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Abstract We present a framework which leverages the underlying topology of a
data set, in order to produce appropriate coordinate representations. In particular, we
show how to construct maps to real and complex projective spaces, given appropriate
persistent cohomology classes. An initial map is obtained in two steps: First, the
persistent cohomology of a sparse filtration is used to compute systems of transition
functions for (real and complex) line bundles over neighborhoods of the data. Next,
the transition functions are used to produce explicit classifying maps for the induced
bundles. A framework for dimensionality reduction in projective space (Principal
Projective Components) is also developed, aimed at decreasing the target dimension
of the original map. Several examples are provided as well as theorems addressing
choices in the construction.
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1 Introduction

Algebraic topology has emerged in the last decade as a powerful framework for ana-
lyzing complex high-dimensional data [2,3]. In this setting, a data set is interpreted as
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a finite subset X of an ambient metric space (M, d); in practiceM is usually Euclidean
space, a manifold or a simplicial complex. If X has been sampled from/around a “con-
tinuous” object X ⊂ M, the topology inference problem asks whether topological
features of X can be inferred from X . On the one hand, this is relevant because several
data science questions are reinterpretations of topological tests. To name a few: cluster-
ing is akin to finding the connected components of a space [4,5]; coverage in a sensor
network relates to the existence of holes [11,18]; periodicity and quasiperiodicity are
linked to nontrivial 1-cycles in time delay reconstructions [31,33].

On the other hand, concrete descriptions of the underlying space X—e.g. via equa-
tions or as a quotient space—yield (geometric) models for the data X , which can then
be used for simulation, prediction and hypothesis testing [25,32]. When determining
low-dimensional representations for an abstract data set, the presence of nontrivial
topology heavily constrains the dimension and type of appropriate model spaces. The
simplest example of this phenomenon is perhaps the circle, which is intrinsically
1-dimensional, but cannot be recovered on the real line without considerable distor-
tion. Viral evolution provides another example; evolutionary trees are often inadequate
models, as horizontal recombination introduces cycles [7]. Themain goal of this paper
is to show that one can leverage knowledge of the topology underlying a data set, e.g.
determined via topological inference, to produce appropriate low-dimensional coordi-
nates. In particular, we show how the persistent cohomology of a data set can be used
to compute economic representations in real (or complex) projective spaces. These
coordinates capture the topological obstructions which prevent the data from being
recovered in low-dimensional Euclidean spaces and, correspondingly, yield appropri-
ate representations.

Persistent (co)homology is one avenue to address the topology inference problem
[12,38]; it provides a multiscale description of topological features, and satisfies sev-
eral inference theorems [8,10,30]. Going from a persistent homology computation to
actionable knowledge about the initial data set, is in general highly nontrivial. One
would like to determine: how are the persistent homology features reflected on the
data? if the homology suggests a candidate underlying space X, what is a concrete
realization (e.g., via equations or as a quotient)? how does the data fit on/around the
realization? At least three approaches have been proposed in the literature to address
these questions: localization, homological coordinatization and circular coordinates.

For a relevant homology class, the idea behind localization is to find an appropri-
ate representative cycle. This strategy is successful in low dimensions [15,16], but
in general even reasonable heuristics lead to NP-hard problems which are NP-hard
to approximate [9]. Homological coordinatization [36] attempts to map a simplicial
complex on the data to a simplicial complex with prescribed homology—a model
suggested by a persistent homology computation. The map is selected by examining
the set of chain homotopy classes of chain maps between the complex on the data
and the model. Selecting an appropriate representative chain map, however, involves
combinatorial optimizations which are difficult to solve in practice. Circular coor-
dinates [13] leverages the following fact: there is a bijection H1(B; Z) ∼= [B, S1]
between the 1-dimensional Z-cohomology of a topological space B, and the set of
homotopy classes of maps from B to the circle S1. When B is a simplicial complex
with the data as vertex set, this observation is used to turn 1-dimensional (persistent)
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Z/p-cohomology classes for appropriate primes p, into circle-valued functions on the
data.

The circular coordinates approach has been used successfully—for instance to
parameterize periodic dynamics [14]—and is part of a bigger picture: ifG is an abelian
group, n ∈ Z≥0 and K (G, n) is an Eilenberg–MacLane space (i.e. its nth homotopy
group is G and the others are trivial), then [26, Chap. 22, Sect. 2]

Hn(B;G) ∼= [B, K (G, n)]. (1)

In particular K (Z, 1) is homotopy equivalent to S1; that is, K (Z, 1) � S1. Since
the bijection in (1) can be chosen so that it commutes with morphisms induced by
maps of spaces (i.e. natural), using maps to other Eilenberg–MacLane spaces emerges
as an avenue for interpreting persistent cohomology computations, and more impor-
tantly, to produce coordinates which leverage knowledge of the underlying topology.
One quickly runs into difficulties as the next candidate spaces K (Z/2, 1) � RP∞,
K (Z/p, 1) � S∞/(Z/p) (action via scalar multiplication on S∞ ⊂ C

∞ by the pth
roots of unity) and K (Z, 2) � CP∞ are infinite. The purpose of this paper is to address
the cases RP∞ and CP∞.

1.1 Approach

We use the fact that if F is R or C, then FP∞ is the Grassmannian of 1-planes in F
∞

and—for a topological space B—[B, FP∞] can be naturally identified with the set of
isomorphism classes of F-line bundles over B (Theorem 2.1). The isomorphism type
of an R-line bundle over B is uniquely determined by its first Stiefel–Whitney class
w1 ∈ H1(B; Z/2), and the isomorphism type of a C-line bundle over B is classified
by its first Chern class c1 ∈ H2(B; Z). These classes can be identified as elements
of appropriate sheaf cohomology groups, and a classifying map f : B −→ FP∞ can
be described explicitly from a Čech cocycle representative (Theorem 3.2). This links
cohomology to FP∞-coordinates. For the case of point cloud data X ⊂ (M, d), B
will be an open neighborhood of X in M, and we use the persistent cohomology of a
sparse filtration on X to generate appropriate Čech cocycle representatives (Theorem
7.4). Evaluating the resulting classifying map f on the data X produces another point
cloud f (X) ⊂ FPn . We develop in Sect. 5 a dimensionality reduction procedure for
subsets of FPn , referred to as Principal Projective Component Analysis. When this
methodology is applied to the point cloud f (X) ⊂ FPn , it produces a sequence of
projections Pk : f (X) −→ FPk , k = 1, . . . , n, each of which attempts to minimize
an appropriate notion of distortion. The sets Pk ◦ f (X) are the FPk-coordinates of X ,
for the Čech cocycle giving rise to f .

1.2 Organization

We end this introduction in Sect. 1.3 with a motivating data example. Section 2 is
devoted to the theoretical preliminaries needed in later sections of the paper; in par-
ticular, we provide a terse introduction to vector bundles, the Čech cohomology of
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Fig. 1 Typical elements in X

(pre)sheaves and the persistent cohomology of filtered complexes. In Sects. 3 and 4
we prove the main theoretical results underlying our method. In particular, we show
how singular cohomology classes yield explicit and computable maps to real (and
complex) projective space. Sects. 5, 6 and 7 deal with computational aspects. Specifi-
cally, Sect. 5 develops Principal Projectives Components, a dimensionality reduction
method in projective space, used to lower the target dimension of the maps developed
in Sects. 3 and 4. Section 6 deals with the problem of choosing cocycle representa-
tives; we present theorems and examples which guide these choices. We end the paper
in Sect. 7 showing how persistent cohomology can be used to make the approach
practical for data sets with low intrinsic dimension.

1.3 Motivation and Road Map

Let us illustrate some of the ideas we will develop in this paper via an example. To this
end, let X be the collection of intensity-centered 7 × 7 grey-scale images depicting a
line segment of fixed width, as show in Fig. 1.

By intensity-centered we mean that if the pixel values of x ∈ X are encoded as
real numbers between −1 (black) and 1 (white), then the mean pixel intensity of x is
zero. We regard X as a subset of R

49 by representing each image as a vector of pixel
intensities, and endow it with the distance inherited from R

49. A data set X ⊂ X is
generated by sampling 1682 points. The thing to notice is that even when the ambient
space for X is R

49, the intrinsic dimensionality is low. Indeed, each image can be
generated from two numbers: the angle of the line segment with the horizontal, and
the signed distance from the segment to the center of the patch. This suggests that X

is locally 2-dimensional.
Principal Component Analysis (PCA) [21] and ISOMAP [37] are standard tools

to produce low-dimensional representations for data; let us see if we can use them to
recover an appropriate 2-dimensional representation for X . Given the first k principal
components of X , calculated with PCA, their linear span Vk is interpreted as the k-
dimensional linear space which best approximates X . One can calculate the residual
variance of this approximation, by computing the mean-squared distance from X to
Vk . Similarly, the fraction of variance from X explained by Vk is equal to difference
between the variance of X and the residual variance, divided by the variance of X . A
similar notion can be defined for ISOMAP. We show in Fig. 2 the fraction of variance,
from X , recovered by PCA and ISOMAP.1

Given the low intrinsic dimensionality of X, it follows from the PCA plot that
the original embedding X ↪→ R

49 is highly non-linear. Moreover, the ISOMAP plot
implies that even after accounting for the way in which X sits in R

49, the data has

1 Using a 7th nearest neighbor graph.
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Fig. 2 Explained variance, from X , versus embedding dimension
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intrinsic complexity that prevents it from being recovered faithfully in R
2 or R

3. That
is, the data is locally simple (e.g. each x ∈ X is described by angle and displacement)
but globally complex. One possible source of said complexity is whether or not X is
orientable; this is a topological obstruction to low-dimensional Euclidean embeddings.
Using the observation that X is a manifold, its orientability can be determined from
X as we describe next. First, we construct a covering {Br }nr=0 of X . From now on
we will simplify the set notation {aα}α∈� to {aα} in the cases where the indexing
set � can be inferred from the context. Next, we apply Multi-Dimensional Scaling
(MDS) [23] on each Br to get local Euclidean coordinates and, finally, we compute
the determinant ωr t = ±1 associated to the change of local Euclidean coordinates
on each Br ∩ Bt . If there is global agreement of local orientations (e.g., ωr t = 1
always), or local orientations can be reversed in the appropriate Br ’s so that the result
is globally consistent (i.e. {ωr t } is a coboundary: there exist νr ’s, with νr = ±1, so that
ωr t = νt/νr for all r, t = 1, . . . , n), then X would be deemed orientable.

The cover for X will be a collection of open balls centered at landmark data points
selected through maxmin (also known as farthest point) sampling. That is, first one
chooses an arbitrary landmark �0 ∈ X , and if �0, . . . , �r have been determined, then
�r+1 ∈ X is given by

�r+1 = argmax
x∈X

(
min{d(x, �0), . . . , d(x, �r )}

)
.

Hered is the geodesic distance estimate from the ISOMAPcalculation.Afinite number
of steps of maxmin sampling results in a landmark set {�0, . . . , �n} which tends to be
well-distributed and well-separated across the data. For the current example we used
n = 14. Let2 ε0 = · · · = εn = 9.3 and

B = {Br } where Br = {x ∈ X : d(x, �r ) < εr }.

To put the radii εr in perspective, the distance between distinct �r ’s ranges from 4.5
to 14.6, and the mean pairwise distance is 9.5.

Let us now showhow to calculate the determinant of the change of local coordinates.
If Br ∩ Bt �= ∅, let

fr : Br −→ R
2 and ft : Bt −→ R

2

be the functions obtained from applying MDS on
(
Br , d

∣∣
Br

)
and

(
Bt , d

∣∣
Bt

)
, respec-

tively. If O(2) denotes the set of orthogonal 2 × 2 real matrices, then the solution to
the orthogonal Procrustes problem

(	r t , vr t ) = argmin
	∈O(2), v∈R2

∑

x∈Br∩Bt

∥∥ ft (x) − (
	 · fr (x) + v

)∥∥2

2 Determined experimentally using a persistent cohomology computation.
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computed following [34], yields the best linear approximation to an isometric changeof
local ISOMAP coordinates. We letωr t := det(	r t ). In summary, we have constructed
a finite covering B = {Br } for X and a collection of numbers ωr t = ±1 which, at least
for this example, satisfy the cocycle condition: for all 0 ≤ r ≤ n we have ωrr = 1 and
if Br ∩ Bs ∩ Bt �= ∅, then ωrs · ωst = ωr t . In particular, a cohomology computation
shows that {ωr t } is not a coboundary and hence X is estimated to be non-orientable.

What we will see now, and throughout the paper, is that this type of cohomological
feature can be further leveraged to produce useful coordinates for the data. Indeed
(Theorem 3.2 and Corollary 3.4):

Theorem For λ ∈ R let |λ|+ = max{λ, 0}, let F be either R or C, and let F
× =

F� {0}. For a metric space (M, d) let {�0, . . . , �n} ⊂ M and fix positive real numbers
ε0, . . . , εn. If we let B = {Br } with Br = {b ∈ M : d(b, �r ) < εr }, B = ⋃B, and
there is a collection ω = {ωr t : Br ∩ Bt −→ F

×} of continuous maps satisfying the
cocycle condition (4), then fω : B −→ FPn given in homogeneous coordinates by

fω(b) = [
ω0 j (b) · |ε0 − d(b, �0)|+ : · · · : ωnj (b) · |εn − d(b, �n)|+

]
, b ∈ Bj , (2)

is well-defined (i.e. the value fω(b) is independent of the j for which b ∈ Bj ) and
classifies the F-line bundle on B induced by (B, ω).

The preliminaries needed to understand this theorem will be covered in Sect. 2,
and we will devote Sect. 3 to proving it. The map fω encodes in a global manner the
local interactions captured by ω, and the explicit formula allows us to map our data set
X ⊂ R

49 into RP14 using the computed landmarks and determinants of local changes
of coordinates. If we compute the principal projective components for fω(X) ⊂ RP14

(this will be developed in Sect. 5 as a natural extension to PCA in Euclidean space and
of Principal Nested Spheres Analysis [22]), the profile of recovered variance shown
in Fig. 3 emerges.

From this plot we conclude that 2-dimensional projective space provides an appro-
priate reduction for fω(X). We show in Fig. 4 said representation; that is, each image
is placed in the RP2 coordinate computed via principal projective component analysis
on fω(X).

As the figure shows, the resulting coordinates recover the variables which we iden-
tified as describing points in X: the radial coordinate in RP2 corresponds to distance
from the line segment to the center of the patch, and the angular coordinate captures
orientation. Also, it indicates how RP2 ∼= X parameterizes the original data set X .

Though the strategy employed in this example (i.e. local MDS + determinant of
local change of coordinates) was successful, one cannot assume in general that the
data under analysis has been sampled from/around a manifold. That said, the result
from formula (2) only requires a covering B via open balls, and a collection of F

×-
valued continuous functionsω = {ωr t } satisfying the cocycle condition. Given a finite
subset X of an ambient metric space (M, d), one can always use maxmin sampling
to produce a covering. We will show that any 1-dimensional (resp. 2-dimensional)
Z/2-cocyle (resp. Z-cocycle) of the nerve complex N (B), for F = R (resp. F = C),
yields one such ω (Proposition 4.3 and Corollary 4.8). We also show that in dimension
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Fig. 3 Recovered variance, from fω(X) ⊂ RP14, when projected onto principal projective subspace of
given dimension

Fig. 4 Some elements from X placed on their computed RP2-coordinates

1 (i.e., F = R) cohomologous cocycles yield equivalent projective coordinates, while
in dimension 2 (i.e., F = C) the harmonic cocycle is needed (see Sect. 6).

It is entirely possible that a cohomology class reflecting sampling artifacts is cho-
sen, as opposed to one associated to robust topological features of a continuous space
X ⊂ M underlying X . Here is where persistent cohomology comes in. Indeed, under
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mild connectivity conditions ofB, distinct cohomology classes yieldmaps to projective
space with distinct homotopy types. Moreover, the maps resulting from a persistent
class across its lifetime are compatible up to homotopy (Theorem 7.4 and Propo-
sition 7.6). Hence, the result is a multiscale family of compatible maps which, for
classes with long persistence, are more likely to reflect robust features of (neighbor-
hoods around) X.

The strategy outlined here is in fact a two-way street. One can use persistent coho-
mology to compute multiscale compatible projective coordinates, but the reserve is
also useful: The resulting coordinates can be used to interpret the distinct persistent
cohomology (= persistent homology) features of neighborhoods of the data, at least
in cohomological dimensions 1 (with Z/2 coefficients) and 2 (with Z/p coefficients
for appropriate primes p).

2 Preliminaries

2.1 Vector Bundles

For a more thorough review please refer to [27]. Let E and B be topological spaces,
and let p : E −→ B be a surjective continuous map. The triple ζ = (E, B, p) is
said to be a rank k ∈ N vector bundle over a field F (i.e. an F-vector bundle) if each
fiber p−1(b) is an F-vector space of dimension k, and ζ is locally trivial. That is,
for every b0 ∈ B there exist an open neighborhood U ⊂ B and a homeomorphism
ρU : U × F

k −→ p−1(U ), called a local trivialization around b0, satisfying:

1. p(ρU (b, v)) = b for every (b, v) ∈ U × F
k ,

2. ρU (b, ·) : F
k −→ p−1(b) is an isomorphism of F-vector spaces for each b ∈ U .

E and B are referred to as the total and base space of the bundle, and the function
p : E −→ B is called the projection map. Two vector bundles ζ = (E, B, p) and
ζ ′ = (E ′, B, p′) are said to be isomorphic, ζ ∼= ζ ′, if there exists a homeomorphism
T : E −→ E ′ so that p′ ◦ T = p and for which each restriction T |p−1(b), b ∈ B, is a
linear isomorphism.

The collection of isomorphism classes of F-vector bundles of rank k over B is
denoted Vectk

F
(B). An F-vector bundle of rank 1 is called an F-line bundle, and the

set Vect1
F
(B) is an abelian group with respect to fiberwise tensor product of F-vector

spaces.

Examples

– The trivial bundle. B × F
k : Fix k ∈ N and let

p : B × F
k −→ B

(b, v) �→ b.

It follows that εk = (B × F
k, B, p) is an F-vector bundle over B of rank k. εk is

referred to as the trivial bundle.
– The Möbius band. Let ∼ be the relation on R × R given by (x, u) ∼ (y, v) if and
only if x − y ∈ Z and u = (−1)x−yv. It follows that ∼ is an equivalence relation,
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and if E = R × R/ ∼, then p̃ : R × R −→ R given by p̃(x, u) = x descends
to a continuous surjective map p : E −→ R/Z. Hence γ 1 = (E, R/Z, p) is an
R-line bundle over the circle R/Z, whose total space is a model for the Möbius
band. Since E is nonorientable, it follows that γ 1 is not isomorphic to the trivial
line bundle ε1.

– Grassmannmanifolds and their tautological bundles. LetF be eitherR orC. Given
k ∈ Z≥0 andm ∈ Z≥k∪{∞}, letGrk(F

m) be the collection of k-dimensional linear
subspaces of F

m . This set is in fact a manifold, referred to as the Grassmannian
of k-planes in F

m . The tautological bundle over Grk(F
m), denoted γ k

m , has total
space

E(γ k
m) = {

(V, u) ∈ Grk(F
m) × F

m : u ∈ V
}

and projection p : E(γ k
m) −→ Grk(F

m) given by p(V, u) = V . In particular one
has that Gr1(F

m+1) = FPm , which shows that each projective space FPm can be
endowed with a tautological line bundle γ 1

m .
– Pullbacks. Let B and B ′ be topological spaces, let ζ = (E, B, p) be a vector
bundle and let f : B ′ −→ B be a continuous map. The pullback of ζ through f ,
denoted f ∗ζ , is the vector bundle over B ′ with total space

E( f ∗ζ ) = {
(b, e) ∈ B ′ × E : f (b) = p(e)

}

and projection p′ : E( f ∗ζ ) −→ B ′ given by p′(b, e) = b.

Theorem 2.1 ([27, 5.6 and 5.7]) If B is a paracompact topological space and ζ is an
F-vector bundle of rank k over B, then there exists a continuous map

fζ : B −→ Grk(F
∞)

satisfying f ∗
ζ γ k∞ ∼= ζ . Moreover, if g : B −→ Grk(F

∞) is continuous and also satisfies

g∗γ k∞ ∼= ζ , then fζ � g and hence fζ is unique up to homotopy.

The previous theorem can be rephrased as follows: For B paracompact, the function

Vectk
F
(B) −→ [

B,Grk(F
∞)

]

[ζ ] �→ [ fζ ] (3)

is a bijection. Any such fζ is referred to as a classifying map for ζ .

Transition Functions. If ρU : U × F
k −→ p−1(U ) and ρV : V × F

k −→ ρ−1(V ) are
local trivializations around a point b0 ∈ U∩V , then given b ∈ U∩V the composition

F
k p−1(b) F

kρV (b, · ) ρU (b, · )−1
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defines an element ρUV (b) in the general linear group GLk(F). The resulting function
ρUV : U ∩ V −→ GLk(F) is a continuous map, uniquely determined by

ρ−1
U ◦ ρV (b, v) = (b, ρUV (b)(v)) for every (b, v) ∈ (U ∩ V ) × F

k .

This characterization of ρUV readily implies that the set {ρUV } satisfies:

The Cocycle Condition

– ρUU (b) is the identity linear transformation for every b ∈ U .

– ρUW (b) = ρUV (b) ◦ ρVW (b)for every b ∈ U ∩ V ∩ W .

(4)

Each ρUV : U ∩ V −→ GLk(F) is called a transition function for the bundle ζ ,
and the collection {ρUV } is the system of transition functions associated to the system
of local trivializations {ρU }. More importantly, this construction can be reversed: If
U = {Ur } is a covering of B and

ω = {
ωr t : Ur ∩Ut −→ GLk(F)

}

is a collection of continuous functions satisfying the cocycle condition, then one can
form the quotient space

E(ω) =
( ⋃

r

(Ur × {r} × F
k)

)/ ∼

where (b, r, v) ∼ (b, t, ωr t (b)−1(v)) for b ∈ Ur ∩Ut . Moreover, if

pω : E(ω) −→ B

is projection onto the first coordinate, then ζω = (E(ω), B, pω) is an F-vector bundle
of rank k over B. It follows that each composition

ρr :Ur × F
k Ur × {r} × F

k p−1
ω (Ur )

is a local trivialization for ζω, and thatω is the associated systemof transition functions.
We say that ζω is the vector bundle induced by (U , ω).

2.2 (Pre)Sheaves and Their Čech Cohomology

For a more detailed introduction please refer to [28]. A presheaf F of abelian groups
over a topological space B is a collection of abelian groups F(U ), one for each open
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set U ⊂ B, and group homomorphisms ηUV : F(U ) −→ F(V ) for each pair V ⊂ U
of open subsets of B, called restrictions, so that:

1. F(∅) is the group with one element,
2. ηUU is the identity homomorphism,
3. ηUW = ηV

W ◦ ηUV for every triple W ⊂ V ⊂ U .

Furthermore, a presheaf F is said to be a sheaf if it satisfies the gluing axiom:

4. If U ⊂ B is open, {Uj } j∈J is an open covering of U and there are elements
{s j ∈ F(Uj ) : j ∈ J } so that

η
Uj
U j∩U�

(s j ) = η
U�

Uj∩U�
(s�)

for every non-empty intersection Uj ∩ U� �= ∅, with j, � ∈ J , then there exists a
unique s ∈ F(U ) so that ηUUj

(s) = s j for every j ∈ J .

Examples

– Presheaves of constant functions. Let G be an abelian group and for each open
set ∅ �= U ⊂ B, let PG(U ) be the set of constant functions from U to G. Let
PG(∅) = {0} ⊂ G. If for V ⊂ U ⊂ B we let ηUV : PG(U ) −→ PG(V ) be the
restriction map f �→ f |V , thenPG is a presheaf over B. It is not in general a sheaf
since it does not always satisfy the gluing axiom: for if U, V ⊂ B are disjoint
nonempty open sets and |G| ≥ 2, then f ∈ PG(U ) and g ∈ PG(V ) taking distinct
values cannot be realized as restrictions of a constant function h : U ∪ V −→ G.

– Sheaves of locally constant functions. LetG be an abelian group and for each open
set ∅ �= U ⊂ B, let G(U ) be the set of functions f : U −→ G for which there
exists an open set ∅ �= V ⊂ U so that the restriction f |V : V −→ G is a constant
function. Define G(∅) and ηUV as in the presheaf of constant functions. One can
check that G is a sheaf over B.

– Sheaves of continuous functions. Let G be a topological abelian group and for
each open set ∅ �= U ⊂ B, let CG(U ) be the set of continuous functions from U
to G. If CG(∅) and ηUV are as above, then CG is a sheaf over B. Moreover, G is a
subsheaf of CG in that G(U ) ⊂ CG(U ) for every open setU ⊂ B. Similarly, if R
is a commutative topological ring with unity, and R× denotes its (multiplicative)
group of units, then C×

R := CR× is also a sheaf over B.

Let n ≥ 0 be an integer, U = {Uj } an open cover of B and let F be a presheaf over
B. The group of Čech n-cochains is defined as

Čn(U;F) =
∏

( j0,..., jn)

F(Uj0 ∩ · · · ∩Ujn ).

Elements of Čn(U;F) are denoted { f j0,..., jn }, for f j0,..., jn ∈ F(Uj0 ∩ · · · ∩ Ujn ). If
0 ≤ r ≤ n let ( j0, . . . , ĵr , . . . , jn) denote the n-tuple obtained by removing jr from
the (n + 1)-tuple ( j0, . . . , jn), let Uj0,..., jn = Uj0 ∩ · · · ∩Ujn and let

η jr : F(
Uj0,..., ĵr ,..., jn

) −→ F(
Uj0,..., jn

)

be the associated restriction homomorphism. The coboundary homomorphism
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δn : Čn(U;F) −→ Čn+1(U;F)

is given by δn({ f j0,..., jn }) = {gk0,...,kn+1} where

gk0,...,kn+1 =
n+1∑

r=0

(−1)rηkr
(
fk0,...,̂kr ,...,kn+1

)
.

One can check that δn+1 ◦ δn = 0. The group of Čech n-cocycles Ž n(U;F) is the
kernel of δn , the group of Čech n-boundaries B̌n(U;F) ⊂ Ž n(U;F) is the image
of δn−1, and the nth Čech cohomology group of F with respect to the covering U is
given by the quotient of abelian groups

Ȟn(U;F) = Ž n(U;F)/B̌n(U;F).

2.3 Persistent Cohomology of Filtered Complexes

Given a nonempty set S, an abstract simplicial complex K with vertices in S is a set

K ⊂ {σ ⊂ S : σ is finite and σ �= ∅}

for which ∅ �= τ ⊂ σ ∈ K always implies τ ∈ K . An element σ ∈ K with cardinality
|σ | = n + 1 is called an n-simplex of K , and a 0-simplex is referred to as a vertex.

Examples

– The Rips Complex. Let (M, d) be a metric space, let X ⊂ M and ε ≥ 0. The Rips
complex at scale ε and vertex set X , denoted Rε(X), is the collection of finite
nonempty subsets of X with diameter less than 2ε.

– The Čech Complex.WithM, d, X, ε as above, the (ambient) Čech complex at scale
ε and vertices in X is the set

Čε(X) = {{s0, . . . , sn} ⊂ X : Bε(s0) ∩ · · · ∩ Bε(sn) �= ∅, n ∈ Z≥0
}

where Bε(s) denotes the open ball in M of radius ε centered at s ∈ X . It can be
readily checked that Čε(X) ⊂ Rε(X) ⊂ Č2ε(X) for all ε > 0.

For each n ∈ Z≥0 let K (n) be the set of n-simplices of K . If G is an abelian
group, the set of functions ϕ : K (n) −→ G which evaluate to zero in all but finitely
many n-simplices form an abelian group denoted Cn(K ;G), and referred to as the
group of n-cochains of K with coefficients in G. The coboundary of an n-cochain
ϕ ∈ Cn(K ;G) is the element δn(ϕ) ∈ Cn+1(K ;G) which operates on each (n+1)-
simplex σ = {s0, . . . , sn+1} as

δn(ϕ)(σ ) =
n+1∑

j=0

(−1) jϕ
(
σ � {s j }

)
.

This defines a homomorphism δn : Cn(K ;G) −→ Cn+1(K ;G) that, as can be
checked, satisfies δn+1 ◦ δn = 0 for all n ∈ Z≥0. The group of n-coboundaries

123



188 Discrete Comput Geom (2018) 59:175–225

Bn(K ;G) = Img(δn−1) is therefore a subgroup of Zn(K ;G) = Ker(δn), the group
of n-cocyles, and the nth cohomology group of K with coefficients in G is defined as
the quotient

Hn(K ;G) = Zn(K ;G)/Bn(K ;G).

Notice that if F is a field, then Hn(K ; F) is in fact a vector space over F.
A filtered simplicial complex is a collection K = {Kε}ε≥0 of abstract simplicial

complexes so that K0 = ∅ and Kε ⊂ Kε′ whenever ε ≤ ε′. If 0 = ε0 < ε1 < · · · is a
discretization of R≥0, then for each field K and n ∈ Z≥0 one obtains the diagram of
F-vector spaces and linear transformations

Hn(Kε0; F) Hn(Kε1; F) · · · Hn(Kεr ; F) · · ·T1 T2 Tr (5)

where Tr : Hn(Kεr ; F) −→ Hn(Kεr−1; F) is given by

Tr ([ϕ]) = [
ϕ

∣∣
K (n)

εr−1

]
.

If each Hn(Kεr ; F) is finite dimensional and for all r large enough Tr is an isomor-
phism, we say that (5) is of finite type.

The Basis Lemma [17, Sect. 3.4] implies that when (5) is of finite type one
can choose a basis Vr = {vr1, . . . , vrdr } for each Hn(Kεr ; F) so that the follow-

ing compatibility condition holds: Tr (Vr ) ⊂ Vr−1 ∪ {0} for all r ∈ Z≥0, and if
Tr (vr�) = Tr (vrm) �= 0, then � = m. The set

V =
⋃

r∈Z≥0

Vr

can be endowed with a partial order � where v j
m � vr� if and only if r ≥ j and

v j
m = Tj+1 ◦ · · · ◦ Tr (vr�). The maximal chains in (V,�) are pairwise disjoint, and
hence represent independent cohomological features of the complexes Kε which are
stable with respect to changes in ε. These are called persistent cohomology classes.
A maximal chain of finite length

v j
m � v j+1

k � · · · � vr�

yields the interval [ε j , εr ], while an infinite maximal chain v j
m � v j+1

k � · · · yields
the interval [ε j ,∞). This is meant to signify that there is a class which starts (is born)
at the cohomology group corresponding to the right end-point of the interval, here εr
or ∞. This class, in turn, is mapped to zero (it dies) leaving the cohomology group for
the left end-point, here ε j , but not before. The multi-set of all such intervals (as several
chains might yield the same interval) is independent of the choice of compatible bases
Vr , and can be visualized as a barcode (Fig. 5).
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0 0.2 0.4 0.6 0.8 1 1.2 1.4

Fig. 5 Example of a barcode

Details on the computation of persistent cohomology, and its advantages over per-
sistent homology, can be found in [12].

3 Explicit Classifying Maps

The goal of this section is to derive (2), which is in fact a specialization of the proof
of Theorem 2.1 to the case of line bundles over metric spaces with finite trivializing
covers. When a metric is given, the partition of unity involved in the argument can
be described explicitly in terms of bump functions supported on metric balls. More-
over, the local trivializations used in the proof can be replaced by transition functions
which—as we will see in Sects. 4 and 7—can be calculated in a robust multiscale
manner from the persistent cohomology of an appropriate sparse filtration. From this
point on, all topological spaces are assumed to be paracompact and Hausdorff.

3.1 Classifying Maps in Terms of Local Trivializations

Let us sketch the proof of existence in Theorem 2.1 when B has a finite trivializing
cover. Starting with local trivializations

ρr : Ur × F
k p−1(Ur ) r = 0, . . . , n,

∼= (6)

for the vector bundle ζ = (E, B, p), let μr : p−1(Ur ) −→ F
k be μr (ρr (b, v)) = v

for all (b, v) ∈ Ur × F
k .

Definition 3.1 A collection of continuous maps ϕr : Ur −→ R≥0 is called a partition
of unity dominated by U = {Ur } if

∑

r

ϕr = 1 and support(ϕr ) ⊂ closure(Ur ).

Notice that this notion differs from the usual partition of unity subordinated to a cover
in that supports need not be contained in the open sets. However, this is enough for
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our purposes. Notice that since for paracompact spaces there is always a partition of
unity subordinated to a given cover, the same is true in the dominated case.

Let ψ : [0, 1] −→ [0, 1] be any homeomorphism so that ψ(0) = 0 and ψ(1) = 1.
If {ϕr } is a partition of unity dominated by the trivializing cover from (6) and we
let ψr = ψ ◦ ϕr , then each μr : p−1(Ur ) −→ F

k yields a fiberwise linear map
μ̂r : E −→ F

k given by

μ̂r (e) =
⎧
⎨

⎩

ψr (p(e)) · μr (e) if p(e) ∈ Ur ,

0 if p(e) /∈ Ur .

Thus one has a continuous map

μ̂ : E −→ F
k ⊕ · · · ⊕ F

k

e �→ [μ̂0(e), . . . , μ̂n(e)]
which, as can be checked, is linear and injective on each fiber. It follows from [27,
Lem. 3.1] that the induced continuous map

fζ : B −→ Grk
(
F
k(n+1)

)

b �→ μ̂(p−1(b))

satisfies f ∗
ζ (γ k

m) ∼= ζ , if m = k(n + 1). This completes the sketch of the proof;
let us now describe fζ more explicitly in terms of transition functions. The main
reason for this change is that transition functions can be determined via a cohomology
computation.

3.2 Classifying Maps from Transition Functions

Fix b ∈ B and let 0 ≤ j ≤ n be so that b ∈ Uj . If {v1, . . . , vk} is a basis for F
k , then

{ρ j (b, vs) : s = 1, . . . , k} is a basis for p−1(b) and therefore

fζ (b) = SpanF
{
μ̂(ρ j (b, vs)) : s = 1, . . . , k

}
, (7)

where

μ̂(ρ j (b, vs)) = [
μ̂0(ρ j (b, vs)), . . . , μ̂n(ρ j (b, vs))

] ∈ F
k(n+1).

If {ωr t : Ur ∩Ut −→ GLk(F)} is the collection of transition functions for ζ associated
to the system of local trivializations {ρr }, then whenever Ur ∩ Ut �= ∅ we have the
commutative diagram

p−1(Ur ∩Ut )

(Ur ∩Ut ) × F
k (Ur ∩Ut ) × F

k
(b,v) �→(b , ωr t (b)−1(v))

ρr ρt
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Let 0 ≤ l ≤ n. If b ∈ Uj � Ul , then μ̂l(ρ j (b, vs)) = 0; else b ∈ Uj ∩Ul and

μ̂l
(
ρ j (b, vs)

) = μ̂l
(
ρl

(
b, ω jl(b)

−1(vs)
))

= ψl(b) · ωl j (b)(vs).

Putting this calculation together with (7), it follows that for b ∈ Uj

fζ (b) = SpanF
{[

ψ0(b) · ω0 j (b)(vs) , . . . , ψn(b) · ωnj (b)(vs)
] : s = 1, . . . , k

}
. (8)

3.3 The Case of Line Bundles

If k = 1 we can take v1 = 1 ∈ F, and abuse notation by writing ωr t (b) ∈ F
× instead

of ωr t (b)(1). Moreover, in this case we have Grk(F
k(n+1)) = FPn , and if we use

homogeneous coordinates and ψ(x) = √
x , then fζ : B −→ FPn can be expressed

locally (i.e. on each Uj ) as

fζ (b) = [
ω0 j (b) · √

ϕ0(b) : · · · : ωnj (b) · √
ϕn(b)

]
, b ∈ Uj .

The choice ψ(x) = √
x is so that when the transition functions ωr t are unitary, i.e.

|ωr t (b)| = 1, then the formula above without homogeneous coordinates produces a
representative of fζ (b) on the unit sphere of F

n+1. We summarize the results thus far
in the following theorem:

Theorem 3.2 Let B be a topological space and let U = {Ur }nr=0 be an open cover. If{ϕr } is a partition of unity dominated by U , F is R or C, and

ω = {
ωr t : Ur ∩Ut −→ F

×}

is a collection of continuous maps satisfying the cocycle condition (4), then the map
fω : B −→ FPn given in homogenous coordinates by

fω(b) = [
ω0 j (b) · √

ϕ0(b) : · · · : ωnj (b) · √
ϕn(b)

]
, b ∈ Uj , (9)

is well-defined and classifies the F-line bundle ζω induced by (U , ω).

3.4 Line Bundles over Metric Spaces

If B comes equipped with a metric d, then (9) can be further specialized to a covering
via open balls, and a dominated partition of unity constructed from bump functions
supported on the closure of each ball. Indeed, let

Bεr (�r ) = {
b ∈ B : d(b, �r ) < εr

}
, r = 0, . . . , n,

for some collection {�0, . . . , �n} ⊂ B and radii εr > 0.
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1

0.5

0

-1.5 -1 -0.5 0 0.5 1 1.5

Triangular

Logarithmic
Gaussian

Quadratic

Fig. 6 Examples of bump functions supported on B1(0) ⊂ R. Please refer to an online version for colors

Proposition 3.3 Let (B, d) be a metric space and let B = {Bεr (�r )}nr=0 be an open
cover. If φ : R −→ R≥0 is a continuous map so that φ−1(0) = R≤0, and λ0, . . . , λn ∈
R>0 is a set of weights, then

ϕr (b) = λr ·φ
(
1− d(b,�r )

εr

)

n∑

t=0
λt ·φ

(
1− d(b,�t )

εt

) , r = 0, . . . , n,

is a partition of unity for B dominated by B.
Due to the shape of its graph, the map b �→ λr · φ

(
1 − d(b,�r )

εr

)
is often referred

to as a bump function supported on Br . The height of the bump is controlled by the
weight λr , while its overall shape is captured by the function φ. Of course one can
choose different functions φr on each ball, for instance to capture local density if B
comes equipped with a measure. Some examples of bump-shapes are:

– Triangular. The positive part of x ∈ R is defined as |x |+ = max{x, 0}, and
b �→ λ ·

∣∣∣1 − d(b,�)
ε

∣∣∣+ is the associated triangular bump supported on Bε(�).

– Polynomial. The polynomial bumpwith exponent p > 0 is induced by the function
φ(x) = |x |p+. The triangular bump is recovered when p = 1, while p = 2 yields
the quadratic bump.

– Gaussian. The Gaussian bump is induced by the funcion

φ(x) =
{
e−1/x2 if x > 0,
0 else.

– Logarithmic. It is the one associated to φ(x) = log(1 + |x |+).

Figure 6 shows some of these bump functions, with weight λ = 1, for B1(0).

Choosing φ(x) = |x |2+ and the weights as λr = ε2r simplifies Theorem 3.2 to:

Corollary 3.4 Let (B, d) be a metric space and B = {Br = Bεr (�r )}nr=0 a covering.
If F is R or C and ω = {ωr t : Br ∩ Bt −→ F

×} are continuous maps satisfying the
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cocycle condition, then fω : B −→ FPn given in homogeneous coordinates by

fω(b) =
[
ω0 j (b) · |ε0 − d(b, �0)|+ : · · · : ωnj (b) · |εn − d(b, �n)|+

]
, b ∈ Bj ,

is well-defined and classifies the F-line bundle ζω induced by (B, ω).

3.5 Geometric Interpretation

Let us clarify (9) for the case of constant transition functions and F = R. If
U = {U0, . . . ,Un} is a cover of B, then the nerve of U—denoted N (U)—is the
abstract simplicial complex with one vertex for each open set Ur ∈ U , and a simplex
{r0, . . . , rk} for each collection Ur0 , . . . ,Urk ∈ U such that

Ur0 ∩ · · · ∩Urk �= ∅.

Given a geometric realization |N (U)| ⊂ R
2n+1, let vr ∈ |N (U)| be the point corre-

sponding to the vertex r ∈ N (U). Each x ∈ |N (U)| is then uniquely determined by
(and uniquely determines) its barycentric coordinates: a sequence {xr } of real numbers
between 0 and 1, one for each open set Ur ∈ U , so that

∑

r

xr = 1 and
∑

r

xrvr = x.

To see this, notice that given a non-vertex x ∈ |N (U)| there exists a unique maximal
geometric simplexσ of |N (U)| so that x is in the interior ofσ . If vr0 , . . . , vrk ∈ |N (U)|
are the vertices of σ , then x can be expressed uniquely as a convex combination of
vr0 , . . . , vrk which determines xr0 , . . . , xrk . If r �= r0, . . . , rk , then we let xr = 0.

A partition of unity {ϕr } dominated by U induces a continuous map

ϕ : B −→ |N (U)|
b �→ ∑

r
ϕr (b)vr . (10)

That is, ϕ sends b to the point ϕ(b) with barycentric coordinates ϕr (b). Moreover, if{
ωr t : Ur∩Ut −→ {−1, 1}} is a collection of constant functions satisfying the cocycle
condition, then the associated classifying map fω : B −→ RPn from Theorem 3.2
can be decomposed as

B |N (U)| RPn,
ϕ Fω

where Fω : |N (U)| −→ RPn , in barycentric coordinates, is given on the open star of
a vertex v j ∈ |N (U)| as

Fω(x0, . . . , xn) =
[
ω0 j

√
x0 : · · · : ωnj

√
xn

]
.
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Fig. 7 An open covering of the
circle and the resulting nerve
complex

(a) (b) Nerve complex N(u)u = {U0,U1, U2}

10

2

{0,1}

{1,2}{0,2}

N(u)U2

U1

U0

l1

l2

l0

F (0,0,1)ω

F (0,1,0)ω

F (1,0,0)ω

F (0,0,1)ω′

F (0,1,0)ω′

F (1,0,0)ω′

F (0,0,1)ω′

   P2 2   P

Fig. 8 Image of Fω (left) and Fω′ (right) in RP2 = S2/(u ∼ −u)

Example Let B = S1, the unit circle, and let U = {U0,U1,U2} be the open covering
depicted in Fig. 7 (left).

Define ωr t = 1 for r, t = 0, 1, 2; let ω′
02 = ω′

20 = −1 and let ω′
r t = 1 for all

(r, t) �= (0, 2), (2, 0). Let (x0, x1, x2) denote the barycentric coordinates of a point in
|N (U)|. For instance, the vertex labeled as 0 has coordinates (1, 0, 0) and themidpoint
of the edge {0, 1} has coordinates (1/2, 1/2, 0). Then

Fω(x0, x1, x2) = [√
x0 : √

x1 : √
x2

]

and for each 0 ≤ x ≤ 1

Fω′(x, 1 − x, 0) = [√
x : √

1 − x : 0]
,

Fω′(x, 0, 1 − x) = [√
x : 0 : −√

1 − x
]
,

Fω′(0, x, 1 − x) = [
0 : √

x : √
1 − x

]
.

We show in Fig. 8 how Fω and Fω′ map |N (U)| to RP2 = S2/(x ∼ −x).
If d is the geodesic distance on S1, then each arcUr is an open ball Bεr (�r ) for some

(εr , �r ) ∈ R
+ × S1. When ϕ : S1 −→ |N (U)| is induced by the partition of unity

from the triangular bumps φ(x) = |x |+, then ϕ maps each arc {�r , �t } linearly onto
the edge |{r, t}|. It is not hard to see that the R-line bundle induced by {ωr t } is trivial,
while the one induced by {ω′

r t } is the nontrivial bundle on S1 having the Möbius band
as total space. This is captured by fω = Fω ◦ ϕ : S1 −→ RP2 being null-homotopic
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and fω′ = Fω′ ◦ ϕ representing the nontrivial element in the fundamental group
π1(RP2) ∼= Z/2.

4 Transition Functions from Simplicial Cohomology

Let U = {Ur } be a cover for B. We have shown thus far that given a collection
ω = {ωr t } of continuous maps

ωr t : Ur ∩Ut −→ GL1(F) = F
×, Ur ∩Ut �= ∅,

satisfying the cocycle condition, one can explicitly write down (given a dominated
partition of unity) a classifying map fω : B −→ FPn for the associated F-line bundle
ζω. What we will see next is that determining such transition functions can be reduced
to a computation in simplicial cohomology.

4.1 Formulation in Terms of Sheaf Cohomology

IfC×
F
denotes the sheaf of continuousF

×-valued functions on B, then one has thatω ∈
Č1(U;C×

F
). Moreover, since ω satisfies the cocycle condition, then ω ∈ Ž1(U;C×

F
),

and hence we can consider the cohomology class [ω] ∈ Ȟ1(U;C×
F

). If V is another
covering of B we say that V is a refinement of U , denoted V ≺ U , if for every V ∈ V
there exists U ∈ U so that V ⊂ U . A standard result [1, Ex. 6.2] is the following:

Lemma 4.1 If ω,ω′ ∈ Ž1(U;C×
F

) are cohomologous, then ζω
∼= ζω′ . Moreover, the

function

Ȟ1(U;C×
F

) −→ Vect1
F
(B)

[ ω ] �→ [ ζω ]

is an injective homomorphism, and natural with respect to refinements of U .

Here natural means that if HU
V : Ȟ1(U;C×

F
) −→ Ȟ1(V;C×

F
) is the homomor-

phism induced by the refinement V ≺ U (see [28, Chap. IX, Lem. 3.10]), then the
diagram

Ȟ1(U;C×
F

)

Vect1
F
(B)

Ȟ1(V;C×
F

)

is commutative. Combining this with (3) yields
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Corollary 4.2 Let U be an open covering of B. Then the function

�U : Ȟ1(U;C×
F

) −→ [B, FP∞]
[ω] �→ [ fω]

is injective, and natural with respect to refinements of U .
The sheaf cohomology group Ȟ1(U;C×

F
) can be replaced, under suitable con-

ditions, by simplicial cohomology groups: H1(N (U); Z/2) when F = R, and
H2(N (U); Z) when F = C. We will not assume that U is a good cover (i.e. that
each finite intersectionUr0 ∩ . . . ∩Urk is either empty or contractible), but rather will
phrase the reduction theorems in terms of the relevant connectivity conditions. The
construction is described next.

4.2 Reduction to Simplicial Cohomology

If τ ∈ Z1(N (U); Z/2), then for eachUr ∩Ut �= ∅ we have τ({r, t}) = τr t ∈ {0, 1} =
Z/2. Let φτ = {φτ

r t } be the collection of constant functions

φτ
r t : Ur ∩Ut −→ R

×
y �→ (−1)τr t .

Therefore each φτ
r t is continuous, so φτ ∈ Č1(U;C×

R
), and since τ is a cocycle

it follows that φτ ∈ Ž1(U;C×
R

). Moreover, the association τ �→ φτ induces the
homomorphism

�U : H1(N (U); Z/2) −→ Ȟ1(U;C×
R

)

[τ ] �→ [φτ ]
which is well-defined and satisfies:

Proposition 4.3

�U : H1(N (U); Z/2) −→ Ȟ1(U;C×
R

)

is natural with respect to refinements. Moreover, if each Ur is connected, then �U is
injective.

Proof Fix τ ∈ Z1(N (U); Z/2) and assume that there is a collection of continuous
maps { fr : Ur −→ R

×} for which (−1)τr t = ft
fr
on Ur ∩ Ut �= ∅. If each element

of U is connected, then the fr ’s have constat sign (either +1 or −1) in their domains,
and hence we can define ν ∈ C0(N (U); Z/2) as

ν({r}) = 1 − sign( fr )

2
.

Therefore τ({r, t}) = δ0(ν)({r, t}) and the result follows. ��
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Define wU
1 as the composition

wU
1 : H1(N (U); Z/2) Ȟ1(U;C×

R
) [B, RP∞].�U �U

Corollary 4.4 If each Ur is connected, then

wU
1 : H1(N (U); Z/2) −→ [B, RP∞]

is injective and natural with respect to refinements.

Let us now address the complex case. Given σ ∈ Z2(N (U); Z) let ψσ = {ψσ
rst }

be the collection of constant functions

ψσ
rst : Ur ∩Us ∩Ut −→ Z

y �→ σrst .

Each ψσ
rst is locally constant and therefore ψσ ∈ Ž2(U; Z). It follows that the asso-

ciation σ �→ ψσ induces a homomorphism

�U : H2(N (U); Z) −→ Ȟ2(U; Z)

[σ ] �→ [ψσ ]
which is well-defined and satisfies:

Proposition 4.5

�U : H2(N (U); Z) −→ Ȟ2(U; Z)

is natural with respect to refinements. Moreover, if each Ur ∩ Ut is either empty or
connected, then �U is injective.

Proof The result is deduced from the following observation: if Ur ∩ Ut is con-
nected, then any function μr t : Ur ∩ Ut −→ Z which is locally constant is in fact
constant. ��

We will now link Ȟ2(U; Z) and Ȟ1(U;C×
C

) using the exponential sequence

0 Z CC C×
C

0,
exp

which is given at the level of open sets U ∈ U by

Z(U ) CC(U ) C×
C

(U )

η η

f exp{2π i f }.

exp
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If Im(exp) denotes the image presheaf

Im(exp)(U ) = Img
{
CC(U ) C×

C
(U )

exp
}
,

then

0 Z CC Im(exp) 0
exp

is a short exact sequence of presheaves (i.e. exact for every open set), and hence we
get a long exact sequence in Čech cohomology [35, Sect. 24]

Ȟ k(U;CC) Ȟ k(U;Im(exp)) Ȟ k+1(U; Z) Ȟ k+1(U;CC) .
�

Since CC admits partitions of unity (i.e. it is a fine sheaf), then

Lemma 4.6 Ȟ k(U;CC) = 0 for every k ≥ 1.

Hence � : Ȟ1(U;Im(exp)) −→ Ȟ2(U; Z) is an isomorphism. Moreover,

Proposition 4.7 Let {ϕt } be a continuous partition of unity dominated by U . If
η = {ηrst } ∈ Z2(N (U); Z), then

ωrs = exp
(
2π i

∑

t

ϕt · ηrst

)
, Ur ∩Us �= ∅,

defines an element ω = {ωrs} ∈ Č1(U;Im(exp)). Moreover, ω is a Čech cocycle, and
the composition

H2(N (U); Z) Ȟ2(U; Z) Ȟ1(U;Im(exp))
�U �−1

satisfies �−1 ◦ �U ([η]) = [ω].
Proof First we check that ω is a Čech cocycle:

ωrs · ωst = exp
(
2π i

∑

�

ϕ� · (ηrs� + ηst�)
)

= exp
(
2π i

∑

�

ϕ� · (ηr t� + ηrst )
)

= exp
(
2π i · ηrst +

∑

�

ϕ� · ηr t�

)

= ωr t .
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In order to see that �([ω]) = �U ([η]), we use the definition of the connecting homo-
morphism �. First, we let g = {grs} ∈ Č1(U;CC) be the collection of functions

grs(b) =
∑

�

ϕ�(b) · ηrs�, b ∈ Ur ∩Us .

It follows that ω = exp#(g) and therefore �([ω]) = [δ1(g)]. The coboundary δ1(g)
can be computed as

δ1(g)rst = grs − grt + gst

=
∑

�

ϕ� · (ηrs� − ηr t� + ηst�)

=
∑

�

ϕ� · ηrst

= ηrst

and therefore �([ω]) = �U ([η]). ��

Corollary 4.8 If each Ur ∩Ut is either empty or connected, then

�−1 ◦ �U : H2(N (U); Z) −→ Ȟ1(U;Im(exp))
[{ηrst }] �→ [{ωrs}]

is injective, where

ωrs = exp
(
2π i

∑

t

ϕt · ηrst

)
.

When going from Ȟ1(U;Im(exp)) to Ȟ1(U;C×
C

) one considers the inclusion of
presheaves j : Im(exp) −→ C×

C
and its induced homomorphism in cohomology

jU : Ȟ1(U;Im(exp)) −→ Ȟ1(U;C×
C

).

After taking direct limits over refinements of U , the resulting homomorphism is an
isomorphism [35, Prop. 7, Sect. 25]. That is, each element in ker(jU ) is also in
the kernel of Ȟ1(U;Im(exp)) −→ Ȟ1(V;Im(exp)) for some refinement V of U ;
and for every element in Ȟ1(U;C×

C
) there exists a refinement W of U so that the

image of said element via Ȟ1(U;C×
C

) −→ Ȟ1(W;C×
C

) is also in the image of

Ȟ1(W;Im(exp)) −→ Ȟ1(W;C×
C

).
The situation is sometimes simpler. Recall that a topological space is said to be

simply connected if it is path-connected and its fundamental group is trivial. In addi-
tion, it is said to be locally path-connected if each point has a path-connected open
neighborhood.
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Lemma 4.9 Let U = {Ur } be an open covering of B such that each Ur is locally
path-connected and simply connected. Then

jU : Ȟ1(U;Im(exp)) −→ Ȟ1(U;C×
C

)

is injective.

Proof Let [{ωr t }] ∈ Ȟ1(U;Im(exp)) be an element in the kernel of jU . Then there
exists a collection of continuous maps

νr : Ur −→ C
×

so that ωr t = νt
νr

on Ur ∩Ut �= ∅. If we let

p : R+ × R −→ C
×

(ρ, θ) �→ ρ · e2π i ·θ

then it follows that (R+ × R, p) is the universal cover for C
×. Moreover, since each

Ur is locally path-connected and simply connected, then each νr has a lift [19, Prop.
1.33]

ν̃r : Ur −→ R+ × R

b �→ (
ρr (b), θr (b)

)
.

That is p ◦ ν̃r (b) = νr (b) for all b ∈ Ur . Let φr : Ur −→ C be defined as

φr (b) = θr (b) − i
ln(ρr (b))

2π
.

It follows that {φr } ∈ Č0(U;CC) and that for all b ∈ Ur

exp
(
2π i · φr (b)

) = exp
(
ln(ρr (b)) + 2π i · θr (b)

)

= ρr (b) · e2π i ·θr (b)
= νr (b).

Therefore νr = exp(2π i ·φr ) and {νr } ∈ Č0(U;Im(exp)), which implies [{ωr t }] = 0
in Ȟ1(U;Im(exp)) as claimed. ��

In summary, given an open cover U of B we get the function

cU1 : H2(N (U); Z) Ȟ1(U;Im(exp)) Ȟ1(U;C×
C

) [B, CP∞]�−1◦�U jU �U

which is natural with respect to refinements and satisfies
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Corollary 4.10 Let U = {Uj } be an open cover of B such that each Ur is locally
path-connected and simply connected, and each Ur ∩Ut is either empty or connected.
Then

cU1 : H2(N (U); Z) −→ [B, CP∞]

is injective.

We summarize the results of this section in the following theorem:

Theorem 4.11 Let U = {U0, . . . ,Un} be an open cover of B, and let {ϕr } be a
partition of unity dominated by U . Then we have functions

wU
1 : H1(N (U); Z/2) −→ [B, RP∞]

[τ = {τr t }] �→ [ fτ ] ,
cU1 : H2(N (U); Z) −→ [B, CP∞]

[η = {ηrst }] �→ [ fη]

natural w.r.t refinements of U , where τr t = τ({r, t}), ηrst = η({r, s, t}) and

fτ : B −→ RPn

U j � b �→ [
(−1)τ0 j

√
ϕ0(b) : · · · : (−1)τnj

√
ϕn(b)

]

fη : B −→ CPn

U j � b �→ [
e
2π i

∑

t
ϕt (b)η0 j t√

ϕ0(b) : · · · : e
2π i

∑

t
ϕt (b)ηnjt√

ϕn(b)
]

are well-defined. Moreover, if eachUr is connected, then wU
1 is injective; if in addition

each Ur is locally path-connected and simply connected, and each Ur ∩ Ut is either
empty or connected, then cU1 is injective.

5 Dimensionality Reduction in FPn via Principal Projective Coordinates

Let V ⊂ F
n+1 be a linear subspace with dim(V ) ≥ 1. If ∼ is the equivalence relation

on F
n+1

� {0} given by u ∼ v if and only if u = λv for some λ ∈ F, then ∼ is also
an equivalence relation on V � {0} and hence we can define

FPdim(V )−1
V := (

V � {0})/ ∼ .

In particular FPdim(U )−1
U = FPdim(V )−1

V if and only if U = V , and FPdim(V )−1
V is a

subset of FPn . Recall that F is either R or C. For u, v ∈ F
n+1 let

〈u, v〉 =
n∑

r=0

ur · v̄r
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denote their inner product. If dg denotes the geodesic distance in FPn induced by the
Fubini–Study metric, then one has that

dg([u], [v]) = arccos

( |〈u, v〉|
‖u‖ · ‖v‖

)

and it can be checked that FPdim(V )−1
V is an isometric copy of FPdim(V )−1 inside FPn .

If 1 ≤ dim(V ) ≤ n and V⊥ = {u ∈ F
n+1 : 〈u, v〉 = 0 for all v ∈ V }, then the

orthogonal projection pV : F
n+1 −→ V descends to a continuous map

PV : FPn
� FPn−dim(V )

V⊥ −→ FPdim(V )−1
V

[u] �→ [ pV (u)].

Recall that pV sends each u ∈ F
n+1 to its closest point in V with respect to the distance

induced by ‖ · ‖. A similar property is inherited by PV :

Proposition 5.1 If [w] ∈ FPn
�FPn−dim(V )

V⊥ , then PV ([w]) is the point in FPdim(V )−1
V

which is closest to [w] with respect to dg.

Proof Let [u] ∈ FPdim(V )−1
V . Since [w] /∈ FPn−dim(V )

V⊥ , then w − pV (w) ∈ V⊥ with
pV (w) �= 0. Therefore 〈u, w − pU (w)〉 = 0 and by the Cauchy–Schwartz inequality

∣
∣〈w, u

〉∣∣ = |〈pU (w), u〉| ≤ ‖pU (w)‖ · ‖u‖.

Hence

|〈w, u〉|
‖w‖ · ‖u‖ ≤ ‖pU (w)‖

‖w‖ = |〈w, pU (w)〉|
‖w‖ · ‖pU (w)‖

and since arccos(α) is decreasing, then dg([w], PU ([w])) ≤ dg([w], [u]). ��

Therefore, we can think of PV as the projection onto FPdim(V )−1
V . Moreover, let

jV : FPdim(V )−1
V ↪→ FPn

� FPn−dim(V )

V⊥ be the inclusion map.

Proposition 5.2 jV ◦ PV is a deformation retraction.

Proof Since pV is surjective and satisfies pV ◦ pV (w) = pV (w) for all w ∈ F
n+1, it

follows that PV is a retraction. Let h : F
n+1 × [0, 1] −→ F

n+1 be given by h(w, t) =
(1 − t) · w + t · pV (w). Since h(w, t) = 0 implies that w ∈ V⊥, then h induces a
continuous map

(
FPn

� FPn−dim(V )

V⊥
) × [0, 1] −→ FPn

� FPn−dim(V )

V⊥
([w], t) �→ [h(w, t)]

which is a homotopy between the identity of FPn
� FPn−dim(V )

V⊥ and jV ◦ PV . ��
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Notice that [u] = Span(u) for u ∈ F
n+1

� {0}. The previous proposition yields

Corollary 5.3 Let f : B −→ FPn be a continuous map which is not surjective. If
[u] /∈ f (B), then f is homotopic to P[u]⊥ ◦ f : B −→ FPn−1

[u]⊥ ⊂ FPn.

Summarizing, if f : B −→ FPn is not surjective, then it can be continuously
deformed so that its image lies in FPn−1

[u]⊥ ⊂ FPn , for [u] /∈ f (B). Moreover, the

deformation is obtained by sending each f (b) ∈ FPn to its closest point in FPn−1
[u]⊥

with respect todg , along a shortest path inFPn . This analysis shows that the topological
properties encoded by f are preserved by the dimensionality reduction step if f (B) �=
FPn .

Given a finite set Y ⊂ FPn , we will show next that u can be chosen so that FPn−1
[u]⊥

provides the best (n − 1)-dimensional approximation. Indeed, given

Y = {[y1], . . . , [yN ]} ⊂ FPn,

the goal is to find u∗ ∈ F
n+1 so that

u∗ = argmin
u∈Fn+1

‖u‖=1

N∑

r=1

dg
([yr ], FPn−1

[u]⊥
)2

.

Since

dg
([yr ], FPn−1

[u]⊥
) = dg

([yr ], P[u]⊥([yr ])
) = dg

([yr ],
[
yr − 〈yr , u〉u])

,

then

u∗ = argmin
u∈Fn+1

‖u‖=1

N∑

r=1

arccos

( ∣∣〈yr , yr − 〈yr , u〉u〉∣∣

‖yr‖ · ‖yr − 〈yr , u〉u‖

)2

= argmin
u∈Fn+1

‖u‖=1

N∑

r=1

arccos

(‖yr − 〈yr , u〉u‖
‖yr‖

)2

= argmin
u∈Fn+1

‖u‖=1

N∑

r=1

(
π

2
− arccos

∣∣〈yr , u〉∣∣
‖yr‖

)2

.

(11)

This nonlinear least squares problem—in a nonlinear domain—can be solved
approximately using linearization; the reduction, in turn, has a closed form solution.
Indeed, the Taylor series expansion for arccos(α) around 0 is

arccos(α) = π

2
−

(

α +
∞∑

�=1

(2�)!
4�(�!)2

α2�+1

2� + 1

)

, |α| < 1,
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and therefore
∣
∣π
2 − arccos(α)

∣
∣ ≈ |α| is a third order approximation. Hence

u∗ ≈ argmin
u∈Fn+1

‖u‖=1

N∑

r=1

∣∣∣
〈yr , u〉
‖yr‖

∣∣∣
2
, (12)

which is a linear least squares problem, and a solution is the eigenvector of the (n+1)-
by-(n + 1) uncentered covariance matrix

Cov

(
y1

‖y1‖ , . . . ,
yN

‖yN‖
)

=
⎡

⎣
| |

y1
‖y1‖ · · · yN

‖yN ‖
| |

⎤

⎦ ·

⎡

⎢⎢
⎣

— ȳ1
‖ȳ1‖ —
...

— ȳN
‖ȳN ‖ —

⎤

⎥⎥
⎦

corresponding to the smallest eigenvalue. Notice that if a1, . . . , aN ∈ F satisfy
|ar | = 1 for each r = 1, . . . , N , then

Cov

(
y1

‖y1‖ , . . . ,
yN

‖yN‖
)

= Cov

(
a1

y1
‖y1‖ , . . . , aN

yN

‖yN‖
)

and hence we can write Cov(Y) for the unique uncentered covariance matrix asso-
ciated to Y = {[y1], . . . , [yN ]} ⊂ FPn . If u ∈ F

n+1 is an eigenvector of
Cov(Y) corresponding to the smallest eigenvalue, then we use the notation [u] =
LastProjComp(Y, FPn) with the understanding that [u] is unique only if the rele-
vant eigenspace has dimension one. If not, the choice is arbitrary.

5.1 Principal Projective Coordinates

First we define, inductively, the Principal Projective Components of Y.Startingwith
[vn] = LastProjComp(Y, FPn), assume that for 1 ≤ k ≤ n − 1 the components
[vk+1], . . . , [vn] ∈ FPn have been determined and let us define [vk]. To this end, let
{u0, . . . , uk} be an orthonormal basis for V k = Span(vk+1, . . . , vn)⊥, let

Ak =
⎡

⎣
| |

u0 · · · uk

| |

⎤

⎦

and let A†
k be its conjugate transpose. If A

†
k · Y = {[

A†
ky1

]
, . . . ,

[
A†
kyN

]}
, define

[vk] := Ak · LastProjComp(
A†
k · Y, FPk)

.

This is well-defined as the following proposition shows.

Proposition 5.4 The class [vk] = Ak ·LastProjComp(
A†
k ·Y, FPk

)
is independent

of the choice of orthonormal basis {u0, . . . , uk}.
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Proof Let {w0, . . . , wk} be another orthonormal basis for V k and let

Bk =
⎡

⎣
| |

w0 · · · wk

| |

⎤

⎦.

It follows that B†
k Bk = A†

k Ak = Ik+1, the (k + 1)-by-(k + 1) identity matrix, and

that Bk B
†
k = Ak A

†
k is the matrix (with respect to the standard basis of F

n+1) of the
orthogonal projection pV k : F

n+1 −→ V k . Therefore

(
B†
k Ak

)(
A†
k Bk

) = B†
k

(
Ak A

†
k

)
Bk

= B†
k

(
Bk B

†
k

)
Bk

= Ir+1,

which shows that A†
k Bk is an orthogonal matrix. Since

∥
∥A†

ky
∥
∥2 = 〈

y, Ak A
†
ky

〉 = ∥
∥B†

k y
∥
∥2

for every y ∈ F
n+1, then

Cov
(
A†
kY

) = Cov

(
A†
ky1

∥∥A†
ky1

∥∥
, . . . ,

A†
kyN

∥∥A†
kyN

∥∥

)

= Cov

(

A†
k Bk

B†
k y1

∥
∥B†

k y1
∥
∥
, . . . , A†

k Bk
B†
k yN

∥
∥B†

k yN
∥
∥

)

= A†
k Bk · Cov(B†

k Y
) · B†

k Ak

and thusCov
(
A†
kY

)
andCov

(
B†
k Y

)
have the same spectrum.Moreover,u is an eigenvec-

tor of Cov
(
A†
kY

)
corresponding to the smallest eigenvalue λ if and only if u = A†

k Bkw
for a unique eigenvector w of Cov

(
B†
k Y

)
with eigenvalue λ. Since Bkw ∈ V k and

Ak A
†
k is the matrix of pV k , then

Aku = Ak A
†
k Bkw = Bkw,

which shows that

Ak · LastProjComp(
A†
k · Y, FPk) = Bk · LastProjComp(

B†
k · Y, FPk)

. ��
This inductive procedure defines [v1], . . . , [vn] ∈ FPn , and we let v0 ∈ F

n+1 with
‖v0‖ = 1 be so that Span(v0) = Span(v1, . . . , vn)⊥. We will use the notation

PrinProjComps(Y) = {[v0], . . . , [vn]
}
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for the principal projective components of Y computed in this fashion. Each choice
of unitary (i.e. having norm 1) representatives u0 ∈ [v0], . . . , un ∈ [vn] yields an
orthonormal basis {u0, . . . , un} for F

n+1, and each y ∈ F
n+1 can be represented in

terms of its vector of coefficients

coeffU (y) =
⎡

⎢
⎣

〈y, u0〉
...

〈y, un〉

⎤

⎥
⎦.

If Ũ is another set of unitary representatives for PrinProjComps(Y), then there
exists a (n + 1)-by-(n + 1) diagonal matrix �, with entries in the unit circle in F, and
so that coeffŨ (y) = � ·coeffU (y). That is, the resulting principal projective coordinates
[coeffU (y)] ∈ FPn are unique up to a diagonal isometry.

5.2 Visualizing the Reduction

Fix a set of unitary representatives v0, . . . , vn for PrinProjComps(Y), and let
V k = Span(v0, . . . , vk) for 1 ≤ k ≤ n. It is often useful to visualize PVk (Y) ⊂ FPk

V k

for k small, specially in RP1, RP2, RP3 and CP1. We do this using the principal
projective coordinates of Y. For the real case (i.e. RP1, RP2 and RP3) we consider
the set

⎧
⎪⎨

⎪⎩

xr
‖xr‖ ∈ Sk : xr = sign

(〈yr , v0〉
) ·

⎡

⎢
⎣

〈yr , v0〉
...

〈yr , vk〉

⎤

⎥
⎦, r = 1, . . . , N

⎫
⎪⎬

⎪⎭
, k ≤ 3,

and its image through the stereographic projection Sk � {−e1} −→ Dk with respect
to −e1, where e1 is the first standard basis vector e1 ∈ R

k+1. That is, we visualize
PVk (Y) in the k-disk Dk ⊂ R

k with the understanding that antipodal points on the
boundary are identified. For the complex case (i.e. CP1) we consider the set

{
zr

‖zr‖ ∈ C
2 : zr =

[〈yr , v0〉
〈yr , v1〉

]
, r = 1, . . . , N

}

and its image through the Höpf map

H : S3 ⊂ C
2 −→ S2 ⊂ C × R

[z1, z2] �→ (
2z1 z̄2, |z1|2 − |z2|2

)

which is exactly the composition of S3 ⊂ C
2 −→ C∞ = C ∪ {∞}, sending [z1, z2]

to z1/z2, and the isometry C∞ ∼= S2 ⊂ C × R given by the inverse of the north-pole
stereographic projection.
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Fig. 9 Left: Landmark points on RP2. Right: Induced nerve complex N (U)

5.3 Choosing the Target Dimension

Given 1 ≤ k ≤ n, the cumulative variance recovered by PVk (Y) ⊂ FPk
V k is given by

the expression

varY(k) = 1

N

k∑

�=1

N∑

r=1

dg
(
PV � ([yr ]), FP�−1

V �−1

)2

= 1

N

k∑

�=1

N∑

r=1

(π

2
− dg

(
PV �−1([yr ]),

[
v�

]))2
. (13)

Define the percentage of cumulative variance as

p.varY(k) = varY(k)

varY(n)
. (14)

A common rule of thumb for choosing the target dimension is identifying the small-
est value of k so that p.varY exhibits a prominent reduction in growth rate. Visually,
this creates an “elbow” in the graph of p.varY at k (see Fig. 2(b), k = 5). The target
dimension can also be chosen as the smallest k ≥ 1 so that p.varY(k) is greater than a
predetermined threshold, e.g. 0.7 (see Fig. 3, k = 2).

Examples
Let us illustrate the inner workings of the framework we have developed thus far.

The Projective Plane. RP2: Let RP2 denote the quotient S2/(u ∼ −u), endowed with
the geodesic distance dg(u, v) = arccos(|〈u, v〉|). We begin by selecting six landmark
points �0, . . . , �5 ∈ RP2 as shown in Fig. 9 (Left). If for each landmark � j we let
r j = min{dg(� j , �r ) : r �= j} and let ε j = 0.95∗r j , then U = {Bε j (� j )} is a covering
for RP2 and the corresponding nerve complex N (U) is shown in Fig. 9 (Right).

Let 1{i, j} : N (U)(1) −→ Z/2 be the indicator function 1{i, j}({r, k}) = 1 if {i, j} =
{r, k} and 0 otherwise. Then

τ = 1{0,1} + 1{1,2} + 1{0,2} + 1{0,4} + 1{2,5} + 1{1,3}
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Fig. 10 Percentage of cumulative variance

is a 1-cocycle, and its cohomology class [τ ] is the non-zero element in

H1(N (U); Z/2) ∼= Z/2.

Using the formula from Theorem 4.11, the cocycle τ above, and quadratic bumps with
weights λ j = ε2j , we get the corresponding map fτ : RP2 −→ RP5. For instance, if
b ∈ Bε0(�0), then

fτ (b) = [ ∣∣ε0 − dg(b, �0)
∣∣+ : − ∣∣ε1 − dg(b, �1)

∣∣+ : − ∣∣ε2 − dg(b, �2)
∣∣+

: ∣∣ε3 − dg(b, �3)
∣∣+ : − ∣∣ε4 − dg(b, �4)

∣∣+ : ∣∣ε5 − dg(b, �5)
∣∣+

]
.

Let X ⊂ RP2 be a uniform random sample with 10,000 points. After computing the
principal projective components of fτ (X) ⊂ RP5 and the percentage of cumulative
variance p.varY(k) (see (14)) for k = 1, . . . , 5 we obtain Fig. 10.

This profile of cumulative variance suggests that dimension 2 is appropriate for
representing fτ (X): both “the elbow” and the “70% of recovered variance” happen
at around k = 2. In Fig. 11 we show the original sample X ⊂ RP2 as well as the
point cloud PV 2( fτ (X)) resulting from projecting fτ (X) onto RP2

V 2 ⊂ RP5. Recall

that PV 2( fτ (X)) is visualized on the unit disk D2 = {u ∈ R
2 : ‖u‖ ≤ 1}, with

the understanding that points in the boundary ∂D2 = S1 are identified with their
antipodes.

These results are consistent with the fact that any f : RP2 −→ RP∞ which classi-
fies the nontrivial bundle overRP2, must be homotopic to the inclusionRP2 ↪→ RP∞.
So not only did we get the right homotopy-type, but also the global geometry and the
metric information were recovered to a large extent.

The Klein Bottle K . Let K denote the quotient of the unit square [0, 1] × [0, 1] by the
relation ∼ given by (x, 0) ∼ (x, 1) and (0, y) ∼ (1, 1− y). Let us endow K with the
induced flat metric, which we denote by d, and let �0, . . . , �8 ∈ K be landmark points
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Fig. 11 Left: Original sample
X ⊂ RP2. Right: Visualization
of resulting projective
coordinates. Please refer to an
electronic version for colors

X ⊂ 2  ⊂ 2
2V

PV 2 ( f (X) )τ

l0 l0 l2 l0

l6l5l4l3

l6 l7 l8 l3

l0l2l1l0

K

0 1 2 0

6

3

0210

6

3 4 5

87

Fig. 12 Left: Landmarks on the Klein bottle. Right: Induced nerve complex

selected as shown in Fig. 12 (Left). If for each landmark � j we let

ε j = min
{
d(� j , �r ) : j �= r

}
,

then U = {Bε j (� j )} is a covering for K and the resulting nerve complex N (U) is
shown in Fig. 12 (Right).

It follows that the 1-skeleton of N (U) is the complete graph on nine vertices, and
that there are thirty-six 2-simplices and nine 3-simplices. Let us define the 1-chains

τdiag, τhorz, τvert ∈ C1(N (U); Z/2)

as follows: τdiag will be the sum of indicator functions on the diagonal edges, τhorz is
the sum of indicator functions on the horizontal edges, and τvert will be the sum of
indicator functios on the vertical edges. One can check that

τ = τdiag + τhorz and τ ′ = τdiag + τvert

are coycles and that their cohomology classes generate

H1(N (U); Z/2) ∼= Z/2 ⊕ Z/2.
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3PV V( f (X)) ⊂ 

X ⊂ K
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τ
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Fig. 14 Left: Original sample X ⊂ K ; Center: Visualization of PV 3 ( fτ (X)) ⊂ RP3
V 3 in D3/∼ = RP3;

Right: Lateral (upper right) and aerial view of the representation (lower right). Please refer to an electronic
version for colors

Let X ⊂ K be a random sample with 10,000 points. The formula from Theorem 4.11
yields classifying maps

fτ , fτ ′ , fτ+τ ′ : K −→ RP8

and we obtain the point clouds fτ (X), fτ ′(X), fτ+τ ′(X) ⊂ RP8 of which we will
compute their principal projective coordinates. Starting with fτ (X) we get the profile
of recovered variance shown in Fig. 13.

The figure suggests that dimension 3 provides an appropriate representation of
fτ (X) ⊂ RP8. As described above, we visualize PV 3( fτ (X)) ⊂ RP3

V 3 in the

3-dimensional unit disk D3 = {u ∈ R
3 : ‖u‖ ≤ 1} with the understanding that

points on the boundary ∂D3 = S2 are identified with their antipodes. The results are
summarized in Fig. 14.
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2PV V
( f (X)) ⊂ X ⊂ K 2

2τ

1

0

0 1 10-0.5-1
-1

0

-0.5

0.5

1

0.5

RP

Fig. 15 RP2-coordinates for X ⊂ K corresponding to the cocycle τ

1

1

0

0

1

1

0

0

diag horz horz+ diag vert vert+ +τ τ τ τ τ τX ⊂ K

Fig. 16 Columns: RP2 coordinates for X ⊂ K induced by the cocycles τ = τdiag + τhorz, τ ′ = τdiag + τvert
and τ + τ ′ = τhorz + τvert, respectively. Rows: Color schemes of the computed coordinates according to
the horizontal and vertical directions in K . Please refer to an electronic version for colors

This example highlights the following point: when representing data sampled from
complicated spaces, e.g. the Klein bottle, it is advantageous to use target spaces with
similar properties. In particular, the representation for X ⊂ K we recover here is
much simpler than those obtained with traditional dimensionality reduction methods.
We now transition to the 2-dimensional reduction PV 2( fτ (X)) ⊂ RP2

V 2 . As before we

visualize the representation in the 2-dimensional unit disk D2 with the understanding
that points on the boundary ∂D2 = S1 are identified with their antipodes (Fig. 15).

We conclude this example by examining the RP2 coordinates induced by τ ′ and
τ + τ ′ (Fig. 16). For completeness we include the one for τ and also add figures with
coloring by the vertical direction in K .
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6 Choosing Cocycle Representatives

We now describe how fτ : B −→ RPn and fη : B −→ CPn depend on the choice of
representatives τ = {τr t } ∈ Z1(N (U); Z/2) and η = {ηrst } ∈ Z2(N (U); Z), respec-
tively. We know that any two such choices yield homotopic maps (Theorem 4.11), but
intricate geometries can negatively impact the dimensionality reduction step. Given
X = {x1, . . . , xN } ⊂ B, the goal is to elucidate the affects on the principal projective
coordinates of fτ (X) ⊂ RPn and fη(X) ⊂ CPn . The results are: the real case is
essentially independent of the cocycle representative; while the complex case requires
the harmonic cocycle.

We begin with a simple observation. Let Y = {[y1], . . . , [yN ]} ⊂ FPn , let A be an
(n + 1) × (n + 1) orthogonal matrix with entries in F, that is A ∈ O(n + 1, F), and let
A · Y denote the set

{[A · y1], . . . , [A · yN ]}.

Proposition 6.1 Let A ∈ O(n + 1, F) and let Y ⊂ FPn be finite. Then

PrinProjComps(A · Y) = A · PrinProjComps(Y).

Proof Since A is an orthogonal matrix, then

Cov(A · Y) = A · Cov(Y) · A†.

Hence, if u is an eigenvector of Cov(Y), then A · u is an eigenvector of Cov(A · Y)

with the same eigenvalue and therefore, if LastProjComp(Y, FPn) = [vn], then

LastProjComp(A · Y, FPn) = [A · vn].

Since the remaining principal projective components are computed in the same fashion,
after the appropriate orthogonal projections, the result follows. ��

6.1 The Real Case is Independent of the Cocycle Representative

Let α = {αr } ∈ C0(N (U); Z/2) and let τ̃ = τ + δ0(α). It follows that for b ∈ Uj

fτ̃ (b) = [
(−1)τ̃0 j

√
ϕ0(b) : · · · : (−1)τ̃nj

√
ϕn(b)

]

= [
(−1)τ0 j+α0

√
ϕ0(b) : · · · : (−1)τnj+αn

√
ϕn(b)

]
.

Hence, if fτ (X) = {[y1], . . . , [yN ]} and

Aα =
⎡

⎢
⎣

(−1)α0 0
. . .

0 (−1)αn

⎤

⎥
⎦,
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then fτ̃ (X) = {[Aα · y1], . . . , [Aα · yN ]} = Aα · fτ (X). This shows that

PrinProjComps( fτ̃ (X)) = Aα · PrinProjComps( fτ (X)),

which implies, in particular, that the profiles of cumulative variance for fτ̃ (X) and
fτ (X) are identical. Moreover, the resulting projective coordinates for both point-
clouds differ by the isometry of FPn induced by Aα .

6.2 The Harmonic Representative is Required for the Complex Case

Just as we did in Sect. 3.5 (Geometric Interpretation), given η = {ηrst } ∈
Z2(N (U); Z) we can express fη : B −→ CPn as

f B PnF

where ϕ is defined in (10) and Fη : |N (U)| −→ CPn is given (in barycentric coordi-
nates) on the open star of a vertex v j by

Fη(x0, . . . , xn) =
[√

x0 · e2π i
∑

t
(xt ·η0 j t ) : · · · : √

xn · e2π i
∑

t
(xt ·ηnjt )]

.

Let us describe the local behavior of Fη when restricted to the 2-skeleton of |N (U)|.
To this end, let σ be the 2-simplex of |N (U)| spanned by the vertices vr , vs, vt , with
0 ≤ r < s < t ≤ n. It follows that Fη : σ −→ CPn can be written as

Fη(xr , xs, xt ) = [√
xr : √

xs · e−2π i ·ηrst ·xt : √
xt · e2π i ·ηrst ·xs ] (15)

with the understanding that only the potentially-nonzero entries appear. Furthermore,
if we fix 0 < c < 1 and consider the straight line in σ given by

Lc = {
(1 − c, x, c − x) : 0 ≤ x ≤ c

}
,

then Fη : Lc −→ CPn can be written as

Fη(x) =
[√

1 − c : √
x · e2π i(x−c)ηrst : √

c − x · e2π i ·x ·ηrst
]

=
[√

1 − c · e−2π i ·x ·ηrst : √
x · e−2π i ·c·ηrst : √

c − x
]
,

which parameterizes a spiral with radius
√
1 − c and winding number

⌊
c · |ηrst |

⌋
.

Hence, as each |ηrst | gets larger, Fη becomes increasingly highly-nonlinear on the
2-simplices of |N (U)|. As a consequence, the dimensionality reduction scheme fur-
nished by principal projective components is less likely towork as it relies on a (global)
linear approximation. Let us illustrate this phenomenon via an example.
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Fig. 17 CP1 coordinates for points on the 2-sphere using the map fη associated to the integer cocycle
η = η0. This shows the inadequacy of the integer cocycle; see Fig. 18 for comparison. Please refer to an
electronic version for colors

Example
Let B = S2 be the unit sphere in R

3, and for r ∈ {0, 1, 2, 3} let Ur ⊂ S2 be the
geodesic open ball of radius arccos(−1/3) centered at

�0 =
⎡

⎣
0
0
1

⎤

⎦, �1 = 1

3

⎡

⎣
2
√
2

0
−1

⎤

⎦, �2 = 1

3

⎡

⎣
−√

2√
6

−1

⎤

⎦, �3 = 1

3

⎡

⎣
−√

2
−√

6
−1

⎤

⎦,

respectively. It follows that U = {U0,U1,U2,U3} is an open cover of of S2, and that
N (U) is the boundary of the 3-simplex. Therefore, if

σ0 = {0, 1, 2}, σ1 = {0, 2, 3}, σ2 = {0, 1, 3}, σ3 = {1, 2, 3}

denote the 2-simplices of N (U) and {η0, η1, η2, η3} is the basis for C2(N (U); Z) of
indicator functions, then each ηr is a cocycle whose cohomology class generates

H2(N (U); Z) ∼= Z.

Moreover,
{
η0 − η1, η0 + η2, η0 + η3

}
is a basis for B2(N (U); Z) and therefore

[η0] = [η1] = −[η2] = −[η3].

Consider the map fη : S2 −→ CP3 associated to η = η0; the results will be similar
for the other ηr ’s. We show in Fig. 17 the computed CP1 coordinates of fη(X) for a
random sample X ⊂ S2 with 10,000 points. As one can see, the homotopy type of the
resulting map is correct, but the distances are completely distorted.

Themain difference between the real and complex cases is that the former is locally
linear, while the latter has local nonlinearities arising from the terms

exp
(
2π i · ηrst · xt

)
.
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The tempting conclusion would be then to choose the cocycle representative η =
{ηrst } ∈ Z2(N (U); Z) thatmakes Fη as locally linear as possible. This can be achieved
by making each |ηrst | small. The problem—as in the sphere example—is that since
ηrst ∈ Z, then even this choice is inadequate. What we will see now is that the integer
constraint can be relaxed via Hodge theory (see, for instance, [24, Sect. 2]).

6.2.1 Harmonic Smoothing

Let K be a finite simplicial complex. Then for each n ≥ 0 the group of n-cochains
Cn(K ; R) is a finite dimensional vector space over R, and hence can be endowed with
an inner product. A common choice is

〈β1, β2〉n =
∑

σ

β1(σ )β2(σ ),

whereβ1, β2 ∈ Cn(K ; R) and the sum ranges over all n-simplicesσ of K . In particular
we have the induced norm

‖β‖2 =
∑

σ

|β(σ)|2.

Each boundary map δn : Cn(K ; R) −→ Cn+1(K ; R) is therefore a linear trans-
formation between inner-product spaces, and hence has an associated dual map
dn+1 : Cn+1(K ; R) −→ Cn(K ; R) uniquely determined by the identity

〈
δn(ν), β

〉
n+1 = 〈

ν, dn+1(β)
〉
n

for all ν ∈ Cn(K ; R) and all β ∈ Cn+1(K ; R). The Hodge Laplacian �n is the
endomorphism of Cn(K ; R) defined by the formula

�n = dn+1 ◦ δn + δn−1 ◦ dn

and a cochain θ ∈ Cn(K ; R) is said to be harmonic if �n(θ) = 0. A simple linear
algebra argument shows that harmonic cochains can be characterized as follows:

Proposition 6.2 θ ∈ Cn(K ; R) is harmonic if and only if

dn(θ) = 0 and δn(θ) = 0.

That is, harmonic cochains are in particular cocycles. Moreover,

Theorem 6.3 Every class [β] ∈ Hn(K ; R) is represented by a unique harmonic
cocycle θ ∈ Zn(K ; R) satisfying θ = β − δn−1(ν∗), where

ν∗ = argmin
{∥∥β − δn−1(ν)

∥∥ : ν ∈ Cn−1(K ; R)
}
.
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In other words, given β ∈ Zn(K ; R), θ is obtained by projecting β orthogonally onto
the orthogonal complement of Bn(K ; R) in Zn(K ; R).

Let us now go back to our original set up: A covering U = {Ur } for a space B, a
partition of unity {ϕr } dominated by U and a class [η] ∈ H2(N (U); Z). The inclusion
j : Z ↪→ R induces a homomorphism

j∗ : H2(N (U); Z) −→ H2(N (U); R)

and if β ∈ j∗([η]), then there exists ν ∈ C1(N (U); R) so that j#(η) = β + δ1(ν).

Lemma 6.4 Let ω = {ωrs} and ω̃ = {ω̃rs} be the sets of functions

ωrs : Ur ∩Us −→ C
×

b �→ exp
{
2π i

∑

t
ϕt (b)ηrst

}

ω̃rs : Ur ∩Us −→ C
×

b �→ exp
{
2π i

(
νrs + ∑

t
ϕt (b)βrst

)}
,

then ω, ω̃ ∈ Č1(U;C×
C

) are cohomologous Čech cocycles.

Proof Since ω is a cocycle, it is enough to check that ω and ω̃ are cohomologous. To
this end let μ = {μr } ∈ Č0(U;C×

C
), where

μr (b) = exp
{
2π i

∑

t

ϕt (b) · νr t

}
, b ∈ Ur .

Since for every Ur ∩Ut �= ∅
∑

t

ϕt · nrst =
∑

t

ϕt · (
βrst + δ1(ν)rst

)

=
∑

t

ϕt · (βrst + νrs − νr t + νst )

= νrs +
∑

t

ϕt · βrst +
∑

t

ϕt · νst −
∑

t

ϕt · νr t ,

then

ωrs = ω̃rs · μs

μr
= ω̃rs · δ0(μ)rs

and the result follows. ��
Let θ ∈ Z2(N (U); R) be the harmonic cocycle representing the class

j∗([η]) ∈ H2(N (U); R),
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Fig. 18 CP1 coordinates for X ⊂ S2 using the harmonic cocycle θ ; see Fig. 17 for comparison. Please
refer to an electronic version for colors.

let ν ∈ C1(N (U); R) be such that j#(η) − θ = δ1(ν) and let fθ,ν : B −→ CPn be
given on b ∈ Uj

fθ,ν(b) =
[√

ϕ0(b) · e2π i
(
ν0 j+∑

t ϕt (b)θ0 j t
)

: · · · : √
ϕn(b) · e2π i

(
νnj+∑

t ϕt (b)θnjt
)]

.

(16)

It follows that fη and fθ,ν are homotopic, fθ,ν is as locally linear as possible, and for
different choices of ν the resulting principal projective coordinates of fθ,ν(X) differ
by a linear (diagonal) isometry.

We now revisit the 2-sphere example. One can check that

θ = j#
(
η0 + η1 − η2 − η3

)
/4

is the harmonic cocycle representing the cohomology class

j∗([
η0

]) ∈ H2(N (U); R).

Let ν ∈ C1(N (U); R) be so that θ = j#(η0) − δ1(ν) and let fθ,ν : S2 −→ CP3 be
as in (16). We show in Fig. 18 the computed CP1 coordinates of fθ,ν(X) for the finite
random sample X ⊂ S2.

7 Multiscale Projective Coordinates via Persistent Cohomology of
Sparse Filtrations

The goal of this section is to show how one can use persistent cohomology to construct
multiscale projective coordinates.

7.1 Greedy Permutations

Let k = {0, . . . , k} for k ∈ Z≥0, let (M, d) be a metric space and let X ⊂ M be a finite
subset with n + 1 elements. A greedy permutation on X is a bijection σg : n −→ X
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Fig. 19 Function rs

which satisfies

σg(s + 1) = argmax
x∈X

d
(
x, σg(s)

)
, s = 0, . . . , n − 1.

7.2 Sparse Filtrations

Given a greedy permutation σg : n −→ X , let xs = σg(s) and Xs = σg(s). The
insertion radius of xs , denoted λs , is defined as

λs =
{ ∞ if s = 0,

d(xs, Xs−1) if s > 0.

If follows that ∞ = λ0 > λ1 ≥ · · · ≥ λn . Fix 0 < ε < 1 and for α ≥ 0 define

rs(α) =
⎧
⎨

⎩

α if α < λs(1 + ε)/ε,

λs(1 + ε)/ε if λs(1 + ε)/ε ≤ α ≤ λs(1 + ε)2/ε,

0 if α > λs(1 + ε)2/ε.

(17)

In particular r0(α) = α for all α ≥ 0, and for s ≥ 1 the graph of rs is shown in Fig.
19.

Definition 7.1 For α ≥ 0 let

Bα
s = {

b ∈ M : d(b, xs) < rs(α)
}
.

It follows that Sα = {
s ∈ n : λs ≥ εα/(1 + ε)2

}
is the collection of indices s for

which Bα
s �= ∅. Moreover,

Bα = {Bα
s : s ∈ Sα}

satisfies X ⊂ ⋃Bα for each α > 0, and it is a sparse covering in the sense that as
α increases there are fewer balls in Bα , but of larger radii. Moreover, it is a (1 + ε)-
approximation of the α-offset Xα = {b ∈ M : d(b, X) < α}:
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Proposition 7.2 [6, Cor. 2] If β ≥ (1 + ε)α, then

⋃
Bα ⊂ Xα ⊂

⋃
Bβ.

Let

Uα
s =

⋃

0≤λ≤α

(
Bλ
s × {λ}) and Uα = {

Uα
s : s ∈ n

}
.

It follows that N (Uα) ⊂ N (Uβ) whenever α ≤ β.

Definition 7.3 The sparse Čech filtration with sparsity parameter 0 < ε < 1, induced
by the greedy permutation σg : n −→ X , is the filtered simplicial complex

Č(σg, ε) = {
Čα(σg, ε) : α ≥ 0

}
,

where

Čα(σg, ε) = N (Uα).

7.3 Multiscale Projective Coordinates

Wewill show now how the persistent cohomology of Č(σg, ε) can be used to compute
multiscale compatible classifyingmaps. The first thing to notice is that projection onto
the first coordinate

⋃
Uα −→

⋃
Bα

(b, λ) �→ b

is a deformation retraction if one regards Bα
s as a subset of Uα

s via the inclusion

Bα
s ↪→ Uα

s
b �→ (b, α).

(18)

Theorem 7.4 Let (M, d) be a metric space and let X ⊂ M be a subset with n + 1
points. Given a greedy permutation σg : n −→ X and a sparsity parameter 0 < ε < 1,
let rs(α) for α ≥ 0 be as in (17). If Č(σg, ε) is the resulting sparse Čech filtration and

ϕα
s (b) = |rs(α) − d(b, xs)|2+∑

t∈n
|rt (α) − d(b, xt )|2+

for s ∈ n, b ∈
⋃

Bα,
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then we have well-defined maps

wα
1 : H1

(Čα(σg, ε); Z/2
) −→ [ ⋃Bα, RP∞]

[τ = {τr t }] �→ [ f α
τ ]

f α
τ : ⋃Bα −→ RPn

Bα
j � b �→[

(−1)τ0 j
√

ϕα
0 (b) : · · · : (−1)τnj

√
ϕα
n (b)

]
,

and

cα
1 : H2

(
Čα(σg, ε); Z

)
−→ [⋃Bα, CP∞]

[
η = θ + δ1(ν)

] �→ [ f α
θ,ν]

f α
θ,ν : ⋃Bα −→ CPn

Bα
j � b �→

[
e
2π i(ν0 j+∑

t
ϕα
t (b)θ0 j t )√

ϕα
0 (b) : · · · : e2π i(νnj+

∑

t
ϕα
t (b)θnjt )√

ϕα
n (b)

]
,

where θ = {θrst } ∈ Z2
(
Čα(σg, ε); R

)
is the harmonic cocycle representing j∗([η]) ∈

H2
(
Čα(σg, ε); R

)
and ν = {νr t } ∈ C1

(
Čα(σg, ε); R

)
is so that θ = j#(η) − δ1(ν).

Moreover, if each Bα
s ∈ Bα is connected, then wα

1 is injective; if in addition each Bα
s

is locally path-connected and simply connected, and each Bα
r ∩ Bα

t is either empty or
connected, then cα

1 is injective.

Proof The first thing to notice is that the collection of continuous maps

ϕs : ⋃Uα −→ R

(b, λ) �→ ϕλ
s (b)

, s ∈ n,

is a partition of unity dominated by Uα . The theorem follows from combining Theo-
rem 4.11 and the following two facts: the inclusion

⋃Bα ↪→ ⋃Uα from (18) induces
a bijection

[ ⋃
Uα, FP∞] −→ [ ⋃

Bα, FP∞]

and the necessary connectedness conditions are satisfied by Uα if they are satisfied by
Bα . ��
Remark 7.5 As α increases, the number of potentially nontrivial dimensions in the
images of f α

τ and f α
θ,ν decrease. Indeed, since ϕα

s is identically zero if and only if
Bα
s = ∅, it follows that for any b ∈ ⋃Bα the only potentially non-zero entries in

either f α
τ (b) or f α

θ,ν(b) correspond to the indices in

Sα = {
s ∈ n : λs ≥ εα/(1 + ε)2

}
.

The observation follows from the fact that the sequence {λs}s∈n is non-increasing, and
monotonically decreasing for generic X .
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Proposition 7.6 Let α ≤ β, then the diagrams

H1
(Čα(σg, ε); Z/2

) [ ⋃Bα, RP∞]

H1
(Čβ(σg, ε); Z/2

) [ ⋃Bβ, RP∞]

wα
1

wβ
1

H2
(Čα(σg, ε); Z

) [ ⋃Bα, CP∞]

H2
(Čβ(σg, ε); Z

) [ ⋃Bβ, CP∞]

cα
1

cβ
1

are commutative.

As a consequence, if for α = α0 < · · · < α�−1 < α� = β one has classes

H2
(Čα�

(σg, ε); Z
)

H2
(Čα�−1(σg, ε); Z

) · · · H2
(Čα0(σg, ε); Z

)

[η�] [η�−1] · · · [η0]

then the diagram

⋃Bα0
⋃Bα1 · · · ⋃Bα�

CPn
f
α0
η0

f
α1
η1

f
α�
η�

commutes up to a homotopy which perhaps takes place in a higher dimensional pro-
jective space. The same is true in dimension one with Z/2 coefficients. The persistent
cohomology of the sparse Čech filtration Č(σg, ε) now becomes relevant: over Z/2,
a 1-dimensional cohomology class with nonzero persistence yields a multiscale sys-
tem of compatible (up to homotopy) RPn coordinates. Constructing multiscale CPn

coordinates from a persistent cohomology computation for k = 2 requires a bit more
work, as the barcode decomposition is not valid for integer coefficients. Let p be a
prime and consider the short exact sequence of abelian groups

0 Z Z Z/p 0.
×p

The induced homomorphism

H2(Čα(σg, ε); Z
) −→ H2(Čα(σg, ε); Z/p

)

will be an epimorphism whenever H3
(Čα(σg, ε); Z

)
has no p-torsion. The universal

coefficient theorem implies the following

Proposition 7.7 Let p be a prime not dividing the order of the torsion subgroup of
H2(Čα(σg, ε); Z). Then the homomorphism

H2(Čα(σg, ε); Z) −→ H2(Čα(σg, ε); Z/p)
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is surjective.

Now one can follow the strategy in [13, Sects. 2.4 and 2.5] for choosing p, lifting
to integer coefficients and constructing the harmonic representative. The solution to
the harmonic representative problem is plugged into (16).

Definition 7.8 The sparse Rips filtration, with sparsity parameter 0 < ε < 1, induced
by the greedy permutation σg : n −→ X is the filtered simplicial complex

R(σg, ε) = {
Rα(σg, ε) : α ≥ 0

}
,

where

Rα(σg, ε) = {{s0, . . . , sk} ⊂ n : Uα
sr ∩Uα

st �= ∅ for all 0 ≤ r, t ≤ k
}
.

Remark 7.9 It follows that for all β ≥ 0

Čβ(σg, ε) ⊂ Rβ(σg, ε)

and if α is small enough (as the cones Uα
s stop growing) we also get the inclusion

Rα(σg, ε) ⊂ Č2α(σg, ε). Then for each abelian group G and integer k ≥ 0 we get a
commutative diagram

Hk
(
Rβ(σg, ε);G

)
Hk

(
Rα/4(σg, ε);G

)

Hk
(
Čβ(σg, ε);G

)
Hk

(
Čα/2(σg, ε);G

)

which shows that cohomology classes in the sparse Rips filtration with long enough
persistence, and small enough death time, yield nontrivial persistent cohomology
classes in the sparse Čech filtration. This is useful because the persistent cohomology
of the sparse Rips filtration is easier to compute in practice.

Example Let X be a uniform random sample with 2500 points from the 2-dimensional
torus S1 × S1 ⊂ C

2, endowed with the metric d given by

d
(
(z1, w1), (z2, w2)

) =
√∣∣ arccos(〈z1, z2〉)

∣∣2 + ∣∣ arccos(〈w1, w2〉)
∣∣2.

There are two things we would like to illustrate with this example: First, that one
does not need the entire data set X to compute appropriate classifying maps f α

τ , in
fact a small subsample suffices; and second, that one can use the sparse Rips filtration
instead of the Čech filtration, which simplifies computations. Indeed, let n = 34 and
let

X = {x0, . . . , xn} ⊂ X
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PH gR(σ  , ε); 1

0 0.2 0.4 0.6 0.8 1 1.2 1.4

2

   /2( )
2

RP

RP

Z

Fig. 20 RP2 coordinates for X ⊂ S1 × S1, from the 1-dimensional Z/2-persistent cohomology of a
sparse rips filtration. Left: Computed barcode, Right: resulting RP2 coordinates induced by classes with
large persistence. In both cases, the RP2 coordinates of a point (z, w) ∈ X are colored according to
arg(z) ∈ [0, 2π). Please refer to an electronic version for colors.

be obtained through maxmin sampling. Notice that X is 1.4% of the total size of X
and that σg : n −→ X given by σg(s) = xs is a greedy permutation on X . We let
ε = 0.01 since the sample is already sparse. Computing the 1-dimensional persistent
cohomology with coefficients in Z/2 for the sparse Rips filtrationR(σg, ε), yields the
barcode shown in Fig. 20 (left).

For this calculation we first determine the birth-times of the edges as in [6, Alg.
3], and input them as a distance matrix into Dionysus’ persistent cohomology algo-
rithm [29]. After selecting the two classes with the longest persistence, Dionysus
outputs cocycle representativesμ1 andμ2 at cohomological birthα1, α2 ≈ 1.18. Now,
using the fact that Čα(σg, ε) ⊂ Rα(σg, ε) for all α ≥ 0, we have that the induced
homomorphism

C1(Rα(σg, ε); Z/2) −→ C1(Čα(σg, ε); Z/2)

sends μ1 and μ2 to τ1 and τ2, respectively. Moreover, since Rα(σg, ε) is connected at
α = min{α1, α2} it follows that X ⊂ ⋃Bα , and using the formula from Theorem 7.4
we get the point clouds f α

τ1
(X), f α

τ2
(X) ⊂ RP34. The result of computing their RP2

coordinates via principal projective components is shown in Fig. 20 (right).

8 Discussion

Wehave shown in this paper how 1-dimensional (resp. 2-dimensional) persistent coho-
mology classes withZ/2 coefficients (resp.Z/p coefficients for appropriate primes p)
can be used to producemultiscale projective coordinates for data. Themain ingredients
were: interpreting a given cohomology class as the characteristic class corresponding
to a unique isomorphism type of line bundle, and constructing explicit classifying
maps from Čech cocycle representatives. In addition, we develop a dimensionality
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reduction step in projective space in order to lower the target dimension of the original
classifying map.

Some questions/directions suggested by the current approach are the following: The
case H3(B; Z) has a similar flavor to the bundle perspective presented here, and can
perhaps be addressed using gerbes [20]. On the other hand, since Principal Projective
Components is essentially a global fitting procedure, it would be valuable to investigate
what local nonlinear dimensionality reduction techniques can be adapted to projective
space.
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