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Abstract In 1978,Makai Jr. established a remarkable connectionbetween thevolume-
product of a convex body, its maximal lattice packing density and the minimal
density of a lattice arrangement of its polar body intersecting every affine hyper-
plane. Consequently, he formulated a conjecture that can be seen as a dual analog of
Minkowski’s fundamental theorem, and which is strongly linked to the well-known
Mahler-conjecture. Based on the covering minima of Kannan and Lovász and a prob-
lem posed by Fejes Tóth, we arrange Makai Jr.’s conjecture into a wider context and
investigate densities of lattice arrangements of convex bodies intersecting every i-
dimensional affine subspace. Then it becomes natural also to formulate and study a
dual analog to Minkowski’s second fundamental theorem. As our main results, we
derive meaningful asymptotic lower bounds for the densities of such arrangements,
and furthermore, we solve the problems exactly for the special, yet important, class
of unconditional convex bodies.
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1 Introduction

A convex body is a compact convex full-dimensional set in the Euclidean spaceRn .We
denote byKn the family of all convex bodies inRn , and we writeKn

o for the subfamily
of o-symmetric convex bodies K ∈ Kn , that is, K = −K . Let Ln denote the set of
full-dimensional lattices in R

n , that is, discrete subgroups of Rn of full rank. Every
lattice � ∈ Ln can be written as � = AZn for some invertible matrix A ∈ GLn(R).
Let Ai (R

n) be the family of i-dimensional affine subspaces of Rn . Given a subset
S ⊆ R

n and a lattice � ∈ Ln , we call S + � = ⋃
z∈�(S + z) a lattice arrangement.

For more basic notation and background information on convex bodies and lattices,
we refer to the textbooks by Gruber [18] and Martinet [29], respectively.

Our main interest in this paper concerns the so-called covering minima and their
relation to the volume of a convex body. Motivated by a number of applications,
for instance, to flatness theorems and to inhomogeneous simultaneous Diophan-
tine approximation, these numbers have been formally introduced by Kannan and
Lovász [22]1: For a convex body K ∈ Kn , a lattice � ∈ Ln , and i = 1, . . . , n, the
i -th covering minimum (of K with respect to �) is defined as

μi (K ,�) = inf
{
μ > 0 : (μK + �) ∩ L �= ∅ for all L ∈ An−i (R

n)
}
.

These numbers extend the classical notion of the covering radius μn(K ,�) =
inf{μ > 0 : μK + � = R

n}, which is also known as the inhomogeneous minimum
(see [19, Sect. 13]).

The concept of lattice arrangements that intersect every (n − i)-dimensional affine
subspace has been studied already before the work of Kannan and Lovász. In fact,
generalizing the sphere covering problem, Fejes Tóth [12] proposed to determine the
density of the thinnest lattice arrangement of solid spheres with this property (more
on this in Sect. 2).

A basic result on lattice coverings,meaning lattice arrangements covering thewhole
space, is that their density is at least one. More precisely, for any K ∈ Kn and� ∈ Ln ,
the density of K + � is defined as

δ(K ,�) = vol(K )

det(�)
,

where vol(K ) denotes the volume (Lebesgue-measure) of K and det(�) = |det(A)|
the determinant of the lattice � = AZn . Now, if K + � = R

n , then δ(K ,�) ≥ 1,
which can be equivalently formulated in the language of the covering radius as (cf. [19,
Sect. 13.5])

μn(K ,�)n vol(K ) ≥ det(�). (1)

1 The interested reader may also consult the paper of Averkov and Wagner [3] which includes a correction
to Theorem (2.13) of [22], concerning linear relations among covering minima.
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The corresponding result for lattice packings, that is, lattice arrangements K +�with
the property that (int(K ) + x) ∩ (int(K ) + y) = ∅, for every x, y ∈ �, x �= y, is
the intuitively clear statement that their density is δ(K ,�) ≤ 1. In order to give an
equivalent formulation that corresponds to (1), we introduce Minkowski’s successive
minima, which are defined for any o-symmetric K ∈ Kn

o and any � ∈ Ln as

λi (K ,�) = min
{
λ ≥ 0 : dim(λK ∩ �) ≥ i

}
, for i = 1, . . . , n.

Here, dim(S) denotes the dimension of the affine hull of the set S ⊆ R
n . For general

K ∈ Kn , one usually extends this definition by setting λi (K ,�) := λi (
1
2DK ,�),

where DK = K − K is the difference body of K . Based on the fact that K + � is a
lattice packing if and only if λ1(K ,�) ≥ 2 (cf. [18, Sect. 30]), one can reformulate
the density statement for lattice packings as

λ1(K ,�)n vol(K ) ≤ 2n det(�). (2)

In the case that K is o-symmetric, this inequality is known as Minkowski’s first fun-
damental theorem (cf. [18, Sect. 22] and [31, Sect. 30]). Minkowski strengthened
his fundamental theorem by taking the whole sequence of successive minima into
account. He formulated his result for o-symmetric convex bodies, but analogously
to (2) it naturally extends to arbitrary K ∈ Kn and � ∈ Ln , and reads as follows
(cf. [18, Sect. 23] and [27]):

λ1(K ,�) · . . . · λn(K ,�)vol(K ) ≤ 2n det(�). (3)

The main motivation for our studies is a conjecture of Makai Jr. which is an ana-
log of (1) for the first covering minimum and at the same time a polar version of
Minkowski’s Theorem (2).

Conjecture 1.1 (Makai Jr. [25]) Let K ∈ Kn and let � ∈ Ln. Then

μ1(K ,�)n vol(K ) ≥ n + 1

2nn! det(�), (4)

and equality can only hold if K is a simplex.
Moreover, if K is o-symmetric, then

μ1(K ,�)n vol(K ) ≥ 1

n! det(�), (5)

and equality can only hold if K is a crosspolytope.

Makai Jr. showed that for the standard lattice � = Z
n , equality in (4) holds

for the simplex Tn = conv{e1, . . . , en,−1n} and in (5) for the crosspolytope
C�

n = conv{±e1, . . . ,±en}. Here, ei denotes the i-th coordinate unit vector and
1n = (1, . . . , 1)ᵀ ∈ R

n the all-one vector; we omit the subscript and only write
1 if the dimension is clear from the context.
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Note that Makai Jr. did not state his conjecture in terms of μ1(K ,�) but rather in
terms of what he calls non-separable arrangements, which are lattice arrangements
that intersect every affine hyperplane. In order to explain why Makai Jr.’s conjecture
would be a polar Minkowski theorem, we make use of an identity of Kannan and
Lovász [21, Lem. (2.3)] that says that the first successive minimum is strongly dual to
the first covering minimum. More precisely, for any K ∈ Kn

o and � ∈ Ln , we have

λ1(K ,�)μ1(K �,��) = 1

2
, (6)

where K � = {x ∈ R
n : xᵀy ≤ 1, for all y ∈ K } is the polar body of K , and

�� = {x ∈ R
n : xᵀy ∈ Z, for all y ∈ �} is the polar lattice of �. By the definition

of the first successive minimum, we have for any K ∈ Kn
o ,

λ1(K ,�) ≥ 1 if and only if int(K ) ∩ � = {0}.

Therefore, based on (6)we see that under the condition int(K )∩� = {0},Minkowski’s
Theorem (2) states that vol(K ) ≤ 2n det(�), whereas the o-symmetric part of Con-
jecture 1.1 claims that

vol(K �) ≥ 2n

n! det(�
�) for any K ∈ Kn

o with int(K ) ∩ � = {0}. (7)

Yet another interpretation of Makai Jr.’s conjecture can be given in terms of the lattice
width ω�(K ) = minv∈��\{0} ω(K , v) of K with respect to �, where ω(K , v) =
maxx∈K xᵀv − minx∈K xᵀv is the width of K in direction v. The identity (6)
shows that μ1(K ,�) is reciprocal to ω�(K ) and hence (5) can be seen as a dis-
crete analog to the obvious inequality vol(K ) ≥ κn

2n ω(K )n , for K ∈ Kn
o , where

ω(K ) = minu∈Sn−1 ω(K , u) is the usual width of K and κn = πn/2/	(n/2 + 1) is
the volume of the Euclidean unit ball Bn .

Rather than attacking Conjecture 1.1 directly, our main objective is to embedMakai
Jr.’s problem into a wider context that strengthens the analogy to the covering inequal-
ity (1) and the duality to Minkowski’s classical results. In the spirit of Fejes Tóth [12],
we are interested in minimal densities of lattice arrangements with the more refined
covering property captured by the i-th coveringminimum. In particular, we investigate
the following problem.

Problem 1.2 Find optimal constants c1,n, . . . , cn,n > 0 and cn > 0 that depend only
on their indices, such that for any K ∈ Kn and � ∈ Ln , one has

μi (K ,�)n vol(K ) ≥ ci,n det(�) (8)

for i = 1, . . . , n, and

μ1(K ,�) · . . . · μn(K ,�)vol(K ) ≥ cn det(�). (9)
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Observe that the inequalities in Problem 1.2 are invariant under simultaneous trans-
formations of K and � by an invertible linear mapping. Therefore, we usually restrict
our attention to the standard lattice � = Z

n . The question (9) involving the whole
sequence of covering minima was already posed by Betke et al. [8] and in the case
n = 2 answered by Schnell [33] (cf. Theorem 4.1). This inequality can be seen as a
dual inequality to Minkowski’s second fundamental Theorem (3). For convenience,
we call μ1(K ,�) · . . . · μn(K ,�)vol(K )/ det(�) the covering product of K (with
respect to �).

Our contributions to Problem 1.2 focus on the one hand on determining meaningful
first bounds on the optimal constants ci,n and cn , and on the other hand, on solving
it for a particular family of convex bodies. To be more precise, in Theorem 3.1 we
obtain lower bounds of the type (8) that support the natural guess that ci,n is in order
much bigger than c j,n for any i > j . Regarding the covering product, we prove in
Theorem 4.3 that cn ≥ 1/n!, which is a necessary condition for (5), since the covering
minima form a non-decreasing sequence, that is, μ1(K ,�) ≤ . . . ≤ μn(K ,�).
For the family of standard unconditional convex bodies, which are convex bodies
that are symmetric with respect to every coordinate hyperplane, we derive the best
possible bounds in (8) and (9), and characterize the extremal convex bodies (see
Theorems 3.4 and 4.5). Finally, we argue in Sect. 4 that for general convex bodies the
optimal constant in (9) is most likely given by cn = (n + 1)/2n , and we exhibit a
concrete example that has exponentially smaller covering product than any standard
unconditional body.All these results show that, unlike forMinkowski’s inequalities (2)
and (3), the problems (8) and (9) are independent from each other.

Before we discuss the details of the aforementioned findings, we survey known
results and various connections of Makai Jr.’s conjecture to some notoriously difficult
problems in convex and discrete geometry. Moreover, we illustrate the applicability
of the polar Minkowski inequality by deriving a variant of a linear form theorem from
a known case of Conjecture 1.1.

2 A Review of the Literature Around Makai Jr.’s Conjecture and an
Application to Linear Forms

For the ease of presentation, we mostly restrict the discussion to the case of
o-symmetric convex bodies in this section. There are analogous “non-symmetric”
versions of the relations elaborated on below, which can easily be found in the cited
literature. Specifically, Álvarez Paiva et al. [2, Sect. 3] provide detailed information
for the general case.

There is a strong connection of Makai Jr.’s conjecture to a well-known problem
regarding the volume-product of a convex body. Still an unsolved question today,
Mahler conjectured in 1939 that for o-symmetric convex bodies K ∈ Kn

o the volume-
product M(K ) = vol(K )vol(K �) is minimized by the cube Cn = [−1, 1]n . In
symbols,

M(K ) ≥ M(Cn) = 4n

n! . (10)
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We refer the reader to [10] for a historical account of Mahler’s conjecture, an
overview of the state of the art, and references to the original literature on partial
results concerning (10) that we mention below.

Now, Makai Jr. [25, Thm. 1] proved the remarkable identity

M(K ) = 4nδ(K )θ1(K �) for K ∈ Kn
o , (11)

where δ(K ) = max{δ(K ,�) : � ∈ Ln, K + � a packing} denotes the maximum
density of a lattice packing of K , and θi (K ) = inf�∈Ln δ(μi (K ,�)K ,�) the infimum
of the densities of lattice arrangements of K that intersect every (n − i)-dimensional
affine subspace.2 This relation shows that Mahler’s conjecture (10) is equivalent to
δ(K )θ1(K �) ≥ 1/n!, a statement on densities of lattice arrangements.

In view of δ(K ) ≤ 1, for K ∈ Kn
o , we see that Makai Jr.’s conjecture (5), which

reformulates as θ1(K ) ≥ 1/n!, is a necessary condition for Mahler’s conjecture (10).
In particular, partial results for the latter problem transfer to the former. For example,
Conjecture 1.1 holds for n = 2 (cf. [16,25]). Moreover, its o-symmetric version (5),
and hence the polar Minkowski inequality (7), hold for unconditional convex bodies,
ellipsoids, zonotopes, and the respective polar bodies.

While the exact conjectured lower bound in (10) remains elusive, the asymptotic
growth rate of the dimensional constant is well understood. The strongest result is
due to Kuperberg [23], who showed that M(K ) ≥ πn/n!, for any K ∈ Kn

o . As a
consequence one obtains the following asymptotic estimates in Makai Jr.’s problem.
For any K ∈ Kn hold

θ1(K ) ≥
(

π

8

)n n + 1

2nn! and θ1(K ) ≥
(

π

4

)n 1

n! if K ∈ Kn
o . (12)

The first of these inequalities appears in Álvarez Paiva et al. [2, Thm. 2]. Note also
that already Mahler [24] studied asymptotic estimates of this kind.

Conversely, it turns out that an affirmative answer to Makai Jr.’s conjecture implies
good asymptotic results for Mahler’s problem, so that the two conjectures (5) and (10)
are asymptotically equivalent. More precisely, one can use the famous Minkowski–
Hlawka theorem (cf. [19, p. 202]), which is a reverse statement of Minkowski’s
fundamental theorem (2), and obtain the boundM(K ) ≥ 2n/n!, under the assumption
θ1(K ) ≥ 1/n!. Details on this relation have been discussed in [2].

Finally, we survey the very limited knowledge on the densities θi (K ) for particular
convex bodies K . The original problem of Fejes Tóth [12] concerns the densities
θi (Bn). Since the volume-product M(Bn) is known explicitly, Makai Jr.’s identity (11)
shows that determining θ1(Bn) is equivalent to determining δ(Bn). This is the lattice
sphere packing problem which is solved in dimension n ≤ 8 and n = 24 (see [13]
and [18, Sect. 29]). On the other hand, the lattice sphere covering problem is exactly

2 In general, it is not clear whether the infimum θi (K ) is attained by a suitable lattice (cf. [26, Prop. 3.6]).
It is known to be attained in the case of lattice coverings i = n, the case i = 1 (cf. [21,25]), and for the
Euclidean ball in small dimensions (cf.Table 1).
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Table 1 Densities of lattice arrangements of Bn in small dimensions

n = 2 θ1(B2) =
√
3π
8 θ2(B2) = 2π√

27

n = 2 θ1(B3) =
√
2π
12 θ2(B3) = 9π

32 θ3(B3) = 5
√
5π

24

the question on θn(Bn), being solved for n ≤ 5 (see [13]). The only known value of
θi (Bn) for i /∈ {1, n} is θ2(B3) due to Bambah and Woods [4]; see Table 1.

Since the cube admits a lattice packing that covers the whole space, we have
δ(Cn) = θn(Cn) = 1 and hence via (11) andM(Cn) = 4n/n!, we find θ1(C�

n) = 1/n!.
Exchanging the roles of Cn and C�

n leads to a difficult problem for which only recently
the first non-trivial results were proven. In [14] it was shown that there is an absolute
constant c > 0 such that δ(C�

n) ≤ c · 0.8685n , and hence θ1(Cn) ≥ c · 1.1514n/n!.
We end this discussion by posing a concrete and probably managable problem on

these densities:

Is it true that θn−1(Cn) = 1/2 for every n ≥ 2 ?

The conjectured value 1/2 would be realized by the chessboard lattice �o = {x ∈
Z

n : x1+· · ·+ xn ≡ 0 mod 2} that also appears at the end of Sect. 3. A closely related
problem is the chessboard conjecture of Fejes Tóth, which was proved by Böröczky et
al. [9]. It states that the density of K +� is at least 1/2 provided that every connected
component ofRn \(K +�) is bounded. Furthermore, it suggests that θn−1(K ) ≥ 1/2,
for every o-symmetric convex body K ∈ Kn

o .

2.1 An Application to Linear Forms

Minkowski successfully applied his fundamental theorem (2) to questions concerning
solutions of inequalities involving linear forms; a benchmark example is his “linear
form theorem” (cf. [18, Cor. 22.2]). It works best in situations where the volume
of the underlying convex body that describes the problem at hand, can be explicitly
computed. It should come as no surprise that an affirmative answer to Makai Jr.’s
conjecture (5) would be equally useful to solve questions in which the volume of the
polar body can be controlled. An illustrating example is the following.

Theorem 2.1 Consider n linear homogeneous forms �i (x) = aᵀ
i x , for some

a1, . . . , an ∈ R
n, of determinant det(A) = det(a1, . . . , an) �= 0. Then, there exists a

non-zero integral vector x ∈ Z
n \ {0} such that

n∑

i=1

|�i (x)| +
∣
∣
∣
∣
∣

n∑

i=1

�i (x)

∣
∣
∣
∣
∣
≤ (

(n + 1)! · |det(A)|)1/n
.

For small dimensions one can provide sharp bounds:
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If n = 2, there exists a non-zero integral vector x ∈ Z
n \ {0} such that

|�1(x)| + |�2(x)| + |�1(x) + �2(x)| ≤ 4√
3

|det(A)|1/2.

The forms �1(x) = x1 − 2x2, �2(x) = x1 + x2 show that the constant on the right
hand side cannot be improved.

If n = 3, there exists a non-zero integral vector x ∈ Z
n \ {0} such that

|�1(x)| + |�2(x)| + |�3(x)| + |�1(x) + �2(x) + �3(x)| ≤ 6

(
2

7

)2/3

|det(A)|1/3.

The forms �1(x) = 3x1 + 3x2 − 4x3, �2(x) = 3x1 − 4x2 + 3x3, and �3(x) =
−4x1 + 3x2 + 3x3 show the minimality of the constant.

Proof Consider the zonotope Zn = [−1, 1]n +[−1, 1]. This is an o-symmetric convex
body whose volume can be computed by dissecting Zn into n +1 parallelepipeds, and
which is given by vol(Zn) = (n +1)2n (see [6, Chap. 9]). Denoting the norm function
of K ∈ Kn

o by ‖y‖K = min{λ ≥ 0 : y ∈ λK }, we have

‖y‖Z�
n

= hZn (y) =
n∑

i=1

|yi | + |y1 + · · · + yn| for any y ∈ R
n,

where hZn (x) = maxy∈Zn xᵀy, x ∈ R
n , is the support function of Zn (see [18]).

Therefore, for any τ ≥ 0, we have

{

x ∈ R
n :

n∑

i=1

|�i (x)| +
∣
∣
∣

n∑

i=1

�i (x)

∣
∣
∣ ≤ τ

}

= τ A−1Z�
n .

By the formulation of (5) as a polarMinkowski’s Theorem (7) and its validity for polars
of zonotopes, we get that τ A−1Z�

n contains a non-zero integral vector x ∈ Z
n , if

2n

n! ≥ vol
(
(τ A−1Z�

n)�
) = |det(A)|

τ n
vol(Zn) = |det(A)|

τ n
(n + 1)2n .

This holds if and only if τ n ≥ (n + 1)! · |det(A)|, implying the claim for arbitrary n.
For n ∈ {2, 3}, the density of a densest lattice packing of Z�

n is known, andmoreover,
we can compute the volume of Z�

n explicitly. These facts enable us to useMinkowski’s
fundamental theorem instead of (7) and they lead to the sharp bounds stated in the
theorem. By definition of the density δ(Z�

n) one can introduce it as a parameter in (2)
and obtain that λ1(Z�

n,Zn)nvol(Z�
n) ≤ 2nδ(Z�

n) (cf. [19, Sect. 20.1]). Since the density
δ(Z�

n) is invariant under invertible linear transformations, this inequality guarantees
the existence of a non-zero integral vector in τ A−1Z�

n as long as

vol
(
τ A−1Z�

n

) = τ n

|det(A)| vol
(
Z�

n

) ≥ δ
(
Z�

n

)
2n . (13)
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Now, Z�
2 is a hexagon of volume vol(Z�

2) = 3/4 which tiles the plane by trans-
lations of the lattice 1

2

(
1 −2
1 1

)
Z
2. Hence, δ(Z�

2) = 1, and (13) gives the condition
τ 2 ≥ (16/3)|det(A)|. This implies the claimed bound, for n = 2. The extremal
example can be read off from the lattice that realizes δ(Z�

2).
In the case n = 3, we find that Z�

3 is the cubeoctahedron, which is an
Archimedean polytope with 12 vertices and volume vol(Z�

3) = 5/12. A dens-
est lattice packing of Z�

3 has been computed by Betke and Henk [7, Sect. 5].
After a linear transformation of our coordinates of the cubeoctahedron, their result
shows that δ(Z�

3) = 45/49, and this density is realized by the lattice with basis
(1/6) · {

(3, 3,−4)ᵀ, (3,−4, 3)ᵀ, (−4, 3, 3)ᵀ
}
. Analogously to the case n = 2, we

use this information together with (13) in order to obtain the desired bound and an
extremal example. �

3 Results Concerning Inequalities of the Form (8)

In this section, we are concerned with the study of lower bounds on the functionals
μi (K ,�)n vol(K )/ det(�). Before we state and prove our results, we discuss some
fundamental facts on covering minima.

It is clear that, by compactness of K ∈ Kn , we can replace the infimum in the
definition of the covering radius μn(K ,�) by a minimum. However, the fact that this
is possible for every covering minimum μi (K ,�), i = 1, . . . , n, is not immediate to
see and needs a subtle argument3. The proof of Kannan and Lovász [22, Lem. 2.2]
moreover shows that the i-th covering minimum admits an equivalent description via
projections: For a lattice � ∈ Ln we denote by Li (�) the family of i-dimensional
lattice planes of �, that is, linear subspaces of Rn that are spanned by vectors of �.
Denoting by S|L the orthogonal projection of S ⊆ R

n onto a linear subspace L , they
prove in [22, Rem. 1] that

μi (K ,�) = max
{
μi (K |L ,�|L) : L ∈ Li (�)

}
. (14)

Note that�|L is a lattice in the subspace L ∈ Li (�), so that it makes sense to compute
the covering radius of K |L with respect to this lattice.

As explained in the introduction, there is no loss of generality in restricting the
consideration to the standard lattice Z

n in Problem 1.2. For the sake of brevity, we
writeμi (K ) = μi (K ,Zn), and also λi (K ) = λi (K ,Zn), in this case, for any K ∈ Kn

and any i ∈ [n] := {1, . . . , n}. We start our discussion with first general bounds of
the form (8).

Theorem 3.1 (i) Let K ∈ Kn
o . There exists a constant Flt(n) only depending on n

such that, for any i ∈ [n],

3 The natural idea to establish that the set of lattices � ∈ Ln with the property that K + � intersects every
affine (n − i)-dimensional subspace is closed exhibits some difficulties. In fact, it is not clear whether this
holds in general. We refer to [26, Prop. 3.6] and its discussion for more information on this issue.
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μi (K )nvol(K ) ≥ i !
n! Flt(n)−(n−i).

In particular, we can choose Flt(n) = c n(1 + log n), for some c > 0.
(ii) Let K ∈ Kn be such that μi (K )K +Z

n contains every i-dimensional coordinate
plane. Then

μi (K )nvol(K ) ≥ i !n/ i

n! .

Proof (i) First of all, Jarník’s inequality [20] (cf. [22, Lem. (2.4)]) claims that
λn(K )/2 ≤ μn(K ). In view of the flatness theorem there is a constant Flt(n) only
depending on n such that μn(K ) ≤ Flt(n)μ1(K ) (cf. [22, Thm. (2.7)]). Therefore,
λn(K ) ≤ 2Flt(n)μ1(K ), and since λi (K ) and μi (K ) form non-decreasing sequences
with respect to i ∈ [n], we get λn−i (K ) ≤ 2Flt(n)μi (K ). This means that there is
an (n − i)-dimensional lattice plane L ∈ Ln−i (Z

n) and linearly independent vec-
tors a1, . . . , an−i ∈ Z

n ∩ L , such that the crosspolytope conv{±a1, . . . ,±an−i } is
contained in the body 2Flt(n)μi (K )K ∩ L . Thus,

voln−i (K ∩ L) ≥
(

1

2Flt(n)μi (K )

)n−i 2n−i

(n − i)! det(Z
n ∩ L), (15)

where, for any Lebesgue-measurable set S ⊆ R
n with dim(S) = i , we denote by

voli (S) the volume of S computed in its affine hull. Let L⊥ be the orthogonal comple-
ment of L . By (14), we haveμi (K ) ≥ μi (K |L⊥,Zn|L⊥), and applying inequality (1)
to the projected body K |L⊥ and the projected lattice Zn|L⊥, we obtain

μi (K )i voli (K |L⊥) ≥ det(Zn|L⊥). (16)

Finally, we utilize an inequality of Rogers and Shephard [32, Thm. 1], which states
that

voln−i (K ∩ L)voli (K |L⊥) ≤
(

n

i

)

vol(K ). (17)

Putting together (15), (16), and (17), andusingdet(Zn∩L) det(Zn|L⊥) = det(Zn) = 1
(see [29, Prop. 1.9.7]), we arrive at

μi (K )n vol(K ) ≥ μi (K )n voli (K |L⊥)voln−i (K ∩ L)
(n

i

)
det(Zn|L⊥) det(Zn ∩ L)

≥ μi (K )n−i
(n

i

)
1

(
Flt(n)μi (K )

)n−i
(n − i)!

= i !
n! Flt(n)−(n−i).

Due to a result of Banaszczyk [5], we can choose Flt(n) = c n(1 + log n), for some
absolute constant c > 0.
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(ii) For J ⊆ [n], let L J = lin{e j : j ∈ J } be the linear subspace spanned by e j ,
j ∈ J . An inequality of Meyer [30] states that, for all i ∈ [n], we have

(
n!vol(K )

)i/n ≥ i !
( ∏

J⊆[n],|J |=i

voli (K ∩ L J )

)1/(n
i)

.

By assumption, every i-dimensional coordinate hyperplane L J , J ⊆ [n], |J | = i , is
covered by the translates μi (K )K + Z

n . Therefore, by (1) we have that voli
(
μi (K )

K ∩ L J
) ≥ 1. Hence, Meyer’s inequality gives us

μi (K )n vol(K ) = vol(μi (K )K ) ≥ i !n/ i

n! ,

as desired. �

Remark 3.2 (i) For k ∈ N a constant, Theorem 3.1 (i) yields a lower bound of the
type μn−k(K )n vol(K ) ≥ c/(n2k(log n)k) which dramatically improves upon the
bound that follows from the monotonicity of theμi (K ) and the known asymptotic
bounds (12) on μ1(K )n vol(K ).

(ii) The case i = 1 in Theorem 3.1 (ii) is included in the more general setting that
μ1(K )K + Z

n is connected, which has been studied in [15,17].

Our next goal is to derive sharp lower bounds onμi (K )n vol(K ) on a particular family
of convex bodies K . Beforewe state our result, we introduce and investigate a family of
polytopes that interpolates between the cube and the crosspolytope. For every i ∈ [n],
let

Pn,i = conv
{±e j1 ± · · · ± e ji : 1 ≤ j1 < · · · < ji ≤ n

} = Cn ∩ iC�
n .

Note that Pn,n = Cn and Pn,1 = C�
n . Moreover, P3,2 is the cubeoctahedron and P4,2

is the 24-cell. The facet Pn,i ∩ {x ∈ R
n : x1 + · · · + xn = i} of Pn,i is known as

the i -th hypersimplex and usually denoted by n−1(i) (see [35, Ex. 0.11] for more
information and the origin of these interesting polytopes). We may therefore think of
the Pn,i as the symmetric cousins of the hypersimplices. The covering minima and the
volume of these special polytopes can be computed explicitly as follows.

Proposition 3.3 (i) For i ∈ [n], we have

μ j (Pn,i ) = 1

2
for j ≤ i and μ j (Pn,i ) = j

2i
for j > i.

In particular, μi (Cn) = 1/2 and μi (C�
n) = i/2, for all i ∈ [n].
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(ii) For i ∈ [n], we have4

vol(Pn,i ) = 2n

n!
i∑

k=0

(−1)k
(

n

k

)

(i − k)n .

Proof (i) Let j ∈ {1, . . . , i} and let L j be a j-dimensional coordinate subspace. Then,
Pn,i |L j = Pn,i ∩L j = C j , wherewe identify L j withR j . Since also L j ⊆ 1

2 Pn,i +Z
n ,

we get μ j (Pn,i ) = 1/2. For the case j ∈ {i + 1, . . . , n}, we first note that since
Pn,i ⊆ Cn and (i/n, . . . , i/n) lies in the boundary of Pn,i , we haveμn(Pn,i ) = n/(2i).
Using that Pn,i |L j = Pj,i , for all j-dimensional coordinate subspaces L j , this implies
μ j (Pn,i ) = j/(2i).

(ii) It is known that (see [34] for instance), for any k ∈ [n],

vol
(
[0, 1]n ∩

{
x ∈ R

n : k − 1 ≤
n∑

i=1

xi ≤ k
})

= 1

n! An,k,

where An,k denotes the Eulerian numbers. Therefore,

vol(Pn,i ) = 2nvol
(
[0, 1]n ∩

{
x ∈ R

n : 0 ≤
n∑

i=1

xi ≤ i
})

= 2n

n!
i∑

k=1

An,k, (18)

which implies the desired formula in view of the identity (cf. [6, Chap. 2])

An,k =
k∑

j=0

(−1) j
(

n + 1

j

)

(k − j)n

and routine algebraic manipulations. �
Now, recall that a convex body K ∈ Kn

o is called standard unconditional if for
every x ∈ K , we have (±x1, . . . ,±xn) ∈ K , that is, K is symmetric with respect
to every coordinate hyperplane. Observe that by construction the polytopes Pn,i are
standard unconditional.

Theorem 3.4 Let K ∈ Kn
o be standard unconditional and let i ∈ [n]. Then,

μi (K )n vol(K ) ≥ μi (Pn,i )
n vol(Pn,i ).

Equality holds if and only if K is a dilate of Pn,i .

Proof As before, for i ∈ [n] and J ⊆ [n], |J | = i , we let L J = lin{e j :
j ∈ J }. By the unconditionality of K , we get K |L J = K ∩ L J , and furthermore

4 Aicke Hinrichs (personal communication) pointed out to us that the volume of Pn,i can also be computed
via a probabilistic argument based on the Irwin–Hall distribution.
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Z
n|L J = Z

n ∩ L J = Z
i , where we identify L J with Ri . Since the claimed inequality

is invariant under scalings of K , we may assume that

μi (K ) = max
{
μi (K |L ,Zn|L) : L ∈ Li (Z

n)
} = 1.

Then, clearly μi (K |L J ,Zn|L J ) ≤ 1, which, by the above observations, means that
(K ∩ L J ) + (Zn ∩ L J ) covers L J , for all J ⊆ [n], |J | = i . The body K ∩ L J

is a standard unconditional body in L J . Therefore, the covering property yields that
1
2

∑
j∈J e j ∈ K ∩ L J ⊆ K , for all J ⊆ [n], |J | = i . By the definition of Pn,i , we

see that 1
2 Pn,i ⊆ K , and hence, using Proposition 3.3 (i), vol(K ) ≥ vol( 12 Pn,i ) =

μi (Pn,i )
n vol(Pn,i ) as desired.

Equality holds if and only if K = 1
2 Pn,i which implies the claimed equality case

characterization because we assumed that μi (K ) = 1. �
Since the cases i = n and i = 1 of Theorem 3.4 correspond exactly to (1) and (5),

respectively, it is tempting to conjecture that the polytopes Pn,i minimize the functional
μi (K )n vol(K ) on the whole class Kn

o of o-symmetric convex bodies. However, the
following examples show that this is not the case in general: Consider the chessboard
lattice

�o = {
x ∈ Z

n : x1 + · · · + xn ≡ 0 mod 2
}
,

which is a sublattice ofZn of determinant det(�o) = 2 (see [29, Chap. 4]). We leave it
to the reader to check that 12Cn +�o intersects every line and C�

n +�o intersects every
(n − 2)-dimensional affine subspace (cf. [22, p. 588]). Moreover, we cannot shrink
1
2Cn or C�

n in order to maintain the corresponding intersection property, and hence
μn−1(Cn,�o) = 1/2 and μ2(C�

n,�o) = 1. In view of Proposition 3.3, equation (18)
and

∑n
k=1 An,k = n!, we obtain

μn−1(Pn,n−1)
n vol(Pn,n−1) = n! − 1

n! >
1

2
= μn−1(Cn,�o)

n vol(Cn)

det(�o)
,

and

μ2(Pn,2)
n vol(Pn,2) = 2n − n

n! >
2n−1

n! = μ2(C
�
n,�o)

n vol(C�
n)

det(�o)
,

for every n ≥ 3.

4 Results Concerning the Covering Product

In this section, we are interested in the dual version ofMinkowski’s inequality (3), that
is, in lower bounds on the covering product (9) in Problem 1.2. For the case of planar
convex bodies this was completely solved by Schnell [33]. His result shows that, unlike
Conjecture 1.1, the covering product does not distinguish between o-symmetric and
general convex bodies.
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Theorem 4.1 (Schnell [33]) For any K ∈ K2, one has

μ1(K )μ2(K )vol(K ) ≥ 3

4
.

Equality holds, up to transformations that do not change the covering product, exactly
for one triangle, one parallelogram, one trapezoid, one pentagon, and one hexagon.

In the proof of [22,Lem. (2.5)], the authors derive the followingvery useful property.
Because the arguments are somewhat implicitly given in [22], we provide the reader
with a short proof.

Lemma 4.2 Let K ∈ Kn and let j ∈ [n]. Then

μ j (K ) ≥ μ j (K |L ,Zn|L)

for every lattice plane L ∈ Li (Z
n) of dimension i ≥ j .

Proof Let i ≥ j and let L ∈ Li (Z
n). Assume that μ j (K ) = 1, that is, every (n − j)-

dimensional affine subspace intersects K +Z
n . Now, let M be an (i − j)-dimensional

affine subspace in L . Consider the subspace M ′ that is the preimage of M under the
projection onto L , in symbols, M ′ = M ⊕ L⊥. Clearly, M ′ is an (n − j)-dimensional
subspace in R

n . By assumption it must intersect K + Z
n , and hence M ∩ (K |L +

Z
n|L) = (M ′ ∩ (K + Z

n))|L �= ∅. Therefore, μ j (K ) = 1 ≥ μ j (K |L ,Zn|L) as
desired. �

With the help of this lemma we can give a lower bound on the covering product of
an arbitrary convex body K ∈ Kn , which, in view of the monotonicity of the sequence
of covering minima, is a necessary inequality for Conjecture 1.1 (5) to hold.

Theorem 4.3 Let K ∈ Kn. Then

μ1(K ) · . . . · μn(K )vol(K ) ≥ 1

n! .

Proof Recall that DK = K − K denotes the difference body of K . From Jarník’s
inequality [20,22] we know that μn(K ) ≥ λn(DK ) ≥ λ1(DK ). In particular, there
exists a vector z ∈ μn(K )DK ∩ (Zn \ {0}). This means that there are points x, y ∈ K
such that z = μn(K )(x − y). Hence, putting Lz = lin{z}, the line L = y + Lz passing
through x and y satisfies

vol1(K ∩ L) ≥ ‖x − y‖ = ‖z‖
μn(K )

≥ det(Zn ∩ Lz)

μn(K )
.

By Lemma 4.2, it holds μ j (K ) ≥ μ j (K |L⊥
z ,Zn|L⊥

z ), for every j = 1, . . . , n − 1.
Based on these observations and the inequality (17) of Rogers and Shephard with
respect to the line L , we obtain inductively, that
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μ1(K ) · . . . · μn(K )vol(K )

≥ 1

n

μ1(K ) · . . . · μn−1(K )voln−1(K |L⊥)

det(Zn|L⊥
z )

μn(K )vol1(K ∩ L)

det(Zn ∩ Lz)

≥ 1

n

μ1(K |L⊥
z ,Zn|L⊥

z ) · . . . · μn−1(K |L⊥
z ,Zn|L⊥

z )voln−1(K |L⊥
z )

det(Zn|L⊥
z )

≥ 1

n

1

(n − 1)! = 1

n! .

We also used the identity det(Zn ∩ Lz) det(Zn|L⊥
z ) = det(Zn) = 1 again. �

Remark 4.4 Based on Theorem 3.1 (i) (cf. Remark 3.2) one can slightly improve the
lower bound 1/n! in Theorem 4.3 to roughly (1/n!)(n−k)/n , for any o-symmetric
K ∈ Kn

o and any fixed constant k ∈ N.
This is meaningful because it shows that (for o-symmetric convex bodies) Makai

Jr.’s conjecture Conjecture 1.1 is independent from Problem 1.2 (9).

The lower bound in Theorem 4.3 improves drastically on the family of standard
unconditional bodies. Indeed, we prove a sharp bound on this class and illustrate that
there are infinitely many non-equivalent extremal examples. Before we can state and
prove our result, we need to recall the concept of the barycentric subdivision of the
cube which is a standard way to obtain a triangulation. We refer to [35] for basic
notions on convex polytopes. Let

Fn = {
(F0, F1, . . . , Fn−1) : Fj a j-face of Cn, F0 ⊆ F1 ⊆ · · · ⊆ Fn−1

}

be the set of flags ofCn . There are exactly n! 2n flags of the cube. The barycenter b(Fj )

of a j-face of Cn has the form b(Fj ) = ±ei1 ± · · · ± ein− j , for some 1 ≤ i1 < i2 <

· · · < in− j ≤ n. The barycentric subdivision of Cn is the triangulation induced by the
simplices SF = conv{0, b(F0), b(F1), . . . , b(Fn−1)}, F = (F0, F1, . . . , Fn−1) ∈ Fn .

Theorem 4.5 Let K ∈ Kn
o be a standard unconditional body. Then,

μ1(K ) · . . . · μn(K )vol(K ) ≥ 1.

Equality holds if and only if

K =
⋃

F∈Fn

SF (K ),

where SF (K ) = conv
{
0, 1

2μn(K )
b(F0),

1
2μn−1(K )

b(F1), . . . ,
1

2μ1(K )
b(Fn−1)

}
, for

every F = (F0, F1, . . . , Fn−1) ∈ Fn.

Proof For the sake of brevity, for any i ∈ [n], we write μi = μi (K ). From the
proof of Theorem 3.4, we infer 1

2 Pn,i ⊆ μi · K , for i ∈ [n]. In view of the vertex
description Pn,i = conv{±e j1 ± · · · ± e ji : 1 ≤ j1 < · · · < ji ≤ n}, every point
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1
2μi

(±e j1 ±· · ·±e ji ), for 1 ≤ j1 < · · · < ji ≤ n and i ∈ [n], belongs to K . Therefore,
using the notation introduced above, the simplex

SF (K ) = conv

{

0,
1

2μn
b(F0),

1

2μn−1
b(F1), . . . ,

1

2μ1
b(Fn−1)

}

⊆ K ,

for every flag F = (F0, F1, . . . , Fn−1) ∈ Fn of Cn . Since these simplices arise from
the simplices SF of the barycentric subdivision of Cn by dilating vertices, they are
pairwise non-overlapping. Moreover, by the symmetry of the cube and the barycentric
subdivision, all the simplices SF (K ), F ∈ Fn , are congruent.

Let F ′ ∈ Fn be the flag corresponding to the faces of Cn whose barycenters are
given by e1, e1 + e2, . . . , e1 + · · · + en . A simple volume computation shows that
the simplex SF ′(K ) = conv

{
0, 1

2μ1
e1,

1
2μ2

(e1 + e2), . . . ,
1

2μn
(e1 + · · · + en)

}
has

volume (n! 2nμ1 · . . . · μn)−1. Thus, defining QK = ⋃
F∈Fn

SF (K ) ⊆ K , we arrive
at the claimed inequality

vol(K ) ≥ vol(QK ) = n! 2n vol(SF ′(K )) = 1

μ1 · . . . · μn
.

Since the only step where we could lose volume is in the inclusion QK ⊆ K , we
immediately see that equality holds if and only if K = QK . �
Remark 4.6 The cubeCn = Pn,n and the crosspolytopeC�

n = Pn,1 are the only bodies
among the Pn,i that attain equality in Theorem 4.5. This is due to the fact that for
i /∈ {1, n} the points 1

2μ1(Pn,i )
e1 = e1 and 1

2μn(Pn,i )
(e1 +· · ·+ en) = i

n (e1 +· · ·+ en)

are contained in different facets of Pn,i . Hence, the line segment connecting these two
points is not contained in the boundary of Pn,i , so that the simplices SF (Pn,i ), F ∈ Fn ,
do not cover Pn,i completely.

Corollary 4.7 Let S ∈ Kn be such that S = K ∩R
n≥0 for some standard unconditional

body K ∈ Kn
o . Then

μ1(S) · . . . · μn(S)vol(S) ≥ 1,

with equality if and only if K attains equality in Theorem 4.5.

Proof By the unconditionality of K , we get that 2nvol(S) = vol(K ). In order for
a dilate of S to induce a lattice covering of the whole space it needs to contain the
unit cube [0, 1]n . On the other hand, for K it suffices to cover half of it, that is,
[0, 1/2]n . By similar considerations as in the proof of Proposition 3.3 this shows that
μi (S) = 2μi (K ), for all i ∈ [n]. In view of these identities, the claimed inequality
together with its equality case characterization follow from Theorem 4.5. �

The obtained constants in Theorems 4.3 and 4.5 are of course far off fromeach other.
We conjecture that the truth lies somehow in between and that the biggest possible
lower bound on the covering product decreases exponentially with the dimension.
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Conjecture 4.8 For every K ∈ Kn, we have

μ1(K ) · . . . · μn(K )vol(K ) ≥ n + 1

2n
,

with equality, for example, for K = conv{e1, . . . , en,−1}.
For n = 2, this conjecture reduces to Schnell’s inequality (Theorem 4.1). In analogy

to Schnell’s result, we expect that there are many more extremal examples minimizing
the covering product, and that there are also o-symmetric bodies among them. These
extremal examples, even for n = 3, can be seen as interesting variants of the so-called
parallelohedra, which are convex bodies that are extremal in (1) (cf. [18, Sect. 32]).

In the sequel, we consider the simplex Tn = conv{e1, . . . , en,−1} in more
detail. It turns out that the determination of the whole sequence of covering min-
ima of Tn is a highly non-trivial task. In general, an upper bound on the covering
minima for simplices with integral vertices is the following: For any simplex
T = conv{v0, v1, . . . , vn}, with vertices v j ∈ Z

n , we have

μi (T ) ≤ μi (S1) = i for all i ∈ [n], (19)

where S1 = conv{0, e1, . . . , en} is the standard simplex. Indeed, if we let V ∈ Z
n×n be

the matrix with columns vi − v0, i ∈ [n], then T = V S1 + v0. Moreover, VZ
n ⊆ Z

n ,
becauseV has only integral entries, and thusV S1+VZ

n ⊆ V S1+Z
n . The definition of

the coveringminima then implies thatμi (S1) = μi (V S1, VZ
n) ≥ μi (V S1) = μi (T ).

The fact that μi (S1) = i , for all i ∈ [n], is easy to see, for instance, by similar
arguments as in the proof of Proposition 3.3.

Now, we concentrate on determining the exact value of μn(Tn) in arbitrary
dimension. This will be enough to show that the covering product of Tn decreases
exponentially with n, and thus motivates Conjecture 4.8.

Proposition 4.9 For the simplex Tn = conv{e1, . . . , en,−1}, we have

(i) μn(Tn) = n
2 , and

(ii) μ1(Tn) · . . . · μn(Tn)vol(Tn) ≤ n+1
n!

⌊ n
2

⌋!( n
2

)�n/2� ≈ n+1
(2/

√
e)n .

Remark 4.10 For the i-dimensional coordinate subspace Li = {e1, . . . , ei } holds
Tn|Li = Ti × {0}n−i and Z

n|Li = Z
i × {0}n−i . Hence by (14), we have μi (Tn) ≥

μi (Ti ) = i/2. We conjecture that this is actually an identity for every i ∈ [n], which,
in view of vol(Tn) = (n + 1)/n!, explains the claimed lower bound in Conjecture 4.8.

The proof of Proposition 4.9 needs a bit of preparation. The covering radius of
simplices has appeared in various contexts in the literature. For instance, a celebrated
result of Kannan [21] establishes a relation to the Frobenius coin problem, and more
recently, Marklof and Strömbergsson [28] (cf. [1]) made a connection to diameters
of so-called quotient lattice graphs. The latter interpretation suits our purposes well,
so we introduce the necessary notation following [28]. We use basic concepts from
graph theory, for which the reader may consult the textbook of Diestel [11].
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Let LG+
n be the standard lattice graph, that is, the directed graph with vertex setZn

and a directed edge (x, x + ei ), for every x ∈ Z
n and i ∈ [n]. For a full-dimensional

sublattice � ⊆ Z
n the quotient lattice graph LG+

n /� is defined as the directed graph
with vertex set Zn/� and edges (x + �, x + ei + �), for x ∈ Z

n and i ∈ [n]. For
fixed v ∈ R

n
>0, a distance in LG

+
n /� is defined by

dv(x + �, y + �) = min
z∈(y−x+�)∩Zn≥0

vᵀz for any x, y ∈ Z
n .

In other words, dv(x +�, y +�) is the length of the shortest directed path from x +�

to y + � in LG+
n /�, where additionally each edge (x + �, x + ei + �) is given the

weight vi , for i ∈ [n]. The diameter of LG+
n /� (with respect to v) can now be defined

as

diamv(LG
+
n /�) = max

y∈Zn/�
dv(0 + �, y + �).

Note that, by definition, the distance dv is translation invariant, that is, dv(x + w +
�, y + w + �) = dv(x + �, y + �), for all x, y, w ∈ Z

n , and hence it suffices to
consider paths starting from the vertex 0 + � in the definition of diamv(LG+

n /�).
Finally, we define the simplex Sv = {x ∈ R

n≥0 : vᵀx ≤ 1}.
The following expression for the covering radius of Sv with respect to � is a

combination of Lemmas 3 and 4 of [28, Sect. 2].

Theorem 4.11 (Marklof and Strömbergsson [28]) Let v = (v1, . . . , vn) ∈ R
n
>0 and

let � ⊆ Z
n be a full-dimensional sublattice. Then,

μn(Sv,�) = diamv(LG
+
n /�) + v1 + · · · + vn .

Before we can proceed to prove Proposition 4.9, we need an auxiliary statement
fromelementary number theory. For k ∈ Z andm ∈ N,we let [k]m be the representative
of k modulo m that lies in {0, 1, . . . , m − 1}. More precisely, [k]m = k − m�k/m�.
Lemma 4.12 Let n ≥ 2 be an integer. For w = (w1, . . . , wn−1) ∈ Z

n−1 and r ∈ Z,
let σw(r) = ∑n−1

i=1 [wi + r ]n+1.

(i) If n is even, then |{σw(r) : r ∈ {0, 1, . . . , n}}| = n + 1.
(ii) If n is odd, then no three of the numbers σw(r), r ∈ {0, 1, . . . , n}, are pairwise

equal, and for r, r ′ ∈ Z, the difference |σw(r) − σw(r ′)| is even.

Proof For j ∈ Z, denote sw( j) = |{i ∈ [n − 1] : [wi + j]n+1 = 0}|. With this
notation, we find that

σw(0) =
n−1∑

i=1

[wi ]n+1 =
n−1∑

i=1

[wi + 1]n+1 − (n − 1 − sw(1)) + nsw(1)

= σw(1) + (n + 1)sw(1) − (n − 1).
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Therefore, we have

σw(k) = σw(0) − (n + 1)
k∑

j=1

sw( j) + k(n − 1), for k = 1, . . . , n. (20)

This implies that, for k, � ∈ {0, 1, . . . , n} with k < �, we have σw(k) = σw(�) if and
only if

(� − k)(n − 1) = (n + 1)
�∑

j=k+1

sw( j). (21)

This number lies in {1, . . . , n(n−1)} and is a commonmultiple of n−1 and n+1.Now,
if n is even, then gcd(n − 1, n + 1) = 1, and hence there is no k < � satisfying (21),
which proves (i).

So, let n ≥ 3 be odd. Then gcd(n − 1, n + 1) = 2, and hence (n − 1)(n + 1)/2 is
the only common multiple of n − 1 and n + 1 in {1, . . . , n(n − 1)}. Assume that there
are k, l, m ∈ {0, 1, . . . , n} with k < � < m and σw(k) = σw(�) = σw(m). It follows
that � − k = m − k = m − � = (n + 1)/2 and hence k = � = m. This contradiction
proves the first claim of (ii). Moreover, n − 1 and n + 1 are even so that by (20), we
see that the difference between any σw(r) and σw(r ′) is an even number. �
Proof of Proposition 4.9 (i) For the computation of the covering radiusμn(Tn) it turns
out to be more convenient to transform Tn to a multiple of the standard simplex
S1 = conv{0, e1, . . . , en}. To this end, let A = (ai j ) ∈ Z

n×n be the matrix with
entries aii = n, for i ∈ [n], and ai j = −1, for i, j ∈ [n] with i �= j . Then, we have
ATn = (n + 1)S1 − 1 and writing �n = AZn , we thus get

μn(Tn) = μn(S1,�n)/(n + 1).

Based on this identity and Theorem 4.11, we infer that

μn(Tn) = n

2
if and only if diam1(LG

+
n /�n) =

(
n

2

)

. (22)

The sublattice �n ⊆ Z
n has a nice structure. For instance, we have

�n =
n⋃

i=0

(
i · 1 + (n + 1)Zn)

and det(�n) = (n + 1)n−1.

Considering the fundamental cell of �n that has vertices {0, n + 1}n−1 × {0} and
1 + {0, n + 1}n−1 × {0}, we see that the quotient lattice graph LG+

n /�n can be
described as follows. Its vertex set is given by {0, 1, . . . , n}n−1 and (x, y) is a directed
edge if and only if y − x ∈ {e1, . . . , en−1,−1n−1} modulo (n + 1)Zn−1 (see Fig. 1).
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Fig. 1 The quotient lattice
graph LG+

3 /�3

0 e1 2e1 3e1 0

0 e1 2e1 3e1 0

e2

2e2

3e2

e2

2e2

3e2

Notice that e1, . . . , en−1 and 1n−1 are points in R
n−1 here. We now prove that the

diameter of LG+
n /�n is as stated in (22).

We first argue that diam1(LG+
n /�n) ≤ (n

2

)
. For this to be true we need to show that

there is a directed path in LG+
n /�n from 0+ �n to w + �n of length at most

(n
2

)
, for

every w ∈ {0, 1, . . . , n}n−1. By the definition of LG+
n /�n this amounts to finding a

representation

w = r1e1 + · · · + rn−1en−1 − rn1n−1, (23)

for some r1, . . . , rn ∈ Z such that
∑n

i=1[ri ]n+1 ≤ (n
2

)
. Observe that once we fix

rn ∈ {0, 1, . . . , n}, we have ri = wi + rn , for i ∈ [n − 1]. Hence, there exists such a
representation of w if and only if there is an r ∈ {0, 1, . . . , n} such that

σw(r) =
n−1∑

i=1

[wi + r ]n+1 ≤
(

n

2

)

− r. (24)

For the sake of contradiction, we assume that for every r ∈ {0, 1, . . . , n} the inequal-
ity (24) does not hold. Notice that, by definition of [k]m , we have

n∑

r=0

σw(r) =
n−1∑

i=1

n∑

r=0

[wi + r ]n+1 =
n−1∑

i=1

n∑

j=0

j = (n + 1)

(
n

2

)

. (25)

Now, in the case that n is even, Lemma 4.12 (i) shows that the numbers σw(r), r ∈
{0, 1, . . . , n}, are pairwise different, and hence by our assumption

n∑

r=0

σw(r) >

n∑

r=0

((
n

2

)

− r

)

+
n∑

r=0

r = (n + 1)

(
n

2

)

,

contradicting (25). The case that n is odd is similar. By Lemma 4.12 (ii), no three
of the numbers σw(r), r ∈ {0, 1, . . . , n}, are pairwise equal, and moreover, any two
different ones of these numbers differ by at least two. Therefore,
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n∑

r=0

σw(r) ≥
n∑

r=0

((
n

2

)

− r + 1

)

+ 2
(n−1)/2∑

j=0

(2 j) = (n + 1)

(
n

2

)

+ 1

2
(n + 1),

contradicting (25) again. In conclusion, there must be an r ∈ {0, 1, . . . , n} satisfy-
ing (24), and hence the diameter of LG+

n /�n is at most
(n
2

)
as claimed.

In order to see that this bound is best possible, we consider the vertex
w = (2, 3, . . . , n) ∈ {0, 1, . . . , n}n−1 of LG+

n /�n . In any representation of w of
the form (23) with r = rn ∈ {0, 1, . . . , n}, we have ri = wi + r = i + 1 + r , for
i ∈ [n − 1]. Therefore, if r = n, then

∑n−1
i=1 [ri ]n+1 = ∑n−1

i=1 i = (n
2

)
>

(n
2

) − r , and
if r < n, then

n−1∑

i=1

[ri ]n+1 =
n−r−1∑

i=1

(i + 1 + r) +
n−1∑

i=n−r

(i + r − n)

=
(

n

2

)

− r + (n − r − 1) ≥
(

n

2

)

− r,

with equality only for r = n − 1. This means, that there is no path from 0 + �n to
w + �n of length less than

(n
2

)
, and thus diam1(LG+

n /�n) = (n
2

)
. In view of (22), we

have thus proven that μn(Tn) = n/2.

(ii) The claimed exponential upper boundon the covering product ofTn followsdirectly
from the inequalities (19), that is, μi (Tn) ≤ i for i ∈ [n], and μn(Tn) ≤ n/2. Indeed,
using Stirling approximation, we get

μ1(Tn) · . . . · μn(Tn)vol(Tn) ≤ 1 · 2 · . . . ·
⌊

n

2

⌋(
n

2

)n−�n/2� n + 1

n!
= n + 1

n!
⌊

n

2

⌋

!
(

n

2

)�n/2�

≈ (n + 1)

√
πn(n/(2e))n/2(n/2)n/2

√
2πn(n/e)n

≈ n + 1

(2/
√

e)n
.

Observe that 2/
√

e ≈ 1.21306, so that the derived upper boundon the covering product
of Tn is indeed decreasing exponentially with the dimension. �
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