a reconstruction ofM to have components in directions
normal toTpM (seeFig. 2).Aspointedout in [4], computingDelω(P, T )only requires
to compute Delaunay triangulations in the tangent spaces that have dimension d. This
reduces the computational complexity dependency on the ambient dimension D > d.
The weight assignment ω gives degrees of freedom for the reconstruction. The extra
degree of freedom ω permits to stabilize the triangulation and to remove the so-called
inconsistencies, the points remaining fixed. For further details, see [4,5].

3.2 Guarantees

The following result sums up the reconstruction properties of the Tangential Delaunay
Complex that we will use. For more details about it, the reader is referred to [4].

Theorem 3.1 ([4, Thm. 5.3]) There exists εd > 0 such that for all ε ≤ εdρ and
all M ∈ MD,d,ρ , if P ⊂ M is an (ε, 2ε)-net, there exists a weight assignment
ω∗ = ω∗P,T depending onP and T = {TpM}p∈P such that

– dH (M,Delω∗(P, T )) ≤ Cdε
2/ρ,

– M and Delω∗(P, T ) are ambient isotopic.
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p

TpM

Fig. 2 Construction of Delω(P, T ) at p for ω ≡ 0: p has three incident edges in the ambient Delaunay
triangulation, but only two (bold) have dual Voronoi face intersecting TpM

Computing Delω∗(P, T ) requires to determine the weight function ω∗ = ω∗P,T .
In [4], a greedy algorithm is designed for this purpose and has a time complexity
O(Dn2 + D2O(d2)n).

Given an (ε, 2ε)-netP for ε small enough, Delω∗(P, T ) recoversM up to ambient
isotopy and approximates it at the scale ε2. The order of magnitude ε2 with an input
P of scale ε is remarkable. Another instance of this phenomenon is present in [14] in
codimension 1. We will show that this ε2 provides the minimax rate of approximation
when dealing with random samples. Therefore, it can be thought of as optimal.

Theorem 3.1 suffers twomajor imperfections. First, it requires the knowledge of the
tangent spaces at each sample point — since ω∗ = ω∗P,T—and it is no longer usable
if tangent spaces are only known up to some error. Second, the points are assumed to lie
exactly on the submanifold M , and no noise is allowed. The analysis of Delω∗(P, T )

is sophisticated [4]. Rather than redo the whole study with milder assumptions, we
tackle this question with an approximation theory approach (Theorem 4.1). Instead of
studying if Delω∗(P ′, T ′) is stable when P ′ lies close to M and T ′ close to T , we
examine what Delω∗(P ′, T ′) actually reconstructs, as detailed in Sect. 4.

3.3 On the Sparsity Assumption

In Theorem 3.1, P is assumed to be dense enough so that it covers all the areas
of M . It is also supposed to be sparse at the same scale as the density parameter ε.
Indeed, arbitrarily accumulated points would generate non-uniformity and instability
for Delω∗(P, T ) [4,5]. At this stage, we emphasize that the construction of an (ε, 2ε)-
net can be carried out given an ε-dense sample. Given an ε-dense sample P , the
farthest point sampling algorithm prunesP and outputs an (ε, 2ε)-netQ ⊂P of M
as follows. Initialize at Q = {p1} ⊂P , and while maxp∈P d(p,Q) > ε, add to Q
the farthest point toQ inP , that is,Q← Q∪{argmaxp∈P d(p,Q)}. The outputQ
is ε-sparse and satisfies dH (P,Q) ≤ ε, so it is an (ε, 2ε)-net of M . Therefore, up to
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the multiplicative constant 2, sparsifying P at scale ε will not deteriorate its density
property. Then, we can run the farthest point sampling algorithm to pre-process the
data, so that the obtained point cloud is a net.

4 Stability Result

4.1 Interpolation Theorem

As mentioned above, if the data do not lie exactly on M and if we do not have the
exact knowledge of the tangent spaces, Theorem 3.1 does not apply. To bypass this
issue, we interpolate the data with another submanifold M ′ satisfying good properties,
as stated in the following result.

Theorem 4.1 (Interpolation) Let M ∈ MD,d,ρ . Let P = {p1, . . . , pq} ⊂ R
D be a

finite point cloud and ˜T = {˜T1, . . . , ˜Tq} be a family of d-dimensional linear subspaces
of RD. For θ ≤ π/64 and 18η < δ ≤ ρ, assume that

– P is δ-sparse: mini �= j‖p j − pi‖ ≥ δ,
– the p j ’s are η-close to M: max1≤ j≤qd(p j , M) ≤ η,
– max1≤ j≤q � (TπM (p j )M, ˜Tj ) ≤ sin θ .

Then, there exist a universal constant c0 ≤ 285 and a compact d-dimensional con-
nected submanifold M ′ ⊂ R

D without boundary such that

1. P ⊂ M ′,
2. reach

(

M ′) ≥ (

1− c0
( η

δ
+ θ

)

ρ
δ

)

ρ,
3. Tp j M

′ = ˜Tj for all 1 ≤ j ≤ q,
4. dH (M, M ′) ≤ δθ + η,
5. M and M ′ are ambient isotopic.

Theorem 4.1 fits a submanifold M ′ to noisy points and perturbed tangent spaces
with no change of topology and a controlled reach loss. We will use M ′ as a proxy
for M . Indeed, if ˜T1, . . . , ˜Tq are estimated tangent spaces at the noisy base points
p1, . . . , pq , M ′ has the virtue of being reconstructed by Delω∗(P, ˜T ) from Theorem
3.1. Since M ′ is topologically and geometrically close to M , we conclude that M is
reconstructed as well by transitivity. In other words, Theorem 4.1 allows to consider
a noisy sample with estimated tangent spaces as an exact sample with exact tangent
spaces. M ′ is built pushing and rotating M towards the p j ’s locally along the vector
(p j − π(p j )), as illustrated in Fig. 3. Since the construction is quite general and may
be applied in various settings, let us provide an outline of the construction.

Let φ(x) = exp
( ‖x‖2
‖x‖2−1

)

1‖x‖2<1. φ is smooth and satisfies φ(0) = 1, ‖φ‖∞ ≤
1 and d0φ = 0. For j = 1, . . . , q, it follows easily from the definition of
� (Tπ(p j )M, ˜Tj )—e.g. by induction on the dimension—that there exists a rotation
R j of RD mapping Tπ(p j )M onto ˜Tj that satisfies ‖R j − ID‖op ≤ 2 sin(θ/2) ≤ θ .
For � > 0 to be chosen later, and all a ∈ R

D , let us define � : RD → R
D by
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Tπ (pj )M

pj

M ′

Tpj M ′

π (pj )

Fig. 3 An instance of the interpolating submanifold M ′. Dashed lines correspond to the image of vertical
lines by the ambient diffeomorphism � defining M ′ = �(M)

�(a) = a +
q

∑

j=1
φ

(

a − π(p j )

�

)

[

(R j − ID)(a − π(p j ))+ (p j − π(p j ))
︸ ︷︷ ︸

ψ j (a)

]

.

� is designed tomapπ(p j ) onto p j with dπ(p j )� = R j . Roughly speaking, in balls of
radii � around each π(p j ), � shifts the points in the direction p j −π(p j ) and rotates
it around π(p j ). Off these balls, � is the identity map. To guarantee smoothness, the
shifting and the rotation are modulated by the kernel φ, as ‖a − π(p j )‖ increases.

Notice that daψ j = (R j − ID) and ‖ψ j (a)‖ ≤ �θ + η whenever φ
( a−π(p j )

�

) �= 0.
Defining M ′ = �(M), the facts that M ′ fits to P and ˜T and is Hausdorff-close to
M follow by construction. Moreover, Theorem 4.19 of [22] (reproduced as Lemma
7.1 in this paper) states that the reach is stable with respect to C 2-diffeomorphisms of
the ambient space. The estimate on reach(M ′) relies on the following lemma stating
differentials estimates on �.

Lemma 4.2 There exist universal constants C1 ≤ 7/2 and C2 ≤ 28 such that if
6η < � ≤ δ/3 and θ ≤ π/64, � : RD → R

D is a global C∞-diffeomorphism. In
addition, for all a in RD,

‖da�‖op ≤ 1+ C1

(

η

�
+ θ

)

, ‖da�−1‖op ≤ 1

1− C1(η/�+ θ)
,

‖d2a�‖op ≤ C2

(

η

�2
+ θ

�

)

.

The ambient isotopy follows easily by considering the weighted version �(t)(a) =
a + t (�(a)− a) for 0 ≤ t ≤ 1 and the same differential estimates. We then take the
maximum possible value � = δ/3 and M ′ = �(M).

123



936 Discrete Comput Geom (2018) 59:923–971

Remark 4.3 Changing slightly the construction of M ′, one can also build it such that
the curvature tensor at each p j corresponds to that of M at π(p j ). For this purpose
it suffices to take a localizing function φ identically equal to 1 in a neighborhood
of 0. This additional condition would impact the universal constant c0 appearing in
Theorem 4.1.

4.2 Stability of the Tangential Delaunay Complex

Theorem 4.1 shows that even in the presence of noisy sample points at distance η from
M , and with the knowledge of the tangent spaces up to some angle θ , it is still possible
to apply Theorem 3.1 to some virtual submanifold M ′. Denoting ˜M = Delω∗(P, ˜T ),
since dH (M, ˜M) ≤ dH (M, M ′)+dH (M ′, ˜M) and since the ambient isotopy relation is
transitive,M ∼= M ′ ∼= ˜M .Weget the following result as a straightforward combination
of Theorems 3.1 and 4.1.

Theorem 4.4 (Stability of the Tangential Delaunay Complex) There exists εd > 0
such that for all ε ≤ εdρ and all M ∈MD,d,ρ , the following holds. Let P ⊂ R

D be
a finite point cloud and ˜T = {˜Tp}p∈P be a family of d-dimensional linear subspaces
of RD such that

– maxp∈P d(p, M) ≤ η,
– maxp∈P � (TπM (p)M, ˜Tp) ≤ sin θ ,
– P is ε-sparse,
– maxx∈M d(x,P) ≤ 2ε.

If θ ≤ ε/(1140ρ) and η ≤ ε2/(1140ρ), then

– dH (M,Delω∗(P, ˜T )) ≤ Cdε
2/ρ,

– M and Delω∗(P, ˜T ) are ambient isotopic.

Indeed, applying the reconstruction algorithm of Theorem 3.1 even in the presence
of noise and uncertainty on the tangent spaces actually recovers the submanifold M ′
built in Theorem 4.1. M ′ is isotopic to M and the quality of the approximation of M is
at most impacted by the term dH (M, M ′) ≤ εθ + η. The lower bound on reach(M ′)
is crucial, as constants appearing in Theorem 3.1 are not bounded for arbitrarily small
reach.

It is worth noting that no extra analysis of the Tangential Delaunay Complex was
needed to derive its stability. The argument is global, constructive, and may be applied
to other reconstructionmethods taking tangent spaces as input. For instance, a stability
result similar to Theorem4.4 could be derived readily for the so-called cocone complex
[13] using the interpolating submanifold of Theorem 4.1.

5 Tangent Space Estimation and Decluttering Procedure

5.1 Additive Noise Case

We now focus on the estimation of tangent spaces in the model with additive noise
GD,d, fmin, fmax,ρ,σ . The proposed method is similar to that of [2,28]. A point p ∈ M
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being fixed, TpM is the best local d-dimensional linear approximation of M at p.
Performing a Local Principal Component Analysis (PCA) in a neighborhood of p is
likely to recover the main directions spanned by M at p, and therefore to yield a good
approximation of TpM . For j = 1, . . . , n and h > 0 to be chosen later, define the
local covariance matrix at X j by

̂� j (h) = 1

n − 1

∑

i �= j

(Xi − X j )(Xi − X j )
t1B(X j ,h)(Xi ),

where X j = 1
N j

∑

i �= j Xi1B(X j ,h)(Xi ) is the barycenter of sample points contained

in the ball B(X j , h), and N j = |B(X j , h) ∩ Xn|. Let us emphasize the fact that the
normalization 1/(n − 1) in the definition of ̂� j stands for technical convenience. In
fact, any other normalization would yield the same guarantees on tangent spaces since
only the principal directions of ̂� j play a role. Set ̂Tj (h) to be the linear space spanned
by the d eigenvectors associated with the d largest eigenvalues of ̂� j (h). Computing
a basis of ̂Tj (h) can be performed naively using a singular value decomposition of the
full matrix ̂� j (h), although fast PCA algorithms [31] may lessen the computational
dependence on the ambient dimension. We also denote by TSE(., h) the function that
maps any vector of points to the vector of their estimated tangent spaces, with

̂Tj (h) = TSE(Xn, h) j .

Proposition 5.1 Set h = (

cd, fmin, fmax
log n
n−1

)1/d
for cd, fmin, fmax large enough. Assume

that σ/h ≤ 1/4. Then for n large enough, for all Q ∈ GD,d, fmin, fmax,ρ,σ ,

max
1≤ j≤n

� (

TπM (X j )M, ̂Tj (h)
) ≤ Cd, fmin, fmax

(

h

ρ
+ σ

h

)

,

with probability larger than 1− 4(1/n)2/d .

An important feature given by Proposition 5.1 is that the statistical error of our
tangent space estimation procedure does not depend on the ambient dimension D. The
intuition behind Proposition 5.1 is the following: if we assume that the true tangent
space TX j M is spanned by the first d vectors of the canonical basis, we can decompose
̂� j as

̂� j (h) =
(

̂A j (h) 0
0 0

)

+ ̂R,

where ̂R comes from the curvature of the submanifold along with the additive noise,
and is of order N j (h)(h3/(ρ(n − 1)) + hσ) � hd+2(h/ρ + σ/h), provided that h
is roughly smaller than (log(n)/(n − 1))1/d . On the other hand, for a bandwidth h
of order (log(n)/(n − 1))1/d , ̂A j (h) can be proved (Lemma 9.5) to be close to its
deterministic counterpart
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A j (h) = E

(

(

πTX j M
(X)− EπTX j M

(X)
)(

πTX j M
(X)− EπTX j M

(X)
)t
1B(X j ,h)(X)

)

,

where πTX j M
denotes orthogonal projection onto TX j M and expectation is taken

conditionally on X j . The bandwidth (log(n)/(n − 1))1/d may be thought of as the
smallest radius that allows enough sample points in balls to provide an accurate
estimation of the covariance matrices. Then, since fmin > 0, Lemma 9.4 shows
that the minimum eigenvalue of A(h) is of order hd+2. At last, an eigenvalue per-
turbation result (Proposition 10.1) shows that ̂Tj (h) must be close to TX j M up to
(hd+3/ρ + hd+1σ)/(hd+2) ≈ h/ρ + σ/h. The complete derivation is provided in
Sect. 1.

Then, it is shown in Lemma 9.1, based on the results of [12], that letting ε =
cd, fmin, fmax(h ∨ ρσ/h) for cd, fmin, fmax large enough, entails Xn is ε-dense in M with
probability larger than 1 − (1/n)2/d . Since Xn may not be sparse at the scale ε, and
for the stability reasons described in Sect. 3, we sparsify it with the farthest point
sampling algorithm (Sect. 3.3) with scale parameter ε. LetYn denote the output of the
algorithm. If σ ≤ h/4, and cd, fmin, fmax is large enough, we have the following.

Corollary 5.2 With the above notation, for n large enough, with probability at least
1− 5(1/n)2/d ,

– maxX j∈Yn d(X j , M) ≤ ε2

1140ρ ,

– maxX j∈Yn
� (TπM (X j )M, ̂Tj (h)) ≤ ε

2280ρ ,
– Yn is ε-sparse,
– maxx∈M d(x,Yn) ≤ 2ε.

In other words, the previous result shows that Yn satisfies the assumptions of The-
orem 4.4 with high probability. We may then define ̂MTDC to be the Tangential
Delaunay Complex computed on Yn and the collection of estimated tangent spaces
TSE(Xn, h)Yn , that is elements ofTSE(Xn, h) corresponding to elements ofYn , where
h is the bandwidth defined in Proposition 5.1.

Definition 5.3 With the above notation, define ̂MTDC = Delω∗(Yn,TSE(Xn, h)Yn ).

Combining Theorem 4.4 and Corollary 5.2, it is clear that ̂MTDC satisfies Theorem
2.7.

5.2 Clutter Noise Case

Let us now focus on themodel with outliersOD,d, fmin, fmax,ρ,β .We address the problem
of decluttering the sample Xn , that is, to remove outliers (see Fig. 4). We follow
ideas from [24]. To distinguish whether X j is an outlier or belongs to M , we notice
again that points drawn from M approximately lie on a low dimensional structure.
On the other hand, the neighborhood points of an outlier drawn far away from M
should typically be distributed in an isotropic way. Let k1, k2, h > 0, x ∈ R

D and
T ⊂ R

D a d-dimensional linear subspace. The slab at x in the direction T is the
set S(x, T, h) = {x} ⊕ BT (0, k1h) ⊕ BT⊥(0, k2h

2) ⊂ R
D , where ⊕ denotes the
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M

X j

h

π (X j)

T̂j

Tπ(Xj )M

Fig. 4 Local PCA at an outlier point X j ∈ Xn

Minkowski sum, and BT ,BT⊥ are the Euclidean balls in T and T⊥ respectively
(Fig. 5).

Following notation of Sect. 2.1, for P ∈ OD,d, fmin, fmax,ρ,β , let us write P = βQ+
(1−β)UB0 . For h small enough, by definition of the slabs,UB0(S(x, Tπ(x)M, h)) �
(k1h)d(k2h2)D−d � h2D−d . Furthermore, Fig. 5 indicates that for k1 and k2 small
enough,Q(S(x, Tπ(x)M, h)) � Vol(S(x, Tπ(x)M, h)∩M) � hd ifd(x, M) ≤ h2, and
Q(S(x, Tπ(x)M, h)) = 0 if d(x, M) > h2. Coming back to P = βQ + (1− β)UB0 ,
we roughly get

P(S(x, Tπ(x)M, h)) � βhd +(1− β)h2D−d � hd if d(x, M) ≤ h2,
P(S(x, Tπ(x)M, h)) � 0 +(1− β)h2D−d � h2D−d if d(x, M) > h2,

as h goes to 0, for k1 and k2 small enough. Since h2D−d � hd , the measure
P(S(x, T, h)) of the slabs clearly is discriminatory for decluttering, provided that
tangent spaces are known.

Based on this intuition, we define the elementary step of our decluttering procedure
as the map SDt (., ., h), that sends a vector P = (p1, . . . , pr ) ⊂ R

D and a corre-
sponding vector of (estimated) tangent spaces TP = (T1, . . . , Tr ) onto a subvector of
P according to the rule

p j ∈ SDt (P, TP , h) ⇐⇒ |S(p j , Tj , h) ∩P| ≥ t (n − 1)hd ,

where t is a threshold to be fixed. This procedure relies on counting howmany sample
points lie in the slabs in direction of the estimated tangent spaces (see Fig. 5).

Since tangent spaces are unknown, the following result gives some insight on the
relation between the accuracy of the tangent space estimation and the decluttering
performance that can be reached.
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k1h

k2h2
Tπ (X j )M

M

T̂j

π(X j )

S j
X j

X j ′

S j ′

T̂j ′

Fig. 5 The slab S(X j , ̂Tj , h) is centered at X j and has size k1h in the d directions spanned by ̂Tj , and

size k2h2 in the D − d directions normal to ̂Tj

Lemma 5.4 Let K > 0 be fixed. There exist constants k1(K ) and k2(ρ, K ) such that
for every h ≤ 1 and x inRD, S(x, T, h) ⊂ B(x, h/2). Moreover, for every h ≤ h+∧1
we have

h/
√
2 ≥ d(x, M) ≥ h2/ρ and � (TπM (x)M, T ) ≤ Kh/ρ

"⇒ S(x, T, h) ⊂ S′(x, TπM (x)M, h),

where S′(x, TπM (x)M, h) is a larger slab with parameters k′1(ρ, K ) and k′2(ρ, K ),
which are such that S′(x, TπM (x)M, h) ∩ M = ∅. In addition, there exists k3(ρ, K )

such that for all x and y in M,

� (TxM, T ) ≤ Kh/ρ and ‖x − y‖ ≤ k3h "⇒ y ∈ S(x, T, h).

Possible values for k1 and k2 are, respectively,
1

16(K∨1) and
1

16(ρ∨K∨1) , and k3 can be
taken as k1 ∧ ρk2

1+2K .

The proof of Lemma 5.4, mentioned in [24], follows from elementary geometry,
combined with the definition of the reach and Proposition 8.1.

Roughly, Lemma 5.4 states that the decluttering performance is of order the square
of the tangent space precision, hence will be closely related to the performance of the
tangent space estimation procedure TSE. Unfortunately, a direct application of TSE
to the corrupted sampleXn leads to slightly worse precision bounds, in terms of angle
deviation. Typically, the angle deviation would be of order n−1/(d+1). However, this
precision is enough to remove outliers points which are at distance at least n−2/(d+1)
from M . Then running our TSE on this refined sample SDt (Xn,TSE(Xn), n−1/(d+1))
leads to better angle deviation rates, hence better decluttering performance, and so on.

Let us introduce an iterative decluttering procedure in amore formalway.Wechoose
the initial bandwidth h0 =

(

cd, fmin, fmax,ρ
log n

β(n−1)
)γ0 , with γ0 = 1/(d + 1), and define

the first set X(−1) = Xn as the whole sample. We then proceed recursively, setting
hk+1 =

(

cd, fmin, fmax,ρ
log n

β(n−1)
)γk+1 , with γk+1 satisfying γk+1 = (2γk + 1)/(d + 2).
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This recursion formula is driven by the optimization of a trade-off between imprecision
terms in tangent space estimation, as may be seen from (5). An elementary calculation
shows that

γk = 1

d
− 1

d(d + 1)

(

2

d + 2

)k

.

With this updated bandwidth we define

X
(k+1) = SDt (X

(k),TSE(X(k), hk+1), hk+1).

In other words, at step k + 1 we use a smaller bandwidth hk+1 in the tangent space
estimation procedure TSE. Then we use this better estimation of tangent spaces to
run the elementary decluttering step SD. The performance of this procedure is guar-
anteed by the following proposition. With a slight abuse of notation, if X j is in X

(k),
TSE(X(k), h) j will denote the corresponding tangent space of TSE(X(k), h).

Proposition 5.5 In the clutter noise model, for t , cd, fmin, fmax,ρ and n large enough,
k1 and k2 small enough, the following properties hold with probability larger than
1− 7(1/n)2/d for all k ≥ 0.

Initialization

– For all X j ∈X
(−1) such that d(X j , M) ≤ h0/

√
2, �

(

TSE(X(−1), h0) j , Tπ(X j )M
)

≤ Cd, fmin, fmaxh0/ρ.
– For every X j ∈ M ∩ X

(−1), X j ∈ X
(0).

– For every X j ∈ X
(−1), if d(X j , M) > h20/ρ, then X j /∈ X

(0).

Iterations

– For all X j ∈X(k) such that d(X j , M)≤hk+1/
√
2, �

(

TSE(X(k), hk+1) j , Tπ(X j )M
)

≤ Cd, fmin, fmaxhk+1/ρ.
– For every X j ∈ M ∩ X

(k), X j ∈ X
(k+1).

– For every X j ∈ X
(k), if d(X j , M) > h2k+1/ρ, then X j /∈ X

(k+1).

This result is threefold. Not only can we distinguish data and outliers within a decreas-
ing sequence of offsets of radii h2k/ρ around M , but we can also ensure that no point
of M is removed during the process with high probability. Moreover, it also provides
a convergence rate for the estimated tangent spaces TSE(Xk, hk+1). Now fix a preci-
sion level δ. If k is larger than (log(1/δ)− log(d(d + 1))/(log(d + 2)− log(2)), then
1/d > γk ≥ 1/d − δ. Let us define kδ as the smallest integer satisfying γk ≥ 1/d − δ,
and denote by Yδ

n the output of the farthest point sampling algorithm applied to X(kδ)

with parameter ε = cd, fmin fmaxhkδ , for cd, fmin fmax large enough. Define also ̂T δ as the
restriction of TSE(X(kδ), hkδ ) to the elements of Yδ

n .
According to Proposition 5.5, the decluttering procedure removes no data point

on M with high probability. In other words, X(kδ) ∩ M = Xn ∩ M , and as a conse-
quence, maxx∈M d(x,X(kδ)) ≤ cd, fmin(log n/(βn))1/d � hkδ with high probability
(see Lemma 9.1). As a consequence, we obtain the following.
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Corollary 5.6 With the above notation, for n large enough, with probability larger
than 1− 8(1/n)2/d ,

– maxX j∈Yδ
n
d(X j , M) ≤ ε2

1140ρ ,

– maxX j∈Yδ
n
� (TπM (X j )M, ̂T δ

j ) ≤ ε
2280ρ ,

– Y
δ
n is ε-sparse,

– maxx∈M d(x,Yδ
n) ≤ 2ε.

We are now able to define the estimator ̂MTDCδ .

Definition 5.7 With the above notation, define ̂MTDCδ = Delω∗(Yδ
n,

̂T δ).

CombiningTheorem4.4 andCorollary 5.6, it is clear that ̂MTDCδ satisfies Theorem2.8.

Finally, we turn to the asymptotic estimator ̂MTDC+. Set h∞ = (

cd, fmin, fmax,ρ

log n
β(n−1)

)1/d , and let̂k denote the smallest integer such that min{d(X j , M) | d(X j , M)

> h2∞/ρ} > h2
̂k
/ρ. Since Xn is a (random) finite set, we can always find such a ran-

dom integer̂k that provides a sufficient number of iterations to obtain the asymptotic
decluttering rate. For this random iteration̂k, we can state the following result.

Proposition 5.8 Under the assumptions of Corollary 5.6, for every X j ∈ X (̂k+1), we
have

� (

TSE(X(̂k+1), h∞) j , Tπ(X j )M
) ≤ Cd, fmin, fmaxh∞/ρ.

As before, taking Y
+
n as the result of the farthest point sampling algorithm based on

X
(̂k+1), and T+ the vector of tangent spaces TSE(X(̂k+1), h∞) j such that X(̂k+1)

j ∈
Y
+
n , we can construct our last estimator.

Definition 5.9 With the above notation, define ̂MTDC+ = Delω∗(Y+n , T+).

In turn, Proposition 5.8 implies that ̂MTDC+ satisfies Theorem 2.9.

6 Conclusion

In this work, we gave results on explicit manifold reconstruction with simplicial com-
plexes. We built estimators ̂MTDC, ̂MTDCδ and ̂MTDC+ in two statistical models. We
proved minimax rates of convergence for the Hausdorff distance and consistency
results for ambient isotopic reconstruction. Since ̂MTDC is minimax optimal in the
additive noise model for σ small, and uses the Tangential Delaunay Complex of [4],
the latter is proven to be optimal. Moreover, rates of [24] are proven to be achievable
with simplicial complexes that are computable using existing algorithms. To prove
the stability of the Tangential Delaunay Complex, a generic interpolation result was
derived. In the process, a tangent space estimation procedure and a declutteringmethod
both based on local PCA were studied.

In the model with outliers, the proposed reconstruction method achieves a rate
of convergence that can be as close as desired to the minimax rate of convergence,
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depending on the number of iterations of the decluttering procedure. Though this
procedure seems to be well adapted to our reconstuction scheme—which is based
on tangent spaces estimation—we believe that it could be of interest in the context
of other applications. Also, further investigation may be carried out to compare this
decluttering procedure to existing ones [9,19].

As brieflymentioned below Theorem 2.7, our approach is likely to be suboptimal in
cases where noise level σ is large. In such cases, with additional structure on the noise
such as centered and independent from the source, other statistical procedures such as
deconvolution [24] could be adapted to provide vertices to the Tangential Delaunay
Complex. Tangential properties of deconvolution are still to be studied.

The effective construction of ̂MTDCδ can be performed using existing algorithms.
Namely, Tangential Delaunay Complex, farthest point sampling, local PCA and point-
to-linear subspace distance computation for slab counting. A crude upper bound on
the time complexity of a naive step-by-step implementation is

O
(

nD
[

2O(d2) + log(1/δ)D(D + n)
])

,

since the precision δ requires no more than log (1/δ) iterations of the decluttering
procedure. It is likely that better complexity bounds may be obtained using more
refined algorithms, such as fast PCA [31], that lessens the dependence on the ambient
dimension D. An interesting development would be to investigate a possible pre-
cision/complexity trade-off, as done in [3] for community detection in graphs for
instance.

Even though Theorem 4.1 is applied to submanifold estimation, we believe it may
be applied in various settings. Beyond its statement, the way that it is used is quite
general. When intermediate objects (here, tangent spaces) are used in a procedure,
this kind of proxy method can provide extensions of existing results to the case where
these objects are only approximated.

As local PCA is performed throughout the paper, the knowledge of the bandwidth
h is needed for actual implementation. In practice its choice is a difficult question and
adaptive selection of h remains to be considered.

In the process, we derived rates of convergence for tangent space estimation. The
optimality of the method will be the object of a future paper.
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Appendix

A Interpolation Theorem

This section is devoted to prove the interpolation results of Sect. 4.1. For the sake
of completeness, let us state a stability result for the reach with respect to C 2-
diffeomorphisms.
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Lemma 7.1 ([22, Thm. 4.19]) Let A ⊂ R
D with reach(A) ≥ ρ > 0 and � : RD →

R
D be a C 1-diffeomorphism such that �,�−1, and d� are Lipschitz with Lipschitz

constants K ,N and R respectively. Then

reach(�(A)) ≥ 1

(Kρ−1 + R)N 2 .

Writing φ�(·) = φ(·/�), we recall that ψ j (a) = (R j − ID)(a − π(p j )) + (p j −
π(p j )) and

�(a) = a +
q

∑

j=1
φ�(a − π(p j ))ψ j (a). (1)

Let us denote b1 = supx ‖dxφ‖, b2 = supx ‖d2xφ‖op, and write C1 = 1 + b1, C2 =
b2 + 2b1. Straightforward computation yields C1 ≤ 7/2 and C2 ≤ 28.

Proof of Lemma 4.2 First notice that the sum appearing in (1) consists of at most
one term. Indeed, since φ ≡ 0 outside B(0, 1), if φ�(a − π(p j )) �= 0 for some
j ∈ {1, . . . , q}, then ‖a − π(p j )‖ ≤ �. Consequently, for all i �= j ,

‖a − π(pi )‖ ≥ ‖p j − pi‖ − ‖p j − π(p j )‖ − ‖π(p j )− a‖ − ‖π(pi )− pi‖
≥ δ − η − �− η

≥ δ − 2� ≥ �,

where we used that 6η ≤ � ≤ δ/3. Therefore, φ�(a − π(pi )) = 0 for all i �= j . In
other words, if a p j actually appears in �(a) then the others do not.

Global diffeomorphism: As the sum in (1) is at most composed of one term, chain
rule yields

‖da�− ID‖op = max
1≤ j≤q

∥

∥da[φ�(a − π(p j ))ψ j (a)]∥∥op

= max
1≤ j≤q

∥

∥

∥ψ j (a)
dbφ

�

∣

∣

∣

b= a−π(p j )
�

+ φ�(a − π(p j ))(R j − ID)

∥

∥

∥

op

≤ (b1 + 1)θ + b1
η

�
< 1,

where the last line follows from b1 ≤ 5/2, 6η ≤ � and θ ≤ π/64. Therefore, da� is
invertible for all a ∈ R

D , and (da�)−1 = ∑∞
i=0(ID − da�)i . � is a local diffeomor-

phism according to the local inverse function theorem. Moreover, ‖�(a)‖ → ∞ as
‖a‖ → ∞, so that � is a global C∞-diffeomorphism by the Hadamard–Cacciopoli
theorem [17].

Differentials estimates: (i) First order: From the estimates above,

‖da�‖op ≤ ‖ID‖op + ‖da�− ID‖op ≤ 1+ (b1 + 1)θ + b1
η

�
.
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(ii) Inverse: Write for all a ∈ R
D:

‖d�(a)�
−1‖op = ‖(da�)−1‖op =

∥

∥

∥

∞
∑

i=0
(ID − da�)i

∥

∥

∥

op

≤ 1

1− ‖ID − da�‖op ≤
1

1− (b1 + 1)θ − b1η/�
,

where the first inequality holds since ‖da�− ID‖op < 1, and ‖·‖op is sub-multi-
plicative.

(iii) Second order: Again, since the sum (1) includes at most one term,

‖d2a�‖op = max
1≤ j≤q‖d

2
a [φ�(a − π(p j ))ψ j (a)]‖op

≤ max
1≤ j≤q

{‖d2φ‖op
�2

‖ψ j (a)‖ + 2
‖dφ‖op

�
‖R j − ID‖op

}

≤ b2
η

�2
+ (b2 + 2b1)

θ

�
. #$

Proof of Theorem 4.1 Set � = δ/3 and M ′ = �(M).

– Interpolation: For all j , p j = �(π(p j )) ∈ M ′ by construction since φ�(0) = 1.
– Tangent spaces: Since dxφl |x=0 = 0, for all j ∈ {1, . . . , q}, da�|a=π(p j ) = R j .
Thus,

Tp j M
′ = T�(π(p j ))�(M) = da�|a=π(p j )(Tπ(p j )M) = R j (Tπ(p j )M) = Tj ,

by definition of R j .
– Proximity to M : The bound on dH (M, M ′) = dH

(

M,�(M)
)

follows from the
correspondence

‖�(a)− a‖ ≤ sup
a∈RD

max
1≤ j≤q φ�(a − π(p j ))

∥

∥ψ j (a)
∥

∥ ≤ �θ + η ≤ δθ + η.

– Isotopy: Consider the continuous family of maps

�(t)(a) = a + t
q

∑

j=1
φ�(a − π(p j ))ψ j (a),

for 0 ≤ t ≤ 1. Since �(t)− ID = t (�− ID), the arguments above show that �(t)

is a global diffeomorphism of RD for all t ∈ [0, 1]. Moreover, �(0) = ID and
�(1) = �. Thus, M = �(0)(M) and M ′ = �(1)(M) are ambient isotopic.

– Reach lower bound: The differentials estimates of order 1 and 2 of� translate into
estimates on Lipschitz constants of �,�−1 and d�. Applying Lemma 7.1 leads
to

123



946 Discrete Comput Geom (2018) 59:923–971

reach(M ′) ≥ (1− C1(η/�+ θ))2

(1+ C1(η/�+ θ))/ρ + C2(η/�2 + θ/�)

= ρ · (1− C1(η/�+ θ))2

1+ C1(η/�+ θ)+ C2(η/�2 + θ/�)ρ
.

Now, replace � by its value δ/3, and write c1 = 3C1 ≤ 21/2 ≤ 11 and c2 =
32C2 ≤ 252. We derive

reach(M ′) ≥
(

1− 2c1

(

η

δ
+ θ

))(

1− c1

(

η

δ
+ θ

)

− c2

(

η

δ2
+ θ

δ

)

ρ

)

ρ

≥
(

1− 3c1

(

η

δ
+ θ

)

− c2

(

η

δ2
+ θ

δ

)

ρ

)

ρ

≥
(

1− (3c1 + c2)

(

η

δ2
+ θ

δ

)

ρ

)

ρ,

where for the last line we used that δ/ρ ≤ 1. The desired lower bound follows
taking c0 = 3c1 + c2 ≤ 285. #$

B Some Geometric Properties under Reach Regularity Condition

B.1 Reach and Projection on the Submanifold

In this section we state intermediate results that connect the reach condition to orthog-
onal projections onto the tangent spaces. They are based on the following fundamental
result.

Proposition 8.1 ([22, Thm. 4.18]) For all x and y in M,

‖(y − x)⊥‖ ≤ ‖y − x‖2
2ρ

,

where (y − x)⊥ denotes the projection of y − x onto TxM⊥.

From Proposition 8.1 we may deduce the following property about trace of Eucli-
dean balls on M .

Proposition 8.2 Let x ∈ R
D be such that d(x, M) = � ≤ h ≤ ρ/8, and let y denote

π(x). Then,

B(y, r−h ) ∩ M ⊂ B(x, h) ∩ M ⊂ B(y, r+h ) ∩ M,

where r2h +�2 = h2, (r−h )2 = (

1− �
ρ

)

r2h , and (r+h )2 = (

1+ 2�
ρ

)

r2h .
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Proof Let z be in M ∩B(x, h), and denote by δ the quantity ‖z − y‖. We may write

‖z − x‖2 = δ2 +�2 + 2〈z − y, y − x〉, (2)

hence δ2 ≤ h2−�2− 2〈z− y, y− x〉. Denote, for u inRD , by u⊥ its projection onto
TyM⊥. Since 〈z − y, y − x〉 = 〈(z − y)⊥, y − x〉, Proposition 8.1 ensures that

δ2
(

1− �

ρ

)

≤ r2h .

Since � ≤ h ≤ ρ/8, it comes δ2 ≤ (1 + 2�/ρ)r2h . On the other hand, (2) and Pro-
position 8.1 also yield

‖z − x‖2 ≤ δ2
(

1+ �

ρ

)

+�2.

Hence, if δ2 ≤ (

1− �
ρ

)

r2h , we have

‖z − x‖2 ≤ r2h +�2 = h2. #$
Also, the following consequence of Proposition 8.1 will be of particular use in the

decluttering procedure.

Proposition 8.3 Let h and hk be bandwidths satisfying h2k/ρ ≤ h ≤ hk. Let x be
such that d(x, M) ≤ h/

√
2 and πM (x) = 0, and let z be such that ‖z − x‖ ≤ h and

d(z, M) ≤ h2k/ρ. Then

‖z⊥‖ ≤ 6h2k
ρ

,

where z⊥ denotes the projection of z onto T0M⊥.

Proof Let y denote πM (z). The triangle inequality yields ‖y‖ ≤ ‖y− z‖+‖z− x‖+
‖x‖ ≤ h2k/ρ+(1+1/

√
2)h ≤ 3hk . Proposition 8.1 ensures that ‖y⊥‖ ≤ ‖y‖2/(2ρ) ≤

(9h2k)/(2ρ). Since ‖z⊥‖ ≤ ‖y⊥‖ + h2k/ρ, we have ‖z⊥‖ ≤ 6h2k/ρ . #$
At last, let us prove Lemma 5.4, which gives properties of intersections of ambient

slabs with M .

Proof of Lemma 5.4 Set k1 = 1
16(K∨1) , k2 = 1

16(K∨ρ∨1) , and k3 = k1∧ ρk2
1+2K ∧1. For

all h > 0, and z ∈ S(x, T, h), the triangle inequality yields ‖z− x‖ ≤ ‖πT (z− x)‖+
‖πT⊥(z− x)‖ ≤ (k1+ k2h)h. Since h ≤ 1 and k1+ k2 ≤ 1/2, we get z ∈ B(x, h/2).

Now, suppose that h/
√
2 ≥ d(x, M) ≥ h2/ρ and � (Tπ(x)M, T ) ≤ Kh/ρ. For

short we write T0 = Tπ(x)M . Let z ∈ S(x, T, h), since h ≤ 1, it comes

‖πT0(z − x)‖ ≤ ‖z − x‖ ≤ (k1 + k2)h = k′1h,
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with k′1 = k1 + k2. On the other hand

‖πT⊥0
(z − x)‖ ≤ ‖πT⊥0

πT (z − x)‖ + ‖πT⊥0
πT⊥(z − x)‖

≤ (Kh/ρ)(k1h)+ k2h
2 = k′2h2,

with k′2 = k1K/ρ + k2. Hence S(x, T, h) ⊂ S′(x, T0, h), for the constants k′1 and
k′2 defined above. It remains to prove that S′(x, T0, h) ∩ M = ∅. To see this, let
z ∈ S′(x, T0, h), and y = π(x). Since k′1 + k′2 ≤ 1/4, we have ‖y − z‖ ≤ ‖y − x‖ +
‖x − z‖ ≤ h(1/

√
2+ 1/4). For the normal part, we may write

‖πT⊥0
(z − y)‖ ≥ ‖πT⊥0

(y − x)‖ − ‖πT⊥0
(x − z)‖ ≥ h2(1/ρ − k′2).

Since k′2 ≤ 1/(8ρ), we have ‖πT⊥0
(z − y)‖ > ‖y − z‖2/(2ρ), hence Proposition 8.1

ensures that z /∈ M .
At last, suppose that x ∈ M and y ∈ B(x, k3h) ∩ M . Since k3 ≤ k1, we have

‖πT (y − x)‖ ≤ k1h. Next, we may write

‖πT⊥(y − x)‖ ≤ ‖πT⊥πT0(y − x)‖ + ‖πT⊥πT⊥0
(y − x)‖.

Since y ∈ M , Proposition 8.1 entails ‖πT⊥0
(y − x)‖ ≤ ‖y − x‖2/(2ρ) ≤ k23h

2/(2ρ).
It comes

‖πT⊥(y − x)‖ ≤ h2

ρ

(

k3K + k23
2

)

≤ k2h
2.

Hence y ∈ S(x, T, h). #$

B.2 Reach and Exponential Map

In this section we state results that connect Euclidean and geodesic quantities under
reach regularity condition.We start with a result linking reach and principal curvatures.

Proposition 8.4 ([30, Prop. 6.1]) For all x ∈ M, writing IIx for the second funda-
mental form of M at x, for all unitary w ∈ TxM, we have ‖IIx (w,w)‖ ≤ 1/ρ.

For all x ∈ M and v ∈ TxM , let us denote by expx (v) the exponential map at x of di-
rection v. According to the following proposition, this exponential map turns out to
be a diffeomorphism on balls of radius at most πρ.

Proposition 8.5 ([1, Corr. 1.4]) The injectivity radius of M is at least πρ.

Denoting bydM (·, ·) the geodesic distance onM ,we are in position to connect geodesic
and Euclidean distance. In what follows, we fix the constant α = 1+ 1

4
√
2
.
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Proposition 8.6 For all x, y ∈ M such that ‖x − y‖ ≤ ρ/4,

‖x − y‖ ≤ dM (x, y) ≤ α ‖x − y‖ .

Moreover, writing y = expx (rv) for v ∈ TxM with ‖v‖ = 1 and r ≤ ρ/4,

y = x + rv + R(r, v)

with ‖R(r, v)‖ ≤ r2/(2ρ).

Proof The first statement is a direct consequence of Proposition 6.3 in [30]. Let us
define u(t) = expx (tv) − expx (0) − tv and w(t) = expx (tv) for all 0 ≤ t ≤ r . It
is clear that u(0) = 0 and u′(0) = 0. Moreover, ‖u′′(t)‖ = ‖IIw(t)(w

′(t), w′(t))‖ ≤
1/ρ. Therefore, a Taylor expansion at order two gives ‖R(r, v)‖ = u(r) ≤ r2/(2ρ).
Applying the first statement of the proposition gives r ≤ α ‖x − y‖. #$
The next proposition gives bounds on the volume form expressed in polar coordinates
in a neighborhood of points of M .

Proposition 8.7 Let x ∈ M be fixed. Denote by J (r, v) the Jacobian of the volume
form expressed in polar coordinates around x, for r ≤ ρ/4 and v a unit vector in
TxM. In other words, if y = expx (rv), dyV = J (r, v) drdv. Then

cdr
d−1 ≤ J (r, v) ≤ Cdr

d−1,

where cd = 2−d and Cd = 2d . As a consequence, if BM (x, r) denotes the geodesic
ball of radius r centered at x, then, if r ≤ ρ/4,

c′drd ≤ Vol(BM (x, r)) ≤ C ′drd ,

with c′d = cdVd and C ′d = CdVd, where Vd denotes the volume of the unit d-dimen-
sional Euclidean ball.

Proof Denoting Ar,v = drv expx , the Area Formula [23, Sect. 3.2.5] asserts that
J (r, v) = rd−1

√

det(At
r,vAr,v). Note that from Proposition 6.1 in [30] together with

the Gauss equation [10, p. 130], the sectional curvatures in M are bounded by |κ| ≤
2/ρ2. Therefore, the Rauch theorem [21, Lemma 5] states that

(

1− r2

3ρ2

)

‖w‖ ≤ ∥

∥Ar,vw
∥

∥ ≤
(

1+ r2

ρ2

)

‖w‖ ,

for all w ∈ TxM . As a consequence,

2−d ≤
(

1− r2

3ρ2

)d

≤
√

det(At
r,vAr,v) ≤

(

1+ r2

ρ2

)d

≤ 2d .

Since Vol(BM (x, r)) = ∫ r
s=0

∫

v∈Sd−1 J (s, v) dsdv, where Sd−1 denotes the unit
(d − 1)-dimensional sphere, the bounds on the volume easily follow. #$
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C Some Technical Properties of the Statistical Model

C.1 Covering and Mass

Lemma 9.1 Let Q0 ∈ UM ( fmin, fmax). Then for all p ∈ M and r ≤ ρ/4,

Q0
(

B(p, r)
) ≥ ad fminr

d ,

where ad > 0. As a consequence, for n large enough and for all Q ∈ GD,d, fmin, fmax,ρ,σ ,
with probability larger than 1− (1/n)2/d ,

dH (M,Xn) ≤ Cd, fmin

(

log n

n

)1/d

+ σ.

Similarly, for n large enough and for all P ∈ OD,d, fmin, fmax,ρ,β , with probability larger
than 1− (1/n)2/d ,

dH (M,Xn ∩ M) ≤ Cd, fmin

(

log n

βn

)1/d

.

Proof The first statement is a direct corollary of Proposition 8.7, since for all r ≤ ρ/4,

Q0
(

B(p, r)
) =

∫

B(p,r)
f dH d ≥ fminVol(B(p, r) ∩ M) ≥ ad fminr

d ,

where ad can be taken to be equal to c′d of Proposition 8.7. Let us now prove the second
statement. By definition, sample Xi ∈ Xn , that has distribution Q ∈ GD,d, fmin, fmax,ρ,σ ,
can be written as Xi = Yi + Zi , with Yi having distribution Q0 ∈ GD,d, fmin, fmax,ρ , and‖Zi‖ ≤ σ . From the previous point, letting a = ad fmin, Q0 fulfils the so-called (a, d)-
standard assumption of [12] for r ≤ ρ/4. Looking carefully at the proof of Lemma 10
in [12] shows that its conclusion still holds for measures satisfying the (a, d)-standard
assumption for small radii only. Therefore, writing Yn = {Y1, . . . ,Yn}, for r ≤ ρ/8
we obtain

PQ0(dH (M,Yn) > r) ≤ 4d

ard
exp

(

−n a

2d
rd

)

.

The claim follows using that dH (Xn,Yn) ≤ σ , and setting r = Cd, fmin(log n/n)1/d

with Cd
d, fmin

a
2d+1 ≥ 1+ 2/d.

To prove the last point, notice that for all k = 0, . . . , n, conditionally on the event
{|Xn ∩ M | = k}, Xn ∩ M has the distribution of a k-sample of Q0. Therefore,

PP
(

dH (M,Xn ∩ M) > r
∣

∣ |Xn ∩ M | = k
) = PQ0(dH (M,Xk ∩ M) > r)

≤ 4d

ard
exp

(

−k a

2d
rd

)

.
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Hence,

PP (dH (M,Xn ∩ M) > r) =
n

∑

k=0
PP

(

dH (M,Xn ∩ M) > r
∣

∣ |Xn ∩ M | = k
)

PP (|Xn ∩ M | = k)

≤
n

∑

k=0

4d

ard
exp

(

−k a

2d
rd

)(

n

k

)

βk(1− β)n−k

= 4d

ard

[

1− β

(

1− exp

(

− a

2d
rd

))]n

≤ 4d

ard
exp

[

−nβ
(

1− exp

(

− a

2d
rd

))]

≤ 4d

ard
exp

[

−nβ a

2d+1
rd

]

,

whenever r ≤ ρ/8 and ard ≤ 2d . Taking r = C ′d, fmin

( log n
βn

)1/d with C ′dd, fmin

βa
2d+1 ≥

1+ 2/d yields the result. #$
We now focus on proving Lemma 2.2. For its proof, we need the following piece
of notation. For all bounded subsets K ⊂ R

D and ε > 0, we let cvK (ε) denote
the Euclidean covering number of K . That is, cvK (ε) is the minimal number k of
Euclidean open balls of radii ε and centered at elements of K that are needed to cover
K .

Lemma 9.2 Let K ⊂ R
D be a bounded subset. If K is path connected, then for all

ε > 0, diam(K ) ≤ 2εcvK (ε).

Proof Let p, q ∈ K and γ : [0, 1] → K be a continuous path joining γ (0) = p and
γ (1) = q. Writing N = cvK (ε), let x1, . . . , xN ∈ R

D be the centers of a covering
of K by open balls of radii ε. We let Ui denote {t, ‖γ (t)− xi‖ < ε} ⊂ [0, 1]. By
construction of the covering, there exists x(1) ∈ {x1, . . . , xN } such that ‖p − x(1)‖ <

ε. ThenU(1) � γ (0) = p is a non-empty open subset of [0, 1], so that t(1) = supU(1) is
positive. If t(1) = 1, then ‖q − x(1)‖ ≤ ε, and in particular ‖q − p‖ ≤ 2ε. If t(1) < 1,
since U(1) is an open subset of [0, 1], we see that γ (t(1)) /∈ U(1). But

⋃N
i=1Ui is an

open cover of [0, 1], which yields the existence ofU(2) such that γ (t(1)) ∈ U(2), and for
all t < t(1), γ (t) /∈ U(2). Then consider t(2) = supU(2), and so on. Doing so, we build
by induction a sequence of numbers 0 < t(1) < · · · < t(k) ≤ 1 and distinct centers
x(1), . . . , x(k) ∈ {x1, . . . , xN } (k ≤ N ) such that ‖p − x(1)‖ < ε, ‖q − x(k)‖ ≤ ε,
with ‖γ (t(i))− x(i)‖ ≤ ε for 1 ≤ i ≤ k and ‖γ (t(i))− x(i+1)‖ < ε for 1 ≤ i ≤ k− 1.
In particular, ‖x(i) − x(i+1)‖ ≤ 2ε for all 1 ≤ i ≤ k − 1. To conclude, write

‖p − q‖ ≤ ‖p − x(1)‖ + ‖x(1) − x(k)‖ + ‖q − x(k)‖

≤ ε +
k−1
∑

i=1
‖x(i) − x(i+1)‖ + ε ≤ 2kε ≤ 2εcvK (ε).

Since this bound holds for all p, q ∈ K , we get the announced bound on the diameter
of K . #$
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We are now in position to prove Lemma 2.2.

Proof of Lemma 2.2 Let ε ≤ ρ/4, and x1, . . . , xcvM (ε) be a minimal covering of M .
According to Lemma 9.1, for all k,

Q(BM (xk, ε)) ≥ ad fminε
d

for some ad > 0. A straightforward packing argument [12, Sect. B.1] yields that the
covering number of the support M of Q satisfies

cvM (ε) ≤ cd
fminεd

for all ε ≤ ρ/4, where cd = 2d/ad . Applying this bound with ε = ρ/4, together with
Lemma 9.2 yields

diam(M) ≤ 2
ρ

4
cvM

(

ρ

4

)

≤ ρ

2

cd
fmin(ρ/4)d

= Cd

fminρd−1 ,

where Cd = 23d−1/ad . #$
Nowwe allow for some outliers.We consider a random variable X with distribution

P , that can be written as X = V (Y + Z) + (1 − V )X ′′, with ‖Z‖ ≤ sh, s ≤ 1/4,
such that P(V = 1) = β and V is independent from (Y, Z , X ′′), Y has law Q
in GD,d, fmin, fmax,ρ , and X ′′ has uniform distribution on B(0, K0) (recall that K0 is
defined below Lemma 2.2). Note that s = 0 corresponds to the clutter noise case,
whereas β = 1 corresponds to the additive noise case.

For a fixed point x , let p(x, h) denote P(B(x, h)). We have P(VY ∈ B(x, (1 −
s)h)) ≤ P(V X ∈ B(x, h)) ≤ P(VY ∈ B(x, 2h)). Hence we may write

βq(x, 3/4h)+ (1− β)q ′(x, h) ≤ p(x, h) ≤ βq(x, 2h)+ (1− β)q ′(x, h),

where q(x, h) = Q(B(x, h)), and q ′(x, h) = (h/K0)
D . Bounds on the quantities

above are to be found in the following lemma.

Lemma 9.3 There exists h+(ρ, β, fmin, fmax, d) ≤ ρ/
√
12d such that, if h ≤ h+,

for every x such that d(x, M) ≤ h, we have

– B(x, 2h) ∩ M ⊂ B(πM (x), 4h) ∩ M,

– q(x, 2h) ≤ Cd fmaxhd .

Moreover, if d(x, M) ≤ h/
√
2, we have

– B(πM (x), h/8) ∩ M ⊂ B(x, 3h/4),
– cd fminhd ≤ q(x, 3h/4),
– p(x, h) ≤ 2βq(x, 2h).
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Proof Set h1(ρ) = ρ/(16α), and let x be such that d(x, M) ≤ h, and h ≤
h1. According to Proposition 8.2, B(x, 2h) ∩ M ⊂ B(πM (x), r+2h) ∩ M , with
r+2h = √

(1+ 2�/ρ)r2h ≤ 2r2h ≤ 4h. According to Proposition 8.6, if y ∈
B(πM (x), 4h) ∩ M , then dM (πM (x), y) ≤ 4αh ≤ ρ/4. Proposition 8.7 then yields
q(x, 2h) ≤ Cd fmaxhd .

Now if d(x, M) ≤ h/
√
2, B(πM (x), r−3h/4) ∩ M ⊂ B(x, 3h/4) ∩ M from

Proposition 8.2, with r−3h/4 =
√

(1−�/ρ)r3h/4 ≥ r3h/4/2 ≥ h/8. Since we have
BM (πM (x), h/8) ⊂ B(πM (x), h/8) ∩ M , a direct application of Proposition 8.7
entails cd fminhd ≤ q(x, 3h/4).

Applying Proposition 8.7 again, there exists h2( fmin, d, D, β, ρ) such that if h ≤
h1 ∧ h2, then for any x such that d(x, M) ≤ h/

√
2 we have (1 − β)q ′(x, h) ≤

βcd, fminh
d , along with q(x, 2h) ≥ q(x, 3h/4) ≥ cd, fminh

d . We deduce that p(x, h) ≤
2βq(x, 2h). Taking h+ = h1 ∧ h2 ∧ ρ/

√
12d leads to the result. #$

C.2 Local Covariance Matrices

In this section we describe the shape of the local covariance matrices involved in
tangent space estimation.Without loss of generality, the analysis will be conducted for
̂�1 (at sample point X1), abbreviated as ̂�.We further assume that d(X1, M) ≤ h/

√
2,

πM (X1) = 0, and that T0M is spanned by the d first vectors of the canonical basis of
R

D .
The two models (additive noise and clutter noise) will be treated jointly, by con-

sidering a random variable X of the form

X = V (Y + Z)+ (1− V )X ′′,

where P(V = 1) = β and V is independent from (Y, Z , X ′′), Y has distribution in
GD,d, fmin, fmax,ρ,σ , ‖Z‖ ≤ σ , and X ′′ has uniform law on B(0, K0) (recall that K0 is
defined above Definition 2.4). For short we denote by s the quantity σ/h, and recall
that we take s ≤ 1/4, along with h ≤ h+ (defined in Lemma 9.3).

Let U (Xi , h), i = 2, . . . , n, denote 1B(X1,h)(Xi ), let Yi ∈ M and Zi such that
Xi = Yi + Zi , with ‖Zi‖ ≤ sh, and let V2, . . . Vn denote random variables such that
Vi = 1 if Xi is drawn from the signal distribution (see Sect. 2.1). It is immediate
that the (U (Xi , h), Vi )’s are independent and identically distributed, with distribution
(U (X, h), V ).

With a slight abuse of notation, we will denote by P and E conditional probability
and expectation with respect to X1. The following expectations will be of particular
interest.

m(h) = E(XU (X, h)V )/E(VU (X, h)),

�(h) = E(X − m(h))%(X − m(h))t%U (X, h)V,

where for any x in R
D x% and x⊥ denote respectively the projection of x onto T0M

and T0M⊥.
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The following lemma gives useful results on both m(h) and �(h), provided that
X1 is close enough to M .

Lemma 9.4 If d(X1, M) ≤ h/
√
2, for h ≤ h+, then

�(h) =
(

A(h) 0
0 0

)

,

with

μmin(A(h)) ≥ βcd, fmin, fmaxh
d+2,

where μmin(A(h)) denotes the smallest eigenvalue of A(h). Furthermore,

‖m%(h)‖ ≤ 2h,

‖m⊥(h)‖ ≤ 2h2

ρ
+ sh.

Proof Let x = y + z be in B(X1, h), with y ∈ M and ‖z‖ ≤ sh. Since s ≤ 1/4,
‖y‖ ≤ 2h. According to Proposition 8.2 combined with Proposition 8.6, we may
write, for h ≤ h+ and y inB(X1, 2h) ∩ M ,

y = rv + R(r, v),

in local polar coordinates. Moreover, if y ∈ B(X1, (1 − s)h), then x ∈ B(X1, h).
Then, according to Proposition 8.2, we have B(πM (X1), r

−
3h/4) ∩ M ⊂ B(X1, (1−

s)h)∩M . Let u be a unit vector in T0M . Then 〈u, x −m%(h)〉2 = 〈u, rv+ R(r, v)+
z − m%(h)〉2 ≥ 〈u, rv − m%(h)〉2/2 − 3(R(r, v) + z)2 ≥ 〈u, rv − m%(h)〉2/2 −
6r4/(4ρ2)− 6s2h2 according to Proposition 8.6. Hence we may write

〈Au, u〉 = β

∫

B (X1,h)∩M
〈u, rv + R(r, v)− m%(h)〉2 J (r, v) f (r, v) drdv

≥ β fmincd

∫ r−3h/4

r=0

∫

Sd−1
rd−1

[〈u, rv − m%(h)〉2/2− 3r4/(2ρ2)− 6s2h2
]

drdv,

according to Proposition 8.7 (bound on J (r, v)) and Proposition 8.2 (the geodesic
ball BM (πM (X1), r

−
3h/4) is included in the Euclidean ball B(πM (X1), r

−
3h/4) ⊂

B(X1, (1− s)h) ∩ M). Then

∫ r−3h/4

r=0

∫

Sd−1

rd−1〈u, rv − m%(h)〉2
2

drdv

≥
∫ r−3h/4

r=0

∫

Sd−1

rd−1〈u, rv〉2
2

drdv

= σd−1
2d

∫ r−3h/4

r=0
rd+1 dr = σd−1(r−3h/4)

d+2

2d(d + 2)
,
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where σd−1 denotes the surface of the (d − 1)-dimensional unit sphere. On the other
hand,

∫ r−3h/4

r=0

∫

Sd−1

3rd+3

2ρ2 + 6s2h2rd−1 drdv = σd−1(r−3h/4)
d+2

( 3(r−3h/4)
2

2(d + 4)ρ2 +
6s2h2

d

)

.

Since r−3h/4 ≤ h ≤ h+ ≤ ρ/
√
12d , we conclude that

〈Au, u〉 ≥ βcd fmin(r
−
3h/4)

d+2 ≥ βcd fminh
d+2,

since, for d(X1, M) ≤ h/
√
2 and h ≤ h+, r−3h/4 ≥ r3h/4/2 ≥ h/8, according to

Proposition 8.2.
Now, since for any x = y + z ∈ B(X1, h), y ∈ M ∩ B(0, 2h) and ‖z‖ ≤ sh,

we have ‖y⊥‖ ≤ 2h2/ρ, according to Proposition 8.1. Jensen’s inequality yields that
‖m(h)⊥‖ ≤ 2h2/ρ + sh and ‖m(h)%‖ ≤ ‖m(h)‖ ≤ 2h. #$

The following Lemma 9.5 is devoted to quantifying the deviations of empirical
quantities such as local covariance matrices, means and number of points within balls
from their deterministic counterparts. To this aim we define N0(h) and N1(h) as the
number of points drawn from respectively noise and signal inB(X1, h)∩M , namely

N0(h) =
∑

i≥2
U (Xi , h)(1− Vi ),

N1(h) =
∑

i≥2
U (Xi , h)Vi .

Lemma 9.5 Recall that h0 =
(

κ
log n

β(n−1)
)1/(d+1) (as defined in Sect. 5.2), and h∞ =

h(d+1)/d
0 , for κ to be fixed later.
If h0 ≤ h+ and d(X1, M) ≤ h+/

√
2, then, with probability larger than 1 −

4(1/n)2/d+1, the following inequalities hold, for all h ≤ h0.

N0(h)

n − 1
≤ 2(1− β)q ′(h)+ 10(2+ 2/d) log n

n − 1
,

N1(h)

n − 1
≤ 2βq(2h)+ 10(2+ 2/d) log n

n − 1
.

Moreover, for all (h∞ ∨
√
2d(X1, M)) ≤ h ≤ h0, and n large enough,

∥

∥

∥

∥

1

n − 1

∑

i≥2
(Xi − m(h))%(Xi − m(h))t%U (Xi , h)Vi −�(h)

∥

∥

∥

∥

F
≤ Cd

fmax

fmin
√

κ
βq(2h)h2,

1

n − 1

∥

∥

∥

∥

∑

i≥2
(Xi − m(h))%U (Xi , h)Vi

∥

∥

∥

∥

F
≤ Cd

fmax

fmin
√

κ
βq(2h)h.
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Proof The first two inequalities are straightforward applications of [6, Thm. 5.1].
The proofs of the two last results are detailed below. They are based on Talagrand–
Bousquet’s inequality (see, e.g., [8, Thm. 2.3]) combined with the so-called peeling
device.

Define h− = (h∞∨
√
2d(X1, M)), where we recall that in this analysis X1 is fixed,

and let fT,h denote the function

fT,h(x, v) = 〈

T, (x − m(h))%(x − m(h))t%U (x, h)v
〉

,

for h− ≤ h ≤ h0, T a d × d matrix such that ‖T ‖F = 1, x in R
D , v in {0, 1}, and

〈T, B〉 = trace(T t A), for any square matrices T and A. Now we define the weighted
empirical process

Z = sup
T,h

∑

i≥2

fT,h(Xi , Vi )− E fT,h(X, V )

r(h)
,

with r(h) = βq(2h)h2, along with the constrained empirical processes

Z(u) = sup
T,h≤u

∑

i≥2
fT,h(Xi , Vi )− E fT,h(X, V ),

for h− ≤ u ≤ h0. Since ‖ fT,h‖∞ ≤ supx∈M ‖x − m(h)‖2U (x, h) ≤ 4h2, and

Var( fT,h(X, V )) ≤ E(‖X − m(h)‖2U (X, h)V )

≤ 16βh4P(V X ∈ B(X1, h))

≤ 16βh4P(VY ∈ B(X1, 2h)),

for s ≤ 1/4, a direct application of Theorem 2.3 in [8] yields, with probability larger
than 1− e−x ,

Z(u) ≤ 3EZ(u)+
√

32βq(2u)u4x

n − 1
+ 20u2x

3(n − 1)
.

To get a bound on EZ(u), we introduce some independent Rademacher random vari-
ables σ2, . . . , σn , i.e., P(σ j = 1) = P(σ j = −1) = 1/2. With a slight abuse of
notation, expectations with respect to the (Xi , Vi )’s and σi ’s, i = 2, . . . , n, will be
denoted byE(X,V ) andEσ in what follows. According to the symmetrization principle
(see, e.g., [7, Lem. 11.4]), we have

(n − 1)EZ(u) ≤ 2E(X,V )Eσi sup
h≤u,T

∑

i≥2

〈

T, σi ViU (Xi , h)((Xi − m(h))%(Xi − m(h))t%)
〉

≤ 2E(X,V )Eσ sup
h≤u,T

∑

i≥2
σi

〈

ViU (Xi , h)Xi X
t
i , T

〉

+ 2E(X,V )Eσ sup
h≤u,T

∑

i≥2
σi

〈

ViU (Xi , h)Xim(h)t , T
〉
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+ 2E(X,V )Eσ sup
h≤u,T

∑

i≥2
σi

〈

ViU (Xi , h)m(h)Xt
i , T

〉

+ 2E(X,V )Eσ sup
h≤u,T

∑

i≥2
σi

〈

ViU (Xi , h)m(h)m(h)t , T
〉

:= 2E(X,V )(E1 + E2 + E3 + E4).

For a fixed sequence (Xi , Vi ), i = 2, . . . , n, we may write

E1 ≤ Eσ sup
h≤u

(∥

∥

∥

∥

∑

i≥2
σi ViU (Xi , h)Xi X

t
i

∥

∥

∥

∥

F
− Eσ

∥

∥

∥

∥

∑

i≥2
σi ViU (Xi , h)Xi X

t
i

∥

∥

∥

∥

F

)

+ sup
h≤u

Eσ

∥

∥

∥

∥

∑

i≥2
σi ViU (Xi , h)Xi X

t
i

∥

∥

∥

∥

F
:= E11 + E12.

Jensen’s inequality ensures that

E12 ≤ sup
h≤u

√

√

√

√Eσ

∥

∥

∥

∥

∑

i≥2
σi ViU (Xi , h)Xi Xt

i

∥

∥

∥

∥

2

F
≤ 4u2

√

N1(u),

hence

E(X,V )E12 ≤ 4u2
√

β(n − 1)q(2u).

For the term E11, note that, when (Xi , Vi )i=2,...,n is fixed, suph≤u
(∥

∥

∑

i≥2 σi Vi
U (Xi , h)Xi Xt

i

∥

∥

F − Eσ

∥

∥

∑

i≥2 σi ViU (Xi , h)Xi Xt
i

∥

∥

F

)

is in fact a supremum of at
most N1(u) processes. According to the bounded difference inequality (see, e.g.,
[7, Thm. 6.2]), each of these processes is subGaussian with variance bounded by
16h4N1(u) (see Theorem 2.1 of [7]). Hence a maximal inequality for sub-Gaussian
random variables (see Sect. 2.5, p. 31, of [7]) ensures that

E11 ≤ 4h2
√

2N1(u) log(N1(u)) ≤ 4h2
√

2N1(u) log(n − 1).

Hence E(X,V )E11 ≤ 4h2
√

2β(n − 1)q(2u) log(n − 1). E2 may also be decomposed
as

E2 = Eσ sup
h≤u

∥

∥

∥

∥

(

∑

i≥2
σi ViU (Xi , h)Xi

)

m(h)t
∥

∥

∥

∥

F

≤ 2uEσ sup
h≤u

∥

∥

∥

∥

∑

i≥2
σi ViU (Xi , h)Xi

∥

∥

∥

∥
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≤ 2u

(

Eσ sup
h≤u

(∥

∥

∥

∥

∑

i≥2
σi ViU (Xi , h)Xi

∥

∥

∥

∥

− Eσ

∥

∥

∥

∥

∑

i≥2
σi ViU (Xi , h)Xi

∥

∥

∥

∥

)

+ sup
h≤u

Eσ

∥

∥

∥

∥

∑

i≥2
σi ViU (Xi , h)Xi

∥

∥

∥

∥

)

:= 2u(E21 + E22).

Jensen’s inequality yields that E22 ≤ 2u
√
N1(u), and the same argument as for E11

(expectation of a supremum of n − 1 sub-Gaussian processes with variance bounded
by 4u2N1(u)) gives E22 ≤ 2u

√

2N1(u) log(n − 1). Hence

E(X,V )E2 ≤ 4u2
√

β(n − 1)q(2u)
(√

2 log(n − 1)+ 1
)

.

Similarly, we may write

E(X,V )E3 ≤ 4u2
√

β(n − 1)q(u)
(√

2 log(n − 1)+ 1
)

.

At last, we may decompose E4 as

E4 ≤ Eσ 4u
2 sup
h≤u

∣

∣

∣

∣

∑

i≥2
ViU (Xi , h)

∣

∣

∣

∣

≤ 4u2
[

Eσ sup
h≤u

(∣

∣

∣

∣

∑

i≥2
ViU (Xi , h)

∣

∣

∣

∣

− Eσ

∣

∣

∣

∣

∑

i≥2
ViU (Xi , h)

∣

∣

∣

∣

)

+ sup
h≤u

Eσ

∣

∣

∣

∣

∑

i≥2
ViU (Xi , h)

∣

∣

∣

∣

]

≤ 4u2
√

N1(u)
(√

2 log(n − 1)+ 1
)

,

using the same argument. Combining all these terms leads to

EZ(u) ≤ 32
√

βq(2u)√
n − 1

(√

2 log(n − 1)+ 1
)

,

hence we get

P

(

Z(u)≥ 192
√
2u2

√

βq(2u) log(n − 1)√
n − 1

(

1+ 1

48

√

x

log(n − 1)

)

+ 20u2x

n − 1

)

≤e−x .

To derive a bound on the weighted process Z , we make use of the so-called peel-
ing device (see, e.g., [7, Sect. 13.7, p. 387]). Set p = &log(h0/h∞)' ≤ 1 +
log(h0/h∞), so that e−ph0 ≤ h−. According to Lemma 9.3, if I j denotes the slice
[e− j h0, e−( j−1)h0] ∩ [h−, h0], then, for every h in I j , we have

r(h) ≥ r(h j−1)cd
fmin

fmax
,

where cd depends only on the dimension, provided that h0 ≤ h+. Now we may write
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P

(

Z ≥ 192 fmax
√
2

fmincd
√

βq(2h−)(n − 1)

(

1+ 1

48

√

x + log(p)

n − 1

)

+ 20 fmax(x + log(p))

(n − 1)βcd fminq(2h−)

)

≤
p

∑

j=1
P

(

sup
T,h∈I j

∑

i≥2 fT,h(Xi , Vi )− E fT,h(X, V )

r(h)

≥ 192 fmax
√
2

fmincd
√

βq(2h−)(n − 1)

(

1+ 1

48

√

x + log(p)

n − 1

)

+ 20 fmax(x + log(p))

(n − 1) fmincdβq(2h−)

)

≤
p

∑

j=1
P

(

Z(h j−1) ≥ 192
√
2r(h j−1)

√

βq(2h−)(n − 1)

(

1+ 1

48

√

x + log(p)

n − 1

)

+ 20r(h j−1)(x + log(p))

(n − 1)βq(2h−)

)

.

Since q(2h j−1) ≥ q(2h−), we deduce that

P

(

Z ≥ 192 fmax
√
2

fmincd
√

βq(2h−)(n − 1)

(

1+ 1

48

√

x + log(p)

n − 1

)

+ 20 fmax(x + log(p))

(n − 1)cd fminβq(2h−)

)

≤ pe−(x+log(p))

= e−x .

Now, according to Lemma 9.3, βq(2h−) ≥ cdκ log n/(n − 1). On the other hand,
p ≤ 1 + log(h0/h∞) ≤ log(β(n − 1)/κ)/d ≤ log n/d, for κ ≥ 1. For n large
enough, taking x = (1+ 2/d) log n in the previous inequality, we get

P

(

Z ≥ Cd
fmax

fmin
√

κ

)

≤
(

1

n

)1+2/d
.

The last concentration inequality of Lemma 9.5 may be derived the same way, con-
sidering the functions

gT,h(x, v) = 〈(x − m(h))U (x, h)v, T 〉,
where T is an element of Rd satisfying ‖T ‖ ≤ 1. #$

C.3 Decluttering Rate

In this section we prove that, if the angle between tangent spaces is of order h, then
we can distinguish between outliers and signal at order h2. We recall that the slab
S(x, T, h) is the set of points y such that‖πT (y−x)‖ ≤ k1h and‖πT⊥(y−x)‖ ≤ k2h2,
k1 and k2 defined in Lemma 5.4, and where πT denotes the orthogonal projection
onto T .

Lemma 9.6 Recall that h0 =
(

κ
log n

β(n−1)
)1/(d+1)

, and h∞ = h(d+1)/d
0 . Let K be fixed,

and k1, k2 defined accordingly as in Lemma 5.4. If h0 ≤ h+, for κ large enough
(depending on d, ρ and fmin) and n large enough, there exists a threshold t such that,
for all h∞ ≤ h ≤ h0, we have, with probability larger than 1− 3(1/n)2/d+1,

X1 ∈ M and � (T, TX1M) ≤ Kh/ρ "⇒ |S(X1, T, h) ∩ {X2, . . . , Xn}| ≥ t (n − 1)hd ,

d(X1, M) ≥ h2/ρ and � (T, Tπ(X1)M) ≤ Kh/ρ "⇒ |S(X1, T, h) ∩ {X2, . . . , Xn}| < t (n − 1)hd ,

d(X1, M) ≥ h/
√
2 "⇒ |S(X1, T, h) ∩ {X2, . . . , Xn}| < t (n − 1)hd .
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Proof Suppose thatd(X1, M) ≥ h/
√
2.Then, according toLemma5.4, S(X1, T, h) ⊂

B(X1, h/2), withB(X1, h/2)∩M = ∅, hence Pn(S(X1, T, h)) ≤ Pn(B(X1, h/2)).
Theorem 5.1 in [6] yields that, for all h∞ ≤ h ≤ h0, with probability larger than
1− (1/n)2/d+1,

Pn(B(X1, h/2)) ≤ 2P(B(X1, h/2))+ 4(2/d + 1) log(8n)

n − 1
.

Since log(n)/(n − 1) ≤ βhd/κ , we may write

Pn(S(X1, T, h)) ≤ 2Q′(B(X1, h/2))+ 4(2/d + 1) log(8n)

n − 1

≤ 2(1− β)
hD

(2K0)D
+ 4(2/d + 1) log(8n)

n − 1

≤ (1− β)Cd,D,ρ, fminh
d+1 + 4(2/d + 1) log(8n)

n − 1

≤ hd
(

(1− β)Cd,D,ρ, fminh +
Cdβ

κ

)

,

for n large enough so that h ≤ 1.
If h/

√
2 ≥ d(X1, M) ≥ h2/ρ and � (Tπ(X1)M, T ) ≤ Kh/ρ, then Lemma 5.4

provides a big slab S′(x, Tπ(x)M, h) so that S(x, T, h) ⊂ S′(x, Tπ(x)M, h) and
S′(x, Tπ(x)M, h) ∩ M = ∅. Thus, Pn(S(x, T, h)) ≤ Pn(S′(x, Tπ(x)M, h)). Another
application of Theorem 5.1 in [6] yields that, for all h∞ ≤ h ≤ h0, with probability
larger than 1− (1/n)2/d+1,

Pn(S
′(x, Tπ(x)M, h)) ≤ 2P(S′(x, Tπ(x)M, h))+ 4(2/d + 1) log(8n)

n − 1
,

hence, denoting by ωr the volume of the r -dimensional unit ball, we get

Pn(S(X1, T, h)) ≤ 2Q′(B(X1, h/2))+ 4(2/d + 1) log(8n)

n − 1

≤ 2(1− β)ωdωD−d
K D
0 ωD

(k′1h)d(k′2h2)D−d +
4(2/d + 1) log(8n)

n − 1

≤ (1− β)Cd,D, fmin,ρh
d+1 + 4(2/d + 1) log(8n)

n − 1

≤ hd
(

(1− β)Cd,D,ρ, fminh +
Cdβ

κ

)

,

when n is large enough.
Now, if X1 ∈ M and � (Tπ(X1)M, T ) ≤ Kh/ρ, Lemma 5.4 entails that

B(X1, k3h) ∩ M ⊂ S(X1, T, h), hence Pn(S(X1, T, h)) ≥ Pn(B(X1, k3h) ∩ M).
The last application of Theorem 5.1 in [6] yields that, for all h∞ ≤ h ≤ h0, with
probability larger than 1− (1/n)2/d+1,
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Pn(B(X1, k3h) ∩ M) ≥ 1

2
P(B(X1, k3h))− 2(2/d + 1) log(8n)

n − 1
.

Thus we deduce that

Pn(S(X1, T, h)) ≥ β

2
Q(B(X1, k3h))− 2(2/d + 1) log(8n)

n − 1

≥ β

2
q(k3h)− Cd

βhd

κ
≥ hd

(

βcd, fmin,ρ − Cd
β

κ

)

,

according to Lemma 9.3 (since k3 ≤ 1). Choosing κ large enough (depending on d, ρ
and fmin) and then n large enough leads to the result. #$

D Matrix Decomposition and Principal Angles

In this section we expose a standard matrix perturbation result, adapted to our frame-
work. For real symmetric matrices, we let μi (·) denote their i-th largest eigenvalue
and μmin(·) the smallest one.

Theorem 10.1 (Sin θ theorem [16], this version from Lemma 19 in [2]) Let O ∈
R

D×D, B ∈ R
d×d be positive semi-definite symmetric matrices such that

O =
(

B 0
0 0

)

+ E .

Let T0 (resp. T ) be the vector space spanned by the first d vectors of the canonical
basis (resp. by the first d eigenvectors of O). Then

� (T0, T ) ≤
√
2‖E‖op

μmin(B)
.

E Local PCA for Tangent Space Estimation and Decluttering

This section is dedicated to the proofs of Sect. 5. We begin with the case of additive
noise (and no outliers), that is Proposition 5.1.

E.1 Proof of Proposition 5.1

Without loss of generality, the local PCA analysis will be conducted at base point
X1, the results on the whole sample then follow from a standard union bound. For
convenience, we assume that πM (X1) = 0 and that T0M is spanned by the d first
vectors of the canonical basis of RD . We recall that Xi = Yi + Zi , with Yi ∈ M and
‖Zi‖ ≤ sh, for s ≤ 1/4. In particular, ‖X1‖ ≤ ‖Z1‖ ≤ sh ≤ h/4.
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We adopt the following notation for the local covariance matrix based on the whole
sample Xn .

̂�(h) = 1

n − 1

∑

j≥2
(X j − X(h))(X j − X(h))tU (Xi , h),

X(h) = 1

N (h)

∑

i≥2
XiU (Xi , h),

N (h) =
∑

i≥2
U (Xi , h).

Note that the tangent space estimator TSE(Xn, h)1 is the space spanned by the first d
eigenvectors of ̂�(h). From now on we suppose that all the inequalities of Lemma 9.5
are satisfied, defining then a global event of probability larger than 1− 4(1/n)2/d+1.

We consider h = h0 ≤ h+, so that Lemmas 9.3 and 9.4 hold. We may then
decompose the local covariance matrix as follows.

̂�(h) = 1

n − 1

∑

i≥2
(Xi − m(h))(Xi − m(h))tU (Xi , h)

− N (h)

n − 1
(X(h)− m(h))(X(h)− m(h))t := ̂�1 + ̂�2. (3)

The first term may be written as

̂�1 = 1

n − 1

∑

i≥2
(Xi − m(h))(Xi − m(h))tU (Xi , h)

= 1

n − 1

∑

i≥2
(Xi − m(h))%(Xi − m(h))t%U (Xi , h)+ R1

= �(h)+ R1 + R2,

where

�(h) =
(

A(h) 0
0 0

)

.

According to Lemma 9.4 (with β = 1), μmin(A(h)) ≥ cd fminhd+2. On the other
hand, using Proposition 8.1 and Lemma 9.4 we may write

(n − 1)‖R1‖F /N (h) ≤ 2 sup
y+z∈B(X1,h)

‖(y + z − m(h))%‖‖(y + z − m(h))⊥‖

+ sup
y+z∈B(X1,h)

‖(y + z − m(h))⊥‖2

≤ 2 sup
y+z∈B(X1,h)

‖(y + z − m(h))‖(‖(y − m(h))⊥‖ + sh)
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+ sup
y∈B(0,2h)∩M

(‖(y − m(h))⊥‖ + sh)2

≤ 8h

(

4h2

ρ
+ 2sh

)

+
(

4h2

ρ
+ 2sh

)2

≤ 34h3

ρ
+ 20sh2,

since h ≤ h+ and s ≤ 1/4. In addition, we can write

R2 =
(

R2 0
0 0

)

,

with ‖R2‖F ≤ Cd
fmax

fmin
√

κ
q(2h)h2 according to Lemma 9.5 (with β = 1). In turn, the

term ̂�2 may be decomposed as

̂�2 =
(

R4 0
0 0

)

+ R3,

with

‖R4‖F ≤ N (h)

n − 1
‖(X(h)− m(h))%‖‖(X(h)− m(h))‖

≤ 2h

n − 1

∥

∥

∥

∥

∑

i≥2
(Xi − m(h))%U (Xi , h)

∥

∥

∥

∥

≤ 2Cdq(2h)h2 fmax

fmin
√

κ
,

according to Lemma 9.5. A similar bound on R3 may be derived,

‖R3‖F ≤ N (h)

n − 1
‖(X(h)− m(h))⊥‖‖(X(h)− m(h))‖

≤ 4h

n − 1

∥

∥

∥

∥

∑

i≥2
(Yi + Zi − m(h))⊥U (Xi , h)

∥

∥

∥

∥

≤ 8hN (h)(2h2/ρ + sh)

n − 1
≤ N (h)h2

n − 1

(

16h

ρ
+ 8s

)

,

according to Proposition 8.1 and Lemma 9.4. If we choose h = (

κ
log n
n−1

)1/d , for κ large
enough (depending on d, fmin and fmax), we have

‖R2 + R4‖F
μmin(A(h))

≤ 1/4.

Now, provided that κ ≥ 1, according to Lemma 9.5, we may write

‖R1 + R3‖F
μmin(A(h))

≤ K fmax, fmin,d(h/ρ + s),
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which, for n large enough, leads to

� (T0M, ̂TX1M) ≤ √2K fmax, fmin,d(h/ρ + s),

according to Proposition 10.1.

E.2 Proof of Proposition 5.5

The proof of Proposition 5.5 follows the same path as the derivation of Proposition
5.1, with some technical difficulties due to the outliers (β < 1). We emphasize that
in this framework, there is no additive noise (σ = 0). As in the previous section, the
analysis will be conducted for X1 ∈ X

(k), for some fixed k ≥ −1, k = −1 referring to
the initialization step. Results on the whole sample then follow from a standard union
bound. As before, we assume that πM (X1) = 0 and that T0M is spanned by the first d
vectors of the canonical basis of RD . In what follows, denote by t̂ the map from R

D

to {0, 1} such that t̂(Xi ) = 1 if and only if Xi is in X(k).
We adopt the following notation for the local covariance matrix based onX(k) (after

k + 1 iterations of the outlier filtering procedure).

̂�(k)(h) = 1

n − 1

∑

j≥2
(X j − X(h)(k))(X j − X(h)(k))tU (Xi , h)̂t(Xi ),

X
(k)

(h) = 1

N (k)(h)

∑

i≥2
XiU (Xi , h)̂t(Xi ),

N (k)(h) =
∑

i≥2
U (Xi , h)̂t(Xi ).

Also recall that we define N0(h) and N1(h) as the number of points drawn from
respectively clutter and signal inB(X1, h) ∩ M (based on the whole sample Xn). At
last, we suppose that all the inequalities of Lemmas 9.5 and 9.6 are satisfied, defining
then a global event of probability larger than 1− 7(1/n)2/d+1.

We recall that we consider h∞ ≤ h ≤ hk , k ≥ −1 (with h−1 = h0), and X1 inX(k)

such that d(X1, M) ≤ h/
√
2. We may then decompose the local covariance matrix as

̂�(k)(h) = 1

n − 1

∑

i≥2
(Xi − m(h))(Xi − m(h))tU (Xi , h)̂t(Xi )

− N (k)(h)

n − 1
(X

(k)
(h)− m(h))(X(h)(k) − m(h))t

= 1

n − 1

∑

i≥2
(Xi − m(h))(Xi − m(h))tU (Xi , h)̂t(Xi )Vi (Xi )

+ 1

n − 1

∑

i≥2
(Xi − m(h))(Xi − m(h))tU (Xi , h)(1− Vi )̂t(Xi )
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− N (k)(h)

n − 1
(X(h)(k) − m(h))(X(h)(k) − m(h))t ,

:= ̂�
(k)
1 +̂�

(k)
2 + ̂�

(k)
3 . (4)

The proof of Proposition 5.5 will follow by induction.

Initialization step (k = −1): In this case X(k) = Xn , h = h0, d(X1, M) ≤ h0/
√
2,

and t̂ is always equal to 1. Then the first term ̂�
(k)
1 of (4) may be written as

1

n − 1

∑

i≥2
(Xi − m(h))(Xi − m(h))tU (Xi , h)Vi

= 1

n − 1

∑

i≥2
(Xi − m(h))%(Xi − m(h))t%U (Xi , h)Vi + R1

= �(h)+ R1 + R2,

where

�(h) =
(

A(h) 0
0 0

)

.

According to Lemma 9.4, μmin(A(h)) ≥ cd fminβhd+2, and ‖R1‖F ≤ 34 N1(h)h3

ρ(n−1)
according to Proposition 8.1. Moreover, we can write

R2 =
(

R2 0
0 0

)

,

with ‖R2‖F ≤ Cd
fmax

fmin
√

κ
βq(2h)h2 according to Lemma 9.5. Term ̂�

(k)
2 in inequality

(4) may be bounded by

‖̂�
(k)
2 ‖F ≤ 16h2N0(h)

n − 1
.

In turn, term ̂�
(k)
3 may be decomposed as

N (k)(h)

n − 1
(X

(k)
(h)− m(h))(X

(k)
(h)− m(h))t =

(

R6 0
0 0

)

+ R5,

with

‖R6‖F ≤ N (k)(h)

n − 1
‖(X (k)

(h)− m(h))%‖‖(X (k)
(h)− m(h))‖

≤ 4h

n − 1

(∥

∥

∥

∥

∑

i≥2
(Xi − m(h))%U (Xi , h)Vi

∥

∥

∥

∥

+
∥

∥

∥

∥

∑

i≥2
(Xi − m(h))%U (Xi , h)(1− Vi )

∥

∥

∥

∥

)

≤ 4Cdβq(2h)h2 fmax

fmin
√

κ
+ 16h2N0(h)

n − 1
,
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according to Lemma 9.5. We may also write

‖R5‖F ≤ N (k)(h)

n − 1
‖(X (k)

(h)− m(h))⊥‖‖(X (k)
(h)− m(h))‖

≤ 4h

n − 1

(∥

∥

∥

∥

∑

i≥2
(Xi − m(h))⊥U (Xi , h)Vi

∥

∥

∥

∥

+
∥

∥

∥

∥

∑

i≥2
(Xi − m(h))⊥U (Xi , h)(1− Vi )

∥

∥

∥

∥

)

≤ 16N1(h)h3

(n − 1)ρ
+ 16N0(h)h2

(n − 1)
,

according to Proposition 8.1 and Lemma 9.4. As in the additive noise case (see proof
of Proposition 5.1), provided that κ is large enough (depending on d, fmin, and fmax),
we have

‖R2 + R6‖F
μmin(A(h))

≤ 1/4.

Since (n− 1)hd0 = κ log n
βh , if we ask κ ≥ ρ, then for n large enough we eventually get

‖̂�
(k)
2 + R1 + R5‖F
μmin(A(h))

≤ Kd, fmin, fmax,β

h0
ρ

,

according to Lemma 9.5. Then, Proposition 10.1 can be applied to obtain

� (TSE(X(−1), h0)1, Tπ(X1)M) ≤ √2K (0)
d, fmin, fmax,β

h0/ρ.

According to Lemma 9.6, we may choose κ large enough (with respect to K =√
2K (0), d, fmin and ρ) and then a threshold t so that, if X1 ∈ M , then X1 ∈ X

(0),
and if d(X1, M) ≥ h20/ρ, then X1 /∈ X

(0).

Iteration step:Nowweassume that k ≥ 0, and thatd(Xi , M) ≥ h2k/ρ implies t̂(Xi ) =
0, with hk =

(

κ
log n

β(n−1)
)γk , γk being between 1/(d+1) and 1/d. Let h∞ ≤ h ≤ hk , and

suppose that d(X1, M) ≤ hk/
√
2. As in the initialization step, ̂�

(k)
1 may be written as

(

A(h) 0
0 0

)

+ R1 + R2,

with μmin(A(h)) ≥ cd fminβhd+2, ‖R1‖F ≤ 34 N1(h)h3

ρ(n−1) , and ‖R2‖F ≤ Cd
fmax

fmin
√

κ

× βq(2h)h2.
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We can decompose ̂�
(k)
2 as

1

n − 1

∑

i≥2
(Xi − m(h))(Xi − m(h))tU (Xi , h)(1− Vi )̂t(Xi )

= 1

n − 1

∑

i≥2
(Xi − m(h))%(Xi − m(h))t%U (Xi , h)(1− Vi )̂t(Xi )+ R3

=
(

R4 0
0 0

)

+ R3,

with ‖R4‖F ≤ 16N0(h)h2

n−1 and ‖R3‖ ≤ 128N0(h)hh2k
(n−1)ρ , according to Proposition 8.3, for

n large enough so that h20/ρ ≤ h∞. Term ̂�
(k)
3 may also be written as

N (k)(h)

n − 1
(X

(k)
(h)− m(h))(X

(k)
(h)− m(h))t =

(

R6 0
0 0

)

+ R5,

with

‖R6‖F ≤ N (k)(h)

n − 1
‖(X (k)

(h)− m(h))%‖‖(X (k)
(h)− m(h))‖

≤ 4h

n − 1

(∥

∥

∥

∥

∑

i≥2
(Xi − m(h))%U (Xi , h)Vi

∥

∥

∥

∥

+
∥

∥

∥

∥

∑

i≥2
(Xi − m(h))%U (Xi , h)(1− Vi )̂t(Xi )

∥

∥

∥

∥

)

≤ 4Cdβq(2h)h2 fmax

fmin
√

κ
+ 16h2N0(h)

(n − 1)
,

according to Lemma 9.5. We may also write

‖R5‖F ≤ N (k)(h)

n − 1
‖(X (k)

(h)− m(h))⊥‖‖(X (k)
(h)− m(h))‖

≤ 4h

n − 1

(∥

∥

∥

∥

∑

i≥2
(Xi − m(h))⊥U (Xi , h)Vi

∥

∥

∥

∥

+
∥

∥

∥

∥

∑

i≥2
(Xi − m(h))⊥U (Xi , h)(1− Vi )̂t(Xi )

∥

∥

∥

∥

)

≤ 16N1(h)h3

(n − 1)ρ
+ 32N0(h)hh2k

ρ(n − 1)
,

according to Propositions 8.1, 8.3 and Lemma 9.4. As done before, we may choose κ

large enough (depending on d, fmin and fmax, but not on k) such that

‖R2 + R4 + R6‖F
μmin(A(h))

≤ 1/4.

Now choose h = hk+1 = (

κ
log n

β(n−1)
)(2γk+1)/(d+2), with κ ≥ 1. This choice

is made to optimize residual terms of the form h/ρ + h2k N0(h)/h coming from
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‖R1 + R3 + R5‖F /μmin(A(hk+1)). Then we get, according to Lemma 9.5,

‖R1 + R3 + R5‖F
μmin(A(hk+1))

≤ Cd
fmaxhk+1
ρ fmin

+ C ′d
βρ fmin

(

κ
log n

β(n − 1)

)γk+1+2γk−(2γk+1)+1

≤ Kd, fmin, fmax,β

hk+1
ρ

, (5)

where again, Kd, fmin, fmax,β does not depend on k. At last, we may apply Proposition
10.1 to get

� (TSE(X(k), hk+1)1, Tπ(X1)M) ≤ √2Kd, fmin, fmax,βhk+1/ρ

≤ √2
(

Kd, fmin, fmax,β ∨ K (0)
d, fmin, fmax,β

)

hk+1/ρ
:= Cd,β, fmax, fminhk+1/ρ.

Then, according to Lemma 9.6, we may choose κ large enough (not depending on
k) and t (not depending on k either) so that if X1 ∈ M , then X1 ∈ X

(k+1), and if
d(X1, M) ≥ h2k/ρ, then X1 /∈ X

(k+1). Proposition 5.5 then follows from a straight-
forward union bound on the sample {X1, . . . , Xn}.

E.3 Proof of Proposition 5.8

In this case,wehaved(X j , M) ≤ h2∞/ρ, for every X j inX(̂k). The proof of Proposition
5.8 follows from the same calculation as in the proof of Proposition 5.5, replacing h2k/ρ
by its upper bound h2∞/ρ and taking hk+1 = h∞ in the iteration step.

F Proof of the Main Reconstruction Results

We now prove main results Theorem 2.7 (additive noise model), and Theorems 2.8
and 2.9 (clutter noise model).

F.1 Additive Noise Model

Proof of Corollary 5.2 Let Q ∈ GD,d, fmin, fmax,ρ,σ . Write ε = cd, fmin, fmax(h ∨ ρσ/h)

for cd, fmin, fmax large enough, an consider the event A defined by

A =
{

max
X j∈Xn

� (TπM (X j )M, ̂Tj (h)) ≤ Cd, fmin, fmax

(

h

ρ
+ σ

h

)}

∩
{

sup
x∈M

d(x,Xn) ≤ σ
}

∩
{

sup
X j∈Xn

d(X j , M) ≤ Cd, fmin

(

log n

n

)1/d}

.
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Then from Proposition 5.1 and Lemma 9.1, PQ(A) ≥ 1 − 5
( 1
n

)2/d , and from the
definition of ε and the construction of Yn , for n large enough,

A ⊂
{

max
X j∈Xn

� (TπM (X j )M, ̂Tj (h)) ≤ ε

2280ρ

}

∩
{

sup
x∈M

d(x,Xn) ≤ ε
}

∩
{

sup
X j∈Xn

d(X j , M) ≤ ε2

1140ρ

}

⊂
{

max
X j∈Yn

� (TπM (X j )M, ̂Tj (h)) ≤ ε

2280ρ

}

∩
{

sup
x∈M

d(x,Yn) ≤ 2ε
}

∩ {Yn is ε-sparse}∩
{

sup
X j∈Yn

d(X j , M)≤ ε2

1140ρ

}

,

which yields the result. #$
Proof of Theorem 2.7 Following the above notation, we observe that on the event A,
Theorem 4.4 holds for ε = cd, fmin, fmax(h ∨ ρσ/h), θ = ε/(1140ρ) (where we used
the fact that θ ≤ 2 sin θ ) and η = ε2/(1140ρ) with high probability, so that the first
part of Theorem 2.7 is proven. Furthermore, for n large enough,

EQ
[

dH (M, ̂MTDC)
] = EQ

[

dH (M, ̂MTDC)1A
]+ EQ

[

dH (M, ̂MTDC)1Ac
]

≤ Cd
ε2

ρ
+ (1− PQ(A))(diam(M)+ σ)

≤ C ′d, fmin, fmax,ρ
ε2,

where for the last line we used the diameter bound of Lemma 2.2. #$

F.2 Clutter Noise Model

Proof of Corollary 5.6 Let P ∈ OD,d, fmin, fmax,ρ,β . For n large enough, write ε =
cd, fmin fmaxhkδ for cd, fmin fmax large enough, and consider the event

Aδ =
{

max
X j∈X(kδ )

� (TπM (X j )M, ̂T δ
j ) ≤ Cd, fmin, fmax

hkδ

ρ

}

∩
{

sup
x∈M

d(x,X(kδ)) ≤ h2kδ

ρ

}

∩
{

sup
X j∈X(kδ )

d(X j , M) ≤ Cd, fmin

(

log n

n

)1/d}

.

FromProposition 5.5 andLemma 9.1,PP
(

Aδ
) ≥ 1−8(1/n)2/dand from the definition

of ε and the construction of Yδ
n , for n large enough,

Aδ ⊂
{

max
X j∈X(kδ )

� (TπM (X j )M, ̂T δ
j ) ≤

ε

2280ρ

}

∩
{

sup
x∈M

d(x,X(kδ)) ≤ ε
}
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∩
{

sup
X j∈X(kδ )

d(X j , M) ≤ ε2

1140ρ

}

⊂
{

max
X j∈Yδ

n

� (TπM (X j )M, ̂T δ
j ) ≤

ε

2280ρ

}

∩
{

sup
x∈M

d(x,Yδ
n) ≤ 2ε

}

∩ {Yn is ε-sparse} ∩
{

sup
X j∈Yδ

n

d(X j , M) ≤ ε2

1140ρ

}

,

which yields the result. #$
Proof of Theorem 2.8 Following the above notation, we observe that on the event Aδ ,
Theorem 4.4 holds for ε = cd, fmin fmaxhkδ , θ = ε/(1140ρ) and η = ε2/(1140ρ), so
that the first part of Theorem 2.8 is proven. As a consequence, for n large enough,

EP
[

dH (M, ̂MTDCδ)
] = EP

[

dH (M, ̂MTDCδ)1Aδ

]+ EP
[

dH (M, ̂MTDCδ)1(Aδ)c
]

≤ Cd
ε2

ρ
+ (1− PP (Aδ))× 2K0 ≤ C ′d, fmin, fmax,ρ

ε2,

where for the second line we used the fact that M ∪ ̂MTDCδ ⊂ B0, a ball of radius
K0 = K0(d, fmin, ρ). #$

Finally, Theorem 2.9 is obtained similarly using Proposition 5.8.

References

1. Alexander, S.B., Bishop, R.L.: Gauss equation and injectivity radii for subspaces in spaces of curvature
bounded above. Geom. Dedicata 117, 65–84 (2006)

2. Arias-Castro, E., Lerman, G., Zhang, T.: Spectral clustering based on local PCA. J. Mach. Learn. Res.
18(9), 1–57 (2017)

3. Arias-Castro, E., Verzelen, N.: Community detection in dense random networks. Ann. Stat. 42(3),
940–969 (2014)

4. Boissonnat, J.-D., Ghosh, A.: Manifold reconstruction using tangential Delaunay complexes. Discrete
Comput. Geom. 51(1), 221–267 (2014)

5. Boissonnat, J.-D., Guibas, L.J., Oudot, S.Y.: Manifold reconstruction in arbitrary dimensions using
witness complexes. Discrete Comput. Geom. 42(1), 37–70 (2009)

6. Boucheron, S., Bousquet, O., Lugosi, G.: Theory of classification: a survey of some recent advances.
ESAIM Probab. Stat. 9, 323–375 (2005)

7. Boucheron, S., Lugosi, G., Massart, P.: Concentration Inequalities: A Nonasymptotic Theory of Inde-
pendence. Oxford University Press, Oxford (2013)

8. Bousquet, O.: ABennett concentration inequality and its application to suprema of empirical processes.
C. R. Math. Acad. Sci. Paris 334(6), 495–500 (2002)

9. Buchet, M., Dey, T.K., Wang, J., Wang, Y.: Declutter and resample: towards parameter free denoising.
In: Aronov, B., Katz, M.J. (eds.) The 33rd International Symposium on Computational Geometry
(SoCG’17). LIPIcs. Leibniz Int. Proc. Inform., vol. 77, Art. No. 23. Schloss Dagstuhl Leibniz-Zentrum
für Informatik, Wadern (2017)

10. do Carmo, M.P.: Riemannian Geometry. Mathematics: Theory & Applications. Birkhäuser, Boston,
MA (1992)

11. Chazal, F., Cohen-Steiner, D., Lieutier, A.: A sampling theory for compact sets in Euclidean space.
In: Proceedings of the 22nd Annual Symposium on Computational Geometry (SCG’06), pp. 319–326.
ACM, New York (2006)

123



Discrete Comput Geom (2018) 59:923–971 971

12. Chazal, F., Glisse, M., Labruère, C., Michel, B.: Convergence rates for persistence diagram estimation
in topological data analysis. J. Mach. Learn. Res. 16, 3603–3635 (2015)

13. Cheng, S.-W., Dey, T.K., Ramos, E.A.:Manifold reconstruction from point samples. In: Proceedings of
the 16th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’05), pp. 1018–1027. ACM,
New York (2005)

14. Clarkson, K.L.: Building triangulations using ε-nets. In: Proceedings of the 38th Annual ACM Sym-
posium on Theory of Computing (STOC’06), pp. 326–335. ACM, New York (2006)

15. Cuevas, A., Rodríguez-Casal, A.: On boundary estimation. Adv. Appl. Probab. 36(2), 340–354 (2004)
16. Davis, C., Kahan, W.M.: The rotation of eigenvectors by a perturbation. III. SIAM J. Numer. Anal. 7,

1–46 (1970)
17. De Marco, G., Gorni, G., Zampieri, G.: Global inversion of functions: an introduction. NoDEA Non-

linear Differ. Equ. Appl. 1(3), 229–248 (1994)
18. Dey, T.L.: Curve and surface reconstruction: algorithmswithmathematical analysis. CambridgeMono-

graphs on Applied and Computational Mathematics, vol. 23. Cambridge University Press, Cambridge
(2007)

19. Donoho, D.L.: De-noising by soft-thresholding. IEEE Trans. Inform. Theory 41(3), 613–627 (1995)
20. Dümbgen, L.,Walther, G.: Rates of convergence for random approximations of convex sets. Adv. Appl.

Probab. 28(2), 384–393 (1996)
21. Dyer, R., Vegter, G., Wintraecken, M.: Riemannian simplices and triangulations. In: Arge, L., Pach,

J. (eds.) The 31st International Symposium on Computational Geometry (SoCG’15). LIPIcs. Leibniz
Int. Proc. Inform. (LIPIcs), vol. 34, pp. 255–269. Schloss Dagstuhl Leibniz-Zentrum für Informatik,
Wadern (2015)

22. Federer, H.: Curvature measures. Trans. Am. Math. Soc. 93(3), 418–491 (1959)
23. Federer, H.: Geometric Measure Theory. Die Grundlehren der Mathematischen Wissenschaften, vol.

153. Springer, New York (1969)
24. Genovese, C.R., Perone-Pacifico, M., Verdinelli, I., Wasserman, L.: Manifold estimation and singular

deconvolution under Hausdorff loss. Ann. Stat. 40(2), 941–963 (2012)
25. Genovese, C.R., Perone-Pacifico, M., Verdinelli, I., Wasserman, L.: Minimax manifold estimation. J.

Mach. Learn. Res. 13, 1263–1291 (2012)
26. Kim, A.K.H., Zhou, H.H.: Tight minimax rates for manifold estimation under Hausdorff loss. Electron.

J. Stat. 9(1), 1562–1582 (2015)
27. LeCam, L.: Convergence of estimates under dimensionality restrictions. Ann. Stat. 1(1), 38–53 (1973)
28. Maggioni, M., Minsker, S., Strawn, N.: Multiscale dictionary learning: non-asymptotic bounds and

robustness. J. Mach. Learn. Res. 17, 1–51 (2016)
29. Mammen, E., Tsybakov, A.B.: Asymptotical minimax recovery of sets with smooth boundaries. Ann.

Stat. 23(2), 502–524 (1995)
30. Niyogi, P., Smale, S., Weinberger, S.: Finding the homology of submanifolds with high confidence

from random samples. Discrete Comput. Geom. 39(1–3), 419–441 (2008)
31. Sharma, A., Paliwal, K.K.: Fast principal component analysis using fixed-point algorithm. Pattern

Recognit. Lett. 28(10), 1151–1155 (2007)

123


	Stability and Minimax Optimality of Tangential Delaunay Complexes for Manifold Reconstruction 
	Abstract
	1 Introduction
	1.1 Contribution
	1.2 Outline
	1.3 Notation

	2 Minimax Risk and Main Results
	2.1 Statistical Model
	2.2 Minimax Risk
	2.3 Main Results

	3 Tangential Delaunay Complex
	3.1 Restricted Weighted Delaunay Triangulations
	3.2 Guarantees
	3.3 On the Sparsity Assumption

	4 Stability Result
	4.1 Interpolation Theorem
	4.2 Stability of the Tangential Delaunay Complex

	5 Tangent Space Estimation and Decluttering Procedure
	5.1 Additive Noise Case
	5.2 Clutter Noise Case

	6 Conclusion
	Acknowledgements
	Appendix
	A Interpolation Theorem
	B Some Geometric Properties under Reach Regularity Condition
	B.1 Reach and Projection on the Submanifold
	B.2 Reach and Exponential Map

	C Some Technical Properties of the Statistical Model
	C.1 Covering and Mass
	C.2 Local Covariance Matrices
	C.3 Decluttering Rate

	D Matrix Decomposition and Principal Angles
	E Local PCA for Tangent Space Estimation and Decluttering
	E.1 Proof of Proposition 5.1
	E.2 Proof of Proposition 5.5
	E.3 Proof of Proposition 5.8

	F Proof of the Main Reconstruction Results
	F.1 Additive Noise Model
	F.2 Clutter Noise Model

	References




