
Discrete Comput Geom (2018) 60:345–380
https://doi.org/10.1007/s00454-017-9939-y

Embedding-Preserving Rectangle Visibility
Representations of Nonplanar Graphs

Therese Biedl1 · Giuseppe Liotta2 ·
Fabrizio Montecchiani2

Received: 2 September 2016 / Revised: 2 September 2017 / Accepted: 7 September 2017 /
Published online: 4 October 2017
© Springer Science+Business Media, LLC 2017

Abstract A (weak) rectangle visibility representation, or simply an RVR, of a graph
consists of an assignment of axis-aligned rectangles to vertices such that for every
edge there exists a horizontal or vertical line of sight between the rectangles assigned
to its endpoints. Given a graph with a fixed embedding in the plane, we show that
the problem of testing whether this graph has an embedding-preserving RVR can be
solved in polynomial time for general embedded graphs and in linear time for 1-plane
graphs, i.e., for embedded graphs having atmost one crossing per edge. The linear time
algorithmuses three forbidden configurations, which extend the set known for straight-
line drawings of 1-plane graphs. The algorithm first checks for the presence of these
forbidden configurations in the input graph, and then either an embedding-preserving
RVR is computed (also in linear time) or a forbidden configuration is reported as a
negative witness. Finally, we discuss extensions of our study to the case when the
embedding is not fixed but the RVR can have at most one crossing per edge.

Editor in Charge: János Pach

An extended abstract of this paper appeared in the Proceedings of the 32nd Symposium on Computational
Geometry, 2016, pp. 19:1–19:16. Research of Therese Biedl supported by NSERC. Research undertaken
while Fabrizio Montecchiani was visiting the University of Waterloo supported by NSERC.

Therese Biedl
biedl@uwaterloo.ca

Giuseppe Liotta
giuseppe.liotta@unipg.it

Fabrizio Montecchiani
fabrizio.montecchiani@unipg.it

1 David R. Cheriton School of Computer Science, University of Waterloo, Waterloo, ON, Canada

2 Dipartimento di Ingegneria, Università degli Studi di Perugia, Perugia, Italy

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00454-017-9939-y&domain=pdf
http://orcid.org/0000-0002-0543-8912

346 Discrete Comput Geom (2018) 60:345–380

Keywords Visibility representations · 1-Planarity · Fixed embedding · Forbidden
configuration

Mathematics Subject Classification 68U05 · 68R10 · 94C15

1 Introduction

A (weak) rectangle visibility representation (or RVR) is an appealing method of dis-
playing graphs [15]. It consists of assigning axis-aligned rectangles to vertices and
horizontal or vertical line segments (of width ε > 0) to edges in such a way that line
segments of edges begin and end at the rectangles representing their endpoints and
intersect no rectangles in-between. Equivalently, each edge corresponds to a horizontal
or vertical line-of-sight between its endpoints; hence the name “visibility”. Edge seg-
ments may cross each other, but any such crossing occurs at a right angle. Right-angle
crossings and the absence of bends lead to a high readability of the visualization. See
Fig. 1 (c) for an illustration.

This kind of representation was introduced to the Computational Geometry com-
munity in 1985, when Wismath [47] showed that every planar graph has a (weak)
bar-visibility representation, in which vertices are represented as horizontal bars and
edges correspond to vertical visibilities. The same result was discovered indepen-
dently multiple times [18,35,37,42,43]. Bar-visibility representations can exist only
for planar graphs, so for representing nonplanar graphs one may use edge segments
in both directions, as in rectangle visibility representations. Two necessary conditions
for a graph G to have an RVR are the following, as shown in [25]. First, G must have
thickness 2, i.e., it must be the union of two planar graphs. Second, G must have at
most 6n − 20 edges (where n denotes the number of vertices of G); this bound is tight
for each n ≥ 8. However, these two conditions are not sufficient. In fact, Shermer
showed in 1996 that it is NP-hard to test whether a given graph has an RVR [38].

In this paper, we study the problem of testing whether a graph has a rectangle
visibility representation if some aspects of it are fixed a priori. In previous work by
Streinu andWhitesides [39], it was shown that testing whether a graph has an RVR can

1
2

34

5 6

1

3

4
2

5

6

(a) (b) (c)

Fig. 1 (a, b) The two 1-planar embeddings of K6. None of them can have an embedding-preserving RVR
due to the presence of a forbidden configuration (bold edges). (c) An embedding-preserving RVR for the
1-planar embedding in (b) after removing edge (2, 4)

123

Discrete Comput Geom (2018) 60:345–380 347

be solved in polynomial time if the following information is given as part of the input:
For each edge it is known whether it is drawn horizontal or vertical, for each vertex
v the fixed order of edges around v is known (this is also called a rotation system),
and it is known which vertices form the outer face of the representation. Streinu and
Whitesides give necessary and sufficient conditions for when such restrictions can be
realized, and show that these can be tested in O(n2) time, where n is the number of
vertices of the graph.

We consider a slightly different scenario. Like Streinu and Whitesides, we assume
that the rotation system and the outer face are fixed. However, we do not require to
know the directions of the edges; instead we must know a priori which edges cross
each other, and the order in which these crossings occur along each edge (if there is
more than one crossing on an edge). In other words, the graph has a fixed embedding
and we want an embedding-preserving RVR (see Sect. 2 for definitions). It turns out
that a reduction to the topology-shape-metrics approach [41], combined with a recent
breakthrough for the max st-flow problem [34], then allows to test in Õ((n + c)11/7)
time1 whether a graph with n vertices and c crossings has an embedding-preserving
RVR, and to compute an RVR if it exists; we give the details in Sect. 2.

We then investigate 1-planar graphs, i.e., those graphs that admit an embedding
where each edge is crossed at most once (see, e.g., [30]). Previous attempts to repre-
sent 1-planar graphs had relaxed the restriction that edges must not cross non-incident
vertices, and defined a (weak) bar k-visibility representation to be a bar-visibility rep-
resentation where each line of sight can intersect at most k bars [14]. Brandenburg [7]
and independently Evans et al. [20] proved that 1-planar graphs have a bar 1-visibility
representation.

In contrast to these results, we consider in Sect. 3 rectangle visibility representations
of 1-planar graphs. Furthermore, we consider 1-plane graphs, i.e., embedded 1-planar
graphs, andwant to find an embedding-preserving RVR (also called 1-plane RVR). It is
easy to see that not all 1-plane graphs have a 1-plane RVR (see also Sect. 4). The main
contribution of our paper is to show that for an n-vertex 1-plane graph it is possible to
test in O(n) timewhether it has a 1-plane RVR. The approach is entirely different from
the topology-shape-metrics above and reveals much insight into the structure required
for a 1-plane RVR to exist. Specifically, we consider three configurations, called B-
configuration, W-configuration, and the newly defined T-configuration (illustrated in
Fig. 4), and show that a 1-plane graph has an embedding-preserving RVR if and only
if none of these three configurations occurs. This mirrors in a pleasing way the result
by Thomassen [44], which shows that a 1-plane graph has an embedding-preserving
straight-line drawing if and only if it contains no B-configuration or W-configuration.
For example, the complete graphwith six vertices admits the two 1-planar embeddings
in Fig. 1 (a), (b). Both embeddings contain a forbidden configuration, highlighted with
bold edges; Fig. 1 (c) shows a 1-plane RVR of the graph obtained from Fig. 1 (b) by
removing edge (2, 4).

Our result provides an answer (in a special case) to Shermer’s question of charac-
terizing what graphs have RVRs [38]. Also, we prove that testing whether a 1-plane

1 We recall that the notation Õ(f (n)) means O(f (n)poly(log f (n))).

123

348 Discrete Comput Geom (2018) 60:345–380

graph contains any of the three forbidden configurations can be done in O(n) time,
and in the absence of them we can compute in O(n) time a 1-plane RVR which fits
into a grid of O(n2) size.We remark that embedding-preserving straight-line drawings
of 1-plane graphs may require exponential area [24]. Furthermore, there are 1-planar
graphs that do not admit any straight-line 1-planar drawing, due to the presence of aW-
configuration in any possible 1-planar embedding [40]. However, every 3-connected
1-planar graph admits a 1-planar drawing in polynomial area where all edges are
straight-line segments except at most one that has one bend [1].

The proof in Sect. 3 combines different techniques, namely: a novel technique
to triangulate a 1-plane graph without changing its embedding; the 4-block tree to
decompose the graph into its 4-connected components; transversal structures and
rectangular dual representations to draw each component; and morphing tools such
as zig-zag-slides to recursively combine computed subgraphs. From the algorithmic
point-of-view, ingredients of the topology-shape-metrics approach are exploited to
obtain linear time complexity and quadratic area for the resulting drawings.

Differently from planar graphs, 1-planar graphs may have an exponential number
of different embeddings even if 3-connected or 4-connected (see, e.g., Fig. 14). Hence
our algorithm does not automatically cover the case when the embedding is not fixed.
We study 1-planar graphs without fixed embedding in Sect. 4. We show that there
exist infinitely many 3-connected 1-planar graphs that contain linearly many edge-
disjoint T-configurations in any possible 1-planar embedding. Hence, these graphs
do not admit any 1-planar embedding with an embedding-preserving RVR, unless
we remove at least one edge for each T-configuration. On the positive side, we show
that 4-connected 1-planar graphs, which include the optimal 1-planar graphs, always
admit an embedding-preserving RVR, after removing at most one edge. For example,
Fig. 1 (c) depicts a 1-planar embedding of K6 minus one edge.

Finally, in Sect. 5 we conclude with a discussion and open problems.

2 Definitions and Basic Results

We consider simple graphs, which are graphs with neither loops nor multiple edges.
A drawing � of a graph G maps each vertex to a distinct point of the plane and each
edge to a simple Jordan arc between its two endpoints. We consider simple drawings,
in which the arcs representing two edges have at most one point in common, which
is either a common endpoint or a common interior point where the two arcs properly
cross. A drawing is planar if no two arcs cross. A drawing divides the plane into
topologically connected regions, called faces. The infinite region is called the outer
face. For a planar drawing the boundary of a face consists of vertices and edges, while
for a nonplanar drawing the boundary of a face may contain vertices, crossings, and
edges (or parts of edges). An inner face (resp. edge, vertex) is a face (resp. edge, vertex)
that is not part of the outer face. A rotation system of a graph G consists of assigning
at each vertex a cyclic order of the edges incident to that vertex. A drawing is said to
respect a rotation system if scanning around the vertex in clockwise order encounters
the edges in the prescribed order. An embedding of a graph G is an equivalence
class of drawings of G that define the same set of faces; in particular this determines

123

Discrete Comput Geom (2018) 60:345–380 349

which pairs of edges cross each other. A graph with a fixed embedding comes with
a rotation system, a cyclic order of edges around each crossing, and with one face
indicated to be the outer face. A fixed embedding of a graph is sometimes called an
extended embedding of the graph [32]. Given a graph G with a fixed embedding, the
planarization G p of G is the graph obtained by replacing each crossing of G with a
dummy-vertex. Thus if edge (a, b) crosses (c, d), then add a dummy-vertex x incident
to all of a, b, c, d and remove the edges (a, b) and (c, d). Vertex x uses as its cyclic
order of edges the same order in which edges appeared at the crossing (which is given
as part of the fixed embedding). The vertices of G in G p are called original vertices
to avoid confusion. The planarization G p is a plane graph, i.e., a planar graph with a
fixed embedding without crossings.

A rectangle visibility representation (orRVR for short) of a graphG is an assignment
of disjoint axis-aligned rectangles to the vertices in such a way that for every edge
there exists a horizontal or vertical line of sight between its endpoints (not all such
lines of sight give rise to an edge). We follow a commonly adopted model where the
lines of sight are thick, i.e., they have non-zero area (see e.g. [29,38,39,42,47]). Thus
we may assume that each thick line of sight includes a (horizontal or vertical) line
segment, attaching at each end at a point that is not a corner of the rectangle of that
vertex. Note that our visibility model is weak, since two rectangles can be visible even
if the two corresponding vertices are not adjacent. We remind the reader that there are
other models of rectangle visibility representations (not studied further here): the ε-
visibility model (refer to [38]) requires two rectangles in an RVR to be visible through
a thick line of sight if and only the two corresponding vertices are adjacent in the
depicted graph, and the strong model (refer to [42] in the context of bar-visibility
representations) requires two rectangles in an RVR to be visible, possibly along a line
of sight of zero width, if and only the two corresponding vertices are adjacent in the
depicted graph.

In what follows, when this leads to no confusion, we shall use the same term edge
to indicate an edge of a graph, the line of sight between two rectangles, and the line
segment representing the line of sight, and we use the same term vertex for both the
vertex of a graph and the rectangle that represents it. If we have an RVR, we can
naturally extract a drawing from it as follows. Place a point for each vertex v inside
the rectangle representing v and connect it to all the attachment points of incident
edges of v inside the rectangle; this adds no crossing. We say that an RVR � of a
graph G is embedding-preserving, or respects the embedding of G, if applying this
operation to � results in the same embedding. An embedding-preserving RVR of a
1-plane graph is a 1-plane RVR.

Topology-Shape-Metrics. The topology-shape-metrics (TSM) is awell-knownmethod
introduced by Tamassia [41] to compute orthogonal drawings of graphs, i.e., draw-
ings where all vertices are points and edges are polylines with horizontal and vertical
segments. The main idea is to express such a drawing as orthogonal representations
(defined below). We now briefly review how any RVR gives rise to an orthogonal rep-
resentation; this is relatively simple but has to our knowledge not been used before.We
will use such orthogonal representations twice in our paper: once to determinewhether

123

350 Discrete Comput Geom (2018) 60:345–380

Fig. 2 An RVR � (left), the PSLG (center) obtained from �, and the orthogonal drawing (right) obtained
from �. The only difference between the latter two is whether the corners of rectangles become nodes or
bends

a given embedded graph has an RVR, and once to store an RVR of a 4-connected 1-
plane graph so that it can be manipulated efficiently (see Sect. 3.3).

A planar straight-line graph (PSLG for short) is a representation of a plane graph
such that each vertex is a point of the plane and each edge is a straight-line segment
connecting its two endpoints and intersecting no other edge or vertex. To avoid ambi-
guities, we use nodes and arcs for the vertices and edges of a PSLG. Consider an RVR
� and convert it into a PSLG as follows (see also Fig. 2): replace every corner of a
rectangle, every crossing, and every attachment point of an edge at a rectangle by a
node of the PSLG, and connect two nodes with an arc if and only if they are connected
by a segment. Then, each node of the PSLG has around it a sequence of angles that
are all multiple of 90◦ and sum to 360◦. Likewise, each face f of the PSLG has along
it a sequence of angles that are all multiple of 90◦ and that sum to (a(f) − 2)180◦
for inner faces and (a(f) + 2)180◦ for the outer face, where a(f) is the number of
angles inside f at the nodes of f .

The idea of an orthogonal representation of a plane graph G with maximum vertex
degree 4 is that such sequences of angles (around a vertex or along a face) are enough
to describe an orthogonal drawing of G, in the sense that suitable edge-lengths to
realize them can always be found. To define this precisely, we follow the notation
of [15]. We need that an edge (u, v) of G can be viewed as two darts, i.e., as the two
distinct ordered pairs (u, v) and (v, u).

Definition 2.1 (based on [15]) An orthogonal representation of a plane graph G with
maximum vertex degree 4 is a triple (G, α, β) such that the following conditions are
satisfied:

– α and β are two functions that associate a number α(u, v) ∈ {1, 2, 3, 4} and a
number β(u, v) ∈ {0, 1, 2, . . . } to every dart (u, v) of G, respectively;

– at every vertex u,
∑

v:(u,v)∈E α(u, v) = 4;
– at every inner face f ,

∑
(u,v)∈D(f) α(u, v) + β(v, u) − β(u, v) = 2a(f) − 4,

where D(f) denotes the darts (u, v) for which f is the left face when walking
from u to v;

– at the outer face f ,
∑

(u,v)∈D(f) α(u, v) + β(v, u) − β(u, v) = 2a(f) + 4.

We will call the last two conditions of Definition 2.1 the sum-condition for faces.

123

Discrete Comput Geom (2018) 60:345–380 351

Any orthogonal drawing� of a planar graph G gives rise to an orthogonal represen-
tation (G, α, β) as follows. For each dart (u, v), let α(u, v) ∈ {1, 2, 3, 4} be the angle
(measured as multiples of 90◦) at vertex u between the incident segment of (u, v) and
the incident segment of the counter-clockwise next edge at u in the orthogonal drawing
�. Put differently, let f be the face at u between (u, v) and the counter-clockwise next
edge at u; α(u, v) describes the face-angle at u in f. Define further β(u, v) as follows.
Let f be the face to the left when traversing dart (u, v) from u to v. Define β(u, v)

to be the number of bends on (u, v) that have the 90◦ angle incident to face f in �;
β(u, v) is the bend-count of (u, v) towards face f.

The following observation summarizes the above conversion of RVRs to PSLGs,
which are orthogonal drawings without bends and hence yield orthogonal representa-
tions.

Observation 2.2 Assume that G has an RVR �, and construct a plane graph H by
replacing every crossing, every edge attachment point and every corner of a vertex-
rectangle of � with a node in H. Then there exists an orthogonal representation
(H, α, β) such that β(u, v) = 0 for all darts (u, v).

Twoorthogonal drawings�1 and�2 ofG are shape-equivalent if they give rise to the
same orthogonal representation. An orthogonal representation of G hence describes a
class of shape-equivalent orthogonal drawings of G. Tamassia showed ([41], see also
[15, Thm. 5.4]) that for any orthogonal representation (G, α, β), one can compute
an orthogonal drawing � of G that belongs to the equivalence class of (G, α, β) in
O(n + b) time on a grid of size O((n + b)2), where n is the number of vertices of G
and b = ∑

(u,v)∈E (β(u, v) + β(v, u)) is the total number of bends in �.
An orthogonal representation of G with the minimum number of bends can be

computed by means of a flow network N : each unit of flow corresponds to a 90◦
angle, each vertex supplies 4 units of flow, and each face consumes an amount of flow
proportional to its degree. Bends along edges correspond to unit of flows transferred
across adjacent faces, and each bend has a unit cost in the network. More precisely,
the flow networkN is constructed as follows. It has a vertex-node for each vertex of
G and a face-node for each face of G. Each vertex-node v supplies σ(v) = 4 units of
flow, and each face-node f consumes τ(f) units of flow, where τ(f) = 2a(f) − 4
if f is an internal face, and τ(f) = 2a(f) + 4 if f is the outer face. By Euler’s
formula,

∑
v σ (v) = ∑

f τ(f), i.e., the total supply is equal to the total consumption.
For each dart (u, v) of G, with faces f and g on its left and right, respectively, N
has two arcs: (i) an arc (u, f) with lower bound λ(v, f) = 1, capacity μ(v, f) = 4,
and cost χ(v, f) = 0, and (ii) an arc (f, g) with lower bound λ(v, f) = 0, capacity
μ(v, f) = +∞, and cost χ(v, f) = 1. The conservation of flow at the vertices
expresses that the sum of the angles around a vertexmust equal 360◦. The conservation
of flow at the faces expresses the sum-condition for the faces. Every feasible flow
 in
networkN corresponds to an orthogonal representation for graph G, whose number
of bends is equal to the cost of flow
. More precisely, let
 be a flow of N with
cost b. Then, for each dart (u, v) whose associated arcs of N are (u, f) and (f, g),
we set α(u, v) =
(u, f) and β(u, v) =
(f, g). On the other hand, by setting

(u, f) = α(u, v) and
(f, g) = β(u, v), an orthogonal representation H with at

123

352 Discrete Comput Geom (2018) 60:345–380

1
2

34

5 6

1
2

34

5 6

C1

C2

C3C4

C5 C6

C4

=2 =2

=2

=2

≤ 0

≤ 0

≤ 0
≤ 0

≤ 0
≤ 0

≤ 0

≤ 0

≤ 0
≤ 0≤ 0

≤ 0

C4

22

2

2
0
0

0
00

0

0
0

1
1

1
1

1
11

1 0
0

00

0

0

1

3

1

3

4
2

5

6

(d) Constraints

(a) G (b) G p (c) H

(e) Representation (f) Γ

Fig. 3 Illustration of the procedure to compute an embedding-preserving RVR of a 1-planar embedding
of K6 minus edge (2, 4) with the topology-shape metric approach. For readability we only show parts of
the graph in (d, e). (a) G. (b) G p . (c) H . (d) Constraints. (e) Representation. (f) �

most b bends is transformed into a feasible flow
 ofN with cost b. The next theorem
summarizes the above discussion.

Theorem 2.3 (see e.g. [15]) Let G be a plane graph with n vertices and maximum
vertex degree 4. An orthogonal representation H of G with the minimum number of
bends can be computed in O(T (n)) time, where T (n) is the time for computing a
min-cost flow of the flow network N associated with G.

As observed in [15], the flow network N can be easily modified to handle con-
straints on face-angles and bend-counts. For example, to prescribe at most two bends
on an edge with darts (u, v) and (v, u) we set the capacity of the arcs (f, g) and
(g, f) on N as μ(f, g) = μ(g, f) = 2. Given a constrained network N , a feasible
flow may not exist, but one can test the existence of an orthogonal representation that
complies with the prescribed constraints by testing for a feasible flow.

Testing Embedded Graphs for RVRs. Assume that we are given a graph G with a
fixed embedding. We will show how to test whether G has an RVR that respects
its embedding using the TSM approach. Note that the embedding tells us nearly the
entire topology of a (putative) RVR of G. The only thing unknown is the location of
the corners of each rectangle of a vertex. We can now interpret these corners as bends
(rather than as nodes) in the topology. Hence, define a constrained plane graph H as
follows (see also Fig. 3): (i) Start with the planarization G p of G (see, e.g., Fig. 3 (a),
(b)). (ii) For every original vertex v of G, define a cycle Cv with deg(v) nodes in
H , where deg(v) is the degree of v in G . Attach the (parts of) edges incident to v

123

Discrete Comput Geom (2018) 60:345–380 353

to the nodes of cycle Cv in the specified order of the embedding, in such a way that
the interior of the cycle forms a face. In other words, form a cycle that can represent
the boundary of the rectangle of v (see, e.g., Fig. 3 (c)). (iii) Impose constraints on
orthogonal representations of H as follows (see, e.g., Fig. 3 (d)). Every edge (u, v)

of G has been replaced in H by a path that starts at Cu , ends at Cv , and possibly
has dummy-vertices as inner vertices. For any dart (x, x ′) on such a path, impose an
upper bound β(x, x ′) ≤ 0 on the bend-count. In any orthogonal representation we
also have β(x, x ′) ≥ 0, so effectively we do not allow any bends for the original
edges. (iv) Every vertex v of G has been replaced by a cycle Cv in H that bounds
a face fv . If (x, x ′) is a dart of H that has fv on its left side, then impose an upper
bound β(x ′, x) ≤ 0. In any orthogonal representation we must have β(x ′, x) ≥ 0,
so this implies β(x ′, x) = 0. Observe that β(x ′, x) counts the number of bends on
edge (x ′, x) whose incident angle in fv is 270◦. Hence this constraint expresses that
each bend on (x, x ′) must have its 90◦ angle towards face fv . Furthermore, impose
an upper bound α(x, x ′) ≥ 2 and a lower bound α(x, x ′) ≤ 2 onto the face-angle
α(x, x ′). Since fv is the face to the left of dart (x, x ′), the angle at x inside fv must
be 180◦.

Theorem 2.4 Let G be a graph with a fixed embedding, n vertices and c crossings.
There exists an Õ((n+c)11/7)-time algorithm to test whether G admits an embedding-
preserving RVR. In the positive case, the algorithm computes an RVR � that has O(n2)

area.

Proof Build the constrained plane graph H as described above. We claim that H
admits an orthogonal representation that satisfies the constraints of H if and only if
G admits an RVR that respects its embedding.

Assume first that G admits an RVR � that respects its embedding. Consider the
orthogonal drawing �′ of the graph H ′ obtained from � by replacing every edge-
vertex attachment point and every crossing with a node; see, e.g., Fig. 2. All edges
of G correspond to straight-line segments in �′ and all vertices of G correspond to
rectangular faces such that no edge attaches at a corner in �′. Let (H ′, α′, β ′) be the
orthogonal representation associated with �′. It is easy to verify that H ′ has the same
set of vertices and edges as H and that both α′ and β ′ satisfy the constraints of H .

Now assume that H has an orthogonal representation that satisfies the constraints,
see, e.g., Fig. 3 (e). Compute an orthogonal drawing �H that corresponds to this
orthogonal representation. We claim that by dropping added nodes from �H , we
obtain an RVR of G, see, e.g., Fig. 3 (f).

We first argue that for any vertex v of G, the cycle Cv must form a rectangle. Cycle
Cv bounds an inner face fv with a(fv) = deg(v) incident nodes. At each dart (u, v) of
Cv that has fv on the left side, we have α(u, v) = 2 and β(v, u) = 0 due to our con-
straints. But

∑
(u,v)∈D(fv)(α(u, v)+β(v, u)−β(u, v)) = 2a(fv)− 4, which implies∑

(u,v)∈D(fv) β(u, v) = 4. Since drawing �H respects the orthogonal representation,
cycle Cv has exactly four angles of 90◦, none of which occur at a node. Hence Cv

forms a rectangle Rv . We use Rv to represent v in the RVR, and observe that none of
the corners of Rv are incident to an edge sinceα(u, v) = 2 for all (u, v) ∈ D(fv). Next
consider any dummy-vertex x . It has degree 4, hence four incident faces. Let (x, y)

be a dart incident to x . Since α(x, y) ≥ 1 but
∑

(x,y)∈E α(x, y) = 4, we must have

123

354 Discrete Comput Geom (2018) 60:345–380

α(x, y) = 1 for all such darts. In consequence, the four incident face-angles at any
dummy-vertex x must be 90◦. Nowwe argue that for any edge (u, v) of G, there exists
a line of sight between the rectangles Ru and Rv . In H , the edge was (possibly) subdi-
vided with dummy-vertices, so the edge is split into a path x0, x1, x2, . . . , xk, xk+1 for
some k ≥ 0 with x0 ∈ Cu and xk+1 ∈ Cv . We imposed the constraint β(xi , xi+1) = 0
onto each dart of this path, whichmeans that in�H they are all drawn as line segments.
Also, at xi for 1 ≤ i ≤ k the two incident arcs are not consecutive, and hence have
angle 180◦ between them. Therefore the union of the arcs forms one line segment
without bends connecting Cu to Cv . Thus Ru and Rv are connected by a line of sight,
along this path, proving that we indeed obtained an RVR.

It remains to argue the time complexity and the area requirement. We initially
check whether the number of edges of G is m ≤ 6n − 20, as otherwise G has no
RVR [25]. We then use the TSM flow approach to test if an orthogonal representation
of H exists that satisfies all constraints. We construct a flow network N starting
from H as described earlier in this section. The following constraints are imposed: (i)
Every arc (u, fv) ofN from a vertex-node u to a face-node fv has fixed flow 2 (i.e.,
λ(u, fv) = μ(u, fv) = 2) if fv corresponds to a cycle Cv (this implies a 180◦ angle
inside the cycle); (ii) every arc (f, g) between two face-nodes such that neither f nor
g corresponds to a cycle Cv of H is removed (to avoid bends on such an edge); (iii)
every arc (g, fv) between two face-nodes such that fv corresponds to a cycle Cv of H
is removed (to ensure that each cycle is represented as a rectangle); (iv) for each edge
(fv, g) between two face-nodes such that fv corresponds to a cycle Cv of H , we set
μ(fv, g) = 4, since each edge of a cycle can make at most four bends. In order to test
for the existence of a feasible flow in N , we reduce to the max st-flow problem on
a network N ′ constructed from N as follows. We set σ(v) = 0 for all vertex-nodes
and τ(f) = 0 for all face-nodes. We add a super source s and a super sink t . We add
an edge (s, v) for each vertex-node v of N and we set μ(s, v) = σ(v) = 4. We add
an edge (f, t) for each face-node f of N and we set μ(f, t) = τ(f) ∈ O(n + c).
Now we solve a max st-flow problem in N ′. Then the original network N has
a feasible flow
 if and only if the max st-flow
′ in N ′ saturates all the arcs
incident to s. For a flow network with M edges and bounded capacities, the max st-
flow problem can be solved in Õ(M10/7U 1/7) time, where U is the largest (integer)
capacity in the network [34]. Since N has O(n + c) edges and U ∈ O(n + c), it
follows that we can test for the existence of a feasible flow in N , and hence of an
orthogonal representation satisfying all the desired constraints, in Õ((n+c)11/7) time.
If a feasible flow exists, we replace all arcs of N with capacity k > 1 with k arcs
having unit capacity. The unit-capacity min-cost flow problem can then be solved on
the resulting flow network in Õ((n + c)10/7 log W) time, where W is the maximum
cost of an arc [12]. Thus, we can compute an orthogonal representation satisfying all
the desired constraints in Õ((n + c)11/7) time, if it exists. Finally, in O(n + c) time,
an orthogonal representation can be turned into an orthogonal drawing �H of H (and
hence into the RVR �) that has O((n +c)2) area [41]. We can improve the area-bound
substantially. H has m H = ∑

v∈V deg(v) + m + 2c = 3m + 2c edges and �H has
B = 4n bends (four per vertex of G). By the results of [4], �H has half-perimeter at
most B + 2nH − m H = 4n + m ∈ O(n), so the area of �H is O(n2). �	

123

Discrete Comput Geom (2018) 60:345–380 355

We remark that Theorem 2.4 contributes to answering a question posed by Streinu
and Whitesides [39] about what topological information added to an input graph G
makes the problem of testing whether G has an RVR polynomial.

3 Embedded 1-Planar Graphs

While the TSM approach used to prove Theorem 2.4 gives a polynomial way to
test whether an embedded graph has an embedding-preserving RVR, its black-box
approach naturally leads to more ambitious research questions about testing the repre-
sentability of embedded graphs. In particular, in case of a negative answer, we obtain
no good insights as to which parts of the graph prevented the existence of a represen-
tation. In this section, we therefore turn our attention to 1-planar graphs. We chose this
graph class for two reasons. One is that they are known to have thickness 2 and at most
4n −8 edges [6,36], and so they are good candidates for always having an embedding-
preserving RVR. (We will, however, see that this is not the case.) Secondly, 1-planar
graphs have been studied widely in the graph theory and graph drawing communities
(see e.g. [1,13,24,30,31,36,40,44]), and visibility representations of these graphs are
of interest [7,16,20,33].

Background. A graph is 1-planar if it has a drawing with at most one crossing per
edge. A 1-plane graph G is a 1-planar graph with a fixed embedding. Graph G is
triangulated if all faces are triangles. In a 1-plane graph, no two crossings are adjacent
and so a triangle consists of three vertices or two vertices and one crossing point.

Let e = (a, c) and e′ = (b, d) be two edges of G that cross at a point p. We say that
e, e′ induce a B-configuration [43] if there exists an edge between their endpoints (say
edge (a, b)) such that (in the induced drawing of {a, b, c, d}) the triangle with vertices
a, b, p, denoted by �(a, b, p), contains vertices c and d inside; see also Fig. 4 (a) for
an illustration. If the crossing is not in a B-configuration, then there are two further
possibilities for edge (a, b). The triangle �(a, b, p) may be an inner face, or it could
have other vertices inside. If, for all pairs in {a, c} × {b, d}, there either is no edge
between the vertices or the triangle that it forms is a face, then we could add the edges
that did not exist previously, routing them along the crossing, and then obtain a kite,
i.e., a crossing with a 4-cycle among its endpoints such that removing the crossing
turns the 4-cycle into a face; see also Fig. 4 (b) for an illustration (the added edges are
dotted). Let (a, c) and (b, d) be two edges of G that cross at a point p, and let (a, f)

a

b
c
d

a

bc

d a b

cd

fe

ab

c

d

f e

g
hi

(a) B Kite W T(b) (c) (d)

Fig. 4 Possible crossing configurations in a 1-plane graph. (a) A B-configuration. (b) A (subgraph) of a
kite. The dashed edges either do not exist or define faces. (c) A W-configuration. (d) A T-configuration

123

356 Discrete Comput Geom (2018) 60:345–380

and (b, e) be two further edges of G that cross at a point q. The four edges induce a
W-configuration [43] if vertices c, d, e, f lie inside the closed region delimited by the
edge segments (a, p), (b, p), (a, q), and (b, q); see also Fig. 4 (c) for an illustration.
For the results in this paper, we introduce a fourth configuration, called the trillium
configuration, or T-configuration for short, which is illustrated in Fig. 4 (d). Namely,
let (a, c) and (b, d) be a pair of edges of G that cross at a point p. Let (a, e) and (c, h)

be a second pair of edges that cross at a point q. Let (b, f) and (c, i) be a third pair
of edges that cross at a point t . The six edges induce a T-configuration if they are all
distinct and the vertices d, e, f , g, h, i lie inside the closed region delimited by the
edge segments a − p − b − t − c − q − a. Vertices a, b, c are called the outer vertices
of the T-configuration, while the remaining six vertices are the inner vertices.

In the following we will mostly work with the planarization G p of G where cross-
ings are replaced by dummy-vertices.Weuse planarized versions of aB-configuration,
W-configuration and T-configuration for G p, which are defined in exactly the same
way except that “crossing” is replaced by “dummy-vertex” everywhere.

3.1 Main Result

In this section we give a characterization of those 1-plane graphs that admit a 1-plane
RVR. Our characterization is summarized by the following theorem.

Theorem 3.1 A 1-plane graph admits a 1-plane RVR if and only if it contains no
B-configuration, no W-configuration, and no T-configuration.

Notably, Theorem 3.1 extends the characterization for straight-line drawability of
1-plane graphs given by Thomassen [43], adding the T-configuration to the set of
forbidden subgraphs. The necessity of the condition is proved via an angle-counting-
argument below. The sufficiency-proof is more elaborate and is given in Sect. 3.2. It
comeswith an efficient algorithm to construct a 1-planeRVRof a drawable graph.Area
and time complexity issues are discussed in Sect. 3.3. Finally, in Sect. 3.4, we describe
a testing procedure that follows from Theorem 3.1. The next theorem is obtained by
combining our testing procedure and our drawing algorithm.

Theorem 3.2 Let G be a 1-plane graph with n vertices. There exists an O(n)-time
algorithm to test whether G admits a 1-plane RVR. In the positive case the algorithm
computes an RVR of G that has O(n2) area.

To prove the necessity of Theorem3.1, we show a slightly stronger statement, which
does not assume 1-planarity.

Lemma 3.3 Let G be a simple graph that admits an RVR �. If while walking along
the outer face of � we encounter k vertices and c crossing points, then k ≥ 3 and
c ≤ 2k − 4.

Proof Convert � into an orthogonal representation (Observation 2.2) and consider the
sumof face-angles at the outer face. Since there are k vertices on the outer face,we have
2k edge-attachment points, and each contributes 90◦ to the sum of angles. Each of the c

123

Discrete Comput Geom (2018) 60:345–380 357

crossings also contributes 90◦ to the sum. If b is the number of rectangle-corners on the
outer face, then b ≤ 4k, and each contributes 270◦ to the sum. In total the outer face has
2k+c+b nodes and the sum of angles must be 180◦(2k+c+b+2). But we also know
that the angles sum to 90◦(2k+c)+270◦b = 180◦(2k+c+b+2)+90◦(b−2k−c−4).
So b − 2k − c − 4 = 0, hence 4k ≥ b = 2k + c + 4, and c ≤ 2k − 4. This implies
k ≥ 2, and in fact k ≥ 3 is required, else c = 0 and the outer face would consist of a
double edge. �	

Since aB-configuration (W-configuration, T-configuration) has as outer face a cycle
with k = 2 and c = 1 (k = 2 and c = 2, k = 3 and c = 3), the following holds.

Corollary 3.4 Let G be a 1-plane graph that admits a 1-plane RVR. Then G contains
no B-configuration, no W-configuration, and no T-configuration.

3.2 Proof of Sufficient Condition

Let G be a 1-plane graph with no B-configuration, no W-configuration, and no T-
configuration as a subgraph, see also Fig. 5 (a) for an example. We give a drawing
algorithm, 1P-RVDrawer, which computes a 1-plane RVR � of G; a high-level
description of 1P-RVDrawer is given in Algorithm 1.

Algorithm 1: Pseudocode for algorithm 1P-RVDrawer.
1 1P-RVDrawer (G)

input : A 1-plane graph G with no B-configuration, no W-configuration, and no
T-configuration.

output: A 1-plane RVR � of G.
2 G p ← Planarize(G)

3 G+
p ← AddKiteEdges(G p) // See Algorithm 2

4 Gt ← Triangulate(G+
p)

5 while Gt has multiple edges, say at vertex-pair {v, w} do
6 Gt ← FlipMultiEdges(Gt , v, w) // See Algorithm 4
7 end
8 G+ ← Gt

9 T ← Compute4BlockTree(G+)
10 ρ ← Root(T)
11 foreach Cν in TopDownTraversal(T) do
12 e ← ChooseSurroundEdge(Cν) // See Algorithm 3
13 γν ← ComputeRVR(Cν ,e)
14 end
15 foreach γν in BottomUpTraversal(T) do
16 �ν ← MergeChildren(γν , �μ1 , . . . , �μh)
17 end
18 �p ← �ρ with all edges in G+ − G p removed
19 � ← Unplanarize(�p)

Triangulating and Planarizing. The first few steps of the algorithm aim to triangulate
G without introducing multiple edges. This is a well-known operation for 3-connected
1-plane graphs, see [1,24]. However, these algorithms all modify the given 1-planar

123

358 Discrete Comput Geom (2018) 60:345–380

(a) (b)G Gt

Fig. 5 (a) A 1-plane graph G. (b) The triangulated plane graph Gt obtained from G. Dummy-vertices are
black squares. Dashed edges were added by AddKiteEdges

embedding, even if there is no B-configuration or W-configuration. In fact, this may
be required since every crossing must form a kite in a triangulation of G, and so if
an edge between endpoints of a crossing already existed, but did not form a face,
then it must be re-routed. We do not want to change the embedding, and hence cannot
triangulate the 1-plane graph per se. Instead,we planarize first, and then triangulate it in
a careful way. The planarization is done in the standard way (see Sect. 2), by replacing
crossings by dummy-vertices that inherit the embedding. The rest of the algorithm
will only work on the planarization G p (with the exception of the last step), and so
from now when using the terms B-configuration, W-configuration, T-configuration,
we mean the planarized version that uses “dummy-vertex” in place of “crossing” as
explained earlier.

Now we triangulate G p and do this in such a way that all dummy-vertices have
degree 4. To ensure this, we first add edges between the four neighbors of each dummy-
vertex x so that the four faces of x are all triangles. Put differently, we ensure that the
corresponding crossing in G is surrounded by kite-edges. See also Algorithm 2. In the
resulting graph G+

p , all faces of degree 4 or more then only contain original vertices.
We triangulate such faces by adding edges within them in the standard manner; it is
well-known that this can be done in linear time while ensuring that no multiple edges
are added (see, e.g., [27]). For example, Fig. 5 (a) and shows a 1-plane graph G and
the plane triangulated graph Gt obtained with 1P-RVDrawer, respectively.

Note thatAlgorithmAddKiteEdgesmay addmultiple edges. In particular, if (x, v)

and (x, w) are consecutive edges at a dummy-vertex x , then edge (v,w) gets added
to create a triangular face �(x, v, w), even if edge (v,w) exists already at some other
location of the graph. However, this is the only situation in which the resulting graph
G+

p may have multiple edges. When triangulating G+
p to obtain Gt , we add no more

multiple edges, and hence have the following property:

Observation 3.5 Graph Gt may have multiple edges, but if (v,w) is such a multiple
edge, then v and w are original vertices, and for all except at most one copy of (v,w)

there exists a dummy-vertex x that forms a triangular face �(x, v, w) in Gt .

We observe some further properties of Gt that will be needed later.

123

Discrete Comput Geom (2018) 60:345–380 359

Algorithm 2: Pseudo-code for adding edges around dummy-vertices.
1 AddKiteEdges (G p)
2 foreach dummy-vertex x do
3 foreach pair of consecutive edges (x, v), (x, w) at x do
4 f ← face incident to (x, v) and (x, w)

5 if f is the outer face, or f is not a triangle then
6 Insert edge (v, w) // Even if the edge existed already in G
7 Fix the embedding such that �(x, v, w) is an inner face
8 end
9 end

10 end

Observation 3.6 In graph Gt , all dummy-vertices have degree 4 and are inner. Fur-
thermore, if G has no W-configuration or T-configuration then Gt has no planarized
W-configuration or T-configuration.

Proof The first claim is immediately since AddKiteEdges surrounds each dummy-
vertex x by a kite. Hence, all faces incident to x are triangles that are inner faces, and
so x is an inner vertex and will receive no further edges when triangulating.

For the second claim, observe that both AddKiteEdges and the triangulation-
step only add edges for which both endpoints are original vertices. Such edges can
never create a planarized W-configuration of T-configuration since all edges in these
configurations are incident to dummy-vertices. �	

Unfortunately, Gt may have a planarized B-configuration even if G had none, and
Gt need not be simple. Dealing with this requires a fairly elaborate detour and another
procedure FlipMultiEdges that removes such multiple edges and B-configurations
by flipping. To get to the heart of the algorithm more quickly, we defer this detour to
later. Specifically, let us assume for now that G was 3-connected. We can then argue
(Lemma 3.7) that Gt has no B-configuration and is simple.

Lemma 3.7 Let G be a simple 1-plane graph that is 3-connected and has no
B-configuration or W-configuration. Then graph Gt obtained after line 4 of
1P-RVDrawer is simple and has no planarized B-configuration.

Proof Gt has no loops since G has none and none of the steps adds loops. Assume for
contradiction that there is some double edge (u, v) in Gt . This must have been added
by AddKiteEdges, since G is simple and the triangulation-step adds no multiple
edges. It is not possible that the two copies of (u, v) form an inner face, because G
(and hence G p) was simple, and we add an edge with AddKiteEdges only if it does
not exists already at this place in the planar embedding. So the two copies either form
the outer face or form no face at all. In the latter case, {u, v} is a separation pair of
the planar graph Gt , and (as one easily shows) therefore also of G. This contradicts
3-connectivity. So multiple edges can only exist if the two copies form the outer face.
At least one of the copies did not exist in the planarization G p, and hence was added
due to some dummy-vertex x . If the other copy already existed in G p, then the crossing
at x together with this copy forms a B-configuration in G. If the other copy did not

123

360 Discrete Comput Geom (2018) 60:345–380

ρ

ν

μ

ρ

ν

μ

v

u

w

v

u

w

u z

φ

φω

a b

c

b

c

a b

a

y

y
z

ω

Fig. 6 The 4-block tree T of the triangulated plane graph G+ of Fig. 5 (b)

exist in G, then it was added due to some dummy-vertex y, and the crossings at x and
y form a W-configuration. Both contradict the assumption.

So we know that Gt is simple. Now finally assume that Gt has a B-configuration,
say at dummy-vertex x with neighbors a, b, c, d andwith edge (a, b) such that triangle
�(a, b, x) contains c and d inside and hence is not a face. We also surrounded x by
a kite, which adds an edge (a, b) for which �(a, b, x) is a face. Hence there are two
copies of edge (a, b) and Gt is not simple, a contradiction. �	

The Decomposition Technique. Assume that we have reached line 8 of Algorithm 1,
where graph G+ is defined. We claim that G+ is a triangulated simple plane graph
that has the same vertices as G p, contains all edges of G p, and has no planarized
B-configuration, W-configuration, and T-configuration. Furthermore, every dummy-
vertex is inner and has degree at least 4. It is easy to see that this is true if G is
3-connected. Namely, Gt then has no multiple edges by Lemma 3.7, and so lines 5–7
were not executed, that is, G+ = Gt . Moreover, we know that Gt satisfies the above
conditions by Observation 3.6 and Lemma 3.7. We will discuss later (in Lemma 3.18)
why this claim on G+ is true even if G is not 3-connected (and thus lines 5–7 are
executed).

As next step, Algorithm 1P-RVDrawer computes a decomposition of G+ into
its 4-connected components. To explain this, we need a few definitions. Recall that
G+ is a triangulated plane graph and therefore has a unique planar embedding. A
separating triangle of G+ is a triangle T that has vertices both inside and outside T .
Such a separating triangle naturally gives rise to two triangulated plane graphs; one
consisting of all vertices inside T together with T and one consisting of all vertices
outside T together with T . Repeat this operation in both resulting subgraphs until
there are no separating triangles left. The resulting set of subgraphs are called the
4-connected components. They are naturally organized in the the 4-block tree of G+,
which is a tree T defined as follows (see also [26] and Fig. 6). Every 4-connected
component Cν of G+ is represented by a node ν in T . There is an edge between two
nodes ν and μ in T , if there is a separating triangle that belongs to both Cν and Cμ.

123

Discrete Comput Geom (2018) 60:345–380 361

We root T at the node ρ with the 4-connected component that contains the vertices
and edges of the outer face (line 10 in Algorithm 1). Then for any parent ν and child
μ, the separating triangle common to Cν and Cμ is an inner face in Cν and the outer
face of Cμ. For example, in Fig. 6 the node ν is the parent of μ, since �(u, y, z) is an
inner face of ν and the outer face of μ. The 4-block tree T can be computed in O(n)

time [26].
We give here an outline of the remaining steps; details will be given in the next

few pages. Algorithm 1P-RVDrawer will use the 4-block tree T as follows. It first
traverses T top-down and determines for each 4-connected component Cν a special
edge, called surround-edge (line 12 in Algorithm 1). It also computes an RVR γν ofCν

using a so-called rectangular dual representation [23,28,46] (line 13 in Algorithm 1).
Next, the algorithm traversesT bottom-up. Let ν be a node ofT with h ≥ 1 children
μ1, . . . , μh . Denote by Gν the graph whose 4-block tree is the subtree ofT rooted at
ν. The already computed representations �μ1, . . . , �μh of Gμ1 , . . . , Gμh are suitably
merged into γν and an RVR �ν of Gν is obtained (line 16 in Algorithm 1). At the
root ρ we obtain an RVR of Gρ = G+. We delete from it all edges that were added
to triangulate the graph, resulting in an RVR of the planarization G p of G (line 18 in
Algorithm 1). In order to turn this in an RVR of G, we must un-planarize, i.e., replace
every dummy-vertex by a crossing (line 19 in Algorithm 1). To this aim, we need
each dummy-vertex to be drawn in a special way: its rectangle needs to have exactly
one incident edge on each side. We call this the 4-sides-condition and will examine
throughout the drawing and merging steps whether it holds.

Transversal Pairs of Bipolar Orientations. We need a brief detour to define some con-
cepts we need later. An internally 4-connected plane graph, also known as irreducible
triangulation [22], is a plane graph where all inner faces are triangles and that has
no separating triangle. Let G be an internally 4-connected planar graph for which the
outer face is a 4-cycle. A transversal pair of bipolar orientations of G, also known as
regular edge labeling [28] or simply transversal structure [21], assigns to each edge
one of two colors2, say red and blue, and an orientation such that: (i) for each inner
vertex v, the clockwise order of edges around v contains outgoing blue edges, then
outgoing red edges, then incoming blue edges, then incoming red edges, and none of
these sets is empty; (ii) any inner face has at least one red and at least one blue edge;
(iii) let vN , vE , vS , vW be the four vertices on the outer face of G, in clockwise order,
then all inner edges incident to vN are blue incoming, all inner edges incident to vE

are red incoming, all inner edges incident to vS are blue outgoing, and all inner edges
incident to vW are red outgoing; (iv) both the red and the blue graph are acyclic. See
e.g. Fig. 7 (b), where vN = v, vE = w, vS = x , vW = u.

Such a transversal pair of bipolar orientations always exists (even if we arbitrarily
pre-color the edges on the outer face) and can be computed in linear time [22,28],
presuming as before that the graph is internally 4-connected with a 4-cycle as outer
face. The same papers also show how to convert, in linear time, a transversal pair of
bipolar orientations into a rectangular dual representation. This is a representation that

2 In all figures of the paper red edges appear in lighter gray than blue edges when printed b/w.

123

362 Discrete Comput Geom (2018) 60:345–380

v

u

w

x

v

u

w

x

wu

x

v

wu

v

(a) — (b) (c) (d)transv. pair R γv

Fig. 7 (a) The graph C−
ν obtained from Cν in Fig. 6. (b) A transversal pair of bipolar orientations for C−

ν .
(c) The corresponding rectangular dual representation (dummy-vertices are black squares). (d) Retracting
the rectangles and adding the surround-edge

assigns to each vertex v of the graph G an axis-aligned rectangle Rv , such that every
two rectangles are interior-disjoint, and the union of these rectangles is a rectangle
without holes. Furthermore, for each edge (v,w), the rectangles Rv and Rw share a
positive-length part of their boundaries. Moreover, if the edge is directed v → w,
then the rectangle Rv is left (below) the rectangle Rw if and only if the edge (v,w)

is red (blue). See Fig. 7 (c) for an illustration. We remark that the existence of such a
representation was known much earlier already, see [46].

Surround-Edges. Consider a 4-connected component Cν of G+. We want to find
an RVR of Cν . To be able to merge later, we need to restrict this RVR further. We
pick a so-called surround-edge e on the outer face with ChooseSurroundEdge (see
Algorithm 3), and we want an RVR such that all edges incident to an endpoint of e
are drawn horizontally.

Algorithm 3: Pseudocode for choosing the surround-edge.
1 ChooseSurroundEdge (Cν)
2 let the outer face of Cν be �(u, v, w)

3 if ν has a parent π and the surround-edge e of Cπ is one of {(u, v), (v, w), (u, w)} then
4 let the surround-edge of Cν be e
5 end
6 else
7 foreach edge e in triangle �(u, v, w) do
8 let fe be the face of G+ that is incident to e and inside �(u, v, w)

9 let xe be the vertex of fe that is not an endpoint of e
10 if xe is an original vertex then
11 let the surround-edge of Cν be e and break
12 end
13 end
14 end

We illustrate ChooseSurroundEdge on the example of Fig. 6. Consider graph Cφ

whose outer face is �(a, b, c). The if-case does not apply since the surround-edge of
the parent Cρ is on the outer face of Cρ and hence not in {(a, b), (b, c), (c, a)}. So we
reach the else-case, say we consider first edge e = (a, c). Its vertex xe is the interior

123

Discrete Comput Geom (2018) 60:345–380 363

vertex of Cφ , which is a dummy-vertex, hence we do not use (a, c) as surround-edge.
Similarly we do not use (b, c). For e′ = (a, b), the vertex xe′ is the interior vertex of
Cω (recall that face fe is defined to be a face of G+, not of the 4-connected component
under consideration). This vertex is an original vertex and we hence choose (a, b) as
surround-edge for Cφ . Now we proceed to the child ω. Here the if-case applies: ω has
parent φ and the surround-edge (a, b) ofCφ belongs to the outer face ofCω. Therefore
(a, b) becomes the surround-edge of Cω as well.

Lemma 3.8 If G contains no T-configuration and no B-configuration, then for any 4-
connected component Cν , algorithm ChooseSurroundEdge finds a surround-edge
e. Furthermore, if fe is the face of G+ incident to e that is inside the triangle formed
by the outer face of Cν , then the vertex of fe that is not an endpoint of e is an original
vertex.

Proof Assume first that ChooseSurroundEdge reaches the if-case (line 3 of Algo-
rithm 3), i.e., ν has a parent π , and the surround-edge e of Cπ is one of the edges on
the outer face �(u, v, w) of Cν , say e = (u, v). We chose e as the surround-edge of
Cν in this case. We may assume (by induction on the depth of Cν in the 4-block tree)
that the lemma holds for Cπ . Let fe be the face of G+ that is incident to e and inside
the triangle that is the outer face of Cπ . Let xe be the vertex �= u, v on fe; we know
that xe is an original vertex since the claim holds for Cπ . Let f ′

e be the face of G+ that
is incident to e and inside the triangle that is the outer face of Cν , and let x ′

e �= u, v be
the third vertex of f ′

e . The crucial insight is that all of Cν is on or inside the outer face
of Cπ . Since fe and f ′

e are faces of G+, rather than faces of Cπ or Cν , we therefore
have f ′

e = fe and x ′
e = xe. Thus x ′

e is an original vertex as desired.
Now assume that ChooseSurroundEdge reaches the else-case (line 6 of Algo-

rithm 3). Let xuv, xvw and xuw be the three vertices that serve as xe for the three edges
e ∈ {(u, v), (v,w), (u, w)}. We fail to choose a surround-edge only if all three of
xuv, xvw and xuw are dummy-vertices. We show that this is not possible. If they are
all distinct and all dummy-vertices, then they would form a T-configuration. If they
are all dummy-vertices and exactly two of them coincide, (say) xuv = xvw is distinct
from xuw, then in G the crossing at xuw would form a B-configuration with the copy
of (u, w) in G that must be involved in the crossing xuv = xvw. Not all three can
coincide, else xuv = xvw = xwu would be the only vertex in the graph rooted at ν

and have degree 3 and not be a dummy-vertex. So there exists at least one edge e
of triangle �(u, v, w) where xe is an original vertex. Thus ChooseSurroundEdge
chooses e as a surround-edge and xe is an original vertex as required. �	
Drawing a 4-Connected Component. We are now ready to show how to find an RVR
of Cν such that the surround-edge e and all edges of Cν that are incident to one of its
endpoints are drawn horizontally. If Cν is K4, then such an RVR is easily obtained
(see also Fig. 10 (b)), so we assume that Cν has at least 5 vertices. This implies that
any inner vertex of Cν has degree at least 4, else its neighbors would form a separating
triangle. Remove the surround-edge from Cν to obtain graph C−

ν ; see also Fig. 7 (a).
Since Cν is 4-connected, C−

ν is internally 4-connected. We now obtain an RVR γν of
Cν using a rectangular dual representation as follows:

123

364 Discrete Comput Geom (2018) 60:345–380

Lemma 3.9 C−
ν has an RVR such that all edges incident to an endpoint of the

surround-edge of Cν are drawn horizontally and the 4-sides-condition holds at every
inner vertex of degree 4.

Proof Since C−
ν is internally 4-connected, it admits a transversal pair of bipolar ori-

entations, and with it, a rectangular dual representation R where blue and red edges
correspond to shared vertical and horizontal (parts of) sides [22,28]. We choose vW

and vE to be the endpoints of the surround-edge, and color the outer edges red. As
an illustration, Fig. 7 (b) shows the transversal pair of bipolar orientations of the pla-
narization of the graph in Fig. 7 (a), and Fig. 7 (c) gives the corresponding rectangular
dual representation.

Now retract the rectangles a bit as follows. Let ε > 0 be so small that all rectangles
have width and height at least ε and the length of any shared side is at least ε. Replace
each rectangle [x, x ′] × [y, y′] by a slightly smaller rectangle [x + ε

3 , x ′ − ε
3] × [y +

ε
3 , y′ − ε

3]. By choice of ε each rectangle still has positive width and height. For each
edge of G, the shared side of length at least ε is replaced by a region between its two
endpoints, not containing other vertices, that has dimension 2 ε

3 × ε
3 or more. Hence for

each edge we obtain a line of sight between the rectangles of its endpoints, and hence
an RVR with thick lines of sight. Note that the line of sight is horizontal if and only
if the shared rectangle-sides were vertical, so the horizontal and vertical lines of sight
correspond to the red and blue edges of the transversal pair of bipolar orientations,
respectively. See also Fig. 7 (d).

It remains to prove the claim on the 4-sides-condition. Let z be an inner vertex
of degree 4, and let Rz be the rectangle of z in the rectangular dual. By properties
of the transversal pair of bipolar orientations, the clockwise order of edges around z
consists of incoming red edges, incoming blue edges, outgoing red edges, and outgoing
blue edges. None of these sets is empty for an inner vertex, and, since deg(z) = 4,
there exists exactly one edge of each kind. In consequence, in the rectangular dual
representation there is exactly one edge incident to each side of Rz , as desired. �	

This gives an RVR of C−
ν , to which we need to add the surround-edge. Say the

vertices of the outer face of C−
ν are u, v, w, x in clockwise order, with surround-edge

(u, w) and x the vertex incident to the inner face at the surround-edge. The construction
draws all edges of Cν incident to u or w horizontally. After rotation, assume that u is
left ofw. We can now extend both u andw upwards or downwards beyond the drawing
of x , and insert here a horizontal segment for the surround-edge such that �(u, v, x)

becomes an inner face of the drawing. This gives an embedding-preserving RVR γν

of Cν . See also Fig. 7 (d) for an illustration.

Lemma 3.10 In the RVR of Cν , the 4-sides-condition holds for every dummy-vertex
that is an inner vertex of Cν and has degree 4 in Cν .

Proof The claim holds vacuously if Cν is K4, so assume it is not. Let z be a dummy-
vertex that is an inner vertex of Cν with degree 4. Deleting the surround-edge does not
change the degree of z, therefore deg(z) = 4 even inC−

ν . If z is an inner vertex ofC−
ν ,

then the construction for C−
ν ensures that all four sides of z receive an edge. The only

vertex that is an inner vertex of Cν , but not of C−
ν , is the vertex x incident to the inner

123

Discrete Comput Geom (2018) 60:345–380 365

e
e

D
rW

rE

ee

Fig. 8 A zig-zag-slide (adapted from [5]). Black points move upward while white points remain stationary.
With this amount of sliding, edges e and e′ become aligned

face at the surround-edge. However, by Lemma 3.8 vertex x is not a dummy-vertex,
so z �= x . �	

Zig-Zag-Slides. Both for the merging step and for undoing the planarization, we need
a method of modifying the drawing such that some items are moved while others are
stationary. This can be achieved with what was called creating a channel in [45] and
zig-zag-bend-elimination-slide in [5], we call it a zig-zag-slide for short. We briefly
review this here. Assume that � is an RVR and we have a dividing curve D as follows:
D consists of some vertical line segment s that intersects no horizontal element of the
drawing, i.e., neither a horizontal edge nor a horizontal boundary of a rectangle. At
the top end of s, attach a leftward horizontal ray rW . At the bottom end of s, attach a
rightward horizontal ray rE . No conditions are being put onto rW and rE . Define the
region above D to be the set of all points that are in the x-range of rW and strictly
above rW , and all points in the x-range of rE and on or above rE .

Now slide all points in the region above D upwards by some amount δ > 0. This
maintains a rectangle visibility representation, after lengthening vertical edges and
rectangle borders suitable, because any horizontal segment either stays stationary or
moves in its entirety (recall that no horizontal segments cross s). In particular, for any
point p above rE and any point q below rW but with a larger y-coordinate, a shift by
y(q) − y(p) achieves that these points become horizontally aligned. See Fig. 8. We
will use such zig-zag-slides for this shape of D as well as for the three other shapes
achieved by flipping the picture horizontally and/or rotating 90◦.

Merging Components. Let μ be a child of ν inT , and recall that we already obtained
drawings γν of Cν and (recursively) γμ of the graph Gμ consisting of Cμ and the
components at its descendants. We now want to create a drawing of Gμ ∪Cν , i.e., the
graph containing all vertices and edges from Gμ and Cν . The common vertices u, y, z
of Gμ and Cν form the outer face of Gμ and an inner face of Cν . See Fig. 6. The
outer face of C−

μ , consists of {u, y, z} as well as a fourth vertex, say x ′; after possible
renaming of {u, y, z} we may assume that the clockwise order around the outer face
of C−

μ is u, y, x ′, z. In particular, drawing γμ contains (up to rotation) node u on the
top, node y on the right, the surround-edge (y, z) and node x ′ at the bottom, and node
z on the left. Let γ ′

μ be the drawing obtained from γμ by deleting u, y, z. It suffices

123

366 Discrete Comput Geom (2018) 60:345–380

yz

u

x′
γ ′

μ

γ ′
μ

yz u

γ ′
μ

yz

u

zu

y

γ′
zu

y

D

(a) (b)

(c) (d) (e)
μ

Fig. 9 (a) Illustration of γμ and γ ′
μ. (b) Illustration for the proof of Lemma 3.11. (c–e) Illustration for the

proof of Lemma 3.12. (c) u has two vertical edges. (d) y has two vertical edges, u has a higher top than z.
(e) Slide so that u has a higher top than z

to merge γ ′
μ, since u, y, z and the edges between them are represented in γν already.

See Fig. 9 (a). Triangle �(u, y, z) is an inner face of Cν . The challenge is now to find
a region in γν into which γ ′

μ will “fit”. Put differently, we want to find a region within
γν that is inside the face �(u, y, z) and that is (after possible rotation) below u, to the
left of y and to the right of z. We call such a region, a feasible region for γμ in γν .
As we have no control over how triangle �(u, y, z) is drawn in γν , the existence of a
feasible region is non-trivial, and may in fact require modifying γν slightly.
We start with a simple case:

Lemma 3.11 Assume that the surround-edge of Cν also belongs to Cμ. Then there
exists a feasible region for γμ in γν .

Proof If the surround-edge e of Cν belongs to Cμ, then ChooseSurroundEdge
chose it to be the surround-edge for Cν as well. Say edge (y, z) is the surround-edge
for both Cμ and Cν . In γν , (y, z)was drawn (after possible rotation) bottommost, with
u above it. A feasible region is now found in the small strip above the drawing of edge
(y, z). See Fig. 9 (b) for an illustration. �	

We now show how to find a feasible region for γμ in γν in the general case.

Lemma 3.12 A feasible region for γμ in γν always exists, possibly after modifying γν

without changing angles or incidences.

Proof We already argued this if �(u, y, z) includes the surround-edge e of Cν , so
assume that this is not the case.Then face�(u, y, z)ofCν is also a face ofC−

ν = Cν−e.
The drawing ofC−

ν was obtained via the transversal pair of bipolar orientations ofC−
ν ,

with red and blue edges corresponding to horizontal and vertical edges, respectively.

123

Discrete Comput Geom (2018) 60:345–380 367

Since any inner face in a transversal pair of bipolar orientations has at least one red
and at least one blue edge, �(u, y, z) is drawn with at least one horizontal and at least
one vertical edge. Say two edges are vertical and one is horizontal (the other case is
similar). Now consider which vertex of u, y, z is the one where both incident edges
of triangle �(u, y, z) are vertical.

If vertex u has two incident vertical edges (u, y) and (u, z), then (y, z) is drawn
horizontally. We can then find a feasible region within the thick line of sight of edge
(y, z). See Fig. 9 (c) for an illustration.

Now assume that y has two incident vertical edges (y, u) and (y, z) (the case of
vertex z is symmetric). For ease of description, assume that y is above u and z, and u
is to the left of z. If the top side of u is strictly above the top side of z, then it is easy
to find a feasible region within the thick line of sight of edge (y, z) into which we can
merge γ ′

ν after rotating it; see Fig. 9 (d). If the top side of u is below (or at the same
height as) the top side of z, then we modify the drawing to create a suitable region
using a zig-zag-slide. The dividing curve D is defined as follows. Insert a vertical
edge just left of z, ranging from just above (u, z) (hence below the top of u since we
have thick lines of visibility) to just above the top of z. Expand it with a horizontal
ray leftward from the lower end and a horizontal ray rightward from the upper end.
By sliding upward sufficiently far, we hence achieve that the top of u is above the
one of z, which allows us to find a feasible region as previously. See Fig. 9 (e) for an
illustration. �	

By Lemma 3.12, for every child μ of ν we can find a feasible region into which
we merge (after suitable scaling) the drawing γμ − {u, y, z}. This gives the RVR of
Cν ∪ Gμ. It remains to prove the 4-sides-condition for the inner vertices of Cν ∪ Gμ.

Observation 3.13 In the RVR of Cν ∪ Gμ, the 4-sides-condition holds for every
dummy-vertex that is an inner vertex of Cν ∪ Gμ and has degree 4.

Proof Let v be an inner dummy-vertex of Cν ∪ Gμ. If v is an inner vertex of either
Cν or Gμ, then the statement follows by Lemma 3.10 (or induction on the height of
T). Else, v must be on the outer face of Cμ, and hence be part of a separating triangle
�(u, y, v) which is an inner face of Cν .

Vertex v must have neighbors both inside and outside triangle �(u, y, z) by 3-
connectivity of the triangulated plane graph G+. Since dummy-vertices have degree
4, it therefore has exactly one neighbor, say x , in Cμ − {u, y, v} and exactly one
neighbor, say z, in Cν − {u, y, v}. Further, these neighbors appear in clockwise order
z, u, x, y around v and form a kite (see Fig. 10 (a)). It follows that �(u, y, z) is also
a separating triangle (or the outer face of G+) and that �(v, z, u) and �(v, y, z)
are faces due to the kite. Therefore Cν is K4, with μ the only child of ν. Similarly,
�(u, x, y) is either a separating triangle or an inner face of G+, and Cν is also a K4
with at most one child (call it ω if it exists).

When choosing the surround-edge of Cν , we cannot use (u, z) or (y, z), because
the inner faces at them contain the dummy-vertex v. Therefore the surround-edge of
Cν is (y, u), and by our choice of surround-edge therefore (y, u) also becomes the
surround-edge of Cμ and (if it exists) Cω. So Lemma 3.11 is used to find the feasible
region for merging Gμ into Cν . Also, the drawing of Cν is fixed since it is K4 (see

123

368 Discrete Comput Geom (2018) 60:345–380

v

uy

z

μ − {v}

x

uy
v

z

uy

γ ′
μ

v

z

(a) (b) (c)

Fig. 10 Illustration for the proof of Observation 3.13

also Fig. 10 (b)). Inspecting the construction (see also Fig. 10 (c)) shows that during
this merge v obtains an incident edge on each side as desired. �	

After repeating the process for the entire 4-block tree we obtain the desired RVR
�+ of G+. After every merging step inner dummy-vertices of degree 4 satisfy the 4-
sides-condition. Once we have merged all subgraphs, all inner dummy-vertices have
degree 4, and we get the following result:

Observation 3.14 In the RVR of G+, the 4-sides-condition holds for every dummy-
vertex that is an inner vertex of G+ and has degree 4.

Undoing the Planarization. Once all merging is completed, the drawing �ρ at the
root gives an RVR �+ of G+. To turn this into an RVR of G, we must undo the
planarization. To do so, first remove from �+ all edges that belonged to G+ but not
to the planarization G p. Let �p be the resulting RVR of G p.

The next step is to re-insert the crossings in place of the dummy-vertices. Consider
any dummy-vertex z and let the cross-edges at z be the four edges incident to z in G p

that replaced the crossing edges. To replace z with a crossing, we need that the four
cross-edges of z attach to the four sides of the rectangle of z. This is not immediately
obvious (even in the light of Observation 3.14), because z may have degree exceeding
4 in G+ if G is not 3-connected. We say that an RVR of G+ satisfies the extended
4-sides-condition if for every dummy-vertex z exactly one cross-edge of z attaches
on each side of the rectangle Rz of z. If G is 3-connected, then we use G+ = Gt , so
every dummy-vertex z has degree 4 in G+ by Observation 3.6. By Observation 3.14
then the four cross-edges of z are on the four sides of Rz , and therefore we have:

Observation 3.15 If G is 3-connected, then the RVR �+ of G+ satisfies the extended
4-sides-condition.

If G is not 3-connected, then we will ensure later directly that the RVR of �+
satisfies the extended 4-sides-condition. Thus after deleting added edges we can now
unplanarize the resulting RVR �p of G p, because for any dummy-vertex z the four
cross-edges attach on the four sides of the rectangle Rz of z.

123

Discrete Comput Geom (2018) 60:345–380 369

Let eW , eN , eE and eS be the four edges incident at the west, north, east and south
side of Rz , respectively. If the edges eW and eE have the same y-coordinate, and the
edges eN and eS have the same x-coordinate, then we can simply remove Rz , extend
the edges, and obtain the desired crossing.

So assume that the edges eW and eE have different y-coordinates, with (say) the
y-coordinate yW of eW larger than the y-coordinate yE of eE . Construct a dividing
curve D by starting with a vertical line segment inside Rz , ranging from y-coordinate
yW + ε to y-coordinate yE − ε, where ε > 0 is chosen small enough that the segment
is inside Rz . Attach a leftward horizontal ray at the top and a rightward horizontal ray
at the bottom. Now apply a zig-zag-slide of length yW − yE . This moves eE upward
while keeping eW stationary, and hence aligns the two edges. See also Fig. 8, where
this is illustrated for eW = e and eE = e′.With another zig-zag-slide (with the dividing
curve using a horizontal line segment and vertical rays), we similarly can align eN and
eS , if needed. After this, remove the dummy-vertex to obtain the crossing. Repeating
this at all dummy-vertices, and finally deleting all added edges, gives the RVR of G,
as no crossings are created except where dummy-vertices were removed. This ends
the description of the last step of algorithm 1P-RVDrawer.

General 1-Plane Graphs. We previously assumed that the input graph G is 3-
connected, chiefly so that AddKiteEdges does not create multiple edges and
B-configurations. We now explain how to handle an arbitrary input graph, and in
particular, how to flip edges that are multiple copies. This operation of flipping edges
is the only change that is required; all other steps operate exactly the same. However,
there are twonon-trivial things to show to argue that this is feasible. First,wemust argue
that after flipping edges, the resulting graph satisfies the condition on G+ required
after completion of line 8 of Algorithm 1. Second, we must argue that the rectangle
visibility representation obtained for G+ satisfies the extended 4-sides-condition.

So let G be a simple (not necessarily 3-connected) 1-plane graph with no
B-configuration, no W-configuration, and no T-configuration. We planarize and tri-
angulate G as before to obtain Gt . Note that neither AddKiteEdges nor the
triangulation-step adds any loop, hence Gt is a triangulated graph without loops and
consequently 2-connected. For any pair of vertices in Gt with multiple edges between
them, we execute FlipMultiEdges (explained below) which removes multiple edges
without creating new ones. We first clarify this flipping-operation. Consider an edge
e = (v,w) in a triangulated planar graph, and let the two vertices facing e be the two
vertices y, z that are not endpoints of e but are on a face incident to e. The operation of
flipping e consists of removing e from the graph and replacing it with an edge (y, z),
routed within the degree-4 face that resulted from removing e. See edge ei in Fig. 11.
Note that the resulting graph is again a triangulation.

Observation 3.16 Let e = (v,w) be a multiple edge of Gt . Then flipping e does not
create a new multiple edge, and does not create a B-configuration, W-configuration
or T-configuration.

Proof We know from Observation 3.5 that v and w are original vertices. Let y, z be
the vertices facing e. Let e′ be another copy of edge (v,w). Since Gt is triangulated,

123

370 Discrete Comput Geom (2018) 60:345–380

eoei

v

w

z y eoei

v

w

z y

flipped

T

Fig. 11 Flipping edge ei = (v, w). Note that �(v, w, z) forms a separating triangle for the facing vertex z

v

e1 er

w

e�e1 er

v

w

e�e1 er

v

w

Fig. 12 Three examples of multiple edges, in the three possible configurations r = �, r = � + 1 and
r = � + 2. Edge eo is bold

e and e′ did not bound one face, and so the 2-cycle e, e′ enclosed exactly one of y and
z. In consequence, by planarity there can be no connection in G p from y to z except
through v or w. Therefore no edge (y, z) can exist in Gt , which means that flipping
e does not create a multiple edge. Also no dummy-vertex can be adjacent to both y
and z, which means that the new edge (y, z) cannot create a B-configuration. Finally
the new edge (y, z) is non-crossed, which means that the resulting graph has no new
W-configuration or T-configuration. �	

We now explain how Algorithm FlipMultiEdges (Algorithm 4) chooses which
copies of (v,w) to flip. At most one copy of (v,w) may have existed in G as well;
we call this the original copy and all other copies added copies. By Observation 3.5
(and because the triangulation step does not add multiple edges) any added copy has
at least one dummy-vertex as facing vertex.

Enumerate the copies of (v,w) as e1, . . . , es in clockwise order around v in such
a way that the 2-cycle e1, es encloses all other copies. We say that ei has a dummy
on the left (right) side if the vertex that faces ei and is before (after) ei in the order
around v is a dummy-vertex. Set � to be the maximal index where e� has a dummy
on the left side (set � = 0 if there is no such copy). Set r to be the minimal index
where er has a dummy on the right side (set r = s + 1 if there is no such copy). See
Fig. 12 for an illustration. Set o to be the index of the original copy if there is one.
If there is no original copy, then set o = � if � ≥ 1 and o = r otherwise. Algorithm
FlipMultiEdges simply flips all edges (v,w) except eo.

We need an observation that will be crucial later to argue that 1P-RVDrawer can
handle the graph obtained from flipping all edges.

Observation 3.17 Let z by a dummy-vertex facing a copy ei of (v,w) that was flipped,
resulting in an edge e′

i incident to z. Let eo be the copy of (v,w) that was not flipped.

123

Discrete Comput Geom (2018) 60:345–380 371

Algorithm 4: Pseudocode for flipping edges.
1 FlipMultiEdges (v, w)
2 if there exists an original copy of (v, w) then
3 let eo be this copy
4 end
5 else
6 choose eo among the added copies of (v, w) as explained in the text
7 end
8 foreach copy e of (v, w) that is not eo do
9 let y, z be the two vertices facing e

10 remove edge e and insert edge (y, z) in the resulting degree-4 face
11 end

Then the cross-edges (z, v) and (z, w), together with edge eo, form a separating
triangle T with e′

i inside T and all cross-edges of z on or outside T .

Proof Since z faced ei = (v,w), the three edges (z, v), ei , (z, w) form a face of
Gt . Thus after flipping ei the edges (z, v), e′

i , (z, w) are consecutive at z. Let T be
the triangle with edges (z, v), eo, (w, z) Triangle T is separating since e′

i is on one
side of T and all cross-edges of z are on T or on the other side of T , due to the
order of edges at z.

It remains to show that e′ is inside T . To argue this, we need some observations.
Enumerate the copies of (v,w) as e1, . . . , es and define �, r as explained above.

– We have � ≤ r . This trivially holds if � = 0 or r = s + 1, so assume that edges e�

and er exist. If � > r , then the dummy-vertex to the right of er , together with the
dummy-vertex to the left of e�, form aW-configuration, a contradiction. So � ≤ r .

– We have � ≤ o ≤ r . Assume for contradiction that o < �, which means that eo

exists in G. Then eo, together with the dummy-vertex to the left of edge e�, forms
a B-configuration, a contradiction. Similarly o > r leads to a B-configuration and
hence a contradiction.

– We have r ≤ � + 2. For if r ≥ � + 3, then both e�+1 and e�+2 have no dummy-
vertex facing on either side. But then neither of them can be an added copy, which
contradicts simplicity of G.

There are hence only three possibilities for r − � (see also Fig. 12). We may have
r = �. In this case, eo = e� = er . We may have r = � + 1. In this case, eo = e�

or eo = er . We may have r = � + 2. In this case, edge eo = e�+1 since e�+1 has no
facing incident dummy-vertex.

Now consider again edge ei . Since ei was flipped while eo was not, we have i �= o,
say i < o (the other case is symmetric). In all three situations discussed above, i < o
implies i < r , therefore ei has no dummy-vertex on its right side and z is on the left
side of ei . By i < o therefore the clockwise order at v contains (v, z) before ei before
eo. Therefore triangle T has ei (and hence also e′

i) on the inside. �	
As in line 8 of 1P-RVDrawer, let G+ be the graph that results from Gt by applying

FlipMultiEdges at all multiple edges. We claim that this graph G+ satisfies all the
required conditions.

123

372 Discrete Comput Geom (2018) 60:345–380

Lemma 3.18 Let G be a 1-plane graph with no B-configuration, no W-configuration,
and no T-configuration. The graph G+ obtained after line 8 of Algorithm 1 is a
triangulated simple plane graph that has the same vertices as G p, contains all edges
of G p, and has no planarized B-configuration, W-configuration, and T-configuration.
Furthermore, every dummy-vertex is inner and has degree at least 4.

Proof Clearly G+ is triangulated and plane and obtained from G p by adding edges,
since Gt satisfies these conditions and flipping edges does not violate any of them.
Also no edge to be flipped can be on the outer face, and all edges to be flipped connect
original vertices, so after applying the flipping operations all dummy-vertices are still
inner vertices and their degrees only increased or remained the same. We flip all
multiple edges creating neither new ones nor loops, so G+ is simple. Finally G+ has
noW-configuration and no T-configuration since Gt had none by Observation 3.6 and
flipping edges does not create any by Observation 3.16.

Thus the only remaining claim is that G+ has no planarized B-configuration.
Assume for contradiction that it had one, consisting of an edge e j = (v,w) and a
dummy-vertex z. Edge e j cannot be original, else this would give a B-configuration
in G. Also edge e j cannot have z as facing vertex, else e j and z would not form a
B-configuration. Hence during AddKiteEdges, we added another copy ei of (v,w)

such that z becomes a facing vertex of (v,w). In particular, (v,w)was a multiple edge
in Gt , and we flipped ei while e j was not flipped. By Observation 3.17, the triangle T
formed by (z, v), (z, w) and edge e j is such that the cross-edges of z are on or outside
T . But the definition of a B-configuration says that the cross-edges of z must be on or
inside T . Only two of the four cross-edges can be on T , so this is a contradiction and
G+ has no planarized B-configuration. �	

Thus lines 9-17 of 1P-RVDrawer can proceed exactly as in the case where G is
3-connected, and create an RVR�+ of G+. It remains to show that we can unplanarize
�+, for which the following suffices.

Lemma 3.19 The RVR �+ of G+ obtained after line 17 of 1P-RVDrawer satisfies
the extended 4-sides-condition at all dummy-vertices.

Proof Consider a dummy-vertex z of G+. If z has degree 4 in G+ then its four edges
in G+ are the four cross-edges and are on the four sides by Observation 3.14, and so
the extended 4-sides-condition holds at z. So now assume deg(z) > 4, which implies
that some multiple edge (v,w) had z as a facing vertex and was flipped to become
an edge e′ incident to z. By Observation 3.17, then there exists a separating triangle
T with e′ inside T and all cross-edges of z on or outside T . 1P-RVDrawer creates
the RVR �+ by splitting the graph at T . By induction, the RVR �ν of the graph Gν

outside T satisfies the extended 4-sides-condition. In particular, in �ν all four sides of
the rectangle Rz of z have exactly one incident cross-edge. The algorithm then merges
into �ν the RVR of the graph inside T . This does not change edge-directions, so the
resulting RVR of G+ still has exactly one incident cross-edge on each side of Rz , and
the extended 4-sides-condition holds at z in �+. �	

Thus we can unplanarize as before, and obtain the desired RVR. We summarize:

123

Discrete Comput Geom (2018) 60:345–380 373

Cμ
yCμ

z
γ ′
μ

113
Cμ

u
11 11 11 11 3

Cν
z

Cν
u

Cν
y

1

3

C ν
z

Cν
u

Cν
y

1

3

Cμ
y

Cμ
z

γ ′
μCμ

u

(a) (b) (c)

Fig. 13 (a) γμ of Fig. 9 (a) as an orthogonal representation. Only selected face-angles are listed. (b) γν of
Fig. 9 (d) as orthogonal representation. (c) Combining the two orthogonal representations into one

Lemma 3.20 Let G be a 1-plane graph with no B-configuration, no W-configuration,
and no T-configuration as a subgraph. Then algorithm 1P-RVDrawer computes a
1-plane RVR of G.

The reader may be curious where exactly we used that G has no B-configuration,
W-configuration, or T-configuration as a subgraph. The absence of T-configurations
and B-configurations was used when choosing a surround-edge. This was done after
the graph had been triangulated and planarized, so we must be careful to triangulate
such that no T-configuration or B-configuration is introduced. This used that we had
no W-configuration (e.g. in Lemma 3.7).

Corollary 3.4 and Lemma 3.20 imply Theorem 3.1. The next two sections prove
Theorem 3.2.

3.3 Area and Time Complexity

Algorithm 1P-RVDrawer, as described, does not have linear time complexity, since
we repeatedly change the entire drawing, especially when applying zig-zag-slides.
Also, coordinates may get very small when merging, resulting (after re-scaling to be
integral) in a very large area. To avoid both these issues, we modify 1P-RVDrawer
and store RVRs implicitly. This requires the following changes:

– We obtain the RVR γν of each 4-connected component Cν exactly as before, using
explicit coordinates.

– We then convert γν into an orthogonal representation (Hν, αν, βν) using Obser-
vation 2.2. Recall that in this orthogonal representation the graph Hν is obtained
from Cν by replacing every vertex u by a cycle Cν

u .
– Consider one merging step, say 1P-RVDrawer wants to merge drawing γμ into
drawing γν at the separating triangle �(u, y, z). In the two orthogonal representa-
tions corresponding to γμ and γν , we have cycles Cμ

u and Cν
u representing vertex

u. To do the merge, all that is required is to split the two cycles and to combine
them into one cycle while maintaining the face-angle values. See the illustration
in Fig. 13. In fact, the place to split the cycles is easily found from the orthogonal
representation: both cycles must be split at the place where (u, z) and (u, y) attach,
or one edge further if there is a face-angle of 3 (corresponding to a corner of the

123

374 Discrete Comput Geom (2018) 60:345–380

rectangle of u). Similarly we combine the cycles for y and z. This gives exactly
the orthogonal representation of the drawing that we would have obtained with
1P-RVDrawer, and can be done in constant time per merge.

– We hence obtain an assignment of face-angles to the graph obtained from
Cν ∪ Cμ by replacing vertices by cycles. These face angles are exactly the
same as the face-angles that we would obtain if we used the RVR that algorithm
1P-RVDrawer would create for Cν ∪ Cμ. Hence this assignment of face-angles
is again an orthogonal representation, i.e., satisfies the sum-condition for the faces.

– We want to convert the orthogonal representation of G+ into an orthogonal repre-
sentation G p. Recall that G+ is obtained from G p by adding edges, so we must
delete these edges. Deleting an edge can easily be done in an orthogonal repre-
sentation without affecting its realizability; all that is required is to update at each
end of the deleted edge the face-angles by adding the two face-angles at that edge.

– So nowwe have an orthogonal representation of G p.We now explain how to do the
un-planarization without zig-zag-slide, and for this, need to analyze the structure
at a dummy-vertex z.

The face-angles that we have computed mirror exactly the face-angles that would
occur in the drawing created by 1P-RVDrawer. Therefore the extended 4-sides-
condition holds for z, and we have exactly one incident edge on each side of the
rectangle of z. In terms of the orthogonal representation of G p, this means that the
face-angles at the cycle Cz representing z satisfy the following: First we have a
degree-2 vertex with a face-angle of 3 (corresponding to 270◦) at the outside ofCz ;
this represents one of the corners. Then we have a number (possibly 0) of degree-
2 vertices with a face-angle of 2 (corresponding to 180◦), which may have been
added if inG+ vertex z hadmore than four incident edges. Thenwe have one vertex
of degree 3, corresponding to where one cross-edge of z attaches at the rectangle
of z. Here hence there are two face-angles 1 outside Cz , one on each side of the
cross-edge. Then we have again a number of degree-2 vertices with face-angle 2.
This pattern repeats three more times, once for each side of the rectangle of z.
Now consider a face f that is incident to z, i.e., lies between two consecutive
cross-edges at z. The face-angles atCz that belong to f hence form a sub-sequence
12∗32∗1, where 2∗ indicates that the 2 may repeat arbitrarily often. Note that if
we replace the entire sequence with just one face-angle of value 1, then the sum-
condition continues to hold for f .
Thus, in the orthogonal representation, replace cycleCz by a single vertex, adjacent
to the four cross-edges. Set the four face-angles at this vertex to be 1. By the above
discussion, these face-angles satisfy the sum-condition for the faces, and clearly
the four face-angles at the vertex sum to 4, sowe have an orthogonal representation.

– Now convert this orthogonal representation into a planar orthogonal drawing �

that respects the face-angles (and the bend-numbers, which are 0 everywhere).
For every original vertex u of G, the corresponding cycle Cu is mapped into a
rectangle. Every dummy-vertex is mapped into a point with the four cross-edges
on the four sides; remove all these points and re-combine the cross edges to obtain
two crossing edges. Since all bend-numbers are 0, all edges of G are drawn as

123

Discrete Comput Geom (2018) 60:345–380 375

horizontal or vertical straight-line segments, and we have obtained the desired
RVR of G.

To summarize, we used 1P-RVDrawer (with it the techniques of scaling down
graphs and apply zig-zag-slide) only to argue that a suitable RVR exists. The actual
algorithm to find such an RVR only uses coordinates for 4-connected components;
all other steps are done with orthogonal representations. Then merging and un-
planarization can be done in constant time per operation and linear time overall.
All other parts of the algorithm (such as finding separating triangles, computing 4-
connected components, finding a transversal pair of bipolar orientations, and finding
the rectangular dual representation) take linear time as well.

The conversion of the final orthogonal representation into the orthogonal drawing
� also takes linear time, and gives linear integral coordinates. Here “linear” measures
the size of the �, which in our case is proportional to the number of vertices, edges,
and crossings. For an n-vertex 1-plane graph G this is O(n) since G has at most 4n −8
edges and at most n −2 crossings [13]. Therefore the final RVR has linear coordinates
and the area is O(n2). We conclude:

Lemma 3.21 Let G be a 1-plane graph G with n vertices and with no B-configuration,
no W-configuration, and no T-configuration as a subgraph. Then there exists an O(n)-
time algorithm that computes a 1-plane RVR � of G that has O(n2) area.

3.4 Testing Algorithm

Wenow show how to test whether a given 1-plane graph G with n vertices contains any
B-configuration, any W-configuration, or any T-configuration. If G contains none of
them, we can apply algorithm 1P-RVDrawer to produce the desired representation.
Hence, Lemma 3.21 and Lemma 3.22 imply Theorem 3.2.

Lemma 3.22 Let G be a 1-plane graph with n vertices. There exists an O(n)-time
algorithm to test whether G contains any B-configuration, any W-configuration, and
any T-configuration.

Proof Hong et al. [24] gave an algorithm to detect every possible B-configuration
and W-configuration in O(n) time. Thus, in what follows we describe how to detect a
T-configuration, assuming thatG contains noB-configuration and noW-configuration.

We claim that it suffices to test whether G+ contains a planarized T-configuration.
Clearly any T-configuration of G becomes a planarized T-configuration in G+. On the
other hand, if G+ has a planarized T-configuration, then by Observation 3.16 graph
Gt had a planarized T-configuration, which by Observation 3.6 means that G p had a
planarized T-configuration or B-configuration or W-configuration, which means (by
our assumption) that G has a T-configuration.

Suppose G+ contains a T-configuration t with outer vertices a, b, c and inner ver-
tices d, e, f, g, h, i , as in Fig. 4 (d). Since we added a kite around each dummy-vertex,
vertices a, b, c induce a triangle in G+. Thus to detect a T-configuration in G+, we
first list all triangles of G+; this can be done in linear time since G+ is planar and
simple [11]. For each listed triangle �(u, v, w), consider the faces of G+ that are

123

376 Discrete Comput Geom (2018) 60:345–380

a b

cd

a b

cd

H2

H3

Hn

(a) (b) (c)

Fig. 14 (a,b) show twodifferent 1-planar embeddings of the same4-connected1-planar graph H .Attaching
n copies of H as in (c) we obtain a 4-connected 1-planar graph with �(n) vertices and �(2n) different
1-planar embeddings

incident to an edge of �(u, v, w) and lie in the interior of �(u, v, w). Vertices u, v,
and w are the three outer vertices of a T-configuration if and only if the above faces
are three distinct faces and all have a dummy-vertex as third vertex. This condition
can be tested in O(1) time per triangle. �	

4 Variable Embedding Setting

Motivated by our characterization, in this section we investigate the variable embed-
ding setting. We remark that, differently from planar graphs, a 1-planar graph G can
have exponentially many different embeddings, even if 3-connected or 4-connected
(see e.g. Fig. 14). Thus, an exhaustive analysis may not be feasible. Nevertheless, one
may wonder whether it is always possible to compute a 1-planar embedding of G that
has no forbidden configurations. In fact, Alam et al. [1] proved that if G is 3-connected,
then it always admits a 1-planar embedding with no B-configurations and no W-
configurations but at most one. We show now that this is not true for T-configurations.
Moreover, it might be worth mentioning that there are 2-connected 1-planar graphs
such that any 1-planar embedding contains linearly many W-configurations (see,
e.g., [8,16]).

Theorem 4.1 Let k ≥ 1 be an integer. There exists a 3-connected 1-planar graph Gk

with n = 6k vertices that contains at least k − 1 T-configurations in every 1-planar
embedding.

To prove Theorem 4.1, the idea is to first show that K6 has only two embeddings
(up to renaming), which differ for choice of the outer face and such that both of them
contain a forbidden subgraph.

Lemma 4.2 The complete graph K6 has only two 1-planar embeddings, up to
renaming of the vertices. In each of these two embeddings, the outer face forms a
B-configuration or contains the outer vertex of a T-configuration.

Proof The complete graph K5 has a unique 1-planar embedding up to renaming and
outer face [31,32], which is shown in Fig. 15 (a). Observe that every face of such an
embedding is a triangle, either incident to two vertices and a crossing point or to three

123

Discrete Comput Geom (2018) 60:345–380 377

v1

v2v3

v4v5

v1

v2v3

v4v5

v6

v2v3

v6

v1

v4v5

(a) K5 K6K6 Gk(b) (c) (d)

Fig. 15 (a) K5 in its unique (up to renaming and outer face) 1-planar embedding. (b, c) K6 in its unique
(up to renaming) 1-planar embedding and two possible choices of the outer face. (d) Multiple copies of K6
combined

vertices. In order to realize a 1-planar embedding of K6, a sixth vertex can only be
added to one of the four faces of K5 that are incident to three vertices. Two of these
four cases are illustrated in Fig. 15 (b), (c); the other two cases are symmetric and yield
the same embedding (up to renaming of the vertices). In every one of these two cases
the statement holds. �	
The next corollary is an immediate consequence of Corollary 3.4 and Lemma 4.2.

Corollary 4.3 K6 has no 1-planar embedding that can be represented as a 1-plane
RVR.

For any k > 0 we can create a 3-connected 1-planar graph Gk with 6k vertices that
consists of k vertex-disjoint copies of K6. Figure 15 (d) shows one possible such
construction for k = 2. As shown by Grigni et al. [10], since Gk is a 3-connected
triangulated 1-planar graph, the edges of any separating triangle of Gk are crossing-
free in any 1-planar embedding of the graph. Hence, all copies of K6 in Gk , except
for at most one (which is part of the outer face), must be embedded as in Fig. 15 (c).
Thus, Gk contains at least k − 1 T-configurations. This concludes the proof of the
Theorem 4.1.

Moreover, if some spanning subgraph H of G had a 1-plane RVR �, then for each
of the k copies of K6, at least one edge cannot exist in �, else � would induce an RVR
of K6. Hence at least k = n/6 edges of G must be removed from H in order to be
able to compute �. This proves the following stronger corollary.

Corollary 4.4 Let k ≥ 1 be an integer. There exists a 3-connected 1-planar graph Gk

with n = 6k vertices that does not admit any 1-planar embedding that can be realized
as a 1-plane RVR, unless we remove at least k = n/6 edges.

On the positive side, a 4-connected 1-planar graph G admits a 1-planar embed-
ding G ′ with no B-configurations and W-configurations except that the outer face
may consist of a crossing with an edge between two of its endpoints [1]. In any T-
configuration in a 1-plane graph, the three outer vertices are either the outer face or
form a separating triple, so any embedding of a 4-connected 1-planar graph has at
most one T-configuration. This means that in G ′ there is at most one T-configuration,
and if there is one then there is no B-configuration or W-configuration. This leads to
the following theorem.

123

378 Discrete Comput Geom (2018) 60:345–380

Theorem 4.5 Every 4-connected 1-planar graph G admits a 1-planar embedding that
can be realized as a 1-plane RVR, after removing at most one edge.

An optimal 1-planar graph is one that has the maximum number 4n −8 of possible
edges. Optimal 1-planar graphs are always 4-connected, and in any 1-planar embed-
ding all crossings are in kites, with the exception of one crossing on the outer face [40].
It follows that G does not contain any T-configuration, and with the exception of the
crossing at the outer face, it contains no B-configuration or W-configuration.

Corollary 4.6 Every optimal 1-plane graph G admits a 1-plane RVR, after removing
one edge.

5 Conclusions and Open Problems

We studied embedding-preserving rectangle visibility representations of embedded
nonplanar graphs. We showed that we can test in polynomial time whether an embed-
ded graph has such a representation. Of special interest to us were 1-plane graphs,
for which we described a linear-time algorithm to test the existence of embedding-
preserving rectangle visibility representations. Moreover, in case of a negative answer
the algorithm provides a witness in form of either a B-configuration, W-configuration,
or T-configuration. We also studied the setting in which the graph is not embedded,
and we aim to find a 1-planar embedding that can be realized as a 1-plane RVR. We
showed that not all 3-connected 1-planar graphs admit such an embedding, but all
4-connected 1-planar graphs do after deleting (at most) one edge.

The most pressing open problem is whether we can restrict the drawings less and
still test for the existence of rectangle visibility representations? Most importantly, if
we fix the rotation system and outer face, but not the cyclic order of the edges around
the crossings (and perhaps not even which edges cross), is it possible to test whether
an RVR respecting the rotation system and outer face exists? The NP-hardness proof
of Shermer [38] does not hold if the rotation system is fixed, since it uses a reduction
from linear-arboricity-2, and fixing the rotation system would severely restrict the
possibleways of splitting a graph into two linear forests. The orthogonal representation
approach utterly fails if the order of crossings is not fixed, since it requires planarization
as a first step. Also, it is NP-complete to decide if a graph with a fixed rotation system
admits a 1-planar embedding in which the rotation system is preserved [2].

Finally, it is immediate to observe that any RVR can be transformed into a drawing
such that vertices are points, edges are polylines with at most 2 bends, and crossings
occur only at right angles. Hence, Lemma 3.21 can be used to compute RAC-drawings
(see e.g. [17]) with at most 2 bends per edge in linear time and quadratic area. It
is known that not all 1-plane (straight-line drawable) graphs admit a bendless RAC-
drawing [19] (and when they do they may require exponential area [9]), and that every
1-planar graph admits a 1-planar RAC-drawing with at most 1 bend per edge [3] (the
drawing algorithm may produce drawings that take exponential area), we ask whether
all 1-plane graphs admit an embedding-preserving RAC-drawing with at most 2 bends
per edge in polynomial area?

123

Discrete Comput Geom (2018) 60:345–380 379

Acknowledgements We thank the anonymous referees of this paper for their valuable suggestions.

References

1. Alam, M.J., Brandenburg, F.J., Kobourov, S.G.: Straight-line grid drawings of 3-connected 1-planar
graphs. In: Graph Drawing. Lecture Notes in Computer Science, vol. 8242, pp. 83–94. Springer, Cham
(2013)

2. Auer, C., Brandenburg, F.J., Gleißner, A., Reislhuber, J.: 1-Planarity of graphs with a rotation system.
J. Graph Algorithms Appl. 19(1), 67–86 (2015)

3. Bekos, M.A., Didimo, W., Liotta, G., Mehrabi, S., Montecchiani, F.: On RAC drawings of 1-planar
graphs. Theor. Comput. Sci. 689, 48–57 (2017)

4. Biedl, T.: Relating bends and size in orthogonal graph drawings. Inform. Process. Lett. 65(2), 111–115
(1998)

5. Biedl, T., Lubiw, A., Petrick, M., Spriggs, M.: Morphing orthogonal planar graph drawings. ACM
Trans. Algorithms 9(4), Art. No. 29 (2013)

6. Bodendiek, R., Schumacher, H., Wagner, K.: Bemerkungen zu einem Sechsfarbenproblem von G.
Ringel. Abhandlungen aus dem Mathematischen Seminar der Universitaet Hamburg 53(1), 41–52
(1983)

7. Brandenburg, F.J.: 1-Visibility representations of 1-planar graphs. J. Graph Algorithms Appl. 18(3),
421–438 (2014)

8. Brandenburg, F.J., Eppstein, D., Gleißner, A., Goodrich, M.T., Hanauer, K., Reislhuber, J.: On the
density of maximal 1-planar graphs. In: Didimo, W., Patrignani, M. (eds.) Graph Drawing. Lecture
Notes in Computer Science, vol. 7704, pp. 327–338. Springer, Cham (2013)

9. Brandenburg, F.J., Didimo,W., Evans,W.S., Kindermann, P., Liotta, G.,Montecchiani, F.: Recognizing
and drawing IC-planar graphs. Theor. Comput. Sci. 636, 1–16 (2016)

10. Chen, Z.Z., Grigni, M., Papadimitriou, C.H.: Recognizing hole-free 4-map graphs in cubic time.
Algorithmica 45(2), 227–262 (2006)

11. Chiba, N., Nishizeki, T.: Arboricity and subgraph listing algorithms. SIAM J. Comput. 14(1), 210–223
(1985)

12. Cohen, M.B., Mądry, A., Sankowski, P., Vladu, A.: Negative-weight shortest paths and unit capacity
minimum cost flow in Õ(m10/7 log W) time (extended abstract). In: Klein, P.N. (ed.) Proceedings of
the 28th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA’17), pp. 752–771. SIAM,
Philadelphia (2017)

13. Czap, J., Hudák, D.: On drawings and decompositions of 1-planar graphs. Electron. J. Comb. 20(2),
Art. No. 54 (2013)

14. Dean, A.M., Evans, W., Gethner, E., Laison, J.D., Safari, M.A., Trotter, W.T.: Bar k-visibility graphs.
J. Graph Algorithms Appl. 11(1), 45–59 (2007)

15. Di Battista, G., Eades, P., Tamassia, R., Tollis, I.G.: Graph Drawing: Algorithms for the Visualization
of Graphs. Prentice-Hall, Upper Saddle River (1999)

16. Di Giacomo, E., Didimo, W., Evans, W.S., Liotta, G., Meijer, H., Montecchiani, F., Wismath, S.K.:
Ortho-polygon visibility representations of embedded graphs. Algorithmica (2017). doi:10.1007/
s00453-017-0324-2

17. Didimo,W., Liotta, G.: The crossing-angle resolution in graph drawing. In: Pach, J. (ed.) Thirty Essays
on Geometric Graph Theory, pp. 167–184. Springer, New York (2013)

18. Duchet, P., Hamidoune, Y., Vergnas, M.L., Meyniel, H.: Representing a planar graph by vertical lines
joining different levels. Discrete Math. 46(3), 319–321 (1983)

19. Eades, P., Liotta, G.: Right angle crossing graphs and 1-planarity. Discrete Appl. Math. 161(7–8),
961–969 (2013)

20. Evans, W., Kaufmann, M., Lenhart, W., Mchedlidze, T., Wismath, S.: Bar 1-visibility graphs and their
relation to other nearly planar graphs. J. Graph Algorithms Appl. 18(5), 721–739 (2014)

21. Felsner, S.: Rectangle and square representations of planar graphs. In: Pach, J. (ed.) Thirty Essays on
Geometric Graph Theory, pp. 213–248. Springer, New York (2013)

22. Fusy, É.: Transversal structures on triangulations: a combinatorial study and straight-line drawings.
Discrete Math. 309(7), 1870–1894 (2009)

23. He, X.: On finding the rectangular duals of planar triangular graphs. SIAM J. Comput. 22(6), 1218–
1226 (1993)

123

http://dx.doi.org/10.1007/s00453-017-0324-2
http://dx.doi.org/10.1007/s00453-017-0324-2

380 Discrete Comput Geom (2018) 60:345–380

24. Hong, S.H., Eades, P., Liotta, G., Poon, S.H.: Fáry’s theorem for 1-planar graphs. In: Gudmundsson,
J., Mestre, J., Viglas, T. (eds.) Computing and Combinatorics. Lecture Notes in Computer Science,
vol. 7434, pp. 335–346. Springer, Berlin (2012)

25. Hutchinson, J.P., Shermer, T.C., Vince, A.: On representations of some thickness-two graphs. Comput.
Geom. 13(3), 161–171 (1999)

26. Kant, G.: A more compact visibility representation. Int. J. Comput. Geom. Appl. 7(3), 197–210 (1997)
27. Kant, G., Bodlaender, H.L.: Triangulating planar graphs while minimizing the maximum degree. Inf.

Comput. 135(1), 1–14 (1997)
28. Kant, G., He, X.: Regular edge labeling of 4-connected plane graphs and its applications in graph

drawing problems. Theor. Comput. Sci. 172(1–2), 175–193 (1997)
29. Kant, G., Liotta, G., Tamassia, R., Tollis, I.G.: Area requirement of visibility representations of trees.

Inf. Process. Lett. 62(2), 81–88 (1997)
30. Kobourov, S.G., Liotta, G., Montecchiani, F.: An annotated bibliography on 1-planarity. Comput. Sci.

Rev. doi:10.1016/j.cosrev.2017.06.002
31. Korzhik, V.P.: Minimal non-1-planar graphs. Discrete Math. 308(7), 1319–1327 (2008)
32. Kynčl, J.: Enumeration of simple complete topological graphs. Eur. J. Comb. 30(7), 1676–1685 (2009)
33. Liotta, G., Montecchiani, F.: L-visibility drawings of IC-planar graphs. Inf. Process. Lett. 116(3),

217–222 (2016)
34. Madry, A.: Computing maximum flow with augmenting electrical flows. In: Dinur, I. (ed.) IEEE 57th

Annual Symposium on Foundations of Computer Science (FOCS’16), pp. 593–602. IEEE (2016)
35. Otten, R.H.J.M., Wijk, J.G.V.: Graph representations in interactive layout design. In: Proceedings of

the IEEE International Symposium on Circuits and Systems (ISCSS’78), pp. 914–918. IEEE (1978)
36. Pach, J., Tóth, G.: Graphs drawn with few crossings per edge. Combinatorica 17(3), 427–439 (1997)
37. Rosenstiehl, P., Tarjan, R.E.: Rectilinear planar layouts and bipolar orientations of planar graphs.

Discrete Comput. Geom. 1(4), 343–353 (1986)
38. Shermer, T.C.: On rectangle visibility graphs. III. External visibility and complexity. In: Proceedings

of the 8th Canadian Conference on Computational Geometry (CCCG’96), pp. 234–239. Carleton
University Press, Ottawa (1996)

39. Streinu, I.,Whitesides, S.: Rectangle visibility graphs: Characterization, construction, and compaction.
In: Alt, H., Habib, M. (eds.) STACS 2003. Lecture Notes in Computer Science, vol. 2607, pp. 26–37.
Springer, Berlin (2003)

40. Suzuki, Y.: Re-embeddings of maximum 1-planar graphs. SIAM J. Discrete Math. 24(4), 1527–1540
(2010)

41. Tamassia, R.: On embedding a graph in the grid with the minimum number of bends. SIAM J. Comput.
16(3), 421–444 (1987)

42. Tamassia, R., Tollis, I.G.: A unified approach to visibility representations of planar graphs. Discrete
Comput. Geom. 1(4), 321–341 (1986)

43. Thomassen, C.: Plane representations of graphs. In: Bondy, J.A., Murty, U.S.R. (eds.) Progress in
Graph Theory, pp. 43–69. Academic Press, New York (1984)

44. Thomassen, C.: Rectilinear drawings of graphs. J. Graph Theory 12(3), 335–341 (1988)
45. Ullman, J.D.: Computational Aspects of VLSI. Computer Science Press, Rockville (1984)
46. Ungar, P.: On diagrams representing maps. J. Lond. Math. Soc. s1–28(3), 336–342 (1953)
47. Wismath, S.K.: Characterizing bar line-of-sight graphs. In: O’Rourke, J. (ed.) Proceedings of the 1st

Annual Symposium on Computational Geometry (SoCG’85), pp. 147–152. ACM, New York (1985)

123

http://dx.doi.org/10.1016/j.cosrev.2017.06.002

	Embedding-Preserving Rectangle Visibility Representations of Nonplanar Graphs
	Abstract
	1 Introduction
	2 Definitions and Basic Results
	3 Embedded 1-Planar Graphs
	3.1 Main Result
	3.2 Proof of Sufficient Condition
	3.3 Area and Time Complexity
	3.4 Testing Algorithm

	4 Variable Embedding Setting
	5 Conclusions and Open Problems
	Acknowledgements
	References

