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Abstract In this paper we extend the works of Tancer, Malgouyres and Francés,
showing that (d, k)-Collapsibility is NP-complete for d ≥ k + 2 except (2, 0). By
(d, k)-Collapsibilitywemean the following problem: determine whether a given d-
dimensional simplicial complex can be collapsed to some k-dimensional subcomplex.
Thequestion of establishing the complexity status of (d, k)-Collapsibilitywas asked
by Tancer, who proved NP-completeness of (d, 0) and (d, 1)-Collapsibility (for
d ≥ 3). Our extended result, together with the known polynomial-time algorithms for
(2, 0) and d = k + 1, answers the question completely.
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1 Introduction

DiscreteMorse theory is a powerful combinatorial tool which allows to explicitly sim-
plify cell complexes while preserving their homotopy type [1,4,6,9]. This is obtained
through a sequence of “elementary collapses” of pairs of cells. Such a process might
decrease the dimension of the starting complex, or sometimes even leave a single point
(in which case we say that the starting complex was collapsible).
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The problem of algorithmically recognising collapsibility, or finding “good”
sequences of elementary collapses, has been studied extensively [2,3,5,8,10,11].
Such problems proved to be computationally hard even for low-dimensional simplicial
complexes. For 2-dimensional complexes there exists a polynomial-time algorithm to
check collapsibility [8,10], but finding the minimum number of “critical” triangles
(without which the remaining complex would be collapsible) is already NP-hard [5].
In dimension ≥3, collapsibility to some 1-dimensional subcomplex [10] or even to a
single point [11] were proved to be NP-complete.

In [11], Tancer also introduced the general (d, k)-Collapsibility problem:
determine whether a d-dimensional simplicial complex can be collapsed to some
k-dimensional subcomplex. He showed that (d, k)-Collapsibility is NP-complete
for k ∈ {0, 1} and d ≥ 3, extending the result of Malgouyres and Francés about
NP-completeness of (3, 1)-Collapsibility [10]. Tancer also pointed out that the
codimension 1 case (d = k + 1) is polynomial-time solvable as is the (2, 0) case. He
left open the question of determining the complexity status of (d, k)-Collapsibility
in general.

In this short paper we extend Tancer’s work, and prove that (d, k)-Collapsibility
is NP-complete in all the remaining cases.

Theorem 1.1 The (d, k)-Collapsibility problem is NP-complete for d ≥ k + 2,
except for the case (2, 0).

To do so, we prove that (d, k)-Collapsibility admits a polynomial-time reduction
to (d + 1, k + 1)-Collapsibility (Theorem 3.1). Then the main result follows by
induction. The base cases of the induction are given by NP-completeness of (3, 1)-
Collapsibility (for codimension 2) and of (d, 0)-Collapsibility (for codimension
d ≥ 3).

2 Collapsibility and Discrete Morse Theory

We refer to [7] for the definition and the basic properties of simplicial complexes, and
to [9] for the definition of elementary collapses. The simplicial complexes we consider
do not contain the empty simplex, unless otherwise stated.

Our focus is the following decision problem.

Problem 1: (d, k)-Collapsibility.
Parameters: Non-negative integers d > k.
Instance: A finite d-dimensional simplicial complex X .
Question: Can X be collapsed to some k-dimensional subcomplex?

We are now going to recall a few definitions of discrete Morse theory [4,6,9], so
that we can restate the (d, k)-Collapsibility problem in terms of acyclic matchings.

Given a simplicial complex X , itsHasse diagram H(X) is a directed graph inwhich
the set of nodes is the set of simplexes of X , and an arc goes from σ to τ if and only
if τ is a face of σ and dim(σ ) = dim(τ ) + 1. We denote such an arc by σ → τ . A
matching M on X is a set of arcs of H(X) such that every node of H(X) (i.e. every
simplex of X ) is contained in at most one arc in M. Given a matching M on X , we
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{1, 2, 3}

{1, 2} {1, 3} {2, 3}

{1} {2} {3}

Fig. 1 An acyclic matching on the full simplicial complex on three vertices, with critical simplices {1, 3},
{1}, {3}

say that a simplex σ ∈ X is critical if it does not belong to any arc in M. Finally we
say that a matchingM on X is acyclic if the graph H(X)M, obtained from H(X) by
reversing the direction of each arc in M, does not contain directed cycles.

Notice that the empty set is always a valid acyclic matching, for which all simplices
are critical. See Fig. 1 for an example of a non-trivial acyclic matching on the full
triangle.

By standard facts of discrete Morse theory (see for instance [9], Sect. 11.2), “col-
lapsibility to some k-dimensional subcomplex” is equivalent to “existence of an acyclic
matching such that the critical cells form a k-dimensional subcomplex”. Notice that,
given an acyclic matching M with no critical simplices of dimension > k, one can
always remove from M the arcs between simplices of dimension ≤ k and obtain an
acyclic matching where the critical simplices form a k-dimensional subcomplex.

Therefore the collapsibility problem can be restated as follows.

Problem 2: (d, k)-Collapsibility (equivalent form).
Parameters: Non-negative integers d > k.
Instance: A finite d-dimensional simplicial complex X .
Question: Does X admit an acyclic matching such that all critical sim-

plices have dimension ≤ k?

To simplify the proof of Theorem 3.1 we quote the following useful result from
[9], adapting it to our notation.

Theorem 2.1 (Patchwork theorem [9, Theorem11.10])Let P be a poset. Letϕ : X →
P be an order-preserving map (where X is ordered by inclusion), and assume to
have acyclic matchings on subposets ϕ−1(p) for all p ∈ P. Then the union of these
matchings is itself an acyclic matching on X.

Notice that the subposets ϕ−1(p) are not subcomplexes of X in general, but they
still have a well-defined Hasse diagram (the induced subgraph of H(X)). Thus all the
previous definitions (matching, critical simplex, acyclic matching) apply also to each
subposet.

3 Main Result

Theorem 3.1 Let d > k ≥ 0. Then there is a polynomial-time reduction from (d, k)-
Collapsibility to (d + 1, k + 1)-Collapsibility.
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Proof Let X be an instance of (d, k)-Collapsibility, i.e. a d-dimensional simplicial
complex. Let V = {v1, . . . , vr } be the vertex set of X . Construct an instance X ′ of
(d + 1, k + 1)-Collapsibility, i.e. a (d + 1)-dimensional complex, as follows. Let
n ≥ 1 be the number of simplices in X . Introduce new vertices w1, . . . , wn+1, and
define X ′ as the simplicial complex on the vertex set V ′ = {v1, . . . , vr , w1, . . . , wn+1}
given by

X ′ = X ∪
{
σ ∪ {

wi
}∣∣σ ∈ X, i = 1, . . . , n + 1

}
.

Then X ′ has n(n+2) simplices. Roughly speaking, X ′ is obtained from X by attaching
n + 1 cones of X to X . We are going to prove that X is a yes-instance of (d, k)-Col-
lapsibility if and only if X ′ is a yes-instance of (d + 1, k + 1)-Collapsibility.

Suppose that X is a yes-instance of (d, k)-Collapsibility. Then there exists an
acyclic matching M on X such that all critical simplices have dimension ≤ k. Con-
struct a matching M′ on X ′ as follows:

M′ =
{
σ ∪ {

w1
} → σ

∣∣σ ∈ X
}

∪
{
σ ∪ {

wi
} → τ ∪ {

wi
}∣∣(σ → τ) ∈ M, i = 2, . . . , n + 1

}
.

This matching corresponds to collapsing the first cone together with X , and every
other “base-less” cone by itself (as a copy of X ). Notice that the critical simplices of
M′ do not form a subcomplex of X ′, even when the critical simplices of M form a
subcomplex of X .

To prove thatM′ is acyclic, consider the set P = {w1, . . . , wn+1} with the partial
order

wi < w j if and only if i = 1 and j > 1.

Let ϕ : X ′ → P be the order-preserving map given by

ϕ(σ) =
{

w j if σ containsw j for some j ≥ 2;
w1 otherwise.

Then M′ is a union of matchings M′
j on each fiber ϕ−1(w j ). The matching M′

1 is

acyclic onϕ−1(w1), since the arcs ofM′
1 define a cut of theHasse diagramofϕ−1(w1).

The Hasse diagram of each ϕ−1(w j ) for j ≥ 2 is isomorphic to H(X ∪ {∅}) via the
map σ ∪{w j } �→ σ , and the matchingM j maps toM. SinceM is acyclic on H(X),
eachM j is also acyclic on ϕ−1(w j ). By the Patchwork Theorem (Theorem 2.1),M′
is acyclic on X ′.

The set of critical simplices of M′ is

Cr(X ′,M′) = {
w1

} ∪
{
σ ∪ {

wi
}∣∣σ ∈ Cr(X,M) ∪ {

∅

}
, i = 2, . . . , n + 1

}
.
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In particular, all critical simplices have dimension ≤ k + 1. Therefore X ′ is a yes-
instance of (d + 1, k + 1)-Collapsibility.

Conversely, suppose now that X ′ is a yes-instance of (d+1, k+1)-Collapsibility.
Let M′ be an acyclic matching on X ′ such that all critical simplices have dimension
≤ k + 1. Since X contains n simplices, and there are n + 1 cones, there must exist an
index j ∈ {1, . . . , n + 1} such that

(
σ ∪ {

w j
} → σ

)
/∈ M′ ∀ σ ∈ X.

In other words, simplices containing w j are only matched with simplices containing
w j . Then we can construct a matching M on X as follows:

M =
{
σ → τ

∣∣σ, τ ∈ X satisfying
(
σ ∪ {

w j
} → τ ∪ {

w j
}) ∈ M′}.

Notice that if there is some 0-dimensional simplex σ = {v} ∈ X such that ({v,w j } →
{w j }) ∈ M′, then {v} is critical with respect toM (it would be matched with τ = ∅,
which does not exist in X ). The Hasse diagram of X injects into the Hasse diagram of
the j-th cone via the map

ι : σ �→ σ ∪ {w j },
and by construction M maps to M′. Since M′ is acyclic, M is also acyclic. The set
of critical simplices of M is

Cr(X,M) =
{
σ ∈ X

∣∣σ ∪ {
w j

} ∈ Cr(X ′,M′) or
(
σ ∪ {

w j
} → {

w j
}) ∈ M′}.

In the first case σ ∪ {w j } has dimension ≤ k + 1, and in the second case σ is 0-
dimensional. In particular, all critical simplices have dimension ≤ k. Therefore X is
a yes-instance of (d, k)-Collapsibility. 
�

The (d, k)-Collapsibility problem admits a polynomial-time solution when d =
k + 1 and also for the case (2, 0) [8,10,11]. Malgouyres and Francés [10] proved
that (3, 1)-Collapsibility is NP-complete, and Tancer [11] extended this result to
(d, k)-Collapsibility for k ∈ {0, 1} and d ≥ 3. Using this as the base step and
Theorem 3.1 as the induction step, we obtain the following result.

Theorem 3.2 The (d, k)-Collapsibility problem is NP-complete for d ≥ k + 2,
except for the case (2, 0).
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