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Abstract We study the amortized number of combinatorial changes (edge insertions
and removals) needed to update the graph structure of theVoronoi diagram (and several
variants thereof) of a set S of n sites in the plane as sites are added to the set. To that
effect, we define a general update operation for planar graphs that can be used to
model the incremental construction of several variants of Voronoi diagrams as well
as the incremental construction of an intersection of halfspaces in R

3. We show that
the amortized number of edge insertions and removals needed to add a new site to the
Voronoi diagram is O(

√
n). A matching�(

√
n) combinatorial lower bound is shown,

even in the case where the graph representing the Voronoi diagram is a tree. This
contrasts with the O(log n) upper bound of Aronov et al. (LATIN 2006: Theoretical
Informatics. Lecture Notes in Computer Science, Springer, Berlin, 2006) for farthest-
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point Voronoi diagrams in the special case where the points are inserted in clockwise
order along their convex hull. We then present a semi-dynamic data structure that
maintains the Voronoi diagram of a set S of n sites in convex position. This data
structure supports the insertion of a new site p (and hence the addition of its Voronoi
cell) and finds the asymptotically minimal number K of edge insertions and removals
needed to obtain the diagram of S∪{p} from the diagram of S, in time O(K polylog n)

worst case, which is O(
√

n polylog n) amortized by the aforementioned combinatorial
result. Themost distinctive feature of this data structure is that the graph of the Voronoi
diagram is maintained explicitly at all times and can be retrieved and traversed in
the natural way; this contrasts with other known data structures supporting nearest
neighbor queries. Our data structure supports general search operations on the current
Voronoi diagram, which can, for example, be used to perform point location queries
in the cells of the current Voronoi diagram in O(log n) time, or to determine whether
two given sites are neighbors in the Delaunay triangulation.

Keywords Voronoi diagrams · Incremental · Grappa tree · Link-cut

Mathematics Subject Classification 68U05 · 52C45

1 Introduction

Let S be a set of n sites in the plane. The graph structure of the Voronoi diagram
VD(S) and its dual the Delaunay triangulation DT(S) capture much of the proximity
information of that set. They contain the nearest neighbor graph, the minimum span-
ning tree, and the Gabriel graph of S, and have several applications in computational
geometry, shape reconstruction, computational biology, and machine learning.

One of the most popular algorithms for constructing a Voronoi diagram inserts sites
in random order, incrementally updating the diagram [9]. In that case, backward anal-
ysis shows that the expected number of changed edges in VD(S) is constant, offering
some hope that an efficient dynamic—or at least semi-dynamic—data structure for
maintaining VD(S) could exist. These hopes, however, are rapidly squashed, as it is
easy to construct examples where the complexity of each successively added face is
�(n), and thus each insertion changes the position of a linear number of vertices and
edges of VD(S). The goal of this paper is to show that despite this worst-case behavior,
the amortized number of structural changes to the graph of the Voronoi diagram of S,
that is, the minimum number of edge-insertions and edge-deletions needed to update
VD(S) throughout any sequence of site insertions to S, is much smaller.

This might come as a surprise in light of the fact that the number of combinatorial
changes (usuallymodeled as flips) to theDelaunay triangulation of S upon the insertion
of a point can be �(n) with each insertion, even when the sites are in convex position
and are added in clockwise order. (Note that in that case the Voronoi diagram of S is
a tree and the standard flip operation is a rotation in the tree.)

To overcome this worst-case behavior, Aronov et al. [2] studied what happens in
the specific case of points in convex position added in clockwise order if the rotation
operation is replaced by the more elementary link (add an edge) and cut (delete an
edge) operations in the tree. They show that, in that model, it is possible to reconfigure
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the tree after each site insertion while performing O(log n) links and cuts, amortized;
however their proof is existential and no algorithm is provided to find those links and
cuts. Pettie [15] shows both an alternate proof of that fact using forbidden 0-1 matrices
and a matching lower bound.

One important application of Voronoi diagrams is to solve nearest-neighbor (or
farthest-neighbor) queries: given a point in the plane, find the site nearest (or far-
thest) to this point. In the static case, this is done by preprocessing the (nearest or
farthest point) Voronoi diagram to answer point-location queries in O(log n) time.
Without the need to maintain VD(S) explicitly, the problem of nearest neighbor
queries is a decomposable search problem and can be made semi-dynamic using
the standard dynamization techniques of Bentley and Saxe [4]. The best incremental
data structure supporting nearest-neighbor queries performs queries and insertions
in O(log2 n/ log log n) time [8,14]. Recently, Chan [6] (combined with the recent
deterministic construction of shallow cuttings by Chan and Tsakalidis [7]) developed
a data structure supporting nearest-neighbor queries in O(log2 n) time, insertions
in O(log3 n) amortized time, and deletions in O(log6 n) amortized time. Recently,
Kaplan et al. [11] reduced the amortized deletion time to O(log5 n).

1.1 Flarb

In the mid-1980s it was observed that a number of variants of Voronoi diagrams
and Delaunay triangulations using different metrics (Euclidean distance, L p norms,
convex distance functions) or different kinds of sites (points, segments, circles) could
all be handled using similar techniques. To formalize this, several abstract frameworks
were defined, such as the one of Edelsbrunner and Seidel [10] and the two variants
of abstract Voronoi diagrams of Klein [12,13]. In this paper we define a new abstract
framework to deal with Voronoi diagrams constructed incrementally by inserting new
sites.

Let G be a 3-regular embedded plane graph with n vertices.1 We seek to bound the
number of links (edge insertions) and cuts (edge removals) needed to implement the
following operation, hereafter referred to as a flarb2: Given a simple closed curve C
in the plane whose interior intersects G in a connected component, split both C and
all the edges that it crosses at the point of intersection, remove every edge and vertex
that lies in the interior of C, and add each curve in the subdivision of C as a new edge;
see Fig. 1. In this way, we obtain a new 3-regular plane graph denoted by G(G, C).
This operation can be used to represent the insertion of new cells in different types of
Voronoi diagrams. It can also be used to represent the changes to the 1-skeleton of a
polyhedron in R3 after it is intersected with a halfspace.

Recall thatwe are interested only in bounding theminimumnumber of links and cuts
needed to obtainG(G, C) fromG, i.e., we ignore the embedding and geometric changes

1 While the introduction used n for the number of sites in S, the combinatorial part of this article uses n
for the number of vertices in the Voronoi diagram. By Euler’s formula, those two values are asymptotically
equivalent, up to a constant factor.
2 Although the last two authors are honored by the flattering renaming of the flarb operation in the literature
[15], this paper uses original terminology.
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Fig. 1 The flarb operation on a graph G induced by a flarbable curve C, produces a graph G(G,C) with 2
more vertices. The edges of G crossed by C are shown in red

G G(G, C)

C C

Fig. 2 The flarb operation on a graph G induced by a flarbable curve C produces a graph G(G,C) with the
same combinatorial structure as G. In this case, no link or cut is required to transform G to G(G,C)

of the graph when counting these links and cuts. In some cases, the combinatorial
structures of G and G(G, C) may be quite similar, which may result in the number of
links and cuts needed being much smaller than the number of faces of G intersected
by C. Indeed, our analysis exploits these similarities to yield better amortized bounds.
For an example, Fig. 2 depicts a “large” flarb operation that requires no link or cut.

1.2 Results

We show that the amortized cost of a flarb operation, where the combinatorial cost is
defined to be the minimum number of links and cuts needed to perform it, is O(

√
n).

We also show a matching lower bound: some sequences of flarbs require�(
√

n) links
and cuts per flarb, even when the graph is a tree (or more precisely a Halin graph—a
tree with all leaves connected by a cycle to make it 3-regular). This contrasts with the
O(log n) upper bound of Aronov et al. [2] for the Voronoi diagram of points in convex
position (also a tree) when points are added in clockwise order.

We complement these combinatorial bounds with an algorithmic result. We present
an output-sensitive data structure that maintains the nearest- or farthest-point Voronoi
diagram of a set S of n sites in convex position as new sites are added to S. Upon
an insertion, the data structure finds the minimum number K (up to within a constant
factor) of edge insertions and deletions necessary to update the Voronoi diagram of S.

The running time of each insertion is O(K log7 n), and by our combinatorial
bounds, the amortized value of K is O(

√
n) if arbitrary insertions are allowed while
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maintaining convex position, and K = O(log n) if sites are added in clockwise order.
This solves the open problem posed by Aronov et al. [2]. Moreover, it improves the
preprocessing time from polynomial to O(n log8 n) of their second data structure for
half-line proximity queries: Given a set P of n sites in the plane, preprocess it so that
given a query point q and a directed line �, we can report the site of P that is farthest (or
alternatively nearest) from q subject to being to the left of line � in logarithmic time.

The distinguishing feature of our data structure is that it explicitly maintains the
graph structure of the Voronoi diagram after every insertion, a property that is not
provided by any nearest neighbor data structure that uses decomposable searching
problem techniques. Further, the data structure also maintains the Voronoi diagram in
a grappa tree [2], a variant of the link-cut tree of Sleator and Tarjan [16], which allows
a powerful query operation called oracle-search. Roughly speaking, the oracle-search
query has access to an oracle specifying a vertex to find. Given an edge of the tree,
the oracle determines which of the two subtrees attached to its endpoints contains
that vertex. Grappa trees use O(log n) time and oracle calls to find the sought vertex.
A grappa tree is in some sense a dynamic version of the centroid decomposition for
trees, which is used in many algorithms for searching in Voronoi diagrams. Using this
structure, it is possible to solve a number of problems for the set S at any moment
during the incremental construction, for example:

– Given sites p and q, report whether they are connected by a Delaunay edge in
O(log n) time.

– Given a point q, find the Voronoi cell containing q in O(log n) time. This not only
gives the nearest neighbor of q, but a pointer to the explicit description of its cell.

– Find the smallest disk enclosing S, centered on a query segment [pq], in O(log n)

time [5].
– Find the smallest disk enclosing S, centered on a query circle C , in O(log n) time
[3].

– Given a convex polygon P (counterclockwise array of its m vertices), find the
smallest disk enclosing S and excluding P in O(log n + logm) time [1].

Note that the list above is by no mean exhaustive, nor claims to achieve the best
running time for each application. However, it shows the potential of our result by
exhibiting many data structures and algorithms on Voronoi diagrams based on oracle-
search queries that can benefit from our incremental construction.

The combinatorial bound for Voronoi diagrams also has direct algorithmic conse-
quences, the most important being that it is possible to store all versions of the graph
throughout a sequence of insertions using persistence in O(n3/2) space. Since the
entire structure of the graph is stored for each version, this provides a foundation for
many applications that, for instancewould require searching the sequence of insertions
for the moment during which a specific event occurred. Similarly, using persistence
and O(n3/2) space, one can store all versions of the 1-skeleton of a polyhedron P
in R

3 constructed by incrementally adding halfspaces whose intersection defines P .
Moreover, our algorithm tomaintain Voronoi diagrams for sites in convex position can
be slightly modified to maintain the 1-skeleton of polytopes inR3, provided that the 1-
skeleton remains a Halin graph throughout the insertion of each halfspace. Extending
this algorithm to work with arbitrary polytopes remains a challenging open problem.
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1.3 Outline

The main approach used to bound the combinatorial cost of a flarb is to examine how
the complexity of the faces changes. Notice that faces whose size remains the same
do not require edge insertions and deletions. The other faces either grow or shrink,
and a careful counting argument reveals that the cost of a flarb is upper-bounded by
the number faces that shrink (or disappear) upon execution of the flarb (Sect. 2). By
using a potential function that sums the sizes of all faces, the combinatorial cost of
shrinking faces is paid for by the reduction of their potential. To avoid incurring a
high increase in potential for a large new face, the potential of each face is capped at√

n. Then at most O(
√

n) large faces can shrink without changing potential and are
accounted for separately (Sect. 3). The matching �(

√
n) lower bound is presented in

Sect. 4, and Sect. 5 presents the data structure for performing point insertions for the
Voronoi diagrams of points in convex position. That is, it presents an algorithm for
computing the flarb to be executed and performs the necessary operations.

2 The Flarb Operation

In this section we formalize the flarb operation that models the insertion of new sites
in Voronoi diagrams and present a preliminary analysis of the cost of a flarb.

Let G = (V, E) be a planar 3-regular graph embedded in R2 (not necessarily with
a straight-line embedding). Let C be a simple closed Jordan curve in the plane. Define
in(C) to be the set of vertices of G that lie in the interior of C and let ex(C) = V \in(C).
We say that C is flarbable for G if the following conditions hold:

1. the graph induced by in(C) is connected,
2. C intersects each edge of G either at a single point or not at all,
3. C passes through no vertex of G, and
4. the intersection of C with each face of G is path-connected.

In the case where the graph G is clear from context, we simply say that C is flarbable.
The fleeq of C is the circular sequence EC = e1, . . . , ek of edges in E that are crossed
by C; we call the edges in EC fleeq-edges. Note that by the above properties, a face of
G has either two fleeq-edges if it intersects C, or none at all if it does not intersect C.
A face whose interior is crossed by C is called a C-face. We assume without loss of
generality that C is oriented clockwise and that the edges in EC are ordered according
to their intersection with C. Given a flarbable curve C on G, we present the following
definition.

Definition 2.1 For a planar graph G and a curve C that is flarbable for G, we define a
flarb operationF(G, EC)which produces a new 3-connected graphG(G, C) as follows
(see Fig. 1 for a depiction):

1. For each edge ei = (ui , vi ) in EC such that ui ∈ in(C) and vi ∈ ex(C), create a
new vertex wi = C ∩ ei and connect it to vi along ei .

2. For each pair ei , ei+1 of successive edges in EC , create a new edge (wi , wi+1)

between them along C. We call (wi , wi+1) a C-edge (all indices are taken
modulo k).
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3. Delete all vertices of in(C) along with their incident edges.

Lemma 2.2 For each flarbable curve C on a 3-regular planar graph G, G(G, C) has
at most two more vertices than G does.

Proof Let EC = e1, . . . , ek be the fleeq of C and let f be the new face in G(G, C) that
is bounded by C and created by the flarb operation F(G, EC). Notice that the vertices
of f are the points w1, . . . , wk along edges e1, . . . , ek , where wi = C ∩ ei . Since C
is flarbable, the subgraph induced by the vertices of in(C) ∪ {w1, . . . , wk} is also a
connected graph T with w1, . . . , wk as its leaves and every other vertex of degree 3;
see Fig. 1. Therefore T has at least k − 2 internal vertices. The flarb operation adds
k vertices, namely w1, . . . , wk , and the internal vertices of T are deleted. Therefore,
the net increase in the number of vertices is at most 2. ��

Since each newly created vertex has degree three and all remaining vertices are
unaffected, the new graph is 3-regular. In other words, the flarb operation F(G, EC)

creates a cycle along C and removes the portion of the graph enclosed by C. Note that
for any point set in general position (no four points lie on the same circle), its Voronoi
diagram is a 3-regular planar graph, assuming we use the line at infinity to join the
endpoints of its unbounded edges in clockwise order. Therefore, a flarb can be used
to represent the changes to the Voronoi diagram upon insertion of a new site.

Observation 2.3 Given a set S of points in general position, let V(S) be the graph
of the Voronoi diagram of S. For a new point q, there exists some curve Cq

S such that
G(V(S), Cq

S ) = V(S ∪ {q}); namely, Cq
S is the boundary of the Voronoi cell of q in

V(S ∪ {q}).
More generally, convex polytopes defined by the intersection of halfspaces in R

3

behave similarly: the intersection of a new halfspace with a convex polytope modifies
the structure of its 1-skeleton by adding a new face. This structural change can be
implemented by performing a flarb operation in which the flarbable curve consists of
the boundary of the new face.

Preserved Faces and Edges

Definition 2.4 Given a C-face f of G, the modified face of f is the face f ′ of G(G, C)

that coincides with f outside of C. In other words, f ′ is the face that remains from f
after performing the flarb F(G, EC). We say that a C-face f is preserved (by the flarb
F(G, EC)) if | f | = | f ′|, where | f | is the number of edges on the boundary of face
f . Moreover, we say that each edge in a preserved face is preserved (by F(G, EC)).
Denote by P(G, C) the set of faces preserved by F(G, EC) and let B(G, C) be the set
of faces wholly contained in the interior of C.
Since a preserved C-face bounded by two fleeq-edges ei and ei+1 has the same size
before and after the flarb, there must be an edge e of G connecting ei with ei+1 which
is replaced by a C-edge e∗ after the flarb. In this case, we say that the edge e reappears
as e∗.

The following auxiliary lemmawill help us bound the number of operations needed
to produce the graph G(G, C), and follows directly from the formula that defines the
Euler characteristic of connected planar graphs:
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Lemma 2.5 Let H be a connected planar graph with vertices of degree either 1, 2 or
3. For each i ∈ {1, 2, 3}, let δi be the number of vertices of H with degree i . Then,
H has exactly 2δ1 + δ2 + 3FH − 3 edges, where FH is the number of bounded faces
of H.

2.1 Combinatorial Cost of a Flarb

Given a 3-regular graph G = (V, E) and a flarbable curve C we want to analyze
the number of structural changes that G must undergo to perform F(G, EC). To this
end, we consider two basic combinatorial operations on our graph: A link is the
addition of an edge between two non-adjacent vertices, and a cut is the removal of
an existing edge of our graph. With these operations, we define the combinatorial
cost of F(G, EC), denoted by cost(G, C), to be the minimum number of links and
cuts needed to transform G into G(G, C). We assume that any other operation has no
cost and is therefore not included in the cost of the flarb. This cost model provides a
way to measure the combinatorial changes that a graph undergoes while ignoring the
embedding of the graph and its geometric modifications. Note that while the procedure
described in Definition 2.1 transforms G into G(G, C), it may not be the procedure
that performs the minimum number of links and cuts. Indeed, we describe below a
different procedure that is closer to optimal.

Consider the fleeq EC = e1, . . . , ek and the C-edges created by F(G, EC). Let e
be an edge adjacent to some ei and ei+1 that reappears as the C-edge e∗. Notice that
we can obtain e∗ without any links or cuts to G: simply shrink ei and ei+1 so that
their endpoints in in(C) now coincide with their intersections with C. Then modify e
to coincide with the portion of C connecting the new endpoints of ei and ei+1. Using
this preserving operation, we obtain the C-edge e∗ with no cost to the flarb. Intuitively,
preserved edges are cost-free in a flarb while non-preserved edges have a nonzero cost.
This notion is formalized in the following lemma.

Lemma 2.6 For a flarbable curve C,

(|EC | + |B(G, C)| − |P(G, C)|)/2 ≤ cost(G, C)

≤ 4|EC | + 3|B(G, C)| − 4|P(G, C)|.

Proof For the upper bound, we describe a construction of G(G, C) from G using
at most |EC | + 3|B(G, C)| − 4|P(G, C)| links and cuts.3 Consider the subgraph GC
with vertex set in(C) ∪ {v : v is an endpoint of some edge in EC} and whose edges
are all the edges of G that intersect the interior of C. Since C is flarbable, GC is a
connected graph such that each vertex of in(C) has degree 3 while the endpoints of
the fleeq-edges outside of C have degree 1. Note that if two preserved faces share a
non-fleeq edge e, then there are four neighbors of the endpoints of e that lie outside
of C. Since GC is connected, e and its four adjacent edges define the entire graph GC

3 We caution the reader that while this construction is algorithmic in nature, it is used purely to provide an
upper-bound and does not reflect the behavior of the algorithm presented in Sect. 5 that gives our desired
runtime.
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and the bound holds trivially. Therefore, we assume that no two preserved faces share
a non-fleeq-edge from this point forward.

Note that the bounded faces of GC are exactly the bounded faces in B(G, C). Since
GC has |EC | vertices of degree 1, no vertices of degree 2, and |B(G, C)| bounded
faces, by Lemma 2.5, GC has at most 2|EC |+ 3|B(G, C)| edges. Every edge of GC that
is not preserved is removed with a cut operation (isolated vertices will be removed
afterwards). Note that each preserved face contains at least three preserved edges: two
fleeq-edges and a third edge of G. Based on the assumption that no two preserved
faces share a non-fleeq-edge, the third edge is not double-counted, while the fleeq-
edges may be counted at most twice. Therefore, each preserved face contributes at
least two preserved edges that are specific to that face, meaning that a total of at
most 2|EC | + 3|B(G, C)| − 2|P(G, C)| cut operations are performed. Note that each
non-preserved fleeq-edge has been cut and will need to be reintroduced later to obtain
G(G, C).

Recall that no edge bounding a preserved face has been cut. For each preserved
face, perform a preserving operation on it which requires no link or cut operation.
Since no two preserved faces share a non-fleeq edge, all the C-edges bounding the pre-
served faces are added without increasing cost(G, C). To complete the construction
of G(G, C), create each fleeq-edge that is not preserved and then add the remain-
ing C-edges bounding non-preserved C-faces. Because at least |P(G, C)| fleeq-edges
were preserved, at most |EC | − |P(G, C)| fleeq-edges must be reintroduced. More-
over, since only |EC | − |P(G, C)| C-faces are not preserved, we need to create at
most |EC | − |P(G, C)| C-edges. Therefore, this last step completes the flarb and
construct G(G, C) using a total of at most 2|EC | − 2|P(G, C)| link operations. Con-
sequently, the total number of links and cuts needed to obtain G(G, C) from G is at
most 4|EC | + 3|B(G, C)| − 4|P(G, C)| as claimed.

To show that cost(G, C) > 1
2 (|EC | + |B(G, C)| − |P(G, C)|), simply note that in

every non-preserved C-face, the algorithm needs to perform at least one cut, either
to augment the size or reduce the size of the face. Because G and C define exactly
|EC |+|B(G, C)| faces, and since at least one of its edgesmust be cut in all but |P(G, C)|
of these faces, at least |EC | + |B(G, C)| − |P(G, C)| edges must be cut. Since an edge
belongs to at most two faces a cut can be over-counted at most twice and the claimed
bound holds. ��

Recall that a C-face f is preserved if its corresponding modified face f ′ in G(G, C)

has the same number of edges, i.e., | f ′| = | f |. If this is not the case, then the size of
the face decreases or increases after performing the flarb. However, a face can gain at
most one edge during the flarb, namely the C-edge crossing this face. To distinguish
between these cases, we introduce the following definitions.

Definition 2.7 Given a C-face f of G, we say that f is augmented if | f ′| = | f | + 1
andwe call f shrinking if | f ′| < | f |. Denote byA(G, C) the set of augmented C-faces
and let S(G, C) be the set of shrinking C-faces of G.

Corollary 2.8 For a flarbable curve C, it holds that

cost(G, C) ≤ 12|S(G, C)| + 3|B(G, C)| + O(1).
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Proof Note that each C-face is either shrinking, augmented or preserved, i.e., |EC | =
|A(G, C)|+ |S(G, C)|+ |P(G, C)|. Notice also that no successive pair of C-faces can
both be augmented unless EC consists of three edges incident to a single vertex. In
this case, all three C-faces are augmented and hence cost(G, C) = O(1). Thus, we
assume from now on that no two successive C-faces are both augmented. Moreover,
an augmented face cannot neighbor two preserved faces as otherwise we would get
a vertex of degree four. Therefore, each augmented C-face neighbors at least one
shrinking C-face. Because a shrinking C-face can neighbor at most two augmenting
C-faces, |A(G, C)| ≤ 2|S(G, C)| and hence Lemma 2.6 implies that

cost(G, C) ≤ 4|EC | + 3|B(G, C)| − 4|P(G, C)|
≤ 4(|A(G, C)| + |S(G, C)| + |P(G, C)|) + 3|B(G, C)| − 4|P(G, C)|
≤ 4(|A(G, C)| + |S(G, C)|) + 3|B(G, C)|
≤ 12|S(G, C)| + 3|B(G, C)|. ��

3 The Combinatorial Upper Bound

In this section, we define a potential function to bound the amortized cost of each
operation in a sequence of flarb operations. For a 3-regular embedded planar graph
G = (V, E), we define two potential functions: a local potential functionμ tomeasure
the potential of each face, and a global potential function � to measure the potential
of the whole graph.

Definition 3.1 Let F be the set of faces of a 3-regular embedded planar graph G =
(V, E). For each face f ∈ F , let μ( f ) = min{�√|V |�, | f |}. The potential �(G) of
G is defined as follows:

�(G) = λ
∑

f ∈F

μ( f ),

for some sufficiently large positive constant λ to be defined later.

Notice that the potential μ( f ) of a C-face f remains unchanged as long as
| f |, | f ′| ≥ √|V |, where f ′ is the modified face of f after the flarb. Since there is no
change in potential that we can use within large C-faces, we exclude them from our
analysis and focus only on smaller C-faces. We formalize this notion in the following
section.

3.1 Flarbable Sub-curves

Given a flarbable curve C, a (connected) curve γ ⊆ C is a flarbable sub-curve. Let
εγ = e1, . . . , ek (or simply ε) be the set of fleeq-edges intersected by γ given in order
of intersection after orienting γ arbitrarily. We call ε the subfleeq induced by γ . We
say that a face is a γ -face if two of its fleeq-edges are crossed by γ (if γ has an endpoint
in the interior of this face, it is not a γ -face).
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Fig. 3 Left: a flarbable sub-curves γ is contained in a flarbable curve C. The graph Yγ is the union of all
edges bounding a γ -face. Right: the path	γ connects the endpoints of the first and last fleeq-edges crossed
by γ by going along the boundary of the outer-face of Yγ

The following theorem is the main result of this section and shows that the variation
in size of the C-faces after a flarb depends only on the number of shrinking faces. Recall
that Corollary 2.8 relates the cost of the flarb with the number of shrinking faces. Since
the potential function defined above is based on the size of the face, the combination
of these results will be crucial to use the change in potential to pay for the cost of the
flarb.

Theorem 3.2 Given a flarbable curve C on G and a flarbable sub-curve γ crossing
the fleeq-edges ε = e1, . . . , ek , let f1, . . . , fk be the sequence of γ -faces and let
f ′
1, . . . , f ′

k be their corresponding modified faces after the flarb F(G, γ ). Then

k∑

i=1

(| fi | − | f ′
i |) ≥ |S(G, γ )|/2. (1)

To prove Theorem 3.2, we need to introduce some technical definitions that allow
us to get a better understanding on the combinatorial changes that the graph undergoes
during a flarb. Moreover, we need a different granularity provided by analyzing the
flarb operation within flarbable sub-curves.

Consider the set of all edges of G intersected or enclosed by C that bound some
γ -face. Since EC is flarbable, these edges define a connected subgraph Yγ of G with
|ε| = k leaves (vertices of degree 1), namely the endpoints outside of C of each fleeq-
edge in ε; see Fig. 3. Notice that Yγ may consist of some bounded faces contained in
the interior of C. Let Hγ be the set of bounded faces of Yγ and let δ2 be the number
of vertices of degree 2 of Yγ . Since Yγ consists of k vertices of degree 1, Lemma 2.5
implies the following result.

Corollary 3.3 The graph Yγ consists of exactly 2k + δ2 + 3|Hγ | − 3 edges.

Recall that a C-face f is preserved if its corresponding modified face f ′ in G(G, C)

has the same number of edges, i.e., | f ′| = | f |; it is augmented if | f ′| = | f | + 1; and
it is shrinking if | f ′| < | f |.
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In the context of a particular flarbable sub-curve γ , let aγ = |A(G, γ )|, sγ =
|S(G, γ )| and pγ = |P(G, γ )| be the number of augmented, shrinking and preserved
γ -faces, respectively (or simply a, s and p if γ is clear from the context). We further
differentiate among the s shrinking γ -faces. A shrinking γ -face is interior if it contains
no vertex of degree 2 of Yγ and does not share an edge with an augmented γ -face.
Let sa be the number of shrinking γ -faces that share an edge with an augmented face,
let sb be the number of shrinking γ -faces not adjacent to an augmented face that have
a vertex of degree 2 of Yγ , and let sc be the number of interior shrinking γ -faces.
Therefore, s = sa + sb + sc is the total number of shrinking γ -faces.

Since each augmented face has atmost two edges and because there area augmented
faces, we know that sa ≤ 2a. Let v1 and vk be the endpoints of the edges e1 and ek

that lie inside C. Let 	γ be the unique path connecting v1 and vk in Yγ that traverses
the boundary of the outer face of Yγ and stays in the interior of C; see Fig. 3.

Notice that	γ contains all the edges of γ -faces that may bound a γ ′-face for some
other flarbable sub-curve γ ′ disjoint from γ . In the end, we aim to have bounds on the
number of edges that will be removed from the γ -faces during the flarb, but some of
these edges may be double-counted if they are shared with a γ ′-face. Therefore, we
aim to bound the length of 	γ and count precisely the number of edges that could
possibly be double-counted.

Lemma 3.4 The path 	γ has length at most k + 3|Hγ | + δ2 − a − sc.

Proof Notice that no fleeq-edge can be part of 	γ or this path would go outside of C,
i.e., there are k fleeq-edges of Yγ that cannot be part of 	γ .

We say that a vertex is augmented if it is incident to two fleeq-edges and a third
edge that is not part of ε, which we call an augmented edge. Because each augmented
γ -face has exactly one augmented vertex, there are exactly a augmented vertices in
Yγ . Moreover,	γ contains at most two augmented vertices (if v1 or vk is augmented).
Thus, at most two augmented edges can be traversed by 	γ and hence, at least a − 2
augmented edges of Yγ do not belong to 	γ .

Let f be an internal shrinking γ -face. Since f is not adjacent to an augmented γ -
face, it has no augmented edge on its boundary. We claim that f has at least one edge
that is not traversed by 	γ . If this claim is true, then there are at least sc non-fleeq
non-augmented edges that cannot be used by 	γ—one for each internal shrinking
γ -face. Thus, since Yγ consists of 2k + 3|Hγ | + δ2 − 2 edges, the number of edges in
	γ is at most

2k + 3|Hγ | + δ2 − 2 − (k + a − 2 + sc) = k + 3|Hγ | + δ2 − a − sc.

It remains to show that each internal shrinking γ -face f has at least one non-fleeq
edge that is not traversed by	γ . If	γ contains no edge on the boundary of f , then the
claim holds trivially. If 	γ contains exactly one edge of f , then since f is shrinking,
it has at least four edges and two of them are not fleeq-edges. Thus, in this case there is
one edge of f that is not traversed by 	γ . We assume from now on that 	γ contains
at least two edges of f .

We claim that 	γ visits a contiguous sequence of edges along the boundary of
f . To see this, note that each face of Yγ lying between 	γ and the boundary of f
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cannot be crossed by C. Therefore, if we consider the first edge of 	γ that is not on
the boundary of f after visiting f the first time, the this edge is incident to the outer
face of Yγ and the only face of Yγ that it is incident with does not intersect C. This is
a contradiction, since this edge should not be part of Yγ by definition. Therefore, 	γ

visits a contiguous sequence of edges along f .
If	γ visits two consecutive edges of f , then the vertex in between themmust have

degree 2 in Yγ , as the two edges are incident to the outer face—a contradiction since
f is an internal shrinking face with no vertex of degree 2. Consequently, if f is an
internal shrinking face, it has always at least one non-fleeq edge that is not traversed
by 	γ . ��

3.2 How Much Do Faces Shrink in a Flarb?

In order to analyze the effect of the flarb operations on flarbable sub-curves, we think
of each edge as consisting of two half-edges, each adjacent to one of the two faces
incident to this edge. For a given edge, the algorithm may delete its half-edges during
two separate flarbs of differing flarbable sub-curves.

We define the operation F(G, γ ) to be the operation which executes steps 1 and
2 of the flarb on the flarbable sub-curve γ and then deletes each half-edge with both
endpoints in in(C) adjacent to a γ -face. Since F(G, γ ) removes and adds half-edges,
we are interested in bounding the net balance of half-edges throughout the flarb. To
do this, we measure the change in size of a face during the flarb.

Recall that a, s and p are the numbers of augmented, shrinking and preserved
γ -faces, respectively. We are now ready to provide the proof of Theorem 3.2 which
provides a bound on the total “shrinkage” of the γ -faces. We restate the theorem for
ease of readability.

Theorem 3.5 Given a flarbable curve C on G and a flarbable sub-curve γ crossing
the fleeq-edges ε = e1, . . . , ek , let f1, . . . , fk be the sequence of γ -faces and let
f ′
1, . . . , f ′

k be their corresponding modified faces after the flarb F(G, γ ). Then

k∑

i=1

(| fi | − | f ′
i |) ≥ |S(G, γ )|/2. (1)

Proof Recall that no successive pair of γ -faces can both be augmented unless EC
consists of three edges incident to a single vertex. In this case, all 3 γ -faces are
augmented, so

∑k
i=1(| fi |− | f ′

i |) = 3 and the result holds trivially; hence, we assume
from now on that no two successive faces are both augmented.

Let 
 be the number of half-edges removed during F(G, γ ). Notice that to count
how much a face fi shrinks when becoming f ′

i after the flarb, we need to count the
number of half-edges of fi that are deleted and the number that are added in f ′

i . Since

exactly one half-edge is added in each f ′
i , we know that

∑k
i=1(| fi | − | f ′

i |) = 
 − k.

We claim that 
 ≥ k + s/2. If this claim is true, then
∑k

i=1(| fi | − | f ′
i |) ≥ s/2

implying the theorem. In the remainder of this proof, we show this bound on 
.
Let T = (VT , ET ) be the subgraph of Yγ obtained by removing its k fleeq-edges.

It follows from Corollary 3.3 that |ET | = k + 3|Hγ | + δ2 − 3 . To obtain a precise
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counting of 
, notice that for some edges of T , F(G, γ ) removes only one of their
half-edges and for others it will remove both of them. Since the fleeq-edges are present
in each of the faces f1, . . . , fk before and after the flarb, we get that


 = 2|ET | − ST , (2)

where ST denotes the number of edges in T with only one half-edge incident to a face
of f1, . . . , fk .

Note that the edges of ST are exactly the edges on the path 	γ bounded in
Lemma 3.4. Therefore, ST ≤ k + 3|Hγ | + δ2 − a − sc. By using this bound in (2),
we get


 ≥ 2(k + 3|Hγ | + δ2 − 3) − (k + 3|Hγ | + δ2 − a − sc)

= k + 3|Hγ | + δ2 + a + sc − 6.

Since each shrinking γ -face accounted for by sb has a vertex of degree 2 in Yγ ,
we know that δ2 ≥ sb. Moreover, sa ≤ 2a as each shrinking γ -face can be adjacent
to at most two augmented γ -faces. Therefore, since s = sa + sb + sc, we get that

 ≥ k + 3|Hγ | + sa/2 + sb + sc ≥ k + s/2, where s is the number of shrinking
γ -faces proving the claimed bound on 
. ��

3.3 Flarbable Sequences

Let G0 = G. A sequence of curves C = C1, . . . , Ck is flarbable if for each i ∈ [k], Ci

is a flarbable on

Gi = G(Gi−1, Ci ).

As a notational shorthand, let F i denote the flarb operation F(Gi−1, Ci ) when C is a
flarbable sequence for G.

Theorem 3.6 For a 3-regular planar graph G = (V, E) and some flarbable sequence
C = C1, . . . , CN of flarbable fleeqs, for all i ∈ [N ],

cost(Gi−1, Ci ) + �(Gi ) − �(Gi−1) ≤ O(
√|Vi |),

where Vi is the set of vertices of Gi .

Proof Split Ci into smaller curves γ1, . . . , γh such that for all j ∈ [h], γ j is a maximal
curve contained in Ci that does not intersect the interior of a face with more than

√|Vi |
edges (we ignore the portion of Ci inside these large faces). Since there can be at most√|Vi | faces of size √|Vi |, we know that h ≤ √|Vi |. Let ε j be the subfleeq containing
eachfleeq-edge crossedbyγ j . Leta j , s j and p j be the number of augmented, shrinking
and preserved γ j -faces, respectively. Notice that |ε j | = a j + s j + p j + 1. Moreover,
since each augmented face is adjacent to a shrinking face, and a shrinking face is
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adjacent to at most two augmented faces, we know that a j ≤ 2s j . Therefore, |ε j | ≤
3s j + p j + 1.

Let Li be the set of Ci -faces with at least
√|Vi | edges, and notice that |Li | ≤√|Vi | as there are at most

√|Vi | faces of size √|Vi | in Gi−1. First, we upper bound
cost(Gi−1, Ci ). Recall that S(Gi−1, Ci ) denotes the set of shrinking Ci -faces of Gi−1,
and that B(Gi−1, Ci ) is the set of faces of Gi−1 wholly contained in the interior of
Ci . Because each shrinking Ci -face either is a γ j -face for some j ∈ [h], or belongs
to Li , and since |Li | ≤ √|Vi |, we conclude that |S(Gi−1, Ci )| ≤ √|Vi | + ∑h

j=1 s j .
Therefore by Corollary 2.8, we know that

cost(Gi−1, Ci ) ≤ 12|S(Gi−1, Ci )| + 3|B(Gi−1, Ci )| + O(1) (3)

≤ 12
√|Vi | + 12

h∑

j=1

s j + 3|B(Gi−1, Ci )| + O(1). (4)

Next, we upper bound the change in potential �(Gi ) − �(Gi−1). Given a flarbable
curve or sub-curve γ , let A(γ ) denote the set of γ -faces. Recall that for a γ -face
f ∈ A(γ ), f ′ is the modified face of f . Also, let fn be the new face created by F i ,
i.e., the face of Gi bounded by Ci . Recall that for each face f ∈ B(Gi−1, Ci ), f is
removed and the potential decreases byμ( f ) ≥ 3 (each face has size at least 3). Using
this, we can break up the summation to obtain the following:

�(Gi ) − �(Gi−1) = μ( fn) + λ
∑

f ∈A(Ci )

(μ( f ′) − μ( f )) − λ
∑

f ∈B(Gi−1,Ci )

μ( f )

≤ μ( fn) + λ
∑

f ∈A(Ci )

(μ( f ′) − μ( f )) − 3λ|B(Gi−1, Ci )| .

We now break up the first summation by independently considering the large faces in
Li and the remaining smaller faces which are crossed by some flarbable sub-curve.
Then

�(Gi ) − �(Gi−1) ≤ μ( fn) + λ

h∑

j=1

( ∑

f ∈A(γ j )

(μ( f ′) − μ( f ))
)

+ λ
∑

f ∈Li

(μ( f ′) − μ( f )) − 3λ|B(Gi−1, Ci )|.

Since each face can gain atmost one edge, in particularwe know thatμ( f ′)−μ( f ) ≤ 1
for each f ∈ Li . Moreover, μ( fn) ≤ √|Vi | by definition. Thus,

�(Gi ) − �(Gi−1) ≤ √|Vi | + λ

h∑

j=1

( ∑

f ∈A(γ j )

(μ( f ′) − μ( f ))
)

+ λ|Li | − 3λ|B(Gi−1, Ci )|.
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Note that μ( f ) = | f | for each face f ∈ A(γ j ), 1 ≤ j ≤ h. Thus, applying
Theorem 3.2 to the first summation, we get

�(Gi ) − �(Gi−1) ≤ √|Vi | − λ

2

h∑

j=1

s j + λ|Li | − 3λ|B(Gi−1, Ci )|.

Since |Li | ≤ √|Vi |, we get that

�(Gi ) − �(Gi−1) ≤ (λ + 1)
√|Vi | − λ

2

h∑

j=1

s j − 3λ|B(Gi−1, Ci )|. (5)

Putting (4) and (5) together, we get that

cost(Gi−1, Ci ) + �(Gi ) − �(Gi−1) ≤ (λ + 13)
√|Vi | +

(
12 − λ

2

) h∑

j=1

s j

+ (3 − 3λ)|B(Gi−1, Ci )| + O(1) .

By letting λ be a sufficiently large constant (namely λ = 24), we get that

cost(Gi−1, Ci ) + �(Gi ) − �(Gi−1) = O(
√|Vi |). ��

Corollary 3.7 Let G be a 3-regular plane graph with ν vertices. For a sequence
C = C1, . . . , CN of flarbable fleeqs for graph G = (V, E) where ν = |V |,

N∑

i=1

cost(Gi−1, Ci ) = O(ν + N
√

ν + N ).

Proof Let Vi be the set of vertices of Gi . Using the result of Theorem 3.6, we can
write

cost(Gi−1, Ci ) = O(
√|Vi |).

Because �(G) = λ
∑

f ∈F μ( f ), we know that �(G) = O(ν). Analogously, since
each flarb operation adds at most two vertices by Lemma 2.2, we know that the number
of vertices in Gi is |Vi | = O(ν + N ) which, in turn, implies that �(Gi ) = O(ν + N ).
Therefore,

N∑

i=1

cost(Gi−1, Ci ) = O

( N∑

i=1

√|Vi | + �(G) − �(GN )

)
= O(ν + N

√
ν + N ).

��
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Fig. 4 A 3-regular graph G with ν = 2k(k + 1) − 2 vertices. A flarbable curve C induces a flarb such that
G(G,C) is isomorphic with G

4 The Lower Bound

In Sect. 4, we present an example of a 3-regular Halin graph G with ν vertices—a
tree with all leaves connected by a cycle to make it 3-regular—and a corresponding
flarb operation with cost �(

√
ν) that yields a graph isomorphic to G. Because this

sequence can be repeated, the amortized cost of a flarb is �(
√

ν).
Let ν = 2k(k +1)−2 for some positive integer k. The construction of the 3-regular

graph with ν vertices is depicted in Fig. 4. In this graph, we show the existence of a
flarbable curve C (dashed in the figure) such that the flarb operation on G produces a
graph G(G, C) isomorphic to G. Moreover, C crosses at least k augmented C-faces and
k shrinking C-faces. Therefore, cost(G, C) ≥ k = �(

√
ν) by Lemma 2.6. Since the

resulting graph is isomorphic to the original graph, this operation can be repeated in
succession an arbitrarily high number times. That is, there is a sequence of N flarbable
curves C1, . . . , CN such that

∑N
i=1 cost(Gi−1, Ci ) = �(N

√
ν),

5 Computing the Flarb for Sites in Convex Position

In this section, we describe a data structure to maintain the Voronoi diagram of a set S
of n sites in convex position as new sites are added to S. Our structure allows us to find
the edges of each preserved face and ignore them, thereby focusing only on necessary
modifications to the combinatorial structure. The time we spend in these operations is
then proportional to the number of non-preserved edges. Since this number is propor-
tional to the cost of the flarb, our data structure supports site insertions in time that is
almost optimal (up to a polylogarithmic factor).

5.1 Grappa Trees

Grappa trees [2] are a modification of link-cut trees, a data structure introduced by
Sleator and Tarjan [16] to maintain the combinatorial structure of trees. They support
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the creation of new isolated vertices, the link operation which adds an edge between
two vertices in disjoint trees, and the cut operation which removes an edge, splitting
a tree into two trees.

We use this structure to maintain the combinatorial structure of the farthest-point
Voronoi diagram V(S) of a set S of sites in convex position throughout the incremental
construction. Recall that each insertion defines a flarbable curve C, namely the bound-
ary of the Voronoi cell of the inserted site. Our algorithm performs this flarb operation
in time O(cost(V(S), C) log7 n), where n is the number of vertices inserted so far.
That is, we obtain an algorithm whose running time depends on the minimum number
of link and cut operations that the Voronoi diagram, which is a tree, must undergo after
each insertion. Moreover, this Voronoi diagram answers nearest neighbor queries in
O(log n) time.

A grappa tree, as introduced by Aronov et al. [2], is a data structure based on
the worst-case version of the link-cut tree construction of Sleator and Tarjan [16].
This structure maintains a forest of fixed-topology trees subject to many operations,
includingMake- Tree, Link, andCut, each in O(log n)worst-case timewhile using
O(n) space.

As in [2,16],we decompose a rooted binary tree into a set ofmaximal vertex-disjoint
downward paths, called heavy paths, connected by tree edges called light edges. Each
heavy path is in turn represented by a biased binary tree whose leaf-nodes correspond
to the vertices of the heavy path. Non-leaf nodes represent edges of this heavy path,
ordered in the biased tree according to their depth along the path. Therefore, vertices
that are higher (closer to the root) in the path correspond to leaves farther left in the
biased tree. Each leaf node � of a biased tree B represents an internal vertex v of the
tree which has a unique light edge lv adjacent to it. We keep a pointer from � to this
light edge. Note that the other endpoint of lv is the root of another heavy path which
in turn is represented by another biased tree, say B ′. We merge these two biased trees
by adding a pointer from � to the root of B ′. After merging all the biased trees in this
way, we obtain the grappa tree of a tree T . A node of the grappa tree that is an internal
vertex of its biased tree represents a heavy edge and has two children, whereas a node
that is a leaf of its biased tree represents a vertex of the heavy path (and its unique
adjacent light edge) and has only one child. By a suitable choice of paths and biasing,
as described in [16], the grappa tree has height O(log n).

In addition, grappa trees allow us to store left and right marks on each of its nodes,
i.e., on each edge of T . To assign themark of a node, grappa trees support the O(log n)-
time operation Left-Mark(T, v, ml)which sets the mark ml to every edge in the path
from v to the root of T (Right-Mark(T, v, ml) is defined analogously). In our setting,
we use the marks of an edge e to keep track of the faces adjacent to this edge in a
geometric embedding of T . Since T is rooted, we can differentiate between the left
and the right faces adjacent to e.

The following definition formalizes the operations supported by a grappa tree.

Definition 5.1 Grappa trees solve the following data-structural problem: maintain a
forest of rooted binary trees with specified topology subject to:

T = Make-Tree(v): Create a new tree T with a single internal
vertex v (not previously in another tree).
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T = Link(v,w): Given a vertex v in one tree Tv and the root
w of a different tree Tw, connect v andw and
merge Tv with Tw into a new tree T .

(T1, T2) = Cut(e): Delete the existing edge e = (v,w) in tree T ,
splitting into T two trees T1 and T2 contain-
ing v and w, respectively.

Evert(v): Make external node v the root of its tree,
reversing the orientation (which endpoint is
closer to the root) of every edge along the
root-to-v path.

Left-Mark(T, v, m�): Set the left mark of every edge on the root-to-
v path in T to the new mark m�, overwriting
the previous left marks of these edges.

Right-Mark(T, v, mr ): Set the right mark of every edge on the
root-to-v path in T to the new mark mr ,
overwriting the previous right marks of these
edges.

(e, m∗
�, m∗

r ) = Oracle-Search(T, Oe): Search for the edge e in tree T . The data
structure can find e only via oracle queries:
given two incident edges f and f ′ in T , the
provided oracle Oe( f, f ′, m�, mr , m′

�, m′
r )

determines in constant time which “side” of
f contains e, i.e., whether e is in the com-
ponent of T − f that contains f ′, or in the
rest of the tree (which includes f itself). The
data structure provides the oraclewith the left
mark m� and the right mark mr of edge f , as
well as the left mark m′

� and the right mark
m′

r of edge f ′, and at the end, it returns the
left mark m∗

� and the right mark m∗
r of the

found edge e.

Theorem 5.2 ([2, Thm. 7]) A grappa tree maintains the combinatorial structure of a
forest and supports each operation described above in O(log n) worst-case time per
operation, where n is the total size of the trees affected by the operation.

5.2 The Voronoi Diagram

Let S be a set of n sites in convex position and let V(S) be the binary tree representing
the Voronoi diagram of S. We store V(S) using a grappa tree. In addition, we assume
that each edge of V(S) has two face-markers: its left and right markers which store the
sites of S whose Voronoi regions are adjacent to this edge on the left and right side,
respectively.While a grappa tree stores only the topological structure ofV(S), with the
aid of the face-markers we can retrieve the geometric representation of V(S). Namely,
for each vertex v of V(S), we can look at its adjacent edges and their face-markers to
retrieve the point in the plane representing the location of v in the Voronoi diagram of
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S in O(1) time. Therefore, we refer to v also as a point in the plane. Recall that each
vertex v of V(S) is the center of a circle that passes through at least three sites of S,
we call these sites the definers of v and we call this circle the definer circle of v.

Observation 5.3 Given a new site q in the plane such that S′ = S ∪ {q} is in convex
position, the vertices of V(S) that are closer to q than to any other point of S′ are
exactly the vertices whose definer circle encloses q.

Let q be a new site such that S′ = S ∪ {q} is in convex position. Let cell(q, S′) be
the Voronoi region of q in the Voronoi diagram of S′ and let ∂cell(q, S′) denote its
boundary. Recall that we can think ofV(S) as a Halin graph by connecting all its leaves
by a cycle to make it 3-regular. While we do not explicitly use this cycle, we need it
to make our definitions consistent. In this Halin graph, the curve ∂cell(q, S′) can be
made into a closed curve by going around the leaf of V(S) contained in cell(q, S′),
namely the point at infinity of the bisector between the two neighbors of q along
the convex hull of S′. In this way, ∂cell(q, S′) becomes a flarbable curve. There-
fore, we are interested in performing the flarb operation it induces which leads to a
transformation of V(S) into V(S′).

5.3 Heavy Paths in Voronoi Diagrams

Recall that for the grappa tree of V(S), we computed a heavy path decomposition of
V(S). In this section, we first identify the portion of each of these heavy paths that lies
inside cell(q, S′). Once this is done, we test if any edge adjacent to an endpoint of
these paths is preserved. Then within each heavy path, we use the biased trees built
on it to further find whether there are non-preserved edges on this heavy path. After
identifying all the non-preserved edges, we remove them, which results in a split of
V(S) into a forest where each edge in cell(q, S′) is preserved. Finally, we show how
to link the disjoint components back to the tree resulting from the flarb operation.

We first find the heavy paths of V(S) whose roots lie in cell(q, S′). Additionally,
we find the portion of each of these heavy paths that lies inside cell(q, S′).

Recall that there is a leaf ρ of V(S) that lies in cell(q, S′): the point at infinity
of the bisector between the two neighbors of q along the convex hull of S′. As a first
step, we root V(S) at ρ by calling Evert(ρ). In this way, ρ becomes the root of V(S)

and all the heavy paths have a root which is their endpoint closest to ρ.
Let � be the set the of roots of all heavy paths of V(S), and let �q = {r ∈ � : r ∈

cell(q, S′)}. We focus now on computing the set �q . By Observation 5.3, each root
in �q has a definer circle that contains q. We use a dynamic data structure that stores
the definer circles of the roots in � and returns those circles enclosing a given query
point efficiently.

Lemma 5.4 There is a fully dynamic O(n)-space data structure to store a set of circles
(not necessarily with equal radii) that can answer queries of the form: Given a point
q in the plane, return a circle enclosing q, where insertions take O(log3 n) amortized
time, deletions take O(log6 n) amortized time, and queries take O(log2 n) worst-case
time.
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Proof Chan [6] presented a fully dynamic randomized data structure that can answer
queries about the convex hull of a set of n points in three dimensions where inser-
tions take O(log3 n) amortized time, deletions take O(log6 n) amortized time, and
extreme-point queries take O(log2 n) worst-case time. We use this structure to solve
our problem, but first, wemust transform our input into an instance that can be handled
by this data structure.

LetC be the dynamic set of circles wewant to store. Consider the paraboloid-lifting
which maps every point (x, y) �→ (x, y, x2 + y2). Using this lifting, we identify each
circle C ∈ C with a plane πC in R

3 whose intersection with the paraboloid projects
down as C in the xy-plane. Moreover, a point q = (x, y) lies inside C if and only if
point (x, y, x2 + y2) lies below the plane πC .

Let	 = {πC : C ∈ C } be the set of planes corresponding to the circles inC . In the
above setting, our query can be translated as follows:Given a point q ′ = (x, y, x2+y2)
on the paraboloid, find a plane πC ∈ 	 that lies above q ′.

Using standard point-plane duality inR3, we can map the set of planes 	 to a point
set	∗, and a query point q ′ to a plane q∗ such that a query translates to a plane query:
Given a query plane q∗, find a point of 	∗ that lies below it.

Using the data structure introduced by Chan [6] to store 	∗, we can answer plane
queries as follows. Consider the direction orthogonal to q∗ pointing in the direction
below q∗. Then, find the extreme point of the convex hull of 	∗ in this direction in
O(log2 n) time. If this extremepoint lies belowq∗, return the circle ofC corresponding
to it.Otherwise,we return that no point of	∗ lies belowq∗, which implies that no circle
ofC contains q. Insertions take O(log3 n) time while removals from the structure take
O(log6 n) time. ��

For our algorithm, we store each root in � into the data structure given by
Lemma 5.4. Notice that after the insertion or deletion of an edge in the grappa tree,
there may be some heavy paths that appear or disappear, and we need to insert their
roots in our data structure. This adds an overhead of O(log6 n) to each link and cut
operation in our grappa tree. However, finding each of these links and cuts will have
the same cost, so it does not change the total running time. Using this structure, we
obtain the following result.

Lemma 5.5 We can compute each root in �q in total O(|�q | log6 n) amortized time.

Proof After querying for a root whose definer circle contains q, we remove it from
the data structure and query it again to find another root with the same property until
no such root exists. Since queries and removals take O(log2 n) and O(log6 n) time,
respectively, we can find all roots in �q in O(|�q | log6 n) time. ��

Given a root r ∈ �, let hr be the heavy path whose root is r . Because the portion
of V(S) that lies inside cell(q, S′) is a connected subtree, we know that, for each
r ∈ �q , the portion of the path hr contained in cell(q, S′) is also connected. In order
to compute this connected subpath, we want to find the last vertex of hr that lies inside
of cell(q, S′), or equivalently, the unique edge of hr having exactly one endpoint in
the interior of cell(q, S′). We call such an edge the q-transition edge of hr (or simply
transition edge).
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Lemma 5.6 For a root r ∈ �q , we can compute the transition edge of hr in O(log n)

time.

Proof Let er be the transition edge of hr . We make use of the oracle search proper of a
grappa-tree to find the edge er . To this end, we must provide the data structure with an
oracle such that: given two incident edges f and f ′ in V(S), the oracle determines in
constant time which side of f contains the edge er , i.e., whether er is in the component
ofV(S)\ f that contains f ′, or in the rest of the tree (which includes f itself). The data
structure provides the oracle with the left and the right marks of f and f ′. Given such
an oracle, a grappa tree allows us to find the edge er in O(log n) time by Theorem 5.2.

Given two adjacent edges f and f ′ of V(S) that share a vertex v, we implement the
oracle described above as follows. Recall that the left and right face-marks of f and
f ′ correspond to the sites of S whose Voronoi region is incident to the edges f and f ′.
Thus, we can determine the definers of the vertex v, find their circumcircle, and test
whether q lies inside it or not in constant time. Thus, by Observation 5.3, we can test
in O(1) time whether v lies in �q or not and hence, decide if er is in the component
of V(S) \ f that contains f ′, or in the rest of the tree. ��

5.4 Finding Non-preserved Edges

Observation 5.7 Given a 3-regular graph G and a flarbable curve C, if we can test
whether a point is enclosed by C in O(1) time, then we can test whether an edge is
preserved in O(1) time.

Proof First note that we can test in O(1) time whether an edge reappears by testing
whether its two adjacent edges are fleeq-edges. Since a preserved edge is either an
edge that reappears or a fleeq-edge adjacent to an edge that reappears, this takes only
O(1) time. ��

LetVq(S) be the subtree induced by all the edges ofV(S) that intersect cell(q, S′).
Now, we work towards showing how to identify each non-preserved edge of Vq(S) in
the fleeq induced by ∂cell(q, S′). For each root r ∈ �q , we compute the transition
edge er of hr using Lemma 5.6 in O(log n) time per edge. Assume thatw is the vertex
of er that is closer to r (or is equal to r ). We consider each edge adjacent to w and test
whether it is preserved. Since each vertex of Vq(S) has access to its definers via the
face markers of its incident edges, we can test if this vertex lies in cell(q, S′). Thus,
by Observation 5.7, we can decide whether an edge of Vq(S) is preserved in O(1)
time.

We mark each non-preserved edge among them as shadow. Because we can test
whether an edge is preserved in O(1) time, and since computing er takes O(log n) time
by Lemma 5.6, this can be done in total amortized O(|�q | log n) time. In addition,
notice that if hr contains two adjacent vertices u and v such that the light edge of u
is a left edge while the light edge of v is a right edge (or vice versa), then the edge
uv cannot be preserved; see Fig. 5. In this case, we say that uv is a bent edge. We
want to mark all the bent edges in Vq(S) as shadow, but first we need to identify them
efficiently.
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Fig. 5 Path hr contains two
adjacent vertices u and v such
that the light edge of u is a left
edge while the light edge of v is
a right edge. The edge uv cannot
be preserved

ρ

hr

cell (q, S ′)

u

v

Note that it suffices to find all the bent edges of hr for a given root r ∈ �q , and
then repeat this process for each root in �q . To find the bent edges in hr , we further
extend the grappa tree in such a way that the biased tree representing hr allows us to
search for bent edges in O(log n) time. This extension is described as follows. Recall
that each leaf sv of a biased tree corresponds to a vertex v of the heavy path and has
a pointer to the unique light edge adjacent to v. Since each light edge is either left
or right, we can extend the biased tree to allow us to search in O(log n) time for the
first two consecutive leaves where a change in direction occurs. From there, standard
techniques allow us to find the next change in direction in additional O(log n) time.
Therefore, we can find all the bent edges of a heavy path hr in O(log n) time per bent
edge. After finding each bent edge in hr , we mark it is as a shadow edge.

Lemma 5.8 An edge of Vq(S) is a preserved edge if and only if it was not marked as
a shadow edge.

Proof Since we only mark non-preserved edges as shadow, we know that if an edge
is preserved, then it is not shadow.

Assume that there is a non-preserved edge uv ofVq(S) that is notmarked as shadow.
If uv is a heavy edge, then it belongs to some heavy path hr for some r ∈ �q . We know
that uv cannot be the transition edge of hr since it would have been shadowedwhenwe
tested whether it was preserved. Thus, uv is completely contained in cell(q, S′). We
can also assume that uv is not a bent edge, otherwise uv would have been shadowed.
Therefore, the light children of u and v are either both left or both right children, say
left. Since uv is not preserved, either the light child of u or the light child of v must be
inside cell(q, S′). Otherwise if both edges cross the boundary of cell(q, S′), then
uv is preserved by definition.

Assume that u has a light left child r ′ that is inside cell(q, S′). That is, r ′ must be
the root of some heavy path and hence belongs to �q . However, in this case we would
have checked all the edges adjacent to u while processing the root r ′ ∈ �q . Therefore,
every edge that is non-shadow and intersects cell(q, S′) is a preserved edge. ��
Corollary 5.9 It holds that σ = �(cost(V(S), ∂cell(q, S′))).

Let σ be the number of shadow edges of V(S), which is equal to the number of
non-preserved edges by Lemma 5.8. The following relates the size of �q with the
value of σ .

Lemma 5.10 It holds that |�q | = O(σ log n).
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C ′

CC

C ′

ρ

ρ

Fig. 6 Two combs of F that are compressed into super-nodes with their respective dummy leaves. An
Eulerian tour around the compressed tree provides us with the order in which the trees hanging outside of
cell(q, S′) should be attached

Proof Given a root r of �q , let pr be the parent of r and notice that the edge r pr is a
light edge that is completely contained in �q . Note that pr belongs to another heavy
path ht , for some t ∈ �q . If pr is the endpoint of the transition edge of ht closest to
the root, then we add a dependency pointer from r to t . This produces a dependency
graph with vertex set �q . Since there is only transition edge per heavy path, that the
in-degree of each vertex in this dependency graph is one. Therefore, the dependency
graph is a collection of (oriented) dependency paths.

Since any path from a vertex to the root ρ of V(S) traverses O(log n) light edges,
each dependency path has length O(log n). Let r ∈ �q be the sink of a dependency
path. Consider the light edge r pr and notice that it cannot be preserved, as pr is not
incident to a transition edge. Therefore, we can charge this non-preserved edge to the
dependency path with sink r . Since a non-preserved edge can be charged only once,
we have that σ is at least the number of dependency paths. Finally, as each depen-
dency path has length O(log n), there are at least �(|�q |/ log n) of them. Therefore
σ = �(|�q |/ log n), or equivalently, |�q | = O(σ log n) which yields our result. ��

5.5 The Compressed Tree

LetF be the forest obtained from Vq(S) by removing all the shadow edges (this is just
for analysis purposes, so far no cut has been performed). Note that each connected
component of F consists only of preserved edges that intersect cell(q, S′). Thus,
each component inside cell(q, S′) is a comb, with a path as a spine and each child
of a spine vertex pointing to the same side; see Fig. 6. Thus, we have right and left
combs, depending on whether the children of the spine are left or right children.

Our objective in the long term is to cut all the shadow edges and link the remaining
components in the appropriate order to complete the flarb. To this end, we would
like to perform an Eulerian tour on the subtree Vq(S) to find the order in which the
subtrees of V(S) \ Vq(S) that hang from the leaves of Vq(S) appear along this tour.
However, this may be too expensive as we want to perform this in time proportional
to the number of shadow edges and the size of Vq(S) may be much larger. To make
this process efficient, we compress Vq(S) by contracting each comb ofF into a single
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super-node. By performing an Eulerian tour around this compressed tree, we obtain
the order in which each component needs to be attached. We construct the compressed
flarb and then we decompress as follows.

Note that each combhas exactly two shadow edges that connect it with the rest of the
tree. Thus, we contract the entire component containing the comb into a single super-
node and add a left or right dummy child to it depending on whether this comb was
left or right, respectively; see Fig. 6. After the compression, the shadow edges together
with the super-nodes and the dummy vertices form a tree called the compressed tree
that has O(σ ) vertices and edges, where σ is the total number of shadow edges.

Lemma 5.11 We can obtain the compressed tree in O(σ log σ) time.

Proof Notice that each shadow edge is adjacent to two faces—its left face and its right
face. Recall that each face bounds the Voronoi cell of some site in S and that each
shadow edge has two markers pointing to the sites defining its adjacent faces. Using
hashing, we can group the shadow edges that are adjacent to the same face in O(σ )

time. Since preserved faces have no shadow edges on their boundary, we have at most
O(σ ) groups.

Finally, we can sort the shadow edges adjacent to a given face along its bound-
ary. To this end, we use the convex hull position of the sites defining the faces on
the other side of each of these shadow edges. Computing this convex hull takes
O(σ log σ) time. Once the shadow edges are sorted along a face, we can walk and
check whether consecutive shadow edges are adjacent. If they are not, then the path
between them consists only of preserved edges forming a comb; see Fig. 6. Therefore,
we can compress this comb and continue walking along the shadow edges. Since each
preserved edge that reappears is adjacent to a face containing at least one shadow edge
(namely the face that is not preserved), all the combs will be compressed during this
procedure. ��

The compressed tree is then a binary tree where each super-node has degree three
and each edge is a shadow edge. We now perform an Eulerian tour around this com-
pressed tree and retrieve the order in which the leaves of this tree are visited. Some
leaves are dummy leaves and some of them are original leaves of Vq(S); see Fig. 6.

5.6 Completing the Flarb

We now proceed to remove each of the shadow edges which results in a (compressed)
forest with O(σ ) components. Note that each of the original leaves of Vq(S) was
connectedwith its parent via a shadowedge and hence it lies nowas a single component
in the resulting forest. For each of these original leaves of Vq(S), we create a new
anchor node and link it as the parent of this leaf. Moreover, there could be internal
vertices that become isolated. In particular this will be the case of the root ρ. These
vertices are deleted and ignored for the rest of the process. To complete the flarb, we
create two new nodes ρ′ and ρ′′ which will be the two new leaves of the Voronoi
diagram, one of them replacing ρ. Then, we construct a path with endpoints ρ and ρ′
that connects the super-nodes and the anchor nodes according to the traversal order of
their leaves; see Fig. 7. The resulting tree is a super comb Y , where each vertex on the
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C C ′

C
C ′

v2

v4

v5
v2

v4
v5

Yρ′ ρ′′

Fig. 7 Left: an anchor node is created for each isolated leaf of Vq (S) and attached as its parent. Other
isolated nodes are ignored. Right: a super comb is created connecting two new leaves ρ′ and ρ′′ through
a path. This path connects anchor and super-nodes in the order retrieved by the Eulerian tour around the
compressed tree

C C ′
v2

v4
v5

Y

v2
v4

v5

C
C ′

V(S ′)
ρ′ ρ′′ ρ′

ρ′′

Fig. 8 The tree V(S′) achieved after the decompression

spine is either a super-node or an anchor node, and all the leaves are either dummy
leaves or original leaves of Vq(S). Since we combined O(σ ) components into a tree,
we need O(σ ) time.

We proceed now to decompress Y . To decompress a super-node of Y that corre-
sponds to a comb, we consider the two neighbors of the super-node in Y and attach
each of them to the ends of the spine of the comb. For an anchor node, we simply
note that there is a component of V(S) hanging from its leaf; see Fig. 8. In this way,
we obtain all the edges that need to be linked. After the decompression, we end with
the tree V(S′) resulting from the flarb. Thus, the flarb operation of inserting q can be
implemented with O(σ ) links and cuts.

Recall that any optimal algorithm needs to perform a cut for each edge that is not
preserved. Since each non-preserved edge is shadow by Lemma 5.8, the optimal algo-
rithm needs to perform at least �(σ) operations. Therefore, our algorithm is optimal
and computes the flarb using �(σ) links and cuts. Moreover, by Lemmas 5.5 and 5.6
we can compute the flarb in O(|�q | log6 n+σ log n) amortized time using�(σ) links
and cuts. Since |�q | = O(σ log n) by Lemma 5.10, we obtain the following.

Theorem 5.12 The flarb operation of inserting q can be implemented with O(K )

links and cuts, where K is the cost of the flarb. Moreover, it can be implemented in
O(K log7 n) amortized time.

Corollary 5.13 There is an O(n)-space data structure for maintaining a nearest-
point or farthest-point Voronoi diagram of a sequence of n sites in convex position.
The data structure supports inserting a new site, subject to preserving the invariants
of convex position, in O(K log7 n) amortized time; and supports point-location and
oracle queries in O(log n) worst-case time, where K = O(

√
n) if sites are added in

arbitrary order, or K = O(log n) if sites are inserted in clockwise order.
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