

Collapsibility to a Subcomplex of a Given Dimension is NP-Complete

Giovanni Paolini¹

Received: 29 March 2017 / Revised: 10 July 2017 / Accepted: 13 July 2017 /

Published online: 24 July 2017

© Springer Science+Business Media, LLC 2017

Abstract In this paper we extend the works of Tancer, Malgouyres and Francés, showing that (d, k)-Collapsibility is NP-complete for $d \ge k + 2$ except (2, 0). By (d, k)-Collapsibility we mean the following problem: determine whether a given d-dimensional simplicial complex can be collapsed to some k-dimensional subcomplex. The question of establishing the complexity status of (d, k)-Collapsibility was asked by Tancer, who proved NP-completeness of (d, 0) and (d, 1)-Collapsibility (for $d \ge 3$). Our extended result, together with the known polynomial-time algorithms for (2, 0) and d = k + 1, answers the question completely.

Keywords Simplicial complexes · Collapsibility · Discrete Morse theory · NP-hardness

Mathematics Subject Classification 05E45 · 68Q17

1 Introduction

Discrete Morse theory is a powerful combinatorial tool which allows to explicitly simplify cell complexes while preserving their homotopy type [1,4,6,9]. This is obtained through a sequence of "elementary collapses" of pairs of cells. Such a process might decrease the dimension of the starting complex, or sometimes even leave a single point (in which case we say that the starting complex was collapsible).

Editor in Charge: Kenneth Clarkson

Giovanni Paolini giovanni.paolini@sns.it

Scuola Normale Superiore, Piazza dei Cavalieri 7, 56126 Pisa, Italy

The problem of algorithmically recognising collapsibility, or finding "good" sequences of elementary collapses, has been studied extensively [2,3,5,8,10,11]. Such problems proved to be computationally hard even for low-dimensional simplicial complexes. For 2-dimensional complexes there exists a polynomial-time algorithm to check collapsibility [8,10], but finding the minimum number of "critical" triangles (without which the remaining complex would be collapsible) is already NP-hard [5]. In dimension ≥ 3 , collapsibility to some 1-dimensional subcomplex [10] or even to a single point [11] were proved to be NP-complete.

In [11], Tancer also introduced the general (d,k)-Collapsibility problem: determine whether a d-dimensional simplicial complex can be collapsed to some k-dimensional subcomplex. He showed that (d,k)-Collapsibility is NP-complete for $k \in \{0,1\}$ and $d \geq 3$, extending the result of Malgouyres and Francés about NP-completeness of (3,1)-Collapsibility [10]. Tancer also pointed out that the codimension 1 case (d=k+1) is polynomial-time solvable as is the (2,0) case. He left open the question of determining the complexity status of (d,k)-Collapsibility in general.

In this short paper we extend Tancer's work, and prove that (d, k)-COLLAPSIBILITY is NP-complete in all the remaining cases.

Theorem 1.1 The (d, k)-COLLAPSIBILITY problem is NP-complete for $d \ge k + 2$, except for the case (2, 0).

To do so, we prove that (d, k)-Collapsibility admits a polynomial-time reduction to (d+1, k+1)-Collapsibility (Theorem 3.1). Then the main result follows by induction. The base cases of the induction are given by NP-completeness of (3, 1)-Collapsibility (for codimension 2) and of (d, 0)-Collapsibility (for codimension d > 3).

2 Collapsibility and Discrete Morse Theory

We refer to [7] for the definition and the basic properties of simplicial complexes, and to [9] for the definition of elementary collapses. The simplicial complexes we consider do not contain the empty simplex, unless otherwise stated.

Our focus is the following decision problem.

Problem 1: (d, k)-COLLAPSIBILITY.

Parameters: Non-negative integers d > k.

Instance: A finite d-dimensional simplicial complex X.

Question: Can X be collapsed to some k-dimensional subcomplex?

We are now going to recall a few definitions of discrete Morse theory [4,6,9], so that we can restate the (d, k)-COLLAPSIBILITY problem in terms of acyclic matchings.

Given a simplicial complex X, its $Hasse\ diagram\ H(X)$ is a directed graph in which the set of nodes is the set of simplexes of X, and an arc goes from σ to τ if and only if τ is a face of σ and $\dim(\sigma) = \dim(\tau) + 1$. We denote such an arc by $\sigma \to \tau$. A matching \mathcal{M} on X is a set of arcs of H(X) such that every node of H(X) (i.e. every simplex of X) is contained in at most one arc in \mathcal{M} . Given a matching \mathcal{M} on X, we

Fig. 1 An acyclic matching on the full simplicial complex on three vertices, with critical simplices $\{1, 3\}$, $\{1\}$, $\{3\}$

say that a simplex $\sigma \in X$ is *critical* if it does not belong to any arc in \mathcal{M} . Finally we say that a matching \mathcal{M} on X is *acyclic* if the graph $H(X)^{\mathcal{M}}$, obtained from H(X) by reversing the direction of each arc in \mathcal{M} , does not contain directed cycles.

Notice that the empty set is always a valid acyclic matching, for which all simplices are critical. See Fig. 1 for an example of a non-trivial acyclic matching on the full triangle.

By standard facts of discrete Morse theory (see for instance [9], Sect. 11.2), "collapsibility to some k-dimensional subcomplex" is equivalent to "existence of an acyclic matching such that the critical cells form a k-dimensional subcomplex". Notice that, given an acyclic matching \mathcal{M} with no critical simplices of dimension > k, one can always remove from \mathcal{M} the arcs between simplices of dimension $\le k$ and obtain an acyclic matching where the critical simplices form a k-dimensional subcomplex.

Therefore the collapsibility problem can be restated as follows.

Problem 2: (d, k)-COLLAPSIBILITY (equivalent form).

Parameters: Non-negative integers d > k.

Instance: A finite d-dimensional simplicial complex X.

Question: Does X admit an acyclic matching such that all critical sim-

plices have dimension $\leq k$?

To simplify the proof of Theorem 3.1 we quote the following useful result from [9], adapting it to our notation.

Theorem 2.1 (Patchwork theorem [9, Theorem 11.10]) Let P be a poset. Let $\varphi: X \to P$ be an order-preserving map (where X is ordered by inclusion), and assume to have acyclic matchings on subposets $\varphi^{-1}(p)$ for all $p \in P$. Then the union of these matchings is itself an acyclic matching on X.

Notice that the subposets $\varphi^{-1}(p)$ are not subcomplexes of X in general, but they still have a well-defined Hasse diagram (the induced subgraph of H(X)). Thus all the previous definitions (matching, critical simplex, acyclic matching) apply also to each subposet.

3 Main Result

Theorem 3.1 Let $d > k \ge 0$. Then there is a polynomial-time reduction from (d, k)-COLLAPSIBILITY to (d + 1, k + 1)-COLLAPSIBILITY.

Proof Let X be an instance of (d,k)-COLLAPSIBILITY, i.e. a d-dimensional simplicial complex. Let $V = \{v_1, \ldots, v_r\}$ be the vertex set of X. Construct an instance X' of (d+1,k+1)-COLLAPSIBILITY, i.e. a (d+1)-dimensional complex, as follows. Let $n \geq 1$ be the number of simplices in X. Introduce new vertices w_1, \ldots, w_{n+1} , and define X' as the simplicial complex on the vertex set $V' = \{v_1, \ldots, v_r, w_1, \ldots, w_{n+1}\}$ given by

$$X' = X \cup \{ \sigma \cup \{w_i\} | \sigma \in X, i = 1, ..., n + 1 \}.$$

Then X' has n(n+2) simplices. Roughly speaking, X' is obtained from X by attaching n+1 cones of X to X. We are going to prove that X is a yes-instance of (d,k)-COLLAPSIBILITY if and only if X' is a yes-instance of (d+1,k+1)-COLLAPSIBILITY.

Suppose that X is a yes-instance of (d, k)-COLLAPSIBILITY. Then there exists an acyclic matching \mathcal{M} on X such that all critical simplices have dimension $\leq k$. Construct a matching \mathcal{M}' on X' as follows:

$$\mathcal{M}' = \left\{ \sigma \cup \left\{ w_1 \right\} \to \sigma \middle| \sigma \in X \right\} \cup \left\{ \sigma \cup \left\{ w_i \right\} \to \tau \cup \left\{ w_i \right\} \middle| (\sigma \to \tau) \in \mathcal{M}, \ i = 2, \dots, n+1 \right\}.$$

This matching corresponds to collapsing the first cone together with X, and every other "base-less" cone by itself (as a copy of X). Notice that the critical simplices of \mathcal{M}' do not form a subcomplex of X', even when the critical simplices of \mathcal{M} form a subcomplex of X.

To prove that \mathcal{M}' is acyclic, consider the set $P = \{w_1, \dots, w_{n+1}\}$ with the partial order

$$w_i < w_j$$
 if and only if $i = 1$ and $j > 1$.

Let $\varphi \colon X' \to P$ be the order-preserving map given by

$$\varphi(\sigma) = \begin{cases} w_j & \text{if } \sigma \text{ contains } w_j \text{ for some } j \geq 2; \\ w_1 & \text{otherwise.} \end{cases}$$

Then \mathcal{M}' is a union of matchings \mathcal{M}'_j on each fiber $\varphi^{-1}(w_j)$. The matching \mathcal{M}'_1 is acyclic on $\varphi^{-1}(w_1)$, since the arcs of \mathcal{M}'_1 define a cut of the Hasse diagram of $\varphi^{-1}(w_1)$. The Hasse diagram of each $\varphi^{-1}(w_j)$ for $j \geq 2$ is isomorphic to $H(X \cup \{\varnothing\})$ via the map $\sigma \cup \{w_j\} \mapsto \sigma$, and the matching \mathcal{M}_j maps to \mathcal{M} . Since \mathcal{M} is acyclic on H(X), each \mathcal{M}_j is also acyclic on $\varphi^{-1}(w_j)$. By the Patchwork Theorem (Theorem 2.1), \mathcal{M}' is acyclic on X'.

The set of critical simplices of \mathcal{M}' is

$$\operatorname{Cr}(X', \mathcal{M}') = \{w_1\} \cup \{\sigma \cup \{w_i\} | \sigma \in \operatorname{Cr}(X, \mathcal{M}) \cup \{\varnothing\}, i = 2, ..., n+1\}.$$

In particular, all critical simplices have dimension $\leq k+1$. Therefore X' is a yesinstance of (d+1,k+1)-COLLAPSIBILITY.

Conversely, suppose now that X' is a yes-instance of (d+1, k+1)-COLLAPSIBILITY. Let \mathcal{M}' be an acyclic matching on X' such that all critical simplices have dimension $\leq k+1$. Since X contains n simplices, and there are n+1 cones, there must exist an index $j \in \{1, \ldots, n+1\}$ such that

$$\left(\sigma \cup \left\{w_j\right\} \to \sigma\right) \notin \mathcal{M}' \ \forall \ \sigma \in X.$$

In other words, simplices containing w_j are only matched with simplices containing w_j . Then we can construct a matching \mathcal{M} on X as follows:

$$\mathcal{M} = \Big\{ \sigma \to \tau \, \big| \sigma, \tau \in X \text{ satisfying } \Big(\sigma \cup \big\{ w_j \big\} \to \tau \cup \big\{ w_j \big\} \Big) \in \mathcal{M}' \Big\}.$$

Notice that if there is some 0-dimensional simplex $\sigma = \{v\} \in X$ such that $(\{v, w_j\} \rightarrow \{w_j\}) \in \mathcal{M}'$, then $\{v\}$ is critical with respect to \mathcal{M} (it would be matched with $\tau = \emptyset$, which does not exist in X). The Hasse diagram of X injects into the Hasse diagram of the j-th cone via the map

$$\iota : \sigma \mapsto \sigma \cup \{w_j\},\$$

and by construction \mathcal{M} maps to \mathcal{M}' . Since \mathcal{M}' is acyclic, \mathcal{M} is also acyclic. The set of critical simplices of \mathcal{M} is

$$\operatorname{Cr}(X, \mathcal{M}) = \left\{ \sigma \in X \middle| \sigma \cup \left\{ w_j \right\} \in \operatorname{Cr}(X', \mathcal{M}') \text{ or } \left(\sigma \cup \left\{ w_j \right\} \to \left\{ w_j \right\} \right) \in \mathcal{M}' \right\}.$$

In the first case $\sigma \cup \{w_j\}$ has dimension $\leq k+1$, and in the second case σ is 0-dimensional. In particular, all critical simplices have dimension $\leq k$. Therefore X is a yes-instance of (d, k)-COLLAPSIBILITY.

The (d, k)-Collapsibility problem admits a polynomial-time solution when d = k + 1 and also for the case (2, 0) [8,10,11]. Malgouyres and Francés [10] proved that (3, 1)-Collapsibility is NP-complete, and Tancer [11] extended this result to (d, k)-Collapsibility for $k \in \{0, 1\}$ and $d \ge 3$. Using this as the base step and Theorem 3.1 as the induction step, we obtain the following result.

Theorem 3.2 The (d, k)-COLLAPSIBILITY problem is NP-complete for $d \ge k + 2$, except for the case (2, 0).

Acknowledgements I would like to thank my father, Maurizio Paolini, for giving useful comments and suggesting corrections. I would also like to thank Luca Ghidelli, for checking the proof thoroughly and for being my best man. Finally, I would like to thank the anonymous referee for his/her suggestions.

References

 Batzies, E., Welker, V.: Discrete Morse theory for cellular resolutions. J. Reine Angew. Math. 543, 147–168 (2002)

- Benedetti, B., Lutz, F.H.: Random discrete Morse theory and a new library of triangulations. Exp. Math. 23(1), 66–94 (2014)
- Burton, B.A., Lewiner, T., Paixão, J., Spreer, J.: Parameterized complexity of discrete Morse theory. ACM Trans. Math. Softw. 42(1), Art. No. 6 (2016)
- Chari, M.K.: On discrete Morse functions and combinatorial decompositions. Discrete Math. 217(1–3), 101–113 (2000)
- Eğecioğlu, Ö., Gonzalez, T.F.: A computationally intractable problem on simplicial complexes. Comput. Geom. 6(2), 85–98 (1996)
- 6. Forman, R.: Morse theory for cell complexes. Adv. Math. **134**(1), 90–145 (1998)
- 7. Hatcher, A.: Algebraic Topology. Cambridge University Press, Cambridge (2002)
- 8. Joswig, M., Pfetsch, M.E.: Computing optimal Morse matchings. SIAM J. Discrete Math. **20**(1), 11–25 (2006)
- Kozlov, D.: Combinatorial Algebraic Topology. Algorithms and Computation in Mathematics. Springer, Berlin (2008)
- Malgouyres, R., Francés, A.R.: Determining whether a simplicial 3-complex collapses to a 1-complex is NP-complete. In: Coeurjolly, D., et al. (eds.) Discrete Geometry for Computer Imagery. Lecture Notes in Computer Science, vol. 4992, pp. 177–188. Springer, Berlin (2008)
- Tancer, M.: Recognition of collapsible complexes is NP-complete. Discrete Comput. Geom. 55(1), 21–38 (2016)

