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Abstract We consider d-dimensional simplicial complexes which can be PL embed-
ded in the 2d-dimensional Euclidean space. In short,we show that in any such complex,
for any three vertices, the intersection of the link-complexes of the vertices is linklessly
embeddable in the (2d − 1)-dimensional Euclidean space. In addition, we use similar
considerations on links of vertices to derive a new asymptotic upper bound on the total
number of d-simplices in an (continuously) embeddable complex in 2d-space with n
vertices, improving known upper bounds, for all d ≥ 2. Moreover, we show that the
same asymptotic bound also applies to the size of d-complexes linklessly embeddable
in the (2d + 1)-dimensional space.
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1 Introduction and Overview of Results

There is great interest in understanding properties of simplicial complexes that are
embeddable in a certain Euclidean space. The basic case is 1-dimensional complexes
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that are embeddable in the plane, i.e., graphs that can be drawn on the plane without
crossings between the edges. Planar graphs are very well-understood. For instance,
it is easily shown that if a planar graph has n vertices it has at most 3n − 6 edges.
However, roughly speaking, how “dense” a simplicial d-complex embeddable in R2d

can be, is less understood for arbitrary d. In this paper we show certain properties
of embeddable complexes that, for instance, can be used to give an upper bound for
this density problem. We note that any simplicial d-complex can be embedded in a
simplex-wise linear way in R

2d+1. However, for any d ≥ 1, there exist simplicial
d-complexes non-embeddable in R2d .

The property we prove in this article involves the notion of the link-complex of a
vertex and linking of spheres in Euclidean spaces (and more generally of algebraic
cycles).We begin by considering the simplest (but perhaps the hardest) case d = 2.We
consider first 2-complexes inR3. Let K be a 2-complex. The link-complex1 of a vertex
is the maximal 1-subcomplex (a graph) whose join with the vertex is a subcomplex of
K (we give definitions in later sections). Sometimes the embeddability of the complex
provides restrictions on possible link-graphs. The following is well known, see [5].
Assume that the complex K is sitting in R

3, i.e., simplex-wise linearly embedded.
Then, if we consider small enough balls around each vertex, we can observe that
the intersection of the boundary of a ball with the complex K is a drawing of the
link-graph of the vertex on the 2-sphere. Now a planar graph with n vertices has at
most 3n − 6 edges, hence the total number of edges in all link-graphs is at most
n(3(n − 1) − 6) = 3n2 − 9n. Since each triangle is counted three times it follows
that such a complex K over n vertices has at most n2 − 3n triangles. A complex
embedded in R3 and with �(n2) triangles can be constructed by putting n vertices on
each of two skew lines in 3-space and then taking the Delaunay triangulation of the
point set; it will consist of �(n2) tetrahedra. Alternatively, one can take the boundary
of the 4-dimensional cyclic polytope, remove a single facet and embed the result
in R3.

If we know that K embeds in R
4, in general no restriction is imposed on the link-

graph of a vertex. To see this, take an arbitrary graph in some R3 ⊂ R
4 and “cone”

this graph from a vertex on one side of the 3-plane. Hence, arbitrary graphs appear as
link-complexes of embeddable 2-complexes. We can add another vertex on the other
side of the 3-plane and cone again. Thus the intersection of two link-graphs can be an
arbitrary graph. However, there are global restrictions on the set of all link-complexes
and the above process cannot be continued. In brief, we show that in a PL embeddable
2-complex in R

4, for any triple of distinct link-graphs, their common intersection
(or a triple intersection) is a linklessly embeddable graph. Informally, a linklessly
embeddable graph is one that can be “drawn” in space without links between disjoint
circles. Figure 1 shows some examples of links in Euclidean spaces between spheres
of the right dimensions.

An interesting property of our main observation is that the same proof works for
all dimensions. That is, we show that for any PL embeddable d-complex, each triple

1 This subcomplex is usually called the link of the vertex. In this paper, we call it the link-complex or the
link-graph to prevent confusion with other usages of the word “link”.
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Fig. 1 Linking of spheres in various dimensions

intersection of link-complexes is a linklessly embeddable (d −1)-complex (inR2d−1).
More formally,

Theorem 1.1 Let ι : |K | → R
2d be a PL embedding of the d-complex K . If L is a

triple intersection of link-complexes of vertices of K , then ιv : |L| → S(v) embeds L
linklessly, for any v that contains L in its link-complex, where ιv is the restriction to
|L| of the embedding of the (underlying space of the) link-complex of v into a small
sphere S(v) centered at ι(v).

The above is true even for d = 1. In a planar graph, triple intersections of link-
complexes (subsets of vertices) have at most three vertices each. This is because
four points on a real-line always allow a link between two 0-dimensional spheres.
Obviously, in this case the graph would contain a K3,3 otherwise, and hence would be
non-planar. Of course, this bound is not tight sincewe know that the triple intersections
have at most two points. However, this example shows the application of the results of
this article to the case d = 1. This theorem is proved using only elementary properties
of intersection homomorphism and linking numbers in R

2d .
In the case d = 2 a stronger fact is true. A triple intersection of links is not only

linklessly embeddable but actually is a planar graph.2 The proof of planarity in the
case d = 2 uses the characterization of planar graphs by forbidden minors, and so
is not directly generalized to higher dimensions, see the last section for a discussion
about planarity.

These observations lead us to derive a new upper bound on the number of d-
simplices of embeddable d-complexes with n vertices. For a simplicial complex K , let

2 This improvement was noted by Uli Wagner.
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fi (K ) be the number of i-dimensional simplices of K . Denote by fd(n) the maximum
number of d-simplices of a continuously3 embeddable d-complex with n vertices in
R
2d . The problem of determining or bounding fd(n) is a major open problem. For

the case of (boundaries of simplicial) convex polytopes, by the famous Upper Bound
Theorem, the f -vector is always bounded above by the f -vector of the cyclic polytope,
see [15,25]. This result has been strengthened to include all complexes homeomorphic
to the boundary of a convex polytope, see [20]. We note that deriving asymptotic tight
bounds for all these cases is much easier by using the vanishing of the Betti numbers
and the Euler relation. For instance, in the case d = 2, the Euler relation states that
β0(K )−β1(K )+β2(K ) = f0(K )− f1(K )+ f2(K ) in a simplicial complex. Hence
f2(K ) asymptotically is dominated by f1(K ) + β2(K ).
It is conjectured by many that the same (at least) asymptotic bounds that are true

for d-simplices in the Upper Bound Theorem are also true for fd(n), this means
fd(n) = �(nd). However, the best bound in the literature is fd(n) = O(nd+1−1/3d

),
and this bound was the best known for any d > 1. This fact is proved by forbidding
some non-embeddable subcomplexes. This bound is first mentioned in [4], see [9]
or [6,24] for a proof, and [4] for an application. In this paper, in Theorem 4.1, we
improve this bound to fd(n) = O(nd+1−1/3(d−1)

). We prove the new bound in general
dimension using further non-embeddability results of Grünbaum [7]. Theorem 1.1
and its proof which is independent of the dimension give us a necessity condition for
embeddability of d-complexes in 2d-space. However, Theorem 1.1, or the stronger
planarity result mentioned above, help directly improve the bound on the number of
simplices only for d = 2.

We also show that the same asymptotic bound (with different constant) is true for
the number of d-simplices in d-complexes that can be linklessly embedded in R2d+1.
This is proved using the results in [19]. Note that this latter bound is strictly stronger
than the former, since a complex that is embeddable in R

2d is linklessly embeddable
in R

2d+1 and the converse is not true. There exist also bounds on these complexes
by forbidding “bad” subcomplexes, see [19,22] for instances of small non-linklessly
embeddable complexes.

It is shown in [24] that a (suitably defined) random d-complex embeddable in
R
2d has asymptotically almost surely fd(K ) < C fd−1(K ) for some constant C . So

the conjecture is true for almost all complexes. The general belief is that the current
upper bounds are far from the truth. Nevertheless, we think this paper leads to a better
understanding of embeddable complexes.

It is conjectured that for 2-complexes that are embeddable in R4 one has f2(K ) ≤
4 f1(K ). Inequalities of this type where considered by Grünbaum [8]. This inequality
is called the Grünbaum conjecture, also sometimes Kalai’s conjecture. We believe this
paper is a step towards proving this conjecture.

Organization of the paper We presented an overview of the results in Sect. 1 above.
In Sect. 2, we briefly explain the necessary background material and definitions. This

3 Our Theorem 1.1 is proved only for PL embeddings, however, Theorem 3.4 and its analog for linkless
embeddings are proved for continuous embeddings. Since only these latter theorems are used to derive
upper bounds, we define fd (n) with respect to continuous maps.
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section serves also to set up our notation. In Sect. 3 we state formally the lemma on
linklessness of the triple intersection of link-complexes and prove it. Next, we prove
the stronger fact for d = 2 on planarity of the triple intersection of link-graphs. Then,
in Sect. 4 we derive the bounds on the number of simplices. The argument makes use
of a combinatorial lemma which is proved in Sect. 4.2.

2 Basic Concepts

In this section we recall some definitions and briefly review some preliminary facts
used later in the paper. By a simplicial complex K we mean an abstract complex, i.e.,
a set system over a finite set of vertices satisfying the usual condition that any subset
of an element of K is also in K . Let # σ denote the number of elements of the set σ .
If σ ∈ K , its realization |σ | is a simplex in a Euclidean space that has # σ points in
general position as vertices. The dimension of σ is the dimension of its realization,
i.e., # σ − 1. The dimension of K is the largest of the dimensions of its simplices. A
realization of K in a Euclidean space is defined as follows. For each vertex choose a
point of the space with the condition that all the simplices of K are simultaneously
realized, and moreover, the realizations of disjoint simplices are disjoint. The subset
of the Euclidean space which is the union of realizations of simplices is a realization
of K in the Euclidean space. In fact, a realization always exists, and, with the induced
topology from the Euclidean spaces these realizations are homeomorphic. Hence,
there is a canonical topological space defined for K which is called the underlying
space of K and denoted by |K |. We write V (K ) = {v1, . . . , vn} for the set of vertices.
The k-skeleton of K , i.e., the subcomplex made of simplices of dimension up to k, is
denoted by Kk . We also assume the empty element of K has dimension −1.

2.1 Stars and Links

The star of a simplex σ ∈ K is the set st(σ ) = {τ ∈ K , σ ⊂ τ }. The closed star of σ ,
St(σ ), is the smallest subcomplex of K containing st(σ ). The complex St(x) − st(x)

is called the link-complex of σ and denoted L(σ ). The closed star is the join of L(σ )

with σ .
We work with link-complexes of vertices only. The stars of vertices cover K such

that each k-simplex, k > 0, is covered (k +1)-times. Also, any k-simplex appears in as
many link-complexes (of vertices), as the number of its incident (k + 1)-simplices, or
its degree. It follows that the link-complexes of vertices cover all simplices of degree
at least 1.

Let fk = fk(K ) denote the number of k-simplices in K , k = −1, 0, . . . A k-
simplex σ ∈ K is determined by giving one of its vertices v and the (k − 1)-simplex
of L(v) whose join with v is σ . Each k-simplex is determined in k + 1 different ways.
Therefore, in general, the numbers fk , k ≥ 0, satisfy

(k + 1) fk =
n∑

i=1

fk−1(L(vi )). (1)

123



668 Discrete Comput Geom (2018) 59:663–679

2.2 Notions of Embeddings

There exist various types of embedding into Euclidean spaces. A continuous injective
map is the most general notion. And the narrowest concept for our purposes is the
simplex-wise linear embedding. This is the same as realizing the complex in the
required Euclidean space. A piece-wise linear (PL) embedding is one that is a simplex-
wise linear embedding after finitely many (barycentric) subdivisions. Since a closed
simplex is compact, a continuous map can be approximated by a PL map such that
the images of two (vertex) disjoint simplices are disjoint. Such a PL map is called
an almost embedding. It would be interesting to know if the linklessness condition of
Theorem 1.1 can be extended to almost embeddings.

2.3 Embeddings of Link-Complexes

The concepts and notations in this paragraph are used throughout the paper and are
important for us. Let K be a d-complex with a PL map ι : |K | → R

2d . Put a ball of
small radius ε > 0 around the point ι(vi ), denoted by B(vi ), and write S(vi ) for its
boundary (2d − 1)-sphere. If we choose ε small enough then S(vi ) ∩ ι(|K |) defines
an embedding of the link-complex of vi into the sphere S(vi ) and hence into R

2d−1.
All the embeddings that are achieved in this way on spheres of different (small) radii
are isotopic to each other. We refer to such an embedding when we say the embedding
of the link-complex of vi , i = 1, . . . , n, and denote it by ιvi : |L(vi )| → S(vi ).

2.4 Chains in Spaces

We will need familiarity with the very basic notions of chain complexes. In this para-
graph we merely fix notation and refer to [10,16,18] or any textbook on algebraic
topology for complete definitions.

A singular k-dimensional simplex in a space X is a (continuous)mapσ : |	k | → X ,
where 	k is a standard oriented k-simplex. The kth singular chain group of X , Ck(X)

is a free abelian group generated by all singular simplices, where −σ is σ with the
oppositely oriented domain simplex. The elements c ∈ Ck(X) are called singular k-
chains and they can be written as finite sums c = ∑

i niσi where the ni are integers
and the σi are singular simplices. When X is the underlying space of a simplicial
complex, one can in the above definition replace a singular simplex by a fixed linear
homeomorphism of the standard oriented simplex onto a target simplex of the same
dimension. Those homeomorphisms that preserve the orientation are declared equal
and denoted by σ , and those which reverse the orientation are also declared equal
and denoted by −σ , where σ is the target simplex. The resulting chains are called
simplicial chains. Hence a simplicial chain is a finite summation of oriented simplices
with integer coefficients, and it can be viewed as a subset of all the singular chains
closed under group operations. We also set C(X) = ⊕

k Ck(X).
For each k, there exists a homomorphism ∂k : Ck(X) → Ck−1(X) called the bound-

ary homomorphism. We refer to basic algebraic topology textbooks for the definitions.
Intuitively, in the case of simplicial chains, ∂k assigns to each generator the sum of its
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boundary codimension 1 simplices with proper signs. In the singular case, the bound-
ary homomorphism assigns to a singular simplex (that is, a generator) a combination
of restrictions of the singular simplex to the boundary simplices; the singular bound-
ary is the image of the simplicial boundary of the domain. A chain is said to bound
if there exists a higher dimensional chain that maps to it by ∂∗. A chain is a cycle if
its boundary is zero. We denote the group of k-cycles by Zk(X). We say two chains
c1 and c2 are disjoint if their images are disjoint. A map f between spaces induces
homomorphisms on chain complexes which we denote by f�. By |c| we denote the
image of the singular chain c, or its carrier. Note that, if c is a k-dimensional sim-
plicial chain of a simplicial complex, then |c| is the union of k-simplices that have a
non-zero coefficient in the unique presentation of c in the basis formed by all of the
k-simplices.

2.5 Intersection Homomorphism and Linking Numbers

We make use of some elementary facts about intersection and linking numbers of
chains in the Euclidean space Rd or in the sphere Sd . Here we present an overview on
these important tools from algebraic topology. For proofs of these properties we refer
to [12,18]. In R

d , for some integer d > 0, the intersection number of two singular
chains cp ∈ C p(R

d), cd−p ∈ Cd−p(R
d) is an integer defined whenever ∂cp is disjoint

from cd−p, and ∂cd−p is disjoint from cp, and moreover, the maps are “nice”, see [18].
It is enough for our purposes to restrict to pairs of singular chains that intersect finitely
many times and transversely at each intersection point. Intuitively, the intersection
number, I(cp, cd−p), counts the number of transverse intersections with proper signs.
We next present a more formal introduction to the intersection numbers of chains in
manifolds.

Let M be an orientable closed triangulated d-manifold. Then, it is well known that
there exist dual cellular subdivisions4 for M . Let T1 and T2 be cellular subdivisions
dual to each other. Orient the d-dimensional cells of T1 and T2 coherently, that is,
so that the induced orientations on each (d − 1)-cell are opposite. Since the cellular
subdivisions are dual to each other, for any k-cell of T1 there exists exactly one (d −k)-
cell of T2 with non-empty intersection, for k = 0, . . . , d. And that intersection is a
single point and the intersection is transversal, meaning the two intersecting cells
near the intersection point span a d-dimensional space. A dual cellular subdivision to
any triangulation can be obtained using a barycentric subdivision of the triangulation.
Then, dual to a (d − k)-simplex of the triangulation, is a k-cell which is the union
of all k-simplices of the barycentric subdivision incident on the vertex added on the
(d − k)-cell – and used for its subdivision – that are not inside the (d − k)-simplex,
for k = 1, . . . , d. The dual of a d-simplex is the vertex of the subdivision inside it.

Assume now εkσk be an oriented k-cell of T1, and, εd−kτd−k be an oriented (d −k)-
cell of T2 where σ is dual to τ , and the εi ’s encode the respective orientations. And
let ε encode the orientation of the manifold. That is, changing the orientation of

4 A cellular subdivision is a subdivision into polyhedral cells, instead of simplices in a triangulation.
Cellular chains are defined analogously to simplicial chains.
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the manifold multiplies ε by −1. Note that εk, εd−k , ε ∈ {−1, 1}. Then, define the
intersection number as

I(εkσk, εd−kτd−k) = εkεd−kε.

For non-dual pairs of oriented simplices the intersection number is defined to be
zero. The intersection number then extends bilinearly to all the cellular chains
of T1, T2.

For two singular chains which satisfy the “niceness” condition mentioned above,
it is possible to approximate the two chains by chains in some two (very fine)
dual cell subdivisions, and use the above intersection number definition. The stan-
dard theory, see e.g. [18], shows that the number so obtained is independent of the
approximation.

The intersection number is bilinear as long as the terms on both sides are defined,

I(cp + c′
p, cd−p) = I(cp, cd−p) + I(c′

p, cd−p).

Thus the intersection number defines a homomorphism Z p(R
d) × Zd−p(R

d) →
Z. It also passes to homology groups, that is if cp − c′

p = ∂d for a chain d then
I(cp, cd−p) = I(c′

p, cd−p) whenever both terms are defined. We will not need this
fact though. The crucial fact we use is that in R

d any two cycles of complementary
dimensions (> 0) have intersection number 0. Both of these claims above follow from
the following general fact about the intersection numbers, which again is true when
the terms are defined, that is, when ∂cp and ∂cd−p+1 are disjoint,

I(cp, ∂cd−p+1) = (−1)pI(∂cp, cd−p+1). (2)

We next define the linking number of two (null-homologous) disjoint cycles
z p, zd−p−1 in R

d . Let c be such that ∂c = zd−p−1, such a chain c always exists
since the homology groups of Rd are trivial. Then

L(z p, zd−p−1) = I(z p, c)

is the linking number of z p and zd−p−1. It follows from (2) that the linking number is
independent of the choice of c and hence is well-defined. We also note that the linking
number in general changes within a homology class.

2.6 Linklessly Embeddable Complexes

Let L be a simplicial d-complex and ι : |L| → R
2d+1 an embedding, and denote by ι�

the induced map on chain groups. We call the embedding ι : |L| → R
2d+1 linkless5, if

for any two disjoint simplicial d-cycles c1, c2 ∈ Cd(L) their images ι�(c1), ι�(c2) have

5 The name “linking” in this sense is related to the name “link-complex” since in a manifold the link-
complex is a sphere linked with the original simplex.
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linking number zero. A simplicial d-complex is linklessly embeddable if there exists
a linkless embedding of it into R

2d+1. We remark that there exist other definitions of
linklessness of embeddings, but this definition is suitable for our application.

2.7 Linklessly Embeddable Graphs

The Conway–Gordon–Sachs theorem states that the graph K6 is not linklessly embed-
dable intoR3. It follows that any graph which has a subdivision of K6 as a subgraph is
also not linklessly embeddable. It is an old and basic result in extremal graph theory,
proved by Mader [13], that a graph without a subdivision of K6 as a subgraph satisfies
m ≤ 4n, where n is the number of vertices and m is the number of edges. This bound
is tight and a graph with 4n + O(1) edges is just an apex graph, which is a planar
graph together with a new vertex connected to every other vertex. On the other hand,
there exists the Robertson–Saymour–Thomas characterization of linklessly embed-
dable graphs by forbidding the so called Petersen family of graphs as minors, [17].
Since K6 is one of them, the set of linklessly embeddable graphs is contained in the
set of K6-minor-free graphs, and bounds for sizes of arbitrary Kt -minor-free graphs
are also known [21]. Moreover, tight bounds on sizes of graphs that do not have a Kt

as topological subgraph are also known [2,11].

3 Links in Link-Complexes

In this section we prove our main theorem on the possible link-complexes of vertices
of a d-complex PL embedded into the Euclidean 2d-space. This theorem gives an
obstruction for embeddability of complexes in Euclidean spaces based on the com-
plexity of the intersections of link-complexes of vertices.

Let c ∈ C(K ) be a simplicial chain. Whenever c is defined in a link-complex L(v)

(i.e., |c| ⊂ |L(v)| ⊂ |K |) then we have a singular chain ιv�(c), which is an embedding
of the carrier of c into S(v). Recall that for every vertex v, S(v) is a (2d − 1)-sphere
around v, which bounds a ball B(v) centered at v. We assume the balls are so small
that the embedding inside the preimage of the ball B(v) (and of a slightly larger ball)
is linear and the image inside the ball consists of a single connected component.

Lemma 3.1 Let ι : |K | → R
2d be a PL embedding of the d-complex K . Let c1, c2 ∈

Zd−1(K ) be disjoint simplicial cycles. Give the spheres S(vi ) orientations induced
from that of R2d . Assume there is a vertex v such that L(ιv�(c1), ιv�(c2)) = λ 
= 0 in
S(v), then L(ιw�(c1), ιw�(c2)) = ±λ in S(w), for any vertex w for which ιw�(c1) and
ιw�(c2) are defined. Moreover, if one such w 
= v exists then none of the chains c1, c2
can appear in a third link-complex.

Remark 3.2 Before presenting the proof we mention some points regarding it. (1) In
the proof we consider simplicial chains as a special case of singular chains, that is, the
simplicial chain complex is considered to be a sub-chain complex of singular chain
complex. This is justified since any simplicial chain complex determines in a canonical
way a singular chain complex. It is enough to observe this fact for the simplices. They
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Fig. 2 Guide to the notation for d = 2

are made into singular chains via the characteristic maps, see e.g. [10, Chap. 2, see also
Sect. 2]. (2) For any vertex v, we regardC(S(v)) andC(B(v)) as sub-chain complexes
ofC(R2d). This is obviously justified, since the same singular chain can be considered
a chain in a larger space.

Proof We refer to Fig. 2 for a schematic overview of the notation. Let cu
i = ιu�(ci ),

for a vertex u and i = 1, 2. By assumption, the linking number L(cv
1, cv

2) is defined
and is not zero in S(v).

Let dv
1 , dv

2 ∈ C(S(v)) be such that ∂dv
1 = cv

1, ∂dv
2 = cv

2. Then by definition we
have

λ = L(cv
1, cv

2) = I(cv
1, dv

2 ).

Here and in the following the ambient space in which a linking or an intersection
number is computed is clear from the arguments of L( · , · ) and I( · , · ).

Assume c1 = ∑m
i=1 niσi , where the σi are oriented simplices and the ni are non-

zero integers. If the oriented d-simplex σ is defined by v0 . . . vd then define vσ to be
the oriented (d + 1)-simplex vv0v1 . . . vd , i.e., the cone over σ oriented as indicated.
Let hv

1 ∈ C(R2d) be the chain ι�(vc1), where vc1 = ∑m
i=1 nivσi . Let hv

2 be the
same for c2. One easily computes that ∂(vc1) = ±c1. The sign is not changed if the
convention is that the oriented boundary simplex pd−1 . . . p0 is considered positively
oriented with respect to the oriented simplex pd pd−1 . . . p0, we assume it is the case.
It then follows that ∂hv

1 = ι�(c1).
Observe that the image of the complex inside B(u) for any vertex u, is the linear cone

over S(u) ∩ ι(|K |) from ι(u). Consider the singular chain d ′v
2 ∈ C(B(v)) ⊂ C(R2d)
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whose image is the cone over |cv
2 | from ι(v), cv

2 ∈ S(v), and with ∂d ′v
2 = cv

2. This
singular chain clearly exists and is easy to construct from cv

2. Define h′v
2 = hv

2 − d ′v
2 +

dv
2 ∈ Cd(R2d). We claim that the intersection numbers satisfy

I(hv
1, h′v

2 ) = ±I(cv
1, dv

2 ), (3)

where the intersection number in the right-hand side is computed in S(v). Assume
there exists a vertex w 
= v, as in the statement of the lemma i.e. such that c1 and c2
appear in the link of w, with ιw : |L(w)| → S(w). Assuming (3) we argue as follows
that L(cw

1 , cw
2 ) = ±λ in S(w). Note that this latter condition implies that cw

1 and cw
2

are defined.
To see this claim, we write

I (
hw
1 − hv

1, h′w
2 − h′v

2

) = I (
hw
1 , h′w

2

)

− I (
hw
1 , h′v

2

) − I (
hv
1, h′w

2

) + I (
hv
1, h′v

2

)
. (4)

The two middle terms of the right-hand side are zero as follows. We have

I (
hw
1 , h′v

2

) = I (
hw
1 , hv

2

) + I (
hw
1 ,−d ′v

2 + dv
2

)
.

The underlying spaces of the chains hw
1 and hv

2 are disjoint and hence these two chains
have intersection number zero. The second term is also zero since the cycle dv

2 −d ′v
2 is

inside the ball bounded by S(v) and is disjoint from hw
1 by the choice of the spheres.

The third term of the right-hand side of (4) can similarly be shown to be zero.
Since the two cycles hw

1 − hv
1 and h′w

2 − h′v
2 must have intersection num-

ber 0, it follows that I(hw
1 , h′w

2 ) = −I(hv
1, h′v

2 ). And from (3) it must be that
I(hw

1 , h′w
2 ) = ±I(cw

1 , dw
2 ) = ±L(cw

1 , cw
2 ), and similarly, I(hv

1, h′v
2 ) = L(cv

1, cv
2).

Therefore, L(cw
1 , cw

2 ) = ±λ.
It remains to show (3). Since by assumption the map ι restricted to ι−1(B̂(v))

is linear, where B̂(v) is a ball slightly larger than B(v), any transverse intersection
between |cv

1 | and |dv
2 | gives rise to a transverse intersection between |hv

1| and |dv
2 | ⊂

|h′v
2 |. The rest of |h′v

2 | is disjoint from |hv
1|. Hence, the set of intersection points of |hv

1|
and |h′v

2 | is the same as the set of intersection points of |cv
1 | and |dv

2 | in S(v). We thus
only need to argue that the intersections have the same signs in R

2d as in S(v), or all
of the signs are changed. The sign of an intersection depends on three orientations, the
two of the intersecting chains around the intersection point and the orientation of the
ambient space. The chains dv

2 and h′v
2 have the same orientations around intersection

points. The orientations of the S(vi ) are induced by that ofR2d and hence are fixed.We
thus must show that the orientations of the simplices of hv

1 are determined naturally
around the intersection points by those of cv

1. But this is the case since the orientations
of the simplices of hv

1 inside the ball B̂(v) are defined from those of cv
1 by the natural

coning process sending ιv(σi ) to ι(v)ιv(σi ).
Next we prove the last part of the lemma. From the above it follows that the 2-cycle

s1 = hv
1 − hw

1 has linking number ±λ with cv
2. Since cv

2 − ι�(c2) bounds a chain
which is disjoint from s1, it follows that L(s1, ι�(c2)) = ±λ. If a third vertex u exists
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such that c2 is in its link-complex, then ι(uc2) would be a chain disjoint from s1 and
bounding c2. This contradicts the fact that λ 
= 0. Symmetrically the argument works
for c1 as well. ��

Theorem 1.1 is an immediate corollary of the above lemma.

Remark 3.3 We have presented our main lemma above in a setting that provides more
information that is needed for Theorem 1.1. The reader will realize that, for instance,
for chains with Z2 coefficients and Z2 intersection numbers, the proof simplifies.

3.1 Planarity for d = 2

Theorem 3.4 Let K be a 2-complex embedded in R
4. Let L be a 1-subcomplex that

is the intersection of three link subcomplexes of K . Then, L is a planar graph.

This theorem can be derived easily from the following fact first proved by Grün-

baum [7], see also [14,23]. Let K d1
2d1+3, K d2

2d2+3, . . . , K
dp
2dp+3 be p complexes such

that K di
2di +3 is the complete di -complex on 2di + 3 vertices, and, d = d1 + d2 + · · · +

dp + p − 1. Then

K ′ = K d1
2d1+3 ∗ K d2

2d2+3 ∗ · · · ∗ K
dp
2dp+3

is a d-complex not embeddable in R
2d . The complex K ′ is also minimal in the sense

that removing a single d-simplex makes it embeddable. In order to show L planar, we
must show that as a topological graph it cannot contain a topological K3,3 or K5. We
have

K3,3 = [3] ∗ [3], K5 = K 1
2×1+3,

where [3] is a complex consisting of three disjoint vertices. Thus, if L contains a
homeomorphic copy of a K3,3 or K5 then K will contain a subcomplex homeomorphic
to [3] ∗ [3] ∗ [3] or K 1

5 ∗ [3]. However, by the result mentioned above these complexes
are not embeddable and the theorem is proved.

4 Bounding the Number of d-Simplices in d-Complexes in R
2d

In this section we use the theorems which restrict the triple intersections of links
of vertices to derive an upper bound on the number of d-simplices in a d-complex
embeddable in R2d .

In the following, we consider first the cases d = 2 and d = 3 as examples of
the general case and to introduce the intuition behind the proof. Let d = 2. For the
purpose of bounding the number of triangles, we use the fact that triple intersections
of link complexes are planar. It is well known that a planar graph on n vertices has at
most f (n) = 3n − 6 edges. Thus, for any embedded 2-complex K in R

4, any triple
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intersection of links of vertices has at most f (n) = 3n −6 edges. From (1) and a basic
combinatorial lemma proved in the next section, Lemma 4.3, it follows that the total
number of triangles satisfies f2 = O(n8/3).

A similar result with a slightly worse constant and only for PL embeddings can be
obtained using Theorem 1.1. This is because the graph K6 is not linklessly embeddable
by the well known Conway–Gordon–Sachs theorem. Hence, any linklessly embed-
dable graph cannot contain a subdivision of K6 and by the extremal results of Mader
[13] it has at most 4n + O(1) edges.

Next let d = 3. From the non-embeddability result of Grünbaum it follows that a
triple intersection of link-complexes cannot include a complex F = K 1

5 ∗ [3]. This is
because non-embeddability of K 1

5 ∗ [3] ∗ [3] (into R
6) can be “read from the right”

to imply that: In an embeddable complex, any triple intersection of link-complexes of
vertices is such that any triple intersection of link-complexes of it does not include a
homeomorphic image of K 1

5 as a subgraph. Thus, by the above discussion, any triple
intersection of links is a 2-complex of size O(n8/3). By Lemma 4.3 the total number
of d-simplices is O(nn2n8/9) = O(n3+8/9).

We now state the general result which is proved similarly.

Theorem 4.1 Let fd(n) be the maximum number of d simplices in an n-vertex d-
complex embeddable in R

2d , d > 0. Then

fd(n) = O
(
nd+1−1/3(d−1))

. (5)

Proof For the case d = 1 the above reduces to f1(n) = O(n) hence the classical
bound on the number of edges of a planar graph. So we assume that d > 1. Let φd(n)

be the maximum number of d-simplices in an n-vertex d-complex that does not have
a subcomplex homeomorphic to K5 ∗ [3] ∗ · · · ∗ [3] with d − 1 factors of [3]. By the
results of Grünbaum fd(n) ≤ φd(n) and we bound φd(n). For d = 2, the condition
that the complex does not contain a homeomorphic copy of K5 ∗ [3] implies that triple
intersections of link-graphs are graphs that do not contain a subdivision of K5. By the
early results of Mader [13] such graphs have O(n) edges. Then, from Lemma 4.3 it
follows that φ2(n) = O(n8/3).

Now consider the case of general d. The condition that a d-complex does not have a
subcomplex homeomorphic to K5 ∗ [3] ∗ · · · ∗ [3]with d −1 factors of [3] implies that
triple intersections of link-complexes do not contain subcomplexes homeomorphic to
K5∗[3]∗· · ·∗[3]with d−2 factors of [3]. Hence, triple intersections of link complexes
are (d −1)-complexes over at most n −1 vertices whose number of (d −1)-simplices
is bounded by φd−1(n). Therefore, we can apply Lemma 4.3 again and we obtain

φd(n) ≤ cnn2d/3φ
1/3
d−1(n) ≤ cc′nn2d/3n(d−1/3d−2)/3

= cc′nd+1−1/3d−1
.

(6)

In the above c is a constant coming from the combinatorial lemma and c′ is the
constant in the asymptotic bound for φd−1(n), so in general the constant in the notation
depends on d. ��
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4.1 Size of Linklessly Embeddable d-Complexes in R
2d+1

Using the linklessness criterion of Theorem 3.1 one can prove in a way similar to the
proof of Theorem 4.1, a stronger result than Theorem 4.1 for continuous embeddings.
By [19, Lem. 1], if a d-complex embeds linklessly in R

2d+1 then it cannot contain
a subcomplex homeomorphic to [3] ∗ · · · ∗ [3], d + 1 factors. Using an inductive
argument as in the proof of Theorem 4.1, it follows that the same asymptotic bound
proved above also applies to complexes that are linklessly embeddable inR2d+1, with
slightly different constants. In the argument, K5 is replaced by [3]∗ [3]. Hence, for the
case d = 2 one needs to bound the number of edges in graphs with no subdivision of
K3,3 as a subgraph and for this purpose it is enough to consider sizes of graphs with no
subdivision of K6 as subgraph. This is because the class of graphs with no subdivision
of K3,3 as a subgraph is contained in the class of graphs with no subdivision of K6 as
a subgraph.

Note that here for d > 1 the codimension is at least three and a continuous embed-
ding can always be approximated by a PL one [3].

Theorem 4.2 Let gd(n) be the maximum number of d-simplices of an n-vertex d-
complex linklessly embeddable in R

2d+1, d > 0. Then

gd(n) = O
(
nd+1−1/3(d−1))

. (7)

4.2 A Combinatorial Lemma

This section gives the proof of a combinatorial lemma used in deriving the upper
bounds. We produce it here for completeness and do not claim it is new. In this
section, we denote the number of elements of a set S by |S|. Let X = {x1, . . . , xn} be
a finite set and S = {S1, S2, . . . , Sm} a collection of subsets of X . We are interested in
bounding the quantity t (S) = ∑m

i=1 |Si | that is a function of n and m. The restriction
on sets Si comes from their common intersections. Assume that each triple of distinct
sets Si , S j , Sk satisfies

|Si ∩ S j ∩ Sk | ≤ f (n),

where f (n) is a function of the total number of elements n.

Lemma 4.3 For the set systems satisfying the above conditions

t (S) = O
(
mn2/3 f (n)1/3

)
,

and the bound is best possible given only these conditions on the set systems.

Proof Let κi be the number of sets that the element xi belongs to. To prove the lemma,
we bound the quantity

∑
{i, j,k} |Si ∩ S j ∩ Sk | in two ways. First, since there are

(m
3

)

summands with each having at most f (n) elements we have
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∑

{i, j,k}
|Si ∩ S j ∩ Sk | ≤

(
m

3

)
f (n).

Let the variable Yli jk = 1 when xl is in Si ∩ S j ∩ Sk , i < j < k, and zero otherwise.
Then,

∑
{i, j,k} |Si ∩ S j ∩ Sk | = ∑

l,i< j<k Yli jk = ∑
l
∑

i< j<k Yli jk . On the other
hand,

∑
i< j<k Yli jk is the number of triples (i, j, k), i < j < k, such that xl appears

in Si ∩ S j ∩ Sk . This number is
(
κl
3

)
. Then we have

∑

l

(
κl

3

)
=

∑

{i, j,k}
|Si ∩ S j ∩ Sk |. (8)

By the Hölder inequality

κ1 + κ2 + · · · + κn ≤ (
κ3
1 + κ3

2 + · · · + κ3
n

)1/3
n2/3.

Writing κ = (
∑

κl)/n, the above becomes nκ3 ≤ κ3
1 + · · · + κ3

n .
We expand the left-hand side of (8):

∑

l

(
κl

3

)
= 1

3!
(∑

l

κ3
l − 3

∑

l

κ2
l + 2

∑

l

κl

)
.

From above and the fact that the κl are non-negative it follows that

∑

l

(
κl

3

)
≥ 1

3!nκ3. (9)

Therefore,

κ3 = O(m3n−1 f (n)),

and since nκ = t (S) we obtain

t (S) = O
(
mn2/3 f (n)1/3

)
.

If we consider the set of all those set systems forwhich all the κi have asymptotically
the same order, then the Hölder inequality is tight and it follows that for those sets
t (S) = Θ(mn2/3 f (n)1/3). Thus in general, using only the conditions in the lemma
this bound cannot be improved. ��

We now discuss set systems that can possibly achieve the bounds of the lemma
with parameters that are of interest to us, i.e., n = f 20 , m = f0, f (n) = n1/2 = f0.
Assume S1, . . . , Sm are subsets such that each triple intersection (of distinct sets)
Si ∩ S j ∩ Sk has exactly f elements. Then, we can form another dual system as
follows. Let Y = {S1, . . . , Sm} and define Ti to be those sets S j that contain the
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element xi , for i = 1, . . . , n. Then the sets Ti satisfy the following conditions. Each
3-set of elements of Y appears in exactly f sets Ti . This defines a Steiner system
S f (3, K ; m), where K is the set containing sizes of sets Ti and with n sets.

Refer to Beth et al. [1] for an extensive account of these and other combinatorial
designs. Let t be a positive integer. A Steiner system Sλ(t, K ; v) is a set system
(A, {B1, . . . , Bb}) over a set A = {a1, . . . , av} such that, each set (or block) has size
from K . Moreover, every t-subset of A appears in exactly λ blocks.

It is clear from the above that any S f (3, K ; m) with n blocks can be used to build
m subsets of an n-element set such that each triple intersection of them has exactly f
elements. Also, “approximate” Steiner systems are enough for our purposes, however,
we are not aware of explicit descriptions of Steiner systems Sλ(3, K ; m) with roughly
f 20 blocks such that m and λ are also approximately f0. See [1, Appendix 5] for a table
of known Steiner systems.

Remark 4.4 If we are given a sequence of set systems achieving the upper bound in
Lemma 4.3, then we can build as follows a simplicial complex whose triple intersec-
tions of links have at most f (n) elements each and with t (S) triangles. Let f0 be the
number of vertices. Take the set from the lemma with m = f0, n = f 20 , f (n) = f0
(if such set systems exist). Then, simply make a graph over 2 f0 vertices, so that the
elements of the set X can be identified with the edges. Then, one introduces a vertex
for each set Si and cones over the corresponding set of edges. The resulting complex
has the required properties, i.e, the triple intersections of link-complexes have at most
f0 edges and the complex contains �( f 8/30 ) triangles.

5 Discussion

We have shown certain restrictions on intersections of link-complexes of vertices
in embeddable simplicial complexes. There is an obvious direction to continue this
research and that is to find more restrictions of the type introduced here.

Let us say a simplicial complex is d-planar if it embeds in the Euclidean d-space.
It is natural to strengthen the linklessness criterion to (2d −2)-planarity for all d > 1.
It could well be possible in addition to the case d = 2 shown above, in dimensions
2d −2, where the embeddability is characterized by the van Kampen obstruction, i.e.,
when 2d − 2 
= 4. One shows that if a complex has van Kampen obstruction nonzero,
then its join by three vertices also has nonzero van Kampen obstruction. Hence, non-
embeddable complexes in Euclidean space of dimension 2d − 2 
= 4 cannot be triple
intersections of link-complexes of embeddable d-complexes in 2d-space. However,
we are more interested to know if a proof exists that works for all dimensions and
hence does not use the characterization of embeddable d-complexes in 2d-space, by
forbidden minors or the van Kampen class.

Itwas shown that a triple intersection of link-complexes of vertices of a 2-complex in
R
4 is a planar graph. It is interesting to know if an embedding of the triple intersection

graph in a plane or a 2-sphere can be obtained from the given embedding of the
complex.
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