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Abstract Weconsider the problemof 2-coloring geometric hypergraphs. Specifically,
we show that there is a constantm such that any finite set of points in the plane S ⊂ R
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can be 2-colored such that every axis-parallel square that contains at least m points
from S contains points of both colors. Our proof is constructive, that is, it provides a
polynomial-time algorithm for obtaining such a 2-coloring. By affine transformations
this result immediately applies also when considering 2-coloring points with respect
to homothets of a fixed parallelogram.
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1 Introduction

In this paper we consider the problem of coloring a given set of points in the plane
such that every region from a given set of regions contains a point from each color
class. To state our results, known results and open problems, we need the following
definitions and notations.

A hypergraph is a pair (V, E) where V is a set and E is a set of subsets of V . The
elements of V and E are called vertices and hyperedges, respectively. For a hypergraph
H := (V, E), let H |m := (V, {e ∈ E : |e| ≥ m}). A proper coloring of a hypergraph
is a coloring of its vertex set such that in every hyperedge not all vertices are assigned
the same color. Proper colorability of a hypergraph with two colors is also called
Property B in the literature. A polychromatic k-coloring of a hypergraph is a coloring
of its vertex set with k colors such that every hyperedge contains at least one vertex
from each of the k colors.

Given a family of regionsF inRd (e.g., all disks in the plane), there is a natural way
to define two types of finite hypergraphs that are dual to each other. First, for a finite
set of points S, let HF (S) denote the primal hypergraph on the vertex set S whose
hyperedges are all subsets of S that can be obtained by intersecting S with a member
of F . We say that a finite subfamily F0 ⊆ F realizes HF (S) if for every hyperedge
S ′ ⊆ S of HF (S) there is F ′ ∈ F0 such that F ′ ∩ S = S ′. The dual hypergraph
H∗(F0) is defined with respect to a finite multi-subfamily1 F0 ⊆ F . Its vertex set
is F0 and for each point p ∈ R

d it has one hyperedge that consists of exactly those
regions in F0 that contain p.

The general problems we are interested in are the following.

Problem 1.1 For a given family of regions F ,

(i) Is there a constant m such that for any finite set of points S the hypergraph
HF (S)|m admits a proper 2-coloring?

(ii) Is there a constant m∗ such that for any finite subset F0 ⊆ F the hypergraph
H∗(F0)|m∗ admits a proper 2-coloring?

(iii) Givena constant k, is there a constantmk such that for any finite set of pointsS the
hypergraph HF (S)|mk admits a polychromatic k-coloring? If so, is mk = O(k)?

(iv) Given a constant k, is there a constant m∗
k such that for any finite subsetF0 ⊆ F

the hypergraph H∗(F0)|m∗
k
admits a polychromatic k-coloring? If so, is m∗

k =
O(k)?

Examples of familiesF for which such coloring problems are studied are translates
of convex sets [3,10,23,30,33,37], homothets of triangles [6,7,14–17], axis-parallel
rectangles [8,9,26,28] and half-planes [13,36]. IfF is the family of disks in the plane,
then these hypergraphs generalize Delaunay graphs.

The main motivation for studying proper and polychromatic colorings of such
geometric hypergraphs comes fromcover-decomposability problems [25] and conflict-
free coloring problems [35]. We concentrate on the first connection, as the problems
we regard are in direct connection with cover-decomposability problems. We give a

1 In a multisubfamily we allow taking multiple copies of the same set.
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short introduction to this topic here, however we recommend the interested reader to
consult the survey paper [25] or the webpage [32] that contains a summary of results
about decomposition of multiple coverings and polychromatic colorings.

Multiple coverings and packings were first studied by Davenport and L. Fejes Tóth
almost 50 years ago. Since then a wide variety of questions related to coverings and
packings has been investigated. In 1986 Pach [23] published the first paper about
decomposability problems of multiple coverings. It turned out that this area is rich of
deep and exciting questions, and it has important practical applications as well (e.g., in
the area of surveillance systems [10,25]). Following Pach’s papers, most of the efforts
were concentrated on studying coverings by translates of some given shape. Recently,
several researchers started studying cover-decomposability of homothets of a given
shape.

A family of planar sets is called an r-fold covering of a region R, if every point of
R is contained in at least r members of the family. A 1-fold covering is simply called a
covering. A familyF of planar sets is called cover-decomposable, if there is an integer
� with the property that for any multi-subfamily of F that forms an �-fold covering of
the whole plane can be decomposed into two coverings.2 A family F of planar sets is
called totally-cover-decomposable, if there is an integer �T with the property that for
any region R, any multi-subfamily of F that forms an �T -fold covering of R can be
decomposed into two coverings.

One can also ask for a decomposition intomore than two coverings. That is, whether
there exists an integer �k (resp., �Tk ) such that any multi-subfamily of F that forms an
�k-fold covering of the whole plane (resp., an �Tk -fold covering of R, for any region
R), can be decomposed into k coverings of the plane (resp., of R).

If we consider only coverings with finite multi-subfamilies, then we call it the finite
cover-decomposition problem. It is easy to see that the finite cover-decomposition
problem is equivalent to Problems 1.1 (ii) and (iv).

One of the first observations of Pach was that if F is the family of translates of
an open convex set, then finite cover-decomposability implies cover-decomposability.
Thus for the family of the translates of an open convex set � ≤ m∗ and �k ≤ m∗

k in
the notation above. Pach also observed that if F is the family of translates of some
set, then Problems 1.1 (i) and (ii) are equivalent and also Problems 1.1 (iii) and (iv) are
equivalent, i.e., m∗ = m and m∗

k = mk . Thus, for the family of translates of an open
convex set � ≤ m∗ = m and �k ≤ m∗

k = mk and so it is enough to consider the primal
hypergraph coloring problem.

Pach conjectured that the family of all translates of any open convex planar set is
cover-decomposable [22]. During the years researchers acquired a good understanding
of convexplanar shapeswhose translates are cover-decomposable.On the positive side,
Pach’s conjecture was verified for every open convex polygon: Pach himself proved
it for every open centrally symmetric convex polygon [23], then Tardos and Tóth [37]
proved the conjecture for every open triangle, and finally Pálvölgyi and Tóth [33]
proved it for every open convex polygon. They also gave a complete characterization

2 In fact in early papers that considered only coverings by translates, all mentioned variants of cover-
decomposability were defined for sets instead of families, where a set is cover-decomposable if the family
of its translates is cover-decomposable in the way we define it in this paper.
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of open non-convex polygons whose translates are finite cover-decomposable. For
open convex polygons it is even known that mk = m∗

k = O(k) [3,10,30]. However,
Pach’s conjecture was refuted in [24]. Specifically, it does not hold for disks and for
convex shapes with a smooth boundary.

Considering the three dimensional space, it follows from cover-indecomposability
of certain non-convex polygons [31] that every bounded polytope is not cover-
decomposable. Thus, it is not easy to come up with a cover-decomposable set in
the space. An important exception is the octant,3 whose translates were proved to
be cover-decomposable [14]. The currently best bounds for octants are 5 ≤ m ≤ 9
[17] and mk = m∗ = O(k5.09) [7,16,17]. It is a challenging open problem whether
mk = m∗

k = O(k) in this case.
For a long time no positive results were known about cover-decomposability and

geometric hypergraph coloring problems concerning homothets of a given shape. For
disks, the answer is negative for all parts of Problem 1.1 [24,27]. As a first positive
result, the cover-decomposability of octants along with a simple reduction implied
that both the primal and dual hypergraphs with respect to homothets of a triangle are
properly 2-colorable:

Theorem 1.2 ([14,17]) For the family F of all homothets of a given triangle both
Problems 1.1 (i) and (iii) have a positive answer with m = m∗ ≤ 9.

This result was later used to obtain polychromatic colorings of the primal and
dual hypergraphs defined by the family of homothets of a fixed triangle. For the dual
hypergraph, the best bound comes from the corresponding result about octants and so
it is m∗

k = O(k5.09). For the primal hypergraph there is a better bound mk = O(k4.09)
[15,17]. An important tool for obtaining these results is the notion of self-coverability
(see Sect. 2.2), which is also essential for proving our results. The questions whether
mk = O(k) and m∗

k = O(k) for the homothets of a given triangle are still open. The
web-page [32] contains an up-to-date collection of results considering all of these
problems and related ones.

For polygons other than triangles, somewhat surprisingly, Kovács [20] recently
provided a negative answer for Problems 1.1 (ii) and (iv). Namely, he showed that
the homothets of any given convex polygon with at least four sides are not cover-
decomposable. In other words, there is no constant m∗ for which the dual hypergraph
consisting of hyperedges of size at least m∗ is 2-colorable. Our main contribution is
showing that this is not the case when considering 2-coloring the primal hypergraph.
Indeed, Problem 1.1 (i) has a positive answer for homothets of any given parallelo-
gram.

Theorem 1.3 There is an absolute constant mq ≤ 215 such that the following holds.
Given an (open or closed) parallelogram Q and a finite set of points in the plane
S ⊂ R

2, the points of S can be 2-colored in polynomial time, such that any homothet
of Q that contains at least mq points contains points of both colors.

This is the first example that exhibits such different behavior for coloring the primal
and dual hypergraphs with respect to the family of some geometric regions. Fur-

3 An octant is the set of points {(x, y, z) : x < a, y < b, z < c} in the space for some a, b and c.
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thermore, combined with results about self-coverability, the proof of Theorem 1.3
immediately implies the following generalization to polychromatic k-colorings, thus
partially answering alsoProblem1.1 (iii) (it remains openwhether linearlymanypoints
per hyperedge/parallelogram suffice).

Corollary 1.4 Let Q be a given (open or closed) parallelogram and let S be a set
of points in the plane. Then for every integer k ≥ 1 it is possible to color S with k
colors, such that any homothet of Q that contains at least mk = �(k8.75) points from
S contains points of all k colors.

Our proof of Theorem 1.3 also works for homothets of a triangle, i.e., we give a
new proof for the primal case of Theorem 1.2 (with a larger constant though):

Theorem 1.5 ([14]) There is an absolute constant mt such that the following holds.
Given an (open or closed) triangle T and a finite set of points in the plane S ⊂ R

2,
the points of S can be 2-colored in polynomial time, such that any homothet of T that
contains at least mt points contains points of both colors.

This paper is organized as follows. In Sect. 2 we introduce definitions, notations,
tools and some useful lemmas. In Sect. 3 we describe a general 2-coloring algorithm
and then apply it for parallelograms and for triangles. Concluding remarks and open
problems appear in Sect. 4. A preliminary version of this paper was presented at
the 32nd International Symposium on Computational Geometry (SoCG 2016). In the
current version some of the proofs are simplified, the constant in Theorem 1.3 is better,
and the limitations of our techniques are discussed in more details.

2 Preliminaries

Unless stated otherwise, we restrict ourselves to the two-dimensional Euclidean space
R
2. For a point p ∈ R

2 let (p)x and (p)y denote the x- and y-coordinate of p,
respectively. We denote by ∂S the boundary of a subset S ⊆ R

2 and by Cl(S) the
closure of S. A homothet of S is a translated and scaled copy of S. That is, a set
S′ = αS + p for some number α > 0 and a point p ∈ R

2. We will use the following
folklore lemma:

Lemma 2.1 Let C be a convex and compact set and let C1 and C2 be homothets of
C. Then if ∂C1 and ∂C2 intersect finitely many times, then they intersect in at most
two points.

For a proof of this lemma, see, e.g., [21, Cor. 2.1.2.2].

2.1 Generalized Delaunay Triangulations

For proving Theorems 1.3 and 1.5 we will use the notion of generalized Delaunay
triangulations, which are the dual of generalized Voronoi diagrams. In the generalized
Delaunay triangulation of a point set S with respect to some compact convex set
C , two points of S are connected by a straight-line segment if there is a homothet
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of C that contains these two points and does not contain any other point of S. The
generalized Delaunay triangulation of S with respect to C is denoted by DT (C,S).
Without causing confusion we also regard such a Delaunay triangulation as an abstract
graph with S as its vertex set and the above defined segments correspond to its edges.
We say that S is in general position with respect to (homothets of) C , if there is no
homothet ofC whose boundary contains four points from S. If S is in general position
with respect to a convex polygon P and no two points of S define a line that is parallel
to a line through two vertices of P , then we say that S is in very general position with
respect to P . The following properties of generalized Delaunay triangulations will be
useful.

Lemma 2.2 ([4,19,34]) Let C be a compact convex set and let S be a set of points in
general position with respect to C. ThenDT (C,S) is a well-defined connected plane
graph whose inner faces are triangles.

It would be convenient to consider generalizedDelaunay triangulations inwhich the
boundary of the outer face is a convex polygon. In such a case we say that DT (C,S)

is nice.

Lemma 2.3 Let P be a closed convex polygon and let S be a set of points in the
plane that is in very general position with respect to P. Suppose that P ′ is a homothet
of P and Z ⊆ S ∩ ∂P ′. Then there is a homothet of P, denote it by P ′′, such that
P ′′ ∩ S = (P ′ ∩ S) \ Z.

Proof Since S is in general position, |∂P ′ ∩ S| ≤ 3.
If |Z | = 3, then there are no other points on ∂P ′, thus shrinking P ′ from an inner

point gives us the required P ′′.
If |Z | = 2, then if there is no other point on ∂P ′, then we can again shrink from

an inner point slightly to get the required P ′′. Otherwise, there is exactly one point
q on ∂P ′ besides the two points of Z . Now slightly shrink P ′ from q. As the points
are in very general position, the resulting homothet will contain exactly the points
(P ′ ∩ S) \ Z .

Finally, suppose that |Z | = 1 and let Z = {z}. We consider three cases.

Case 1: ∂P ′ ∩ S = {z}. In this case we slightly shrink P ′ with respect to some point
in its interior and obtain the desired homothet P ′′.
Case 2: |∂P ′ ∩ S| = 2. Let ∂P ′ ∩ S = {x, z}. Since S is in very general position, x
and z are on different sides of ∂P ′. Therefore if we slightly shrink P ′ with respect to
x , the resulting homothet of P contains x , does not contain z and contains all other
points in P ′ ∩ S.
Case 3: |∂P ′ ∩ S| = 3. Let ∂P ′ ∩ S = {x, y, z}. In this case first we enlarge P ′ from
z to get a homothet P+. Since the points in S are in very general position with respect
to P , this can be done so that ∂P+ ∩S = {z} and P ′ ∩S = P+ ∩S. Then by slightly
shrinking P+ with respect to an interior point we get the desired homothet P ′′. 
�

For a homothet C ′ of a compact convex set C we denote by DT (C,S)[C ′] the
subgraph of DT (C,S) that is induced by the points of S ∩ C ′. Note that it is not the
same as DT (C,S ∩ C ′), however the following is true.
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Lemma 2.4 Let P be a closed convex polygon, let S be a set of points in very general
position with respect to P, and let P ′ be a homothet of P. Then DT (P,S)[P ′] is a
connected graph that is contained in P ′.

Proof Let DT := DT (P,S). Obviously all the points in DT [P ′] are in P ′ by def-
inition. An edge in DT [P ′] must also be in P ′, since P ′ is convex. We prove that
DT [P ′] is connected by induction on |S ∩ P ′|. This is true by definition if there are
at most two points from S in P ′. Suppose that the claim holds whenever a homothet
of P contains k − 1 points from S and let P ′ be a homothet of P that contains exactly
k points from S with k ≥ 3. We may assume without loss of generality that P ′ con-
tains two points, x and z, on its boundary, for otherwise we can continuously shrink
P ′ until such points exist (first from an interior point, then from the point that first
appears on the boundary). Now apply Lemma 2.3 twice: once with Z = {x} and once
with Z = {z}. Denote the homothets of P that we get by Px and Py , respectively. By
the induction hypothesis DT [Px ] and DT [Pz] are both connected, their intersection
contains at least one point (as k ≥ 3), and their union is contained in DT [P ′]. Thus,
DT [P ′] is also connected, as required. 
�
Corollary 2.5 Let P be a closed convex polygon and let S be a set of points in very
general position with respect to P. Suppose that P ′ is a homothet of P and e is an
edge of DT (P,S) that crosses ∂P ′ twice and thus splits P ′ into two parts. Then one
of these parts does not contain a point from S.

A rotation of a vertex v in a plane graph G is the clockwise order of its neighbors.
For three straight-line edges vx, vy, vz we say that vy is between vx and vz if x, y, z
appear in this order in the rotation of v and � xvz < π ( � xvz is the angle by which
one has to rotate the vector vx around v clockwise until its direction coincides with
that of vz) or if z, y, x appear in this order in the rotation of v and � zvx < π . The
following will be useful later on.

Proposition 2.6 Let C be a compact convex set and let S be a set of points in very
general position with respect to C and such that DT := DT (C,S) is nice. Let C ′
be a homothet of C and let v be a vertex in DT [C ′]. Suppose that x and z are two
vertices that are neighbors of v in DT [C ′] and � xvz < π and xz /∈ DT . Then there
exists an edge vy ∈ DT between vx and vz. Moreover, if z immediately follows x in
the rotation of v in DT [C ′] then y /∈ C ′.

Proof If x and z are not consecutive in the rotation of v inDT then by definition there
exists a vertex y between them in the rotation of v.

Thus we are done unless x and z are consecutive in the rotation of v in DT .
Suppose that such an y does not exist, that is, x and z are also consecutive in the

rotation of v in DT . Then the face that is incident to vx and vz and is to the right of
vx and to the left of vz cannot be the outer face since � xvz < π and DT is nice.
However, since this face is an inner face, then by Lemma 2.2 it must be a triangle and
so xz ∈ DT .

Thus we can conclude that such an y exists and from the definition of the rotation
order it follows that y /∈ C ′. 
�
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Lemma 2.7 For every closed convex polygon P there is a constant � := �(P) such
that the following holds. Let S be a set of points in very general position with respect
to P and such that DT := DT (P,S) is nice. If P ′ is a homothet of P such that
DT [P ′] is a tree, then for every v ∈ S ∩ P ′ we have degDT [P ′](v) ≤ �.

Proof Let n be the number of vertices of P and let v0, v1, . . . , vn−1 be the vertices
of P ′ listed in their clockwise order around P ′. Let v ∈ S ∩ P ′ be a point and let
Ni := {u ∈ S ∩ P ′ : u ∈ �vvivi+1, vu ∈ DT [P ′]} be the neighbors of v in DT [P ′]
that are also in the triangle vvivi+1, for every i = 0, . . . , n−1 (addition is modulo n).
Let α := α(P) be the smallest angle formed by three vertices of P (hence, also of P ′).

Observation 2.8 For every point p′ in the interior of P ′ and every 0 ≤ i < j ≤ n−1
we have � vi p′v j ≥ α.

Proposition 2.9 For every i = 0, . . . , n−1 and every u, u′ ∈ Ni we have � uvu′ ≥ α.

Proof It is enough to consider the case when u and u′ follow each other immediately
in the rotation of v. First note that uu′ is not an edge inDT [P ′], since otherwise there
would be a triangle in DT [P ′]. It follows from Proposition 2.6 that there is a point
z /∈ P ′ such that z is a neighbor of v in DT and is between u and u′ in the rotation
of v. Thus, there is a homothet of P , denote it by Pz , such that Pz ∩ S = {v, z}. Let
v′
iv

′
i+1 be the side of Pz that corresponds and is parallel to the side vivi+1 of P ′ (see

Fig. 1). Note that v′
iv

′
i+1 is outside of P

′, since z /∈ P ′. Furthermore, since u, u′ /∈ Pz ,
the side v′

iv
′
i+1 lies inside the wedge whose apex is v and whose boundary consists

of the two rays that emanate from v and go through u and u′, respectively. Therefore,
� v′

ivv′
i+1 < � uvu′. It follows from Observation 2.8 that � v′

ivv′
i+1 ≥ α, thus we have

� uvu′ ≥ α. 
�

vi

vi+1

u u

v

z

Pz

vi
vi+1

P

Fig. 1 An illustration for the proof of Proposition 2.9
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To complete the proof of Lemma 2.7 consider the neighbors of v in DT [P ′] in
their clockwise order around v, and for every set Ni remove the extreme neighbor in
this order. It follows from Proposition 2.9 that the angle between any two remaining
neighbors of u is at least α. Therefore, degDT [P ′](v) ≤ n + 2π

α
. 
�

It follows that if P is an equilateral triangle, then Lemma 2.7 applies with �(P) ≤
3 + 2π

π/3 = 9. By affine transformations we have:

Corollary 2.10 Suppose that T is a triangle and S is a set of points in very general
positionwith respect to T and such thatDT := DT (T,S) is nice. If T ′ is a homothet of
T such thatDT [T ′] is a tree, then for every pointv ∈ T ′∩S wehavedegDT [T ′](v) ≤ 9.

Corollary 2.11 Let P be a convex polygon and let � := �(P) be the constant from
Lemma 2.7. Suppose that S is a set of points in very general position with respect to
P and such thatDT := DT (P,S) is nice. If P ′ is a homothet of P such thatDT [P ′]
is a tree, then DT [P ′] contains a simple path of length at least 2�log� |S ∩ P ′|�.

2.2 Self-coverability of Convex Polygons and Polychromatic k-Coloring

Keszegh and Pálvölgyi introduced in [15] the notion of self-coverability and its con-
nection to polychromatic k-coloring. In this section we list the definition and results
from their work that we use.

Definition 2.12 ([15]) A collection of closed sets F in a topological space is self-
coverable if there exists a self-coverability function f such that for any set F ∈ F
and for any finite point set S ⊂ F , with |S| = l there exists a subcollection F ′ ⊂ F ,
|F ′| ≤ f (l) such that

⋃
F ′∈F ′ F ′ = F and no point of S is in the interior of some

F ′ ∈ F ′.

Theorem 2.13 ([15]) For every convex polygon P there is a constant c f := c f (P)

such that the family of all homothets of P is self-coverable with f (l) ≤ c f l.

Theorem 2.14 ([15]) The family of all homothets of a square is self-coverable with
f (l) := 2l + 2 and this is sharp.

Theorem 2.15 ([15]) The family of all homothets of a given triangle is self-coverable
with f (l) := 2l + 1 and this is sharp.

Theorem 2.16 ([15, Thm. 2]) IfF is self-coverable with a monotone self-coverability
function f (l) > l and any finite set of points can be colored with two colors such
that any member of F with at least m points contains both colors, then any finite
set of points can be colored with k colors such that any member of F with at least
mk := m( f (m − 1))�log k�−1 ≤ kd points contains all k colors (where d is a constant
that depends only on F).4

Theorem 1.3 (which we have yet to prove) and Theorems 2.14 and 2.16 immedi-
ately imply Corollary 1.4. Indeed, the required assumptions of Theorem 2.16 hold for

4 Unless stated otherwise, logarithms in this paper are base 2.
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squares with m ≤ 215 by Theorem 1.3 and f (l) = 2l + 2 by Theorem 2.14. We get
mk = f (m − 1)�log k�−1 ≤ (2m)log k = klog 430 = O(k8.75) for squares, and also for
parallelograms by affine transformations.

3 A 2-Coloring Algorithm

In this section we prove Theorems 1.3 and 1.5. In fact, we prove a more general result,
for which we need the following definitions.

Definition 3.1 (Good paths and good homothets) Let P be an (open or closed) convex
polygon, let S be a finite set of points, letDT := DT (P,S), and let P ′ be a homothet
of P .

• Let x-y-z be a 2-path in DT (i.e., a simple path of length two). If Cl(P ′) does
not contain x and z and y is in the interior of P ′, then we say that it separates the
2-path x-y-z.

• A 2-path x-y-z is good, if there is no homothet of P that separates it such that
the edges yx and yz cross the same side of this homothet of P (see Fig. 2 for an
example).

• A 3-path x-y-z-w in DT is good if both x-y-z and y-z-w are good 2-paths.
• P ′ is good if it contains a good 3-path or DT [P ′] contains a cycle.
Observe that whether a 2-path x-y-z is good depends only on the direction of the

vectors yx and yz.
Definition 3.2 (Universally good polygons) We say that an (open or closed) convex
polygon P is universally good with a constant cg := cg(P) if for any finite set of
points S such that S is in very general position with respect to P and DT (P,S) is
nice, every homothet of P that contains at least cg points from S is good.

Theorem 3.3 Let P be an (open or closed) convex polygon with n vertices such that
P is a universally good polygon with a constant cg := cg(P), and let f (l) ≤ c f l be
a self-coverability function of the family of homothets of Cl(P) (where c f := c f (P)

is a constant). Then there is a constant m := m(P) ≤ (cg − 1) f (n) + n + 1 ≤
(cg − 1)c f n + n + 1 such that it is possible to 2-color in polynomial time the points
of any given finite set of points S such that every homothet of P that contains at least
m points from S contains points of both colors.

x

y

q

z

Q

Fig. 2 Considering homothets of an axis-parallel square, x-y-z is a good 2-path whereas x-y-q is not since
the square Q′ separates it and both xy and qy cross the left side of Q′
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We note that for the existence of m in Theorem 3.3 we need only that f (l) exists.
However, using that it is upper bounded by c f l [15] we can get a more explicit bound
on m.

Theorems 1.3 and 1.5 immediately follow from Theorems 2.14, 2.15, 3.3, and the
following two lemmas.

Lemma 3.4 Every triangle is a universally good polygon with a constant cg ≤ 7382.

Lemma 3.5 Every parallelogram is a universally good polygon with a constant cg ≤
22.

In particular, we get the value in Theorem 1.3 by takingm = (cg−1) f (n)+n+1 =
215 with cg = 22, f (l) = 2l + 2 and n = 4 for squares.

In light of Theorem 3.3, it is enough to prove that a convex polygon is universally
good to conclude that Problem 1.1 (i) has a positive solution with respect to homothets
of that polygon. However, as it turns out, parallelograms and triangles are the only
universally good polygons.

Theorem 3.6 Let P be a convex polygon which is neither a triangle nor a parallelo-
gram. Then P is not universally good.

We proceed with the proof of Theorem 3.3, then prove that triangles and paral-
lelograms are universally good, and conclude this section with a proof that no other
universally good polygons exist.

3.1 Proof of Theorem 3.3

Let P be an (open or closed) convex polygon with n vertices and let P̄ := Cl(P)

be the closure of P (thus, P̄ is a closed polygon and P̄ = P if P is closed). Let us
assume also that P is a universally good polygon with a constant cg := cg(P), and
let f (l) ≤ c f l be a self-coverability function of the family of homothets of P̄ . Set
m := (cg − 1) f (n) + n + 1 ≤ (cg − 1)c f n + n + 1. We first argue that it is enough
to prove Theorem 3.3 when P is a closed polygon. Indeed, suppose that P is open
and let P be the family of homothets of P . By slightly shrinking every homothet of
P in P with respect to an interior point, we get a family P ′ of homothets that realizes
HP (S) such that there is no point p ∈ S and homothet P ′ ∈ P ′ with p ∈ ∂P ′.

Note that by definition P̄ is universally good with the same constant cg and is self-
coverable with the same self-coverability function as P . Let P̄ ′:={Cl(P ′) : P ′ ∈ P ′}.
Since there is no homothet of P in P ′ that contains a point of S on its boundary,
every hyperedge of HP (S) appears also in H P̄ ′

(S). Thus, it is enough to show that
P̄ satisfies Theorem 3.3.

Suppose therefore that P is a closed convex polygon. Let P be the family of
homothets of P and let P0 ⊆ P be a smallest size subfamily that realizes HP (S). For
convenience we pickP0 such that no P ′ ∈ P0 contains a point from S on its boundary
(this can be achieved by slightly inflating homothets if necessary).

We may also assume that S is in very general position with respect to P . Indeed,
otherwise note that a small perturbation of the points will achieve that while P0
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will still realize the same hypergraph HP (S). It will also be convenient to assume
that the boundaries of every two polygons in P0 do not overlap, and no edge in
DT := DT (P,S) crosses the boundary of a polygon in P0 at one of its vertices.
It follows from Lemma 2.1 that P0 is a family of pseudo-disks.5 This implies that
|P0| = O(|S|3) by a result of Buzaglo et al. [5] who proved the following: Suppose
that (V, E) is a hypergraph where V is a set of points in the plane and for every
hyperedge e ∈ E there is a region bounded by a simple closed curve that contains the
points of e and no other points from V . If all the regions that correspond to E define a
family of pseudo-disks, then |E | = O(|V|3).

We can also assume that DT is nice, that is, the boundary of its outer face is a
convex polygon: Set −P := {(−x,−y) : (x, y) ∈ P} and let −P ′ be a homothet of
−P that contains in its interior all the polygons in P0. By adding the vertices of −P ′
to S (and perturbing again if needed) we obtain a set of points S ′ such that −P ′ is
the boundary of the outer face in its generalized Delaunay triangulation with respect
to P . Moreover, the hypergraph we get by intersecting homothets of P with S ′ is a
hypergraph that contains all the hyperedges that we get by intersecting polygons in
P0 with S. The latter hyperedges are exactly the hyperedges we get by intersecting
homothets of P with S, since P0 realizes HP (S). Therefore a valid 2-coloring of the
new set of points induces a valid 2-coloring of the original set of points.

Recall thatDT is a plane graph, and therefore, by the Four Color Theorem, we can
color the points in S with four colors, say 1, 2, 3, 4, such that there are no adjacent
vertices in DT with the same color. In order to obtain two color classes, we recolor
all the vertices of colors 1 or 2 with the color light red and all the vertices of colors 3
or 4 with the color light blue.

Call a homothet P ′ ∈ P0 heavy monochromatic if it contains exactly cg points from
S and all of them are of the same light color. If all of these points are colored light
blue (resp., red), then we call P ′ a heavy light blue (resp., red) homothet. Obviously,
if there are no heavy monochromatic homothets, then we are done since m > cg and
it follows from Lemma 2.3 that a monochromatic homothet with m > cg points from
S can be shrinked to a monochromatic homothet with exactly cg points from S.

Suppose that P ′ is a heavy monochromatic homothet of P . Observe thatDT [P ′] is
a tree, for otherwise it would contain a cycle which in turn would contain a triangle by
Lemma 2.2. That triangle must be 3-colored in the initial 4-coloring, so not all of its
points can be light red or light blue, contradicting the monochromaticity of the points
in P ′.

Since P is universally good, P ′ contains cg points and DT [P ′] is a tree, it follows
that P ′ contains a good 3-path x-y-z-w. We associate this 3-path with P ′. Suppose
that P ′ is a heavy light red homothet of P . Then one of y and z was originally colored
1 and the other was originally colored 2. Recolor the one whose original color was 1
with the color dark blue. Similarly, if P ′ is a heavy light blue homothet of P , then one
of y and z was originally colored 3 and the other was originally colored 4. In this case
we recolor the one whose original color was 3 with the color dark red. Repeat this for
every heavy monochromatic homothet, and, finally, in order to obtain a 2-coloring,

5 In a family of pseudo-disks the boundaries of every two regions cross at most twice.
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merge the color classes light red and dark red into one color class, red; and merge the
color classes light blue and dark blue into one color class, blue.

Lemma 3.7 There is no homothet P ′ ∈ P0 that contains m points from S all of which
are of the same color.

Proof Suppose for contradiction that P ′ is a homothet of P that contains m points
from S all of which of the same color. We may assume without loss of generality that
all the points in P ′ are colored red, therefore, before the final recoloring each point
in P ′ was either light red or dark red. We consider two cases based on the number of
dark red points in P ′. Recall that n is the number of vertices of P .

Case 1: There are at most n dark red points in P ′. ByDefinition 2.12 there is a setP ′ of
atmost f (n)homothets of P whose union is P ′ such that no dark red point in P ′ is in the
interior of one of these homothets. Using Lemma 2.3 we can change these homothets
slightly such that none of them contains a dark red point yet all light red points are still
covered by these homothets. Thus the at leastm−n = (cg−1) f (n)+1 light red points
are covered by these at most f (n) homothets. By the pigeonhole principle one of these

homothets, denote it by P ′′, contains at least
⌈

(cg−1) f (n)+1
f (n)

⌉
= cg light red points and

no other points. However, in this case it follows from Lemma 2.3 that there is a heavy
light red homothet in P0 that contains exactly cg points from S ∩ P ′′. Therefore, the
coloring algorithm should have found within this heavy light red homothet a good
3-path and recolored one of its vertices with dark blue and then blue. This contradicts
the assumption that all the points in P ′ are red.

Case 2: There are more than n dark red points in P ′. Let y be one of these dark
red points. Then there is a good 3-path x-y-z-w within a heavy light blue homothet
Py ∈ P0 with whom this 3-path is associated. Furthermore, the original color of y is
3 and therefore the original color of x and z is 4, and thus their final color is blue. It
follows that P ′ separates x-y-z, moreover, since x-y-z is a good 2-path, the edges yx
and yz cross different sides of P ′. Let sx be the side of P ′ that is crossed by yx , and let
qx be the crossing point of yx and sx . Similarly, let sz be the side of P ′ that is crossed
by yz, and let qz be the crossing point of yz and sz . See Fig. 3. Note that ∂P ′ and ∂Py
cross each other exactly twice. Indeed, this follows from Lemma 2.1 and the fact that
there are points from S in each of P ′ ∩ Py (e.g., y), Py \ P ′ (e.g., x and z) and P ′ \ Py
(since |P ′ ∩ S| ≥ m > cg = |Py ∩ S|). The points qx and qz partition ∂P ′ into two
parts ∂P ′

1 and ∂P ′
2. Note that since qx , qz ∈ P ′ ∩ Py , the two crossing points between

∂P ′ and ∂Py must lie either in ∂P ′
1 or in ∂P ′

2. Assume without loss of generality that
both of them lie in ∂P ′

1. Thus ∂P ′
2 ⊂ Py . Let v be a vertex of P ′ in ∂P ′

2 (note that
since sx �= sz each of ∂P ′

1 and ∂P ′
2 contains a vertex of P

′). We associate the vertex v

with the dark red point y. We also define Ry to be the region whose boundary consists
of the segments yqx , yqz , and the part of ∂P ′

2 whose endpoints are qx and qz (call this
part ∂P ′

xz). Observe that Ry ⊆ P ′ ∩ Py .

Proposition 3.8 There is no other point but y in S ∩ Ry.

Proof Suppose that the claim is false and let y′ ∈ S ∩ Ry be another point in Ry . As
y′ is in P ′, it must be red after the final coloring. Also, as it is also in Py , it must be
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Fig. 3 An illustration for the proof of Lemma 3.7

a dark red point (which was light blue before having been recolored to dark red and
finally to red). Thus, y′ is a dark red point in Ry .

Since x and y′ both lie in the heavy light blue homothet Py , they are connected
by a path in DT [Py] that alternates between points of colors 3 and 4 (considering
the initial 4-coloring). We may assume without loss of generality that y′ is the first
point in Ry along this path from x to y′: indeed, there are no points of color 4 in Ry ,
and if there is a point of color 3 before y′, then we can name it y′. Denote by � the
path (in DT ) from y to y′ that consists of the edge yx and the above-mentioned path
from x to y′. Consider the polygon P̂ whose boundary consists of � and a straight-line
segment yy′ (P̂ is not a homothet of P). Since y′ and y are the only vertices of P̂ in
Ry , there is no edge of � that crosses yy′. Indeed, if there was such an edge, then it
would split P ′ into two parts such that one contains y and the other contains y′. This
would contradict Corollary 2.5. Hence P̂ is a simple polygon.

Since every simple polygon has at least three convex vertices, P̂ has a convex vertex
different from y and y′ (thus this vertex is not in Ry). Denote this vertex by b and let
a and c be its neighbors along � such that � abc < π . Since the initial colors of a and
c are the same, we have ac /∈ DT and so it follows from Proposition 2.6 that there
is a neighbor d of b in DT in between a and c. Let us choose d such that it is the
neighbor of b that is closest to a in the rotation of b. Thus, it is connected to both a
and b. Since the initial colors of a and b are 3 and 4, the initial color of d was 1 or 2.
Note that P̂ ⊆ Py since all of its edges are inside Py . Thus d /∈ P̂ and also d /∈ Py
since Py does not contain vertices of color 1 or 2. Now consider the directed edge bd:
it starts inside P̂ (since d is in between a and c) and so it must cross yy′. Before doing
so bd must cross ∂Ry and so it crosses ∂P ′

xz , since it cannot cross yqz or yqx . After
crossing yy′, the directed edge bd must cross ∂P ′

xz again, since d /∈ Ry . But then bd
splits P ′ into two parts such that one contains y and the other contains y′, which is
impossible by Corollary 2.5. 
�

In a similar way to the one described above, we associate a vertex of P ′ with every
dark red point in P ′. Since there are more than n dark red points in P ′, there are
two of them, denote them by y and y′, that are associated with the same vertex of
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P ′, denote it by v. Let x-y-z be the good 2-path that corresponds to y, let yqx and
yqz be the edge-segments of yx and yz, and let Ry be the region as defined above.
Similarly, let x ′-y′-z′ be the good 2-path that corresponds to y′, let yqx ′ and yqz′ be
the edge-segments of y′x ′ and y′z′, and let Ry′ be the region as defined above.

It follows from Proposition 3.8 that y /∈ Ry′ and y′ /∈ Ry . However, ∂Ry and ∂R′
y

both contain v. This implies that one of the segments yqx and yqz crosses one of the
segments y′qx ′ and y′qz′ , which is impossible since these are segments of edges of a
plane graph. Lemma 3.7 is proved. 
�

To complete the proof of Theorem3.3,we need to argue that the described algorithm
runs in polynomial time. Indeed, constructing the generalized Delaunay triangulation
and then 4-coloring it can be done in polynomial time. Recall that there are at most
O(|S|3) combinatorially different homothets of P . Among them, we need to consider
those that contain exactly cg points, and for each such heavymonochromatic homothet
P ′ we need to find a good 3-path in DT [P ′], for the final recoloring step. This takes
a constant time for every heavy monochromatic homothet, since cg is a constant.
Therefore, the overall running time is polynomial with respect to the size of S.

3.2 Triangles are Universally Good

In this section we prove Lemma 3.4.
Let T be a triangle, let S be a set of points in very general position with respect

to T , and let DT := DT (T,S) be the generalized Delaunay triangulation of S with
respect to T such that DT is nice (i.e., the boundary of its outer face is a convex
polygon). By applying an affine transformation, if needed, we may assume without
loss of generality that T is an equilateral triangle. Suppose that T ′ is a homothet of T
that contains at least 7382 points from S and thatDT [T ′] is a tree. We will show that
T ′ contains a good 3-path.

By Corollary 2.10 for every point v ∈ T ′ ∩ S we have degDT [T ′](v) ≤ 9. Since
DT [T ′] is a tree with at least 7382 = 1+ 9+ 92 + 93 + 94 + 1 vertices of maximum
degree 9, it contains a simple path of length 9. Let Z = v1-v2- · · · -v10 be such a
path. We will prove that there is 2 ≤ i ≤ 8 such that vi−1-vi -vi+1 and vi -vi+1-vi+2
are good 2-paths, and therefore T contains the good 3-path vi−1-vi -vi+1-vi+2. Call a
2-path vi−1-vi -vi+1 (for 2 ≤ i ≤ 9) bad if it is not good, that is, there is a homothet of
T , Ti , such that Ti contains vi , does not contain vi−1 and vi+1, and the edges vivi−1
and vivi+1 cross the same side of Ti .

Denote the sides of T by s1, s2, s3. For j = 1, 2, 3, let Bj be the set of bad 2-paths
vi−1-vi -vi+1 such that there is a homothet Ti that contains vi and does not contain vi−1
and vi+1, and the edges vivi−1 and vivi+1 both cross the side of Ti that is homothetic
to s j . Suppose for contradiction that Z does not contain two consecutive good 2-paths.
Then, at least one of the sets Bj contains two bad 2-paths. Assume without loss of
generality that B1 contains two bad 2-paths vi−1-vi -vi+1 and vk−1-vk-vk+1 such that
i < k. We may further assume that s1 is horizontal and that T lies above it.

There is a homothet of T that separates vi−1-vi -vi+1 such that vi−1vi and vivi+1
both cross its side that is homothetic to s1, therefore both vi−1 and vi+1 lie below vi .
Similarly, both vk−1 and vk+1 lie below vk . Let vr be the lowest point among vi , . . . , vk .
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Fig. 4 An illustration for the proof of Lemma 3.4

Since vi+1 is lower than vi and vk−1 is lower than vk it follows that r �= i, k and so
vr is lower than vr−1 and vr+1. Suppose without loss of generality that vr+1 is to the
right of the line through vr and vr−1. By applying Proposition 2.6 to two vertices that
are between vr−1 and vr+1 and follow each other immediately in the rotation of vr in
DT [T ′] (they can coincide with vr−1 and/or vr+1), we get that there is at least one
neighbor of vr between vr−1 and vr+1 that lies outside of T ′. Let u be such a neighbor
of vr and let Tu be a homothet of T that contains vr and u and no other point from S.
Note that u is higher than vr , thus vr u crosses either the right or the left side of T ′.
Suppose without loss of generality that vr u crosses the right side of T ′ at a point qu
(refer to Fig. 4). It follows that the right side of Tu is to the right of the right side of T ′.
Thus, a horizontal ray that begins at vr and goes to the right will first cross the right
side of T ′ (denote this crossing point by q) and then cross the right side of Tu (note that
this ray does not cross the left sides of Tu and T ′ since vr ∈ Tu ∩ T ′). Now consider
the triangle �quqvr . All of its vertices are in Tu ∩ T ′, therefore �quqvr ∈ Tu ∩ T ′.
However, since vr+1 follows u in the rotation of vr , it follows that the edge vrvr+1
lies in �quqvr since it cannot cross none of its sides. This is impossible since vr+1
should be outside of Tu and hence outside of �quqvr . Lemma 3.4 is proved.

3.3 Parallelograms are Universally Good

In this sectionwe prove Lemma 3.5. Let Q be a parallelogram, letS be a set of points in
very general position with respect to Q, and letDT := DT (Q,S) be the generalized
Delaunay triangulation of S with respect to Q such thatDT is nice (i.e., the boundary
of its outer face is a convex polygon). By applying an affine transformation, we may
assume without loss of generality that Q is an axis-parallel square. Since S is in very
general position, no two points in S share the same x- or y-coordinate.

Suppose that Q′ is a homothet of Q that contains at least 22 points from S and that
DT [Q′] is a tree. We will show that Q′ contains a good 3-path.

Let q ∈ S be a point. We partition the points of the plane into four open quadrants
according to their position with respect to q: NE(q) (North-East), NW(q) (North-
West), SE(q) (South-East), and SW(q) (South-West).
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Fig. 5 An illustration for the proof of Proposition 3.10

Proposition 3.9 Let x, y, z be three points in S such that xy and xz are edges inDT .
Then for every quadrant Qd ∈ {NW,NE,SW,SE} if y ∈ Qd(x), then z /∈ Qd(y).

Proof Suppose for contradiction and without loss of generality that y ∈ NE(x) and
z ∈ NE(y). Then the smallest rectangle that contains x and z has x at its bottom-left
corner, z at its top-right corner and y in its interior. Therefore, there is no square that
contains x and z and does not contain y and so xz cannot be an edge in DT . 
�
Proposition 3.10 For every point q ∈ S ∩ Q′ there are no two neighbors of q in
DT [Q′] that lie in the same quadrant of q.

Proof Suppose for contradiction that q has two neighbors, x and y, that lie in the same
quadrant. In this case we can choose them such that there is no other neighbor of q
between them. Assume without loss of generality that x, y ∈ NE(q), such that qx
forms a smaller angle with the x-axis than qy (refer to Fig. 5) and they follow each
other immediately in the rotation of q. It follows from Proposition 2.6 that there is
a point z /∈ Q′ such that z is a neighbor of q in DT and is between x and y in the
rotation of q. By Proposition 3.9 we have y /∈ NE(x). Since qx forms a smaller angle
with the x-axis than qy we have y /∈ SE(x). If y ∈ SW(x), then x ∈ NE(y) which is
impossible by Proposition 3.9. Thus, y ∈ NW(x). Using the same arguments we get
that z ∈ NW(x)∩SE(y). However, this implies that z is contained in any axis-parallel
rectangle that contains x and y and thus z ∈ Q′, a contradiction. 
�
Proposition 3.11 Let x and y be two neighbors of q in DT [Q′]. Let z /∈ Q′ be a
neighbor of q in DT that lies between x and y in the rotation of q and let Qz be a
square that contains q and z and no other point from S. Then:
• if x ∈ NW(q) and y ∈ NE(q), then qz crosses the top side of Q′, x is to the left
of Qz and y is to the right of Qz;

• if x ∈ NE(q) and y ∈ SE(q), then qz crosses the right side of Q′, x is above Qz

and y is below Qz;
• if x ∈ SE(q) and y ∈ SW(q), then qz crosses the bottom side of Q′, x is to the
right of Qz and y is to the left of Qz; and

• if x ∈ SW(q) and y ∈ NW(q), then qz crosses the left side of Q′, x is below Qz

and y is above Qz.

Proof By symmetry it is enough to consider the first case, that is, x ∈ NW(q) and
y ∈ NE(q). Since z is between x and y in the rotation of q we have z /∈ SW(x) and
z /∈ SE(y). By Proposition 3.9, z /∈ NW(x) and z /∈ NE(y). Thus z is to the right of
x and to the left of y. It follows that z is above Q′ and qz crosses the top side of Q′.
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Therefore, the top side of Qz is above Q′. Thus, qx cannot cross the top side of Qz

so it must cross its left side. This implies that x lies to the left of Qz . Similarly, qy
cannot cross the top side of Qz so it must cross its right side. This implies that y lies
to the right of Qz . 
�

Call a (simple) path in DT x-monotone (resp., y-monotone) if there is no vertical
(resp., horizontal) line that intersects the path in more than one point.

Proposition 3.12 Every path in DT [Q′] is x-monotone or y-monotone.
Proof Suppose for contradiction that there is a path p := q1-q2- · · · -qk which is
neither x-monotone nor y-monotone. Since p is a polygonal path, it follows that there
are two points, qi and q j , that are “witnesses” to the non-x- and non-y-monotonicity
of p, respectively. That is, both qi−i and qi+1 are to the left of qi or both of them are
to its right, and both q j−1 and q j+1 are above q j or both of them are below q j . We
choose i and j such that |i − j | is minimized, and assume without loss of generality
that i < j (note that it follows from Proposition 3.10 that i �= j). Thus, the sub-path
p′ := qi -qi+1- · · · , q j−1-q j is both x-monotone and y-monotone.

By reflecting about the x- and/or y-axis if needed, wemay assume that p′ is ascend-
ing, that is, for every l = i, . . . , j − 1 we have ql+1 ∈ NE(ql). Then it follows from
Proposition 3.10 that qi−1 ∈ SE(qi ) and q j+1 ∈ SE(q j ). By applying Proposition 2.6
to two vertices that are between qi−1 and qi+1 and follow each other immediately in
the rotation of qi in DT [Q′] (they can coincide with qi−1 and/or qi+1), we get that
there is a point x /∈ Q′ which is a neighbor of qi and is between qi−1 and qi+1 in the
rotation of qi , and it follows from Proposition 3.11 that qi x crosses the right side of
Q′. The same argument implies that there is a point y /∈ Q′ which is a neighbor of q j

and is between q j+1 and q j−1 in the rotation of q j , such that q j y crosses the bottom
side of Q′. However, since q j is to the right of qi and above it, the edges qi x and q j y
must cross, which is impossible. 
�

Call a 2-path w-q-z bad if it is not good, that is, there is an axis-parallel square Q′′
that contains q, does not contain w and z, and qw and qz are edges in DT that cross
the same side of Q′′. We say that w-q-z is a bad left 2-path if qw and qz cross the left
side of Q′′, and define right, top, and bottom bad 2-paths analogously.

Proposition 3.13 Let w-q-z be a 2-path. Then:

• w-q-z is a bad left 2-path iff w ∈ SW(q) and z ∈ NW(q), or vice versa;
• w-q-z is a bad right 2-path iff w ∈ SE(q) and z ∈ NE(q), or vice versa;
• w-q-z is a bad top 2-path iff w ∈ NW(q) and z ∈ NE(q), or vice versa; and
• w-q-z is a bad bottom 2-path iff w ∈ SW(q) and z ∈ SE(q), or vice versa.

Proof By symmetry it is enough to consider the first claim. Ifw-q-z is a bad left 2-path,
then there is a square Q′′ that separates it such that the edges qw and qz cross the left
side of Q′′. Therefore, these edges go leftwards from q and sow, z ∈ SW(q)∪NW(q).
It follows from Proposition 3.10 that w ∈ SW(q) and z ∈ NW(q), or vice versa.

For the other direction, assume without loss of generality that w ∈ SW(q) and
z ∈ NW(q). Let Q′′ be the square whose left side is the straight-line segment between
((q)x −ε, (w)y) and ((q)x −ε, (z)y), for some small ε > 0. Then Q′′ separatesw-q-z
and both qw and qz cross its left side, therefore, w-q-z is a bad left 2-path. 
�
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Proposition 3.14 Every path in DT [Q′] contains at most four bad 2-paths.

Proof Let p := q1-q2- · · · -qk be a simple path in DT [Q′] and suppose for a con-
tradiction that p contains at least five bad 2-paths. By Proposition 3.12 the path p is
x-monotone or y-monotone. Assume without loss of generality that p is y-monotone
and that it goes upwards, that is, qi+1 is above qi for every i = 1, 2, . . . , k − 1. It fol-
lows that p does not contain bad top or bad bottom 2-paths, for otherwise it would not
be y-monotone. It is not hard to see that bad left and bad right 2-paths must alternate
along p, that is, between every two bad left 2-paths there is a bad right 2-path and vice
versa.

Consider the first five such bad 2-paths along the path p, and denote them by
qi1−1-qi1 -qi1+1, qi2−1-qi2 -qi2+1, qi3−1-qi3 -qi3+1, qi4−1-qi4 -qi4+1 and qi5−1-qi5 -qi5+1.
By symmetry we may assume without loss of generality that qi1−1-qi1 -qi1+1 is a bad
left 2-path, and therefore qi3−1-qi3 -qi3+1 and qi5−1-qi5 -qi5+1 are also bad left 2-paths,
whereas the 2-paths qi2−1-qi2 -qi2+1 and qi4−1-qi4 -qi4+1 are bad right.

Note that we may assume without loss of generality that qi1 is to the right of qi4 ,
for otherwise qi5 must be to the right of qi2 and by reflecting about the x-axis and
renaming the points we get the desired assumption. By applying Proposition 2.6 to
two vertices that are between qi1−1 and qi1+1 and follow each other immediately in
the rotation of qi1 in DT [Q′] (they can coincide with qi1−1 and/or qi1+1), we get that
qi1 has a neighbor z /∈ Q′ between qi1−1 and qi1+1 in the rotation of qi1 . Let Qz be a
square that contains qi1 and z and no other point from S and let sz be its side length
(refer to Fig. 6). It follows from Proposition 3.11 that qi1−1 lies below Qz , qi1+1 lies
above Qz , and z lies to the left of Q′. Therefore, (qi1+1)y − (qi1−1)y > sz . Similarly,
qi4 has a neighbor w /∈ Q′ between qi4+1 and qi4−1 in the rotation of qi4 . Let Qw

be a square that contains qi4 and w and no other point from S and let sw be its side
length. Then qi4−1 lies below Qw, qi4+1 lies above Qw, and w lies to the right of Q′.
Therefore, (qi4+1)y − (qi4−1)y > sw.

Note that sinceqi1 is to the right ofqi4 and z andw are to the left and to the right of Q′,
respectively,we have sz+sw > ((qi1)x−(z)x )+((w)x−(qi4)x ) > sQ′ , where sQ′ is the
side length of Q′. Observe also that since there are at least two other vertices between
qi1 and qi4 along p, we have that qi1+1 �= qi4−1, and thus qi1+1 lies below qi4−1.
This implies that ((qi1+1)y − (qi1−1)y)+ ((qi4+1)y − (qi4−1)y) < sQ′ . Combining the
inequalities we get, sQ′ > ((qi1+1)y − (qi1−1)y)+ ((qi4+1)y − (qi4−1)y) > sz + sw >

((qi1)x − (z)x ) + ((w)x − (qi4)x ) > sQ′ , a contradiction. 
�
To complete the proof of Lemma3.5wewill consider a path of length 11 inDT [Q′].

It follows from Proposition 3.10 that for every q ∈ S∩Q′ we have degDT [Q′](q) ≤ 4.

This implies that if Q′ contains at least 1 + ∑5
i=1 4

i = 1366 points from S, then
DT [Q′] contains a simple path of length at least 11. However, one can show that
already 22 points suffice to guarantee the existence of a path of length 11. To prove
this, we will need the following proposition.

Proposition 3.15 There are at most two points in S ∩ Q′ whose degree inDT [Q′] is
greater than two. If one of these points has degree four, then no other point has degree
greater than two.
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Fig. 6 An illustration for the proof of Proposition 3.14

Proof Suppose first that there is a point qk with degDT [Q′](qk) = 4 and another point
q0 with degDT [Q′](q0) ≥ 3 (see Fig. 7 (a) for an example). Let p := q0-q1-q2- · · · -qk
be the path connecting these points in the tree DT [Q′]. We may assume without loss
of generality that q1 ∈ SE(q0) and that q0 has a neighbor z0 ∈ SW(q0). In this case the
path z0-q0-q1-q2- · · · -qk is not y-monotone. Therefore this path must be x-monotone
by Proposition 3.12, and thus p is also x-monotone. It follows that qk−1 ∈ SW(qk) ∪
NW(qk). Since by Proposition 3.9 a point cannot have two neighbors in the same
quadrant and the degree of qk is four, it has another neighbor zk �= qk−1 in SW(qk) ∪
NW(qk). Therefore, the path z0-q0-q1- · · · -qk-zk is not monotone, a contradiction.

Now suppose that each point in DT [Q′] has degree at most three, and suppose for
contradiction that there are at least three points in S ∩ Q′ whose degree in DT [Q′]
is three. Since DT [Q′] is a tree, there must exist a path p := q0-q1-q2- · · · -qk
(k ≥ 2) between two points q0 and qk with degree three that contains a third point
q j (0 < j < k) with degree three. We can assume without loss of generality that
q1 ∈ SE(q0). Since the degree of q0 is three, it has a neighbor in NE(q0) ∪ SW(q0).

We can also assume that q0 has a neighbor z0 ∈ SW(q0) (see Fig. 7 (b) for an
example). In this case the path z0-q0-q1- · · · -qk is not y-monotone, thus it must be
x-monotone and so p is also x-monotone. It follows, that if qi , for i ∈ { j, k}, has two
neighbors in SW(qi )∪NW(qi ), then for one of them, denote it by zi �= qi−1, a path that
ends with qi−1-qi -zi is not x-monotone and hence the path z0-q0-q1- · · · -qi−1-qi -zi is
not monotone. Therefore, qi has two neighbors in SE(qi ) ∪ NE(qi ), for i ∈ { j, k}. It
follows that q j has a neighbor y j �= q j+1 such that a path that starts with y j -q j -q j+1
is not x-monotone, and qk has a neighbor yk such that a path that ends with qk−1-qk-yk
is not y-monotone. Therefore the path y j -q j -q j+1- · · · -qk−1-qk-yk is not monotone,
a contradiction. 
�
Lemma 3.16 If Q′ contains at least 22 points from S, thenDT [Q′] contains a simple
path of length at least 11.
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qj − 1 qk− 1
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Fig. 7 Illustrations for the proof of Proposition 3.15. (a) The degree of q0 is at least three and the degree
of qk is four. The path z0-q0-q1- · · · -qk -zk is not monotone. (b) The degree of q0, q j and qk is three. We
can assume that q0 has a neighbor z0 ∈ SW(q0). In case none of q j and qk has a neighbor in both of their
NW and SW quadrants, there is a path y j -q j - · · · -qk -yk which is not monotone

Proof IfDT [Q′] contains a vertex q whose degree is four, then it follows from Propo-
sition 3.15 that by deleting it we decompose the tree DT [Q′] into four paths, having
21 vertices altogether. By the pigeonhole principle either the first two or the second
two together have at least 11 vertices. Along with q they form a path with 12 vertices,
as required.

IfDT [Q′] does not contain a vertex whose degree is four, then by Proposition 3.15
it contains at most two vertices with degree three, and no other vertex has degree
greater than two. We can assume that we have exactly two vertices whose degree is
three, q and q ′, and let p be the path connecting them in DT [Q′]. By deleting these
two vertices we obtain five paths: a path that consists of p without its two endpoints,
two paths p1, p2 that are incident to q and two paths p3, p4 that are incident to q ′.
Considering the number of vertices in each of these paths we have |V (p1)|+|V (p2)|+
|V (p)| + |V (p3)| + |V (p4)| + |V (p)| ≥ 22 + 2 = 24, since |V (p)| ≥ 2. Therefore,
one of the paths formed by p1, p, p3 and p2, p, p4 must contain at least 12 vertices, as
required. 
�

Let p := q1-q2- · · · -q12 be a simple path of length 11 in DT [Q′]. By Proposi-
tion 3.14 there are at most four bad 2-paths qi−1-qi -qi+1 in p. Therefore, there is
2 ≤ i ≤ 10 such that qi−1-qi -qi+1 and qi -qi+1-qi+2 are good 2-paths, and therefore
Q′ contains a good 3-path qi−1-qi -qi+1-qi+2. Lemma 3.5 is proved. 
�

3.4 A Universally Good Polygon is Either a Triangle or a Parallelogram

In this section we prove that triangles and parallelograms are the only universally good
polygons. That is, for any other polygon P we can construct a set of points S such that
there is a homothet of P that intersects DT (P,S) in a long path, while every other
vertex of this path can be separated from its neighbors by the same side of a homothet
of P (thus there is no good 3-path in P). See Fig. 8. The rest of this section contains
the exact description and validity of this construction.

We start with a simple statement that will be used later.
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Fig. 8 A construction showing that P is not universally good

Proposition 3.17 Let P ′ be a homothet of a convex closed polygon P that is contained
in P. If ∂P ∩ ∂P ′ �= ∅, then an edge of P ′ is contained in an edge of P (to which it
is homothetic).

Proof Suppose for contradiction that ∂P ∩ ∂P ′ �= ∅ and no edge of P ′ is contained
in an edge of P . Then there is a vertex v′ of P ′ that lies on ∂P such that the edges
that are incident to v′ lie in the interior of P . It is impossible thus that v′ coincides
with v, the vertex to which it is homothet, since then these vertices would be incident
to edges of different slopes. v′ cannot coincide with another vertex of P either, since
then there is a direction in which v′ is extreme in P ′ and a different vertex than v is
extreme at P . Thus v lies on an edge of P . One of the endpoints of this edge must be v,
for otherwise as before there is a direction in which v′ is extreme in P ′ and a different
vertex than v is extreme at P . But then, again, it follows that v and v′ are incident to
edges of different slopes. Therefore, there is an edge of P ′ which is contained in an
edge of P , and since both P ′ and P are on the same side of the line through this edge,
it follows that these edges are homothetic to each other. 
�

Suppose that P is a convex closed n-gon which is neither a triangle nor a parallel-
ogram. We will show that P is not universally good. Let uv be an edge of P which is
not parallel to any other edge of P if n = 4 and an arbitrary edge otherwise. Assume
without loss of generality that uv is horizontal, u is left of v, and P lies above uv.

In order to have only a single case to deal with, if P has a unique highest vertex,
then we regard this vertex as two vertices joined by a horizontal edge of length 0.
This way P always has a top horizontal edge yz (possibly of length 0) such that y
is left of z and P lies below yz. Since P is neither a triangle nor a parallelogram
it has a vertex x /∈ {u, v, y, z}. Assume without loss of generality that x is on the
clockwise polygonal chain from y to v on the boundary of P . Denote by y0 the point
on the clockwise polygonal chain from u to y on the boundary of P that has the same
y-coordinate as x and observe that the line-segment y0x lies in P .
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Proposition 3.18 For every two distinct points a and b that lie on y0x there is a
homothet of P, denote it by P ′, such that P ′ is contained in P and y0x ∩ P ′ = ab.

Proof We can obtain such a homothet P ′ as follows. Initially, set P ′ := P . Now
shrink P ′ with respect to a until b lies on ∂P ′. Then shrink P ′ with respect to b until
a lies on ∂P ′. Since P ′ is convex we have y0x ∩ P ′ = ab. 
�

For a polygon R and a vertex r ∈ R, we denote by r− and r+ the vertices of R that
precede and succeed r , respectively, in the clockwise order of the vertices of R. For a
homothet P ′ (resp., Pi ) of P and a vertex r ∈ P , we denote by r ′ (resp., ri ) the vertex
of P ′ (resp., Pi ) that is homothetic to r . Since, e.g., (ri )+ = (r+)i , we simply write
r+
i , r−

i , r ′−, etc.
Given an integer k ≥ 1, we describe a way to construct a set of k homothets of P ,

P1, P2, . . . , Pk , such that:

(1) P contains Pi , for every i ≥ 1;
(2o) the edge x−

i xi of Pi is contained in the edge x−x of P , for every odd i ≥ 1;
(2e) the edge xi x

+
i of Pi is contained in the edge xx+ of P , for every even i ≥ 2;

(3o) the edge uivi of Pi is contained in the open segment yi−1x , for every odd i ≥ 1;
and

(3e) the edge yi zi of Pi is contained in the open segment vi−1x , for every even i ≥ 2.

We will use the following proposition for the construction.

Proposition 3.19 Let u∗ be a point in the open line-segment y0x. Then there is a
homothet of P, P ′, such that P ′ is contained in P, u′v′ is contained in the open
line-segment u∗x, and x ′−x ′ is contained in x−x.

Proof For an arbitrary u′ on u∗x we can fix a homothet of P , denote it by P ′′, such that
its edge u′′v′′ that is homothetic to uv coincides with u′x (i.e., u′′ = u′ and v′′ = x).
Clearly, by choosing u′ close enough to x , the intersection of ∂P ′′ and ∂P is contained

in the edge x−x . Since P is convex, it follows that the vector
−−→
vv− forms a smaller

angle with the positive x-axis than does the vector
−−→
xx−. Therefore, the (open) edge

v′′v−′′ of P ′′ homothetic to vv− lies outside of P . We now continuously shrink P ′′
with respect to u′ until it is contained in P . Let P ′ be the resulting homothet of P (see
Fig. 9). Clearly, P ′ is contained in P . Note that an edge of P ′ is contained in an edge
of P by Proposition 3.17. Also, as P ′ is in P ′′ and the intersection of ∂P ′′ and ∂P is
contained in x−x , the only possibility is that x ′−x ′ is contained in x−x . Observe also
that since we had to shrink P ′′, the vertex v′ of P ′ that is homothetic to v lies on the
open segment u′x . 
�

By reflecting P about the x-axis and applying Proposition 3.19 we get:

Corollary 3.20 Let u∗ be a point in the open line-segment y0x. Then there is a homo-
thet of P, P ′, such that P ′ is contained in P, y′z′ is contained in the open line-segment
u∗x, and x ′+x ′ is contained in x+x.

By applying Proposition 3.19 with u∗ = y0 we get a homothet P1 that satisfies
Properties (1)–(3) such that v1 is on the open segment y0x . Suppose that we have

123



780 Discrete Comput Geom (2017) 58:757–784

v− = x = v

v = x+u

y0
u = u

P

P P

v
u

x−

y z

v−

Fig. 9 An illustration for the proof of Proposition 3.19

homothets P1, . . . , Pi that satisfy Properties (1)–(3). For an even i we apply Proposi-
tion 3.19 with u∗ = vi to get Pi+1. For an odd i we apply Corollary 3.20 with u∗ = zi
to get Pi+1. Thus we obtain homothets of P that satisfy Properties (1)–(3). Note that
Pi is contained in the closed half-plane that is bounded from below (resp., above) by
the line containing y0x for every odd (resp., even) i ≥ 1.

Suppose for contradiction that P is universally good with a constant c := cg(P).
We may assume that c ≡ 0 mod 4 (by increasing c if necessary). We will construct a
set of points S such that |S ∩ P| = c,DT (P,S)[P] is a path, and P does not contain
a good 3-path. This will contradict the fact that P is universally good.

We begin with an empty set of points S and a set of homothets of P , P1, . . . , Pk , as
above, for k = c. Next, for every i = 1, . . . , c − 1 we add a point pi to S as follows:
if i is odd, then pi = ui , that is, it coincides with the vertex of Pi that is homothetic
to u, whereas if i is even, then pi = yi , that is, it coincides with the vertex of Pi that
is homothetic to y.

Proposition 3.21 The points x−
1 , x−

3 , . . . , x−
c−1 appear on x−x in this order. The

points x−
2 , x−

4 , . . . , x−
c appear on x+x in this order.

Proof By symmetry it is enough to prove the first statement. Suppose for contradiction
that there are two odd indices i1 < i2 such that x−

i1
is closer than x−

i2
to x . Consider

the triangles �ui1vi1x
−
i1
and �ui2vi2x

−
i2
. Since ui2vi2 is to the right of ui1vi1 on y0x , it

follows that their boundaries cross at four points (see Fig. 10). However, these triangles
are homothetic, and thus such crossing is impossible. 
�

It follows from Proposition 3.21 that x−
i (resp., x+

i ) is not contained in Pi+2 j for
every i ≥ 1 and every j for which Pi+2 j exists.

Let ε > 0 be some small positive constant that is much smaller than the smallest
distance between anypair of distinct points at vertices of the abovementioned polygons
(that is, P and P1, . . . , Pc). For every odd i we fix a point qi outside of P at distance
εi from x−

i in the direction of the normal to x−x and add this point to S. Similarly,
for every even i we fix a point qi outside of P at distance εi from x+

i in the direction
of the normal to xx+ and add this point to S. Then, for every i , by slightly inflating
Pi with respect to some inner point, we obtain a homothet of P , denote it by P ′

i , such
that P ′

i ∩ S = {pi , qi }.
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Fig. 10 An illustration for the proof of Proposition 3.21

LetDT := DT (P,S) be the generalized Delaunay triangulation of S with respect
to P . It follows from the construction that (pi , qi ) is an edge in DT , for every i =
1, . . . , c. By Proposition 3.18 it follows that DT also contains the edge (pi , pi+1),
for every i = 1, . . . , c − 1.

Next we apply a small perturbation of the points inS and slightly scale and translate
the polygons Pi , such that for every i = 1, . . . , c we have:

1. Pi still contains the same (perturbed) points pi and qi and no other (perturbed)
point from S;

2. if i is odd, then the point pi lies slightly below y0x ; and
3. if i is even, then the point pi lies slightly above y0x .

Thus, the above-mentioned edges of DT of type (pi , qi ) and (pi , pi+1) are still
edges of DT . See Fig. 8 for an example of the construction at this point.

To complete the construction we add some points to S, as in the proof of Theo-
rem 3.3, to obtain a nice set of points with respect to P and perturb the points to obtain
a set of points in very general position with respect to P .

Observe thatDT [P] consists of the path p1-p2- · · · -pc. Therefore, if P contains a
good 3-path, then it must be of the form pi -pi+1-pi+2-pi+3 for some 1 ≤ i ≤ c − 3.
Thus, it is enough to prove that for every even i the 2-path pi−1-pi -pi+1 is not good.
Suppose for contradiction that pi−1-pi -pi+1 is a good 2-path for some even i . Recall
that while we allowed y = z, we know that u �= v, that is, uv is an edge of positive
length. Since i is even, pi lies slightly above y0x whereas pi−1 and pi+1 lie slightly
below y0x . Let P ′ be a homothet of P such that the endpoints of its edge u′v′ that
is homothetic to uv are on y0x , and u′ (resp., v′) has the same x-coordinate as pi−1
(resp., pi+1). It follows that pi lies inside P ′ whereas pi−1 and pi+1 are outside of
P ′. Moreover, the edges pi pi−1 and pi pi+1 both cross the edge u′v′ of P ′

i . Therefore,
the 2-path pi−1-pi -pi+1 is not a good 2-path, a contradiction.

4 Discussion

The main open problem related to our work is the following.
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Problem 4.1 Is it true that for every convex polygon P there is a constant m := m(P)

such that it is possible to 2-color any set of points S such that every homothet of P
that contains at least m points from S contains points of both colors?

ByTheorem3.3 itwould be enough to show that every convexpolygon is universally
good. However Theorem 3.6 shows that no other polygon is universally good besides
triangles and parallelograms, thus for other classes of convex polygons additional ideas
are needed. We remark that in a recent manuscript using the techniques developed in
this article Keszegh and Pálvölgyi [18] solved the above problem with three colors.

We conclude with two challenging related open problems. Considering coloring of
points with respect to disks, recall that in [24] it is proved that there is no constant m
such that any set of points in the plane can be 2-colored such that any (unit) disk that
contains at least m points from the given set is non-monochromatic (that is, contains
points of both colors). Coloring the points with four colors such that any disk that
contains at least two points is non-monochromatic is easy since the (generalized)
Delaunay graph is planar. Therefore, it remains an interesting open problem whether
there is a constant m such that any set of points in the plane can be 3-colored such
that any disk that contains at least m points is non-monochromatic (this problem was
posed originally in [12,13], for more general variants see also [18]).

Perhaps the most interesting problem of coloring geometric hypergraphs is to color
a planar set of points S with the minimum possible number of colors, such that every
axis-parallel rectangle that contains at least two points from S is non-monochromatic.
It is known that �(log(|S|)/ log2 log(|S|)) colors are sometimes needed [9], and it is
conjectured that polylog(|S|) colors always suffice. The latter holdswhen considering
rectangles that contain at least three points [1], however, for the original question only
polynomial upper bounds are known [2,8,11,29].
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