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Abstract We investigate the complexity of finding an embedded non-orientable sur-
face of Euler genus g in a triangulated 3-manifold. This problem occurs both as a
natural question in low-dimensional topology, and as a first non-trivial instance of
embeddability of complexes into 3-manifolds. We prove that the problem is NP-hard,
thus adding to the relatively fewhardness results that are currently known in 3-manifold
topology. In addition, we show that the problem lies in NP when the Euler genus g is
odd, and we give an explicit algorithm in this case.
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1 Introduction

Since the foundational work of Haken [7] on unknot recognition, the past decades
have witnessed a flurry of algorithms designed to solve decision problems in low-
dimensional topology.Many of these results rely on the framework of normal surfaces,
which provide a compact and algebraic way to analyze and enumerate the noteworthy
surfaces embedded in a 3-manifold. In a nutshell, many low-dimensional problems
can be seen as an instance of the following (intentionally vague) question, which
encompasses the class of problems that normal surface theory has been designed to
solve:

Generic 3-manifold problem

Input: A 3-manifold M .
Question: Does M contain an “interesting” surface?

For example, for unknot recognition [10], one triangulates the complement of the
knot and looks for a spanning disk that the knot bounds, while for knot genus [1],
one looks for a Seifert surface of minimal genus instead. To solve 3-sphere recogni-
tion [34,40], one looks for a maximal collection of stable and unstable spheres [8].
Prime decomposition [20] and JSJ decomposition [17,18] work by finding embedded
spheres or tori in a 3-manifold—note that these decompositions are the first steps to
test homeomorphism of 3-manifolds [21], which is often considered a holy grail of
computational 3-manifold theory. Other examples include the computation of Heegard
genus (and Heegard splittings) [25,26], determining whether a manifold is Haken [15]
or the crosscap number of a knot [5].

In thiswork,we investigate oneof themost natural instances of this generic problem:
since every 3-manifold contains every orientable surface, these (at least without further
restrictions) can be considered uninteresting, and therefore the first non-trivial question
is the following:

Non-Orientable Surface Embeddability

Input: An integer g and a triangulation of a closed 3-manifold M .
Question: Does the non-orientable surface of Euler genus g embed into M?

This question is not just a toy problem for computational 3-manifold theory: non-
orientable surfaces embedded in a 3-manifold provide structural informations about it.
Following the foundational article of Bredon andWood [3] classifying non-orientable
surfaces in lens spaces and surfaces bundles, many works have been devoted to this
study for specific 3-manifolds or specific surfaces (see for example [6,14,19,24,31–
33]). Our work complements these by investigating the complexity of finding non-
orientable surfaces in the most general setting.
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Another motivation for studying this question comes from the higher dimensional
analogues of graph embeddings. Graphs generalize naturally to simplicial complexes,
and several recent efforts have been made to study higher dimensional versions
of the classical notions of planar or surface-embedded graphs [27,28,41], see also
Skopenkov [38] for some mathematical background. In particular, Matoušek, Sedg-
wick, Tancer andWagner [27] recently showed that testing whether a given 2-complex
embeds in R3 is decidable—the main algorithmic machinery underlying this result is
yet another instance of the generic 3-manifold problem! In their paper, they ask what is
the complexity of this problem for embeddings into other 3-manifolds (as opposed to
R
3), and since a non-orientable surface is a particular simple instance of a 2-complex,

Non- Orientable Surface Embeddability is the first problem to investigate in
this direction.

Our results Our first result is a proof of hardness.

Theorem 1.1 The problem Non-Orientable Surface Embeddability is NP-
hard.

As an immediate corollary, it is thus NP-hard to decide, given a 2-complex K and
a 3-manifold M , whether K embeds into M .1 This might not come as a surprise:
this is a higher-dimensional version of Graph Genus, which is already known to
be NP-hard [39]. However, we would like to emphasize that non-orientable surfaces
are among the simplest possible instances of 2-complexes, namely 2-manifolds, and
by contrast deciding whether a 1-manifold, i.e., a circle graph, embeds on a surface
is trivial. Furthermore, hardness results are well known to be elusive in 3-manifold
topology, where iconic problems such as unknot recognition and 3-sphere recognition
lie in NP∩ co-NP [9,10,22,36],2 and nothing is known for most other problems, the
notable exception being 3-Manifold Knot Genus [1] which is known to be NP-
complete.3 Our result can be seen as a hint that many three-dimensional problems are
hard when the description of a 3-manifold is part of the input.

The proof of Theorem 1.1 starts similarly to the aforementioned one for 3-

Manifold Knot Genus by Agol, Hass and Thurston: the idea is to encode an
instance of One-in-Three SAT within the embeddability of a non-orientable sur-
face inside a 2-complex. This complex is then turned into a 3-manifold by a thickening
step and a doubling step. A key argument in the proof of the reduction of Agol, Hass
and Thurston revolves around computing a topological degree, which is trivial in the
case of knot genus. It turns out that this computation still works but is significantly
harder in our setting, and this is the main technical hurdle in our case, for which we
need to introduce (co-)homological ingredients.

Our second result provides an algorithm for this problem, provided that g is odd,
proving that it is also in NP.

1 On the other hand this problem is not even known to be decidable. This places it in the same complexity
limbo as testing embeddability of 2-complexes into R

4 [28].
2 Note that the proof of co-NPmembership for 3-sphere recognition [9] assumes the Generalized Riemann
Hypothesis.
3 In parallel to this work, newNP-hardness results have appeared very recently, for Heegaard genus [2]
and for the Sublink problem and the Upper bound for the Thurston complexity of an unori-

ented classical link [23].
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Theorem 1.2 Let g be an odd positive integer and M a triangulation of a 3-manifold.
The problem Odd Non-Orientable Surface Embeddability of testing whether
M contains a non-orientable surface of Euler genus g is in NP.

Observing that in the reduction involved in the proof of Theorem 1.1, the non-
orientable surface that we use has odd Euler genus, we immediately obtain as a
corollary that Odd Non-Orientable Surface Embeddability is NP-complete.

As is the case with many problems in low-dimensional topology, proving mem-
bership in NP is not as trivial as most computer scientists might be accustomed to.
As an illustration, our techniques fail for even values of g, and in these cases the
problem is not even known to be decidable. A particularity of our proof is to leverage
simplifications [4] of the crushing procedure of Jaco and Rubinstein [16] to reduce
the problem to the case of an irreducible 3-manifold. Then our proof relies on normal
surface theory.

2 Preliminaries

We only recall here the definitions of the basic objects which we investigate in this
article. The technical tools used in the proofs will be introduced when needed, and in
general we will assume that the reader is familiar with the basic concepts of algebraic
topology, as explained for example in Hatcher [11].

A surface (resp. a surface with boundary) is a topological space which is locally
homeomorphic to the plane (resp. locally homeomorphic to the plane or the half-plane).
By the theorem of classification of surfaces, these are classified up to homeomorphism
by their orientability and their genus (and the number of boundaries if there are any).
Since we will deal frequently with non-orientable surfaces, when we use the word
genus we actually mean Euler genus, sometimes also called non-orientable genus,
which equals twice the usual genus for orientable surfaces. In particular, any surface
with odd genus is non-orientable. The Euler characteristic of a surface equals 2 minus
its Euler genus.

A 3-manifold (resp. a 3-manifold with boundary) is a topological space which is
locally homeomorphic to R

3 (resp. to R
3 or the half-space R3|x≥0). To be consistent

with the literature in low-dimensional topology, we will describe 3-manifolds not
with simplicial complexes, but with the looser concept of (generalized) triangulations,
which are defined as a collection of n abstract tetrahedra, all of whose 4n faces are
glued together in pairs. In particular, we allow two faces of the same tetrahedron to be
identified. Note that the underlying topological space may not be a 3-manifold, but if
each vertex of the tetrahedra has a neighborhood homeomorphic to R3 and no edge is
identified to itself in the reverse direction, we obtain a 3-manifold [30].

A simplicial complex K is a set of simplices such that any face from a simplex
in K is also in K , and the intersection of two simplices s1 and s2 of K is either
empty or a face of both s1 and s2. In this article, we will only deal with 2-dimensional
simplicial complexes, which are simplicial complexes where the maximal dimension
of the simplices is 2—these can be safely thought of as triangles glued together along
their subfaces.
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3 Hardness Result

In this section we prove the following theorem.

Theorem 1.1 The problem Non-Orientable Surface Embeddability is NP-
hard.

Our reduction is inspired by the proof of Agol, Hass and Thurston [1] that Knot
Genus in 3-manifolds is NP-hard. While the idea of the reduction is similar, the
proof of its correctness is considerably more tricky. We use a reduction from the NP-
complete [35] problem One-in-Three SAT, which we first recall. It is defined in
terms of literals (Boolean variables or their negations) gathered in clauses consisting
of three literals.

One-in-Three SAT

Input: A set of variablesU and a set of clausesC overU such that each clause
contains exactly three literals.

Question: Does there exist a truth assignment for U such that each clause in
C has exactly one true literal?

Starting from an instance I of One-in-Three SAT, we will build a non-orientable
surface S and a 3-manifold M such that S embeds into M if and only if I is satisfiable.

3.1 The Gadget

Let I be an instance of One-in-Three SAT, consisting of a set U = {u1, . . . , un}
of variables and a set C = {c1, . . . , cm} of clauses. The surface S is taken to be the
non-orientable surface of Euler genus 2m + 2n + 1. The construction of M is more
intricate, and follows somewhat the construction of the 3-manifold of Agol, Hass and
Thurston, but with a Möbius band glued on the boundary. We build M in three steps.

1. We first build a 2-dimensional complex K .
2. We thicken K into a 3-manifold N with boundary.
3. We double N , that is, we glue two copies of N along their common boundary to

obtain M .

We first describe how these spaces are defined topologically, and address in
Lemma 3.1 the issue of computing an actual triangulation of M .

First step. The complex K is obtained in the following way.We start with a projective
plane P with n + m boundary curves, which we label by u1, . . . , un and c1, . . . , cm .
Let us denote by ki the number of times that the variable ui appears in the collection
of clauses C , and k̄i the number of times that the negation of ui appears. Fix an
orientation4 of the boundary curves as in Fig. 1. When gluing surfaces along curves,
we will always use orientation-reversing homeomorphisms.

4 Since P is not orientable, this is of course not well-defined. We mean an orientation “in the northern
hemisphere” of P in Fig. 1. Up to homeomorphism, it does not change anything, but this will be useful for
the surgery arguments used throughout the proof.
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Fig. 1 The projective plane P
with its n + m boundary curves,
and examples of surfaces Fu1
and Fū1 glued to clauses
containing u1, respectively ū1

For i = 1, . . . , n, let Fui and Fūi be genus one surfaces with ki + 1 and k̄i + 1
boundaries. For each i , one boundary curve from the surface Fui is identified to ui .
The remaining ki boundary components are identified with each of the curves c j such
that ui appears in c j . Similarly, Fūi is attached to ui and to every curve c j for which
ūi appears in c j . In the end, three surfaces are attached along each ui (Fui , Fūi and
P), and four surfaces are attached along each ci (P and the surfaces corresponding to
the three litterals in ci ). We call the curves u1 . . . un, c1 . . . cm the branching cycles of
K , and we refer to Fig. 1 for an illustration.

Second step. A 3-manifold M is a thickening of a 2-dimensional complex K if there
exists an embedding f : K → M such that M is a regular neighborhood of f (K ).
Intuitively, a thickening corresponds to the idea of growing a 3-dimensional neigh-
borhood around a 2-complex, but some care is needed, as not every 2-complex is
thickenable—see for example Skopenkov [37] for more details on this operation.

In our case though, the complex K is always thickenable, and the process is exactly
the same as in the proof of Agol, Hass and Thurston. When K is locally a surface, the
thickening just amounts to taking a product with a small interval (Fig. 2 (a)). There-
fore, to define a thickening of K it suffices to describe how to thicken around its
singular points, which by construction are the branching curves u1 . . . un, c1 . . . cm .
If F1, . . . , Fk are the surfaces adjacent to a boundary curve, one can just pick a per-
mutation of the surfaces around the curve and thicken the complex following this
permutation, as in Fig. 2 (b).

This is akin to the fact that an embedding of a graph on a surface is described by
a permutation of the edges around each vertex. Applying this construction for every
boundary curve, we obtain a 3-manifold with boundary N since every point close to
the branching circles has now a neighborhood locally homeomorphic to R3.
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Fig. 2 (a) The thickening of a surface. (b.1) Four surfaces adjacent to a boundary curve. (b.2) A sectional
drawing of these and (b.3) a sectional drawing of their thickening

Third step. In order to obtain a manifold without boundary, we double N , that is, we
consider the disjoint union of two copies N1 and N2 of N , and glue them along the
boundary ∂N1 = ∂N2 with the identity homeomorphism.

The following lemma shows that this construction can be computed in polynomial
time.

Lemma 3.1 A triangulation of the 3-manifold M can be computed in time polynomial
in |I | = n + m, the complexity of the initial One-in-Three SAT instance I .

Proof We first observe that the simplicial complex K can be computed in time poly-
nomial in |I |: one can simply start with a big enough triangulation of the projective
plane, remove disjoint triangles for the branching circles, and glue triangulations of
the surfaces Fui and Fūi along these holes. The complexity of this construction is
clearly linear in |I |.

The thickening step first involves replacing triangles of K by triangular prisms
(see Fig. 2 (a)) and retriangulating them, which is done in linear time. Then, for every
boundary curve, computing a triangulation of the thickening pictured in Fig. 2 (b) can
be done in time linear in the number of adjacent surfaces, which is bounded by |I |.

Finally, the doubling just amounts to taking two triangulations of N and gluing
them along their boundary. The complexity of this step is linear, and this concludes
the proof. ��

Finally, let us fix some notation for the rest of the section. There is a natural projec-
tion p : N → K which corresponds to a deformation retraction of the thickening (since
it is by definition a regular neighborhood). We define the continuous map τ : M → N
as being the identity on N1 and sending every point of N2 to its counterpart in N1, and
π = p ◦ τ .

3.2 Proof of the Reduction: The Easy Direction

To prove Theorem 1.1, there remains to show how to build an embedding of S into M
froma satisfying assignment for I and vice-versa. The first direction is straightforward.
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Proposition 3.2 If there is a truth assignment for I such that each clause in C has
exactly one true literal, then S, the non-orientable surface of Euler genus 2m+2n+1,
embeds in M.

Proof If there is a truth assignment for I such that each clause in C has exactly one
true literal, we can embed S in K , and therefore in M , in the following way. Take the
union of P and for every i , either Fui if ui is true, or Fūi , if ui is false. Then exactly
two boundary components are identified along each boundary component of P , so we
obtain a surface S′. Since S′ contains P , it is non-orientable, and by construction S′
has Euler genus 2m + 2n + 1. Thus we have found an embedding of S. ��

3.3 Proof of the Reduction: The Hard Direction

The other direction will occupy us for the rest of the section.

Proposition 3.3 If S embeds in M, then there is a truth assignment for I such that
each clause in C has exactly one true literal.

Outline of the proof Proving this proposition is the main technical step of this section,
and it requires some tools from algebraic topology. Therefore, we first provide some
intuition as to how the proof goes.

S M

K

h

f
π

The natural idea would be to try to do the reverse of Proposition 3.2, that is, starting
from an embedding of S into K , to find the truth assignment by looking at which tube
the embedding chooses at every branching circle ui . The difficulty is that we do not
start with an embedding into K , but only into M . Composing this embedding h with
the map π : M → K leads to a continuous map f : S → K , but f has no reason to
be an embedding.

However, this approach can be salvaged. Following Agol, Hass and Thurston [1],
we can still look at the topological degree mod 2 induced by the continuous map f
at a point x in K , which roughly counts the parity of how many times f maps S to x .
This number is constant where K is a surface, that is, outside of the branching circles
u1, . . . , un, c1, . . . , cm of K , and the sum of the incoming degrees of the patches of K
at a branching circle has to be 0: intuitively, every surface coming from one direction
at a branching circle has to go somewhere. Therefore, if the degree of f in P is 1,
exactly one of the surfaces Fui or Fūi also has degree 1. We can use it to define a
truth assignment for the variable in U , choosing ui to be true if Fui has degree 1, and
false in the other case. Then, the sum of the degrees also has to be 0 at the circles
corresponding to the clauses. Since P has degree 1, this means that either one or three
of the incoming surfaces also has degree 1. We show that this number is always one,
otherwise the surface S cannot have genus 2m + 2n + 1. This will result from the fact
that if we have a degree 1 map between two surfaces S1 and S2, then the genus of S2 is
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not larger than the genus of S1 (Lemma 3.6). This shows that every clause has exactly
one true literal and concludes the proof.

This all hinges on the fact that the degree of f in P is one. This is where our
proof diverges from the one of Agol, Hass and Thurston, as in their case this step is
straightforward. Here, this will result from the non-orientability of S: morally, when
embedding S into M and then mapping it into K , the only place where the non-
orientability can go is P . To prove this fact formally is another matter and relies on
three ingredients:

1. Since S is non-orientable and has odd genus, in the image of the embedding
h(S) ⊆ M , there is a non-trivial homology cycle h(α), which has order 2 in the
Z-homology of M (Lemma 3.4).

2. The kernel of the map π# : H1(M) → H1(K ) has no torsion (Lemma 3.5). In
particular, π ◦ h(α) = f (α) is non-trivial in the Z-homology of K . Intuitively,
the reason is that the Z2-subgroup of H1(M) comes from P , which is preserved
by π . To prove this formally, we split K and M at the “equator” and exploit the
naturality of the Mayer–Vietoris sequence (Lemma 3.5).

3. Using cup-products, which provide an algebraic bridge between (co-)homology
in dimensions 1 and 2, we leverage on this to prove that f has degree one on P .

Introductory lemmas. The notion of degree is conveniently expressed with the lan-
guage of homology. In the following, we will rely extensively on the following
notions: (relative) homology, Mayer–Vietoris sequence, cohomology, Kronecker pair-
ing (which we denote with brackets), cup-products, and we will rely on Poincaré
duality and the universal coefficient theorem. Alas, introducing (or even defining)
these falls widely outside the scope of this paper, and we refer the reader to the text-
book of Hatcher [11] to get acquainted with these concepts. For a map f , the induced
maps in homology and cohomology are respectively denoted by f# and f #.

Let us first prove the three aforementioned lemmas. The first one shows the non-
triviality of maps from non-orientable surfaces of odd genus to 3-manifolds (see also
Hempel [13, Lem. 5.1]). The second one shows that the map π only kills torsion-free
elements and the third one shows that degree 1 maps between surfaces can only reduce
the genus. To streamline the notations, when no module is indicated, homology and
cohomology are taken with Z coefficients.

Lemma 3.4 Let S be a non-orientable surface of odd genus, and α be a simple closed
curve on S, inducing an element of order 2 in H1(S). Let f : S → M be an embedding
of S into a 3-manifold M. Then f (α) is not null-homologous in H1(M).

Proof We recall that a co-dimension 1 submanifold M1 embedded in a manifold M2
is two-sided if its normal bundle is trivial, otherwise it is one-sided. An embedded
curve is orientation-preserving if it has an orientable neighborhood, otherwise it is
orientation-reversing.

Since S has odd Euler characteristic, α is orientation-reversing on S. Now we
distinguish two cases: either S is 2-sided in M , or it is 1-sided. In the first case, f (α)

is orientation reversing in f (S), and therefore also in M . Therefore it is non-trivial in
Z2 homology. In the second case, a small generic perturbation of f (α) makes it have
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Fig. 3 Decomposing the complex K around the equator

a single intersection point with f (S). By Poincaré duality with Z2-coefficients, it is
therefore non-trivial in H1(M,Z2). In both cases the result follows by the universal
coefficient theorem. ��
Lemma 3.5 Let K , M and π be as introduced in Sect. 3.1, then the kernel of the map
π# : H1(M) → H1(K ) has no torsion.

Proof Let K1 and K2 denote the lower and the upper hemispheres of K (see Fig. 3),M1
and M2 be the corresponding subspaces of M . By naturality of the Mayer–Vietoris
sequence with reduced homology, we obtain the following commutative diagram,
where the horizontal lines are exact.

−−−−→H1(M1 ∩ M2)
(i1, j1)−−−−→H1(M1) ⊕ H1(M2)

k1−l1−−−→H1(M)
∂−→˜H0(M1 ∩ M2)−→

⏐

⏐

⏐

�

π#

⏐

⏐

⏐

�

(π1#, π2#)

⏐

⏐

⏐

�

π#

⏐

⏐

⏐

�

π#

−−−−→H1(K1 ∩ K2)
(i2, j2)−−−−→H1(K1) ⊕ H1(K2)

k2−l2−−−→H1(K )
∂−→ ˜H0(K1 ∩ K2)−→

We first remark that when applied to a surface, the process of thickening and dou-
bling amounts to taking the product with S1. Therefore, we know that K2 is a Möbius
band,M2 is aMöbius band times a circle, K1∩K2 retracts to S1 andM1∩M2 retracts to
a torus T . Since M1 ∩M2 and K1 ∩ K2 are connected, their reduced 0-homologies are
zero, thus the maps k1−l1 and k2−l2 are surjective. Furthermore, π2# is the projection
of the S1 fiber, Im(i1) = Z

2, Im( j1) = Z⊕2Z, Im(i2) = Z and Im( j2) = 2Z. There-
fore, k1(H1(M1) ⊕ H1(M2)) contains no torsion, and the torsion subgroup of H1(M)
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comes from −l1(H1(M2)). Similarly, the torsion subgroup of H1(K ) comes from
−l2(H1(K2)). By commutativity of the diagram, (k2−l2)◦(π#1, π2#) = π# ◦(k1−l1)
and thus their image contains theZ2 torsion subgroup of H1(K ). Therefore, the kernel
of the map π# has no torsion and the claim is proved. ��
Lemma 3.6 Let f : S1 → S2 be a continuous map of degree one mod 2 between two
surfaces S1 and S2. Then the genus of S2 is not larger than the genus of S1.

Proof Let us denote by g1 the genus of S1 and by g2 the genus of S2. Assume by
contradiction that g2 is larger than g1. The map f induces a map on first cohomology
groups f # : H1(S2,Z2) = Z

g2
2 → H1(S1,Z2) = Z

g1
2 . Since g2 is larger than g1,

by dimension this map has a non-trivial kernel. Pick an element a in this kernel, and
an element b ∈ H1(S2,Z2) such that a ∪ b generates H2(S2,Z2) (which exists by
Poincaré duality). Then f #(a ∪ b) = 0 by naturality of the cup product. But then, by
naturality of the Kronecker pairing, we have

0 = 〈 f #(a ∪ b), [S1]〉 = 〈a ∪ b, f#([S1])〉 = 〈a ∪ b, [S2]〉 = 1,

and we have reached a contradiction. ��

Wrapping up the proof We can now proceed with the proof.

Proof of Proposition 3.3 Let us denote by h the embedding from S into M , and by α

a simple cycle of order 2 (in homology over Z) in S. By Lemma 3.4, h(α) is not null-
homologous inM , and it has order 2 in H1(M). ByLemma3.5,π# : H1(M) → H1(K )

does not have h(α) in its kernel, therefore we obtain that π ◦ h(α) = f (α) is not null-
homologous in K , and since α has order 2 in H1(S), it also has order 2 in H1(K ).

But there is a unique homology class of order 2 in H1(K ), which is induced by a
simple cycle β having order 2 in P . Therefore h(α) is homologous to β.

We now switch to Z2 coefficients, in order to use the 2-dimensional homology
despite the non-orientability. Since Z2 is a field, homology and cohomology with Z2
coefficients are dual to each other so we can take a cohomology class b in H1(K ,Z2)

which evaluates to 1 on [β]. The map f # : H1(K ,Z2) → H1(S,Z2) maps b to a
cohomology class a ∈ H1(S,Z2), and by naturality of the Kronecker pairing, we
have

〈a, [α]〉 = 〈 f #(b), [α]〉 = 〈b, f#([α])〉 = 〈b, [β]〉 = 1,

where the brackets denote taking the representative in 1-dimensional homology with
Z2 coefficients and the last equality follows from the definition of b. Now, denote by
(α, β1, γ1, β2, γ2, . . . , βk, γk) a family of simple curves forming a basis of H1(S,Z2),
such that each pair (βi , γi ) intersects once and there are no other intersections.We have
that a is the Poincaré dual of α + ∑

I βi + ∑

J γ j , for some subsets I, J ⊆ [k], and
since 〈a, [α]〉 = 1, a quick computation in the ring H∗(S,Z2) shows that a ∪ a = ξ ,
where ξ is the generator of H2(S,Z2).

Now, by naturality of the cup-product, we obtain f #(b ∪ b) = f #(b) ∪ f #(b) =
a∪a = ξ . Furthermore, once again by naturality of the Kronecker pairing, and writing
[S] for the fundamental class mod 2 of S, we have
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1 = 〈ξ, [S]〉 = 〈 f #(b ∪ b), [S]〉 = 〈b ∪ b, f#([S])〉. (1)

Let us open a parenthesis and recall how the notion of degree of a continuous
map can be extended when the target is not a manifold, applied to our specific case.
The map f induces a mapping f# in relative homology between H2(S,∅,Z2) and
H2(K , B,Z2), where B is the set of branching circles of K . The group H2(K , B,Z2)

is generated by the homology classes induced by the pieces P, Fui and Fūi , and
therefore the image of f#(S) associates to each piece a 0 or 1 number, the topological
degree mod 2 of f on this piece. An equivalent view of this number is the following.
By standard transversality arguments, the map f : S → K can be homotoped so as to
be a union of homeomorphisms of subsurfaces of S into one of the pieces P, Fui , Fūi
forming K . The parity of the number of subsurfaces of S mapped to a piece P, Fui
or Fūi is also the topological degree mod 2 of the map f . This second point of view
shows that the sum of the degrees of the pieces adjacent to a branching circle is 0, as
S has no boundary.

Going back to the proof, we observe that, juggling between both interpretations of
the degree, the geometric meaning of (1) is that f (S) covers the intersection point of
two perturbated copies of β an odd number of times, and as this intersection point is
in P , the topological degree mod 2 of f on P is 1.

The sum of the incoming degrees of 2-dimensional patches along a boundary curve
ui or ci in K is 0. Therefore, around every boundary curve ui , this allows us to pick
a truth assignment for ui , depending on whether f has degree 1 on Fui or Fūi . This
will conclude the proof if we prove that this truth assignment ϕ is valid for the 1-in-3
SAT instance I .

For every clause ci , there are exactly four surfaces adjacent to the boundary curve
ci , one of these being P , andwe denote the others by F1, F2 and F3. Since f has degree
1 on P , it has degree 1 either on one of the other surfaces or on all three. If we are in
the former case for every clause, this shows that all the clauses are satisfied exactly
by one of its variables under the truth assignment ϕ, and we are done. Otherwise,
for every clause where f has degree one on all three surfaces F1, F2 and F3, pick
arbitrarily one, say F1, and consider the surface S′ obtained by gluing every such F1
to P and every F2 and F3 together. We claim that this surface has genus strictly larger
than 2n + 2m + 1:

– The projective plane P contributes by 1.
– For every i , exactly one of the surfaces Fui or Fūi is chosen. Since they have
(Euler) genus two, they contribute by 2.

– For every clause, the gluing of F1 to P increases the genus by 2. We have already
reached 2n + 2m + 1.

– Every time we glue F2 and F3 together, we increase the genus yet again.

But by definition of S′, there is a degree one map from S to S′, which is impossible
by Lemma 3.6. This concludes the proof. ��

The combination of Lemma 3.1 and Proposition 3.3 provides a polynomial reduc-
tion from 1-in-3 SAT to the problem of deciding the embeddability of a non-orientable
surface into a 3-manifold, which concludes the proof of Theorem 1.1.
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4 An Algorithm to Find Non-orientable Surfaces of Odd Euler Genus in
3-Manifolds

In this section we prove the following theorem.

Theorem 1.2 Let g be an odd positive integer and M a triangulation of a 3-manifold.
The problem Odd Non-Orientable Surface Embeddability of testing whether
M contains a non-orientable surface of Euler genus g is in NP.

Wefirst observe that if a non-orientable surface S of genus g embeds in a 3-manifold
M , then all the non-orientable surfaces of genus g + 2k for k > 1 also embed into
M , since one can add orientable handles in a small neighborhood of S. Therefore,
to prove Theorem 1.2 it is enough to find the non-orientable surface of minimal odd
Euler genus which embeds into M , and this is what our algorithm will do.

Let us also note that if M is non-orientable, it contains a solid Klein bottle in the
neighborhood of an orientation-reversing curve. Therefore it also contains every non-
orientable surface of even genus, and the algorithm is trivial in this case. Thus, the
only case not covered by our algorithm is the one of non-orientable surfaces of even
Euler characteristic in orientable manifolds.

4.1 Background on Low-Dimensional Topology and Normal Surfaces

We introduce here quickly the tools we are using from 3-dimensional topology and
normal surfaces, and refer to Hass, Lagarias and Pippenger [10] or Matveev [29] for
more background.

A 3-manifold M is irreducible if every sphere embedded in M bounds a ball in M .
The connected sum M1#M2 of two 3-manifolds M1 and M2 is obtained by removing
a small ball from both M1 and M2 and gluing together the resulting boundary spheres.
A 3-manifold is prime if it cannot be presented as a connected sum of more than
one manifold, none of which is a sphere. It is well known [12, Prop. 1.4] that prime
manifolds are irreducible, except for S2 × S1 and the non-orientable bundle S2×̃S1.

Let S be a surface embedded in M . A compressing disk for S is an embedded disk
D ⊂ M whose interior is disjoint from S and whose boundary is a non-contractible
loop in S. A surface is compressible if it has a compressing disk and incompressible if
not. If a surface S is compressible, one can cut it along the boundary of a compressing
disk and glue disks on the resulting boundaries, this is called a compression and this
operation either reduces the genus of S by 2, or it disconnects S into two connected
components S1 and S2, and the sum of the genus of S1 and the genus of S2 equals the
genus of S.

To introduce normal surfaces, we denote by T a triangulation of a 3-manifold M .
A normal isotopy is an ambient isotopy of M that fixes the 2-skeleton of T . A normal
surface in T is a properly embedded surface in T that meets each tetrahedron in a
(possibly empty) disjoint collection of normal disks, each of which is either a triangle
(separating one vertex of the tetrahedron from the other three) or a quadrilateral
(separating twovertices from the other two). In each tetrahedron, there are four possible
types of triangles and three possible types of quadrilaterals, pictured in Fig. 4.
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Fig. 4 The seven types of normal disks within a given tetrahedron: four triangles and three quadrilaterals

Normal surfaces are used to investigate combinatorially and computationally the
surfaces embedded in a 3-manifold. In this endeavour, the first step is to prove that
the surfaces we are interested in can be normalized, that is, represented by normal
surfaces. The following theorem is due to Haken [7, Chap. 5], we refer to the book of
Matveev for a proof.

Theorem 4.1 ([29, Cor. 3.3.25]) Let M be an irreducible 3-manifold and S be an
incompressible surface embedded in M. Then, if S is not a sphere, it is ambient
isotopic to a normal surface.

For S a normal surface, denote by e(S) the edge degree of S, that is, the number
of intersections of S with the 1-skeleton of the triangulation T . A normal surface is
minimal if it has minimal edge degree over all the normal surfaces isotopic to it. Each
embedded normal surface has associated normal coordinates: a vector in Z7t≥0, where
t is the number of tetrahedra in T , listing the number of triangles and quadrilaterals
of each type in each tetrahedron. These coordinates provide an algebraic structure
to normal surfaces: there is a one-to-one correspondence between normal surfaces
up to normal isotopy and normal coordinates satisfying some constraints, called the
matching equations and the quadrilateral constraints. In particular, one can add normal
surfaces if they have no conflicting quadrilaterals by adding their normal coordinates,
this is called a normal sum. One can verify easily that the Euler characteristic is
additive under normal sum. Among normal surfaces, ones of particular interest are
the fundamental normal surfaces, which are surfaces that cannot be written as a sum
of other non-empty normal surfaces. Every normal surface can be decomposed as
a sum of fundamental normal surfaces, and the following theorem provides tools to
understand these.

Theorem 4.2 ([29, Cor. 4.1.37], see also Jaco and Oertel [15]) Let a minimal con-
nected normal surface S in an irreducible 3-manifold M be presented as a sum
S = ∑n

i=1 Si of n > 1 nonempty normal surfaces. If S is incompressible, so are
the Si . Moreover, no Si is a sphere or a projective plane.

4.2 Crushing

In order to rely on normal surface theory and apply the aforementioned theorems,
we would like M to be irreducible. Therefore, the first step of the algorithm is to
simplify the 3-manifold M so as to make it irreducible. In order to do this, we rely
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on the operation of crushing, which was introduced by Jaco and Rubinstein [16], and
extended to the non-orientable case (as well as simplified) by Burton [4]. In particular,
Burton proves the following theorem [4, Algorithm 7].

Theorem 4.3 Given a 3-manifold M, there is an algorithm which either decomposes
M into a connected sum of prime manifolds, or else proves that M contains an embed-
ded two-sided projective plane.

Furthermore, this algorithm is inNP in the following sense: there exists a certificate
of polynomial size (namely, the list of fundamental normal surfaces along which to
crush) allowing to compute in polynomial time the triangulations of the summands or
output that M contains an embedded two-sided projective plane.

If this algorithm outputs an embedded projective plane, we are done, since in this
case our 3-manifold M contains every non-orientable surface of odd genus. If not, if
we are provided the aforementioned certificate we can proceed separately on every
summand, thanks to the following easy lemma.

Lemma 4.4 Let M be a connected sum of 3-manifolds M1, . . . , Mk. Then if a non-
orientable surface S of odd genus g embeds into M, it also embeds into one of the
Mi .

Proof The 3-manifolds Mi are obtained from M after a cut-and-paste procedure along
2-spheres, and let Si denote the surface S obtained in Mi after this procedure. The
surface S is the connected sum of the surfaces Si , and since g is odd and the Euler
characteristic is additive under connected sums, one of the Si has odd Euler character-
istic. In particular it is non-orientable. By adding orientable handles to this Si inside
Mi , one obtains a non-orientable surface of the same genus as S, and therefore an
embedding of S. ��

If one of the summands is prime but not irreducible, then, as mentioned before,
it is homeomorphic either to S2 × S1 or the twisted bundle S2×̃S1. One of the fea-
tures [4, Algorithm 7] of the crushing algorithm that we use is that the S2 × S1 and
S2×̃S1 summands in the prime decomposition are actually rebuilt afterwards based
on the homology of the input 3-manifold. In particular, we know precisely if there
are any and how many of them there are, without having to use some hypothetical
recognition algorithm. Furthermore, the following lemma shows that these summands
are uninteresting for our purpose.

Lemma 4.5 No non-orientable surface of odd genus embeds into S2 × S1 or S2×̃S1.

Proof By Lemma 3.4, if such an embedding existed, there would be an element of
order 2 in H1(S2 × S1) or H1(S2×̃S1), which is a contradiction since both of these
groups are equal to Z. ��

Therefore, the output of our algorithm is trivial for these summands, and in the rest
of this section we assume that the manifold M is irreducible.
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4.3 Fundamental Normal Surfaces

We now show that in order to find the non-orientable surface of minimal odd genus,
it is enough to look at the fundamental normal surfaces.

Proposition 4.6 If a non-orientable surface of minimal odd genus embeds in an irre-
ducible 3-manifold M, then it is witnessed by one of the fundamental normal surfaces.
If none of the fundamental normal surfaces have odd genus, then no surface of odd
genus embeds into M.

Before proving this proposition, let us show how it implies Theorem 1.2.

Proof of Theorem 1.2 By applying the crushing procedure and following Lemma 4.4
and the discussion in Sect. 4.2, one can assume that M is irreducible if one is given
the certificate of Theorem 4.3. Then, by Proposition 4.6, the non-orientable surface
of minimal odd genus, if it exists, appears among one of the fundamental normal
surfaces. By a now standard argument of Hass, Lagarias and Pippenger [10, Lem. 6.1],
the coordinates of fundamental normal surfaces can be described with a polynomial
number of bits. Since there are 7t coordinates for a triangulation of size T , we can
therefore use this as a secondhalfC of anNP certificate. In order to verify in polynomial
time that C represents a non-orientable surface of Euler genus at most g, it is enough to:

1. Verify that it is a normal surface S, i.e., that is satisfies the matching equations and
the quadrilateral constraints. This is easily done in polynomial time.

2. Verify that S is connected. This can be done in polynomial time using the orbit
counting algorithm of Agol, Hass and Thurston [1, Sect. 4].

3. Verify that S is a non-orientable surface of Euler genus at most g. This can be
done via its Euler characteristic: it is a linear form on the space of normal surfaces
which can also be computed in polynomial time.

Thus, when provided with the two polynomial-sized certificates, one can verify in
polynomial time that M contains a non-orientable surface of Euler genus at most g,
which proves Theorem 1.2. ��

We now prove Proposition 4.6.

Proof of Proposition 4.6 Let S be a surface of minimal odd genus g embedded in M .
We first claim that S is incompressible. Indeed, if it is not, let D be a compressing disk
and S | D be the surface obtained after the compression along D. Then either S | D
has genus g − 2, or S | D is disconnected and one of the components has odd genus
less than g. In both cases, this contradicts the minimality of g.

The surface S being incompressible, then by Theorem 4.1, there exists a normal
surface isotopic to it. Let us denote by S′ a normal surface of genus g and of minimal
edge degree among all of those. If S′ is not fundamental, by Theorem 4.2, then it can
be written as a sum of fundamental normal surfaces S′ = ∑n

i=1 Si such that the Si are
incompressible and none of them are spheres or projective planes. In particular, none
of the surfaces Si have positive Euler characteristic. Since the Euler characteristic is
additive on the space of normal coordinates, one of the surfaces Si has odd genus at
most g. Byminimality of g, this surface Si actually has genus g, and it has smaller edge
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degree by S′, which is a contradiction. Therefore S′ is fundamental, which concludes
the proof. ��
Remark The reasonwhy the aboveproof fails in the case of evengenus is that in general
a non-orientable surface of genus g might be written as a normal sum of orientable
surfaces. In our case, this issue is avoided by the fact that a surface of odd Euler genus
is necessarily non-orientable. For even Euler genus, the first problem that we do not
solve is the one of deciding whether a given 3-manifold contains a Klein bottle. For
this specific case, we believe that the problem should be decidable, by computing a
JSJ decomposition and identifying in the geometric pieces which ones contain Klein
bottles: hyperbolic pieces do not, and one can detect which Seifert fibered spaces do
just based on their invariants. However, this technique does not seem to apply to higher
genera.
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