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Abstract The classical theorem of Fáry states that every planar graph can be repre-
sented by an embedding in which every edge is represented by a straight line segment.
We consider generalizations of Fáry’s theorem to surfaces equipped with Rieman-
nian metrics. In this setting, we require that every edge is drawn as a shortest path
between its two endpoints and we call an embedding with this property a shortest
path embedding. The main question addressed in this paper is whether given a closed
surface S, there exists a Riemannian metric for which every topologically embeddable
graph admits a shortest path embedding. This question is also motivated by various
problems regarding crossing numbers on surfaces. We observe that the round metrics
on the sphere and the projective plane have this property. We provide flat metrics on
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the torus and the Klein bottle which also have this property. Then we show that for the
unit square flat metric on the Klein bottle there exists a graph without shortest path
embeddings. We show, moreover, that for large g, there exist graphs G embeddable
into the orientable surface of genus g, such that with large probability a random hyper-
bolic metric does not admit a shortest path embedding of G, where the probability
measure is proportional to the Weil–Petersson volume on moduli space. Finally, we
construct a hyperbolic metric on every orientable surface S of genus g, such that every
graph embeddable into S can be embedded so that every edge is a concatenation of at
most O(g) shortest paths.

Keywords Embedded graphs · Shortest paths · Fáry’s theorem · Hyperbolic
geometry · Graph drawing

Mathematics Subject Classification Primary 05C10 and 68R10 · Secondary 53C23

1 Introduction

Fáry’s theorem and joint crossing numbers A famous theorem of Fáry [11] states
that any simple planar graph can be embedded so that edges are represented by straight
line segments. In this article we investigate analogues of this theorem in the context of
graphs embedded into surfaces. We focus on the following problem: Given a surface
S, is there a metric on S such that every graph embeddable into S can be embedded
so that edges are represented by shortest paths?

We call such an embedding a shortest path embedding, and such ametric a universal
shortest path metric.1

Before being enticed by this question, weweremotivated to consider it by a number
of problems involving joint embeddings of curves or graphs on surfaces arising from
seemingly disparate settings. The literature on the subject goes back at least 15 years
with Negami’s work related to diagonal flips in triangulations [25]. He conjectured
that there exists a universal constant c such that for any pair of graphs G1 and G2
embedded in a surface S, there exists a homeomorphism h : S → S such that h(G1)

and G2 intersect transversely at their edges and the number of edge crossings satisfies
cr(h(G1), G2) ≤ c|E(G1)| · |E(G2)|.

Recently, on one hand, Matoušek, Sedgwick, Tancer, andWagner [20,21], working
on decidability of embeddability of 2-complexes intoR3 and on the other hand,Geelen,
Huynh, and Richter [13], in a quest for explicit bounds for graph minors, were faced
with a similar question and provided bounds for related problems. Joint crossing
number type problems are dually equivalent to problems of finding a graph with
a specific pattern within an embedded graph while bounding the multiplicity of the
edges used. This is a fundamental concern of computational topology of surfaceswhere
one is interested in finding objects with a fixed topology and minimal combinatorial

1 We do not require that these shortest paths are unique but as we will see later on, in the case of our positive
results, i.e., Theorems 1.1 and 1.4, the uniqueness of the shortest paths can be obtained as well.
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complexity, e.g., short canonical systems of loops [19], short pants decompositions [6]
or short octagonal decompositions [4]; see also [5].

Negami provided the upper bound cr(h(G1), G2) ≤ cg|E(G1)| · |E(G2)|, and
despite subsequent discoveries [1,27], his conjecture is still open. In a paper that
refines Negami’s work [27], Richter and Salazar wrote “this [conjecture] seems emi-
nently reasonable: why should two edges be forced to cross more than once?”. The
connection with our work is that if two graphs are embedded transversally by shortest
path embeddings, then indeed no two edges cross more than once, since otherwise one
of them could be shortcut. In particular, a proof that every surface admits a universal
shortest path metric would imply Negami’s conjecture, actually even if we allowed to
subdivide each edge of the embedded graph constantly many times.

We note that prior to our work, Schaefer [28, paragraph on Geodesic crossing
numbers] had considered similar questions, mainly for drawing edges of a graph
by geodesics. We provide the details below including answers to some of Schaefer’s
questions.We also note that our methods easily yield a new proof of Negami’s theorem
for orientable surfaces; see Corollary 6.6.

Beyond crossing numbers, the existence or non-existence of shortest path universal
metrics might be relevant in curvature free and extremal Riemannian geometry.

Related workVarious results in graphdrawing [33] revolve aroundgeneralizingFáry’s
theorem to find drawings of graphs with additional constraints, for instance drawing
the edges with polylines with few bends. On the other hand, only few extensions to
graphs embedded in surfaces are known. Two classical avatars of Fáry’s theorem in the
plane are of relevance to our work: Tutte’s barycentric embedding theorem [35] and
the Koebe–Andreev–Thurston circle packing theorem (see, for example, the book of
Stephenson [29]). Both have been generalized to surfaces, providing positive answers
to the following questions:

1. Given a surface S, a metric m, and a graph G embeddable into S, can we embed
the graph G so that every edge is represented by a geodesic with respect to m?

2. Given a graph G embeddable into S, does there exist a metric m on S so that G
embeds into S with shortest paths?

The first question was considered by Schaefer [28]; a positive answer for many
metrics had been previously given by Y. Colin de Verdière [7] who generalized Tutte’s
barycentric embedding approach using a variational principle. The idea behind this
approach is to start with a topological embedding of the graph, replace the edges by
springs, and let the system reach an equilibrium. Y. Colin de Verdière proved that
for any metric of non-positive curvature, the edges become geodesics with disjoint
interiors when the system reaches stability; moreover, this embedding is essentially
unique within its homotopy class. However, geodesics need not be shortest paths, and
two geodesics can intersect an arbitrarily large number of times, see Fig. 1. Yet, these
examples do not provide a negative answer to the second question, or to our main
question, since we could change the embedding by a homeomorphism of the torus
(thus even preserving the combinatorial map) to obtain a shortest path embedding.

The second question also has a positive answer, which can be proved via a gen-
eralization of the circle packing theorem to closed surfaces [29]. Namely, for every
triangulation T of a surface, there exists a metric of constant curvature so that T can be
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a b c d

Fig. 1 a, b Two geodesics crossing many times. c A grid embedded in a torus with geodesics. d A
reembedding of this grid with shortest paths

represented as the contact graph of a family of circles. The representation of the trian-
gulation that places a vertex at the center of its corresponding circle is an embedding
with shortest paths. Such a representation can be computed efficiently and can be used
as a tool for representing graphs on surfaces [23]. However, the metric is determined
by the triangulation, which makes this approach ill-suited for our purpose.

Our results Our objective here is a mix of these last two results. On the one hand, we
require shortest paths and not geodesics, on the other hand, we want a single metric
for each surface and not one which depends on the triangulation.We will also consider
the relaxation of our problem where we are allowed to use concatenations of shortest
paths: we say that a metric is a k-universal shortest path metric if every topologically
embeddable graph can be represented by an embedding in which edges are drawn as
concatenations of k shortest paths. This is akin to various problems in graph drawing
where graphs are embedded with polylines with a bounded number of bends instead
of straight lines [9,32].

Our results focus on Riemannian metrics of constant curvature, and our techniques
are organized by the sign of the curvature. We first observe that for the sphere and the
projective plane, since there is a unique Riemannian metric of curvature 1, the circle
packing approach applies to all graphs. Then,with the aid of irreducible triangulations,
we provide flat metrics (i.e., of zero curvature) on the torus and the Klein bottle for
which every graph admits a shortest path embedding.

Theorem 1.1 The sphere S2, the projective plane RP2, the torus T 2, and the Klein
bottle K can be endowed with a universal shortest path metric.

This result could lead to the idea that shortest path embeddings can be achieved
for any metric, i.e., that every metric is a universal shortest path metric. We prove that
this is not the case already for the unit square flat metric on the Klein bottle (arguably
the first example to consider).

Theorem 1.2 Let K denote the Klein bottle endowed with the unit square flat metric
on the polygonal scheme aba−1b. Then there exists a graph embeddable into K which
cannot be embedded into K so that the edges are shortest paths.

In higher genus, the number of irreducible triangulations is too large to check all
cases by hand. Hyperbolic surfaces of large genus are hard to comprehend, but the
probabilistic point of view allows us to show that if there exist universal shortest path
metrics of constant curvature −1 at all, their fraction tends to 0 as the genus tends to
infinity.
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Theorem 1.3 For any ε > 0, with probability tending to 1 as g goes to infinity,
a random hyperbolic metric is not an O(g1/3−ε)-universal shortest path metric. In
particular, with probability tending to 1 as g goes to infinity, a random hyperbolic
metric is not a universal shortest path metric.

Here the probability measure on the space hyperbolic surfaces is proportional to
the Weil–Petersson volume, see Sect. 5. Our proof is an application of deep results on
this volume by Mirzakhani [22] and Guth, Parlier, and Young [15].

For a given graph G and a metric m on S, Schaefer [28] defines the geodesic
crossing number of G as the minimal number of crossings of any drawing of G in S in
which edges are represented by geodesics. Schaefer asks if this definition is equivalent
to the analogous definition with shortest paths instead of geodesics. Notice that the
examples in Theorems 1.2 and 1.3 have non-positive curvature, hence, combined
with the aforementioned result of Y. Colin de Verdière imply that some graphs have
geodesic crossing number zero but shortest path crossing number nonzero, answering
Schaefer’s question.

For genus g > 1 we do not know if there exist shortest path universal metrics. But
relaxing the question to concatenations of shortest paths and combining ideas from
hyperbolic geometry and computational topology, we provide for every orientable
surface of genus g an O(g)-universal shortest paths metric. The proof relies on the
octagonal decompositions of É.Colin de Verdière and Erickson [4] and a variant of
the aforementioned theorem of Y.Colin de Verdière [7].

Theorem 1.4 For every g > 1, there exists an O(g)-universal shortest path hyper-
bolic metric m on the orientable surface S of genus g.

In this article we focused on Riemannian metrics of constant curvature, but we
remark that both of our last results also hold in some setting of piecewise-Euclidean
metrics as well. For the upper bound, it suffices to replace hyperbolic hexagons with
Euclidean ones, and the rest of the proof works similarly. The lower bound can be
derived following the heuristic strong parallels between the Weil–Petersson volume
form on moduli space and the counting measure on the space of N = 4g Euclidean
triangles randomly glued together. In particular the results that we use have analogs
in this latter space: see Brooks and Makover [2] and the second half of the article of
Guth, Parlier, and Young [15].

We have stated our results for graphs in this introduction. We note that one could
consider the problem of shortest path embeddings for a graph with a fixed embedding
up to a homeomorphism of the surface (i.e., for a combinatorial map), which is more
in the spirit of Negami’s conjecture. Our positive results can be stated in this stronger
version; i.e., in our proofs the map is preserved. Our negative results would be weaker
if the map had to be preserved, and in fact the proofs deal firstly with the statements
for maps and then we derive the analog for graphs with some extra work.

Open questions The main open question is the existence of universal shortest path
metrics, or O(1)-universal shortest path metrics. Natural candidates for these are
given by certain celebrated extremal metrics like the ones occurring as lower bounds
for Gromov’s systolic inequality [3,14].
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Lists of irreducible triangulations exist for the double torus and the non-orientable
surface of genus up to four [30]. While the numbers are too big to be investigated by
hand as we did for the torus and the Klein bottle, it may be possible to investigate
some computerized approach to test their shortest path embeddability for some well
chosen hyperbolic metric.

Our Theorem 1.4 only deals with orientable surfaces. A similar approach might
work for non-orientable surfaces aswell, the key issue being to generalize the octagonal
decompositions of É.Colin de Verdière and Erickson [4] to the non-orientable setting.
We leave this as an open problem.

Outline After introducing the main definitions in Sect. 2, we will prove Theorems 1.1,
1.2, 1.3, and 1.4 in Sects. 3, 4, 5, and 6, respectively.

2 Preliminaries

In this article we only deal with compact surfaces without boundaries. By the classifi-
cation theorem, these are characterized by their orientability and their genus, generally
denoted by g. Orientable surfaces of genus 0 and 1 are respectively the sphere S2 and
the torus T 2, while non-orientable surfaces of genus 1 and 2 are the projective plane
RP2 and the Klein bottle K . The orientable surface of genus g is denoted by Sg . The
Euler genus is equal to the genus for non-orientable surfaces and equals twice the
genus for orientable surfaces.

By a path on a surface S we mean a continuous map p : [0, 1] → S, and a closed
curve denotes a continuous map γ : S1 → S. These are simple if they are injective.We
will be using occasionally the notions of homotopy, homology, and universal cover,
we refer to Hatcher [16] for an introduction to these concepts. All the graphs that
we consider in this paper are simple graphs unless specified otherwise, i.e., loops
and multiple edges are disallowed. An embedding of a graph G into a surface S is,
informally, a crossing-free drawing of G on S. We refer to Mohar and Thomassen [24]
for a thorough reference on graphs on surfaces, and only recall the main definitions.
A graph embedding is cellular if its faces are homeomorphic to open disks. Euler’s
formula states that v−e+ f = 2−g for any graphwith v vertices, e edges, and f faces
cellularly embedded in a surface S of Euler genus g. When the graph is not cellularly
embedded, this becomes an inequality: v−e+ f ≥ 2−g. A triangulation of a surface
is a cellular graph embedding such that all the faces are adjacent to three edges. An
isomorphism between two triangulations is a bijection between the vertices, edges and
faces that respects incidences. By a slight abuse of language, we will sometimes refer
to an embedding of a triangulation, by which we mean an embedding of its underlying
graph which is homeomorphic to the given triangulation. A pants decomposition of
an orientable surface S is a family of disjoint curves � such that cutting S along all
of the curves of � gives a disjoint union of pairs of pants, i.e., spheres with three
boundaries. Every orientable surface except the sphere and the torus admits a pants
decomposition with 3g − 3 closed curves and 2g − 2 pairs of pants. Note that all the
pants decompositions are not topologically the same, i.e., are not related by a self-
homeomorphism of the surface. A class of pants decompositions equivalent under such
homeomorphisms will be called the (topological) type of the pants decomposition. We
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say that an embedding f : G → S contains a pants decomposition if there exists a
subgraph H ⊆ G such that f : H → S is a pants decomposition of S.

In this article, we will also be dealing with notions coming fromRiemannian geom-
etry, we refer to the book of do Carmo for more background [8]. By ametric we always
mean a Riemannian metric, which associates to every point of a surface the curvature
at this point. TheGauss-Bonnet theorem ties geometry and topology; it implies that the
sign of a metric of constant curvature that a topological surface accepts is determined
solely by its Euler genus.

A Riemannian metric induces a length functional on paths and closed curves. A
path or a closed curve is a geodesic if the functional is locally minimal. Shortest paths
between two points are global minima of the length functional. Unlike in the plane,
geodesics are not, in general, shortest paths; in addition, neither geodesics nor shortest
paths are unique in general. If we have a shortest path embedding of a graph where
every edge is drawn as the unique shortest path between its endpoints, we speak of
shortest paths embedding with uniqueness.

3 Shortest Path Embeddings for Low Genus Surfaces

Theorem 1.1 The sphere S2, the projective plane RP2, the torus T 2, and the Klein
bottle K can be endowed with a universal shortest path metric.

In the theorem above, for S2 and RP2 we use the round metric of positive constant
curvature scaled to 1. In the case of torus we use the flat metric obtained by the
identification of the opposite edges of the square. In the case of the Klein bottle we
can show that an analogous result fails with the flat square metric on the polygonal
scheme aba−1b, as we will see in Sect. 4. But we can get the result for the metric
obtained by the identification of the edges of a rectangle of dimensions 1 × b where
b = √

4/3+ ε for some small ε > 0. (The edges of length 1 are identified coherently,
whereas the edges of length b are identified in opposite directions.)

In all cases we can get shortest path embeddings with uniqueness. Actually, for the
torus and the Klein bottle, uniqueness will be a convenient assumption for inductive
proofs.

The sphere and the projective plane By the circle packing theorem any planar graph
can be represented as the contact graph of a circle packing on the sphere (endowedwith
the standard round metric) [29, Thm. 4.3]. On the sphere each circle is the boundary
of a cap (a metric ball), and by the center of the circle we mean the center of the
corresponding cap. It is easy to see that drawing each edge (u, v) of a contact graph,
by the shortest path between the centers the circles corresponding to u and v is an
embedding. Since these are shortest paths, this proves Theorem 1.1 for S2.

For the projective plane, a similar circle packing theorem follows from the spherical
case. Since we could not find a reference in the literature we include a proof here.

Henceforth, the sphere and the projective plane are always endowedwith their usual
spherical metrics (of constant curvature). For any circle packing P ⊂ S2, consider its
contact graph,whichwedenote byC(P), togetherwith the embedding ofC(P) to S2 in
which the edge corresponding to touching circles Cv and Cw is drawn by the geodesic
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between the centers of the circlesCv andCu in S2.Wewill only consider packings P for
which this embedding of C(P) is a triangulation of S2, and we call the corresponding
triangulation the carrier of P . A map S2 → S2 mapping a circle packing P to itself
induces an automorphism of its carrier (as defined in the preliminaries), which by a
slight abuse of language we call an automorphism of the circle packing P .

Proposition 3.1 Every triangulation of RP2 is the carrier of a circle packing inRP2.

In particular, for any triangulation T of RP2, this provides a shortest path embed-
dingofT . Since any simple graph embeddedonRP2 canbe extended to a triangulation,
this proves Theorem 1.1 for RP2.

Proof Let T be a triangulation of RP2. Let π : S2 → RP2 be the projection map
sending each pair of antipodal points in S2 to a point inRP2. Let T̂ be the double cover
of T , which is a triangulation of S2 induced by π−1(T ), and let i be the automorphism
i : T̂ → T̂ induced by the antipodal map. By the Koebe–Andreev–Thurston theorem
there exists a circle packing P̂ ⊂ S2 whose carrier is isomorphic to T̂ . Furthermore,
this circle packing is unique up toMöbius transformations [34, Chap. 13], in particular,
any automorphism of P̂ is induced by aMöbius transformation of S2. Thus themap i is
induced by a Möbius transformation φ : S2 → S2. Furthermore, since i is fixed-point
free, so isφ: ifφ(x) = x for x within a circle corresponding to a vertex v, then i(v) = v

which is a contradiction, and similarly, a fixed point on the intersection of two circles,
or in the region between three adjacent circles would correspond to a fixed edge or face
for i , which is also a contradiction. Now, any fixed point free Möbius transformation
of the sphere is the antipodal map upto a Möbius transformation [36]. Specifically,
there exists another Möbius transformation τ : S2 → S2 such that τ−1 ◦ φ ◦ τ is the
antipodal map. We can conclude that the circle packing Q̂ = τ−1(P̂) is centrally
symmetric and therefore it projects to a circle packing Q = π(Q̂) in RP2. Since the
carrier of Q̂ is isomorphic to T̂ , the carrier of Q is isomorphic to T . 	

Minimal triangulations Let S be a surface and T be a triangulation of it. The trian-
gulation T is called reducible, if it contains an edge e such that the contraction of e
yields again a triangulation, which we denote by T/e. We refer to e as a contractible
edge (we do not mean contractibility in a topological sense). On the other hand, a
triangulation is minimal (or irreducible), if no edge can be contracted this way. For
every surface there is a finite list of minimal triangulations. In particular, for the torus
T 2 this list consists of 21 triangulations found by Lawrencenko [17] and for the Klein
bottle K there are 29 minimal triangulations found by Sulanke [31].

The strategy of the proof of Theorem 1.1 for T 2 and K is to show that it is sufficient
to check Theorem 1.1 for minimal triangulations with appropriate fixed metric; see
Lemma 3.2. Then, since every embedded graph can be extended to a triangulation
(possiblywith adding new vertices), we finish the proof by providing the list of shortest
path embeddings of the minimal triangulations.

Lemma 3.2 Let S be a surface equipped with a flat metric. Let T be a reducible
triangulation with contractible edge e. Let us assume that T/e admits a shortest path
embedding with uniqueness into S. Then T admits a shortest path embedding with
uniqueness into S as well.
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Fig. 2 Splitting a vertex in the proof of Lemma 3.2

The restriction on flat metrics in the lemma above does not seem essential, but this
is all we need and this way the proof is quite simple.

Proof Let v be the vertex of T/e obtained by the contraction of e. We first consider
the shortest path drawing of T/e. Then we perform the appropriate vertex splitting of
v (the inverse operation of the contraction) in a close neighborhood of v so that we
get a shortest path embedding of T . In order to see that this is indeed possible, let us
consider the subgraph G formed by the edges incident to v. It is a simply connected
set, which lifts isometrically to the universal cover so that the edges are realized by
straight segments (since they are shortest paths). Thus we may choose ε > 0 small
enough such that the ε-neighborhood N ε

G of G is simply connected. Moreover, by
compactness, for each edge uv of T/e, there exists ε′ ≤ ε such that for every v′ in
the ε′-neighborhood of v, the geodesic segment connecting u and v′ inside N ε′

G is the
unique shortest path between u and v′ in S; see Fig. 2 and footnote2. Therefore, it is
sufficient to perform the vertex splitting of v in a sufficiently small neighborhood of
v so that we do not introduce new intersections. 	

The minimal triangulations of T 2 and K In Fig. 3 we provide a list of shortest path
embeddings with uniqueness of minimal triangulations of the torus with a flat metric
obtained by identifying the opposite edges of the unit square. They are in the same
order as in the book of Mohar and Thomassen [24, Fig. 5.3]. The black (thin) edges
are the edges of the triangulation whereas the green (thick) edges are the identified
boundaries of the unit square which are not parts of the edges of the triangulations.
We just skip drawings of the triangulations 7 to 17, because they are all analogous to
the triangulation 6, they only have different patterns of diagonals. It is clear that every
edge is a geodesic. In order to check that each of them is drawn as a shortest path, it
is sufficient to verify that each edge projects vertically and horizontally to a segment
of length less than 1/2.

2 Indeed, let us consider two functions d, dOUT : S → R. We set d(x) := dist(u, x) and dOUT(x) =
min{dist(u, y) + dist(y, x) : y ∈ S \ N ε

G }. The function dOUT is well defined as the function g(y) :=
dist(u, y) + dist(y, x) is continuous and attains its minimum on the compact set S \ N ε

G . By the triangle
inequality |dOUT(x) − dOUT(x ′)| ≤ dist(x, x ′) for x, x ′ ∈ S which implies that dOUT is continuous.
Finally, we observe that d(v) < dOUT(v) as the shortest path connecting u and v is unique. Therefore there
is an open ε′-neighborhood Nv of v inside N ε

G such that d(v′) < dOUT(v′) for any v′ in Nv . This is the
required ε′ needed for the edge uv.
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1 2 3 4

6 18 19 20 21

5

Fig. 3 Minimal triangulations of the torus

For the Klein bottle K , we also provide a metric such that all the minimal trian-
gulations admit shortest path embeddings with uniqueness. We obtain this metric as
the identification of the edges of the rectangle R = [0, a] × [0, b], where a = 1
and b = √

4/3 + ε for sufficiently small ε. The edges of length 1 are identified in
coherent directions. The edges of length b are identified in the opposite directions.
The value b = √

4/3 + ε is set up in such a way that if we consider the points
p = (0, 3b/4) = (1, b/4) and q = (1/3, b/4) of K , then the shortest path between
p and q is the horizontal path of height b/4. However, when we shift p along the
boundary of R a little bit closer to the center, say by 1/1000, then the shortest path
becomes the diagonal edge connecting the left copy of p and q, see Fig. 5.

There are 29 minimal triangulations of the Klein bottle. A list of 25 of them was
first found by Lawrencenko and Negami [18]. Later on, Sulanke [31] found a gap in
the claimed completeness of this list and provided a complete list containing four addi-
tional triangulations. These triangulations split into two classes. The 25 triangulations
of the first class are named Kh1–Kh25 and the four triangulations of the second class
are named Kc1–Kc4. The triangulations from the second class are those that contain
a cycle of length 3 which splits the Klein bottle into two Möbius bands.

We begin examining the triangulations of the first class. We present shortest path
embeddings with uniqueness for 15 of them; see the top three lines of Fig. 4. We omit
the triangulationsKh15–Kh24 because they are very similar toKh14, only the diagonal
edges formadifferent pattern. The vertices of the triangulations are positioned in lattice
points of the lattice generated by vectors (1/12, 0) and (0, b/12). In some cases an
additional shift is necessary by a small value 1/1000 (but this value is large compared
to ε): this is indicated by arrows next to the vertices. (The pair of arrows in Kh25
indicates a shift by 2/1000.) Most of the drawings are very similar to the drawings
by Negami, Lawrencenko, and Sulanke. Only for the drawings of Kh3, Kh12, Kh13,
and Kh25 we did more significant movements. It is routine (but tedious) to check that
all the edges are indeed drawn as shortest paths. For many edges this can be checked
easily. For few not so obvious cases the general recipe is to use the universal cover
approach and Lemma 4.2.

Now let us focus on the triangulations in the second class. All of them are obtained
by gluing two triangulations of the Möbius bands along their boundaries. In our case,
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Kh1 Kh2 Kh4 Kh5Kh3

Kh6 Kh7 Kh8 Kh9 Kh10

Kh11 Kh12 Kh13 Kh14 Kh25

Kc1Mb1 Mb2 Mb3

Fig. 4 Minimal triangulations of the Klein bottle (for Kc1 we indicate the two copies of Mb1 by different
shades of grey)

Fig. 5 Shortest paths in the
Klein bottle p

p
q

p

p
q

we split K into two bands by a cycle depicted on the bottom left picture of Fig. 4. There
is an isometric homeomorphism which maps one band to another and which preserves
the common boundary pointwise. Therefore, it is sufficient to present the shortest
paths embeddings with uniqueness into the bands, as on the middle three pictures.
Then we get drawings of Kc1–Kc4 using this homeomorphism. For example, Kc1 is
obtained by gluing two copies ofMb1 together, as depicted on the bottom right picture
of Fig. 4. The vertices on the pictures are the lattice points of the same lattice as above
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with exception of two points of Mb3. The points on the ‘central’ cycle of Mb3 have
coordinates (1/6, b/2), (4/9, b/2), and (8/9, b/2). Note that we have significantly
redrawn the original drawings of Lawrencenko and Negami [18], but it is easy to
check that we get the same triangulations, because each triangulation of the Möbius
band Mb1–Mb3 is quite small.

4 Square Flat Metric on the Klein Bottle

The task of this section is to prove the following theorem.

Theorem 1.2 Let K denote the Klein bottle endowed with the unit square flat metric
on the polygonal scheme aba−1b. Then there exists a graph embeddable into K which
cannot be embedded into K so that the edges are shortest paths.

Weconsider theminimal triangulationKc1 (see Fig. 4, bottom, right) andwe denote
by G the underlying graph for this triangulation. We will prove that G does not admit
a shortest path embedding into K with the square metric. First, we observe that the
triangulation Kc1 is the only embedding of G into K .

Proposition 4.1 G has a unique embedding into the Klein bottle.

Proof G has nine vertices and their degrees are (8, 8, 8, 5, 5, 5, 5, 5, 5). Since no
other irreducible triangulation of the Klein bottle has this degree sequence, any other
hypothetical embedding of G into the Klein bottle is either non-cellular or has a
reducible edge. In the first case, it means that G is cellularly embeddable into the
sphere or the projective plane, which is not the case. Indeed, it is obtained as the
gluing of two copies of K6 along a triangle, and therefore contains K5 ⊕ K5 (two
copies of K5 identified along an edge minus that edge) as a minor, which does not
embed into the projective plane [24, Fig. 6.4]. In the latter case, we observe that an edge
contraction cannot decrease the degree of all three degree 8 vertices, and thus we reach
a contradiction since a triangulation on eight vertices cannot have a degree 8 vertex.

For contradiction, let us assume that G admits a shortest paths embedding into
K . We know that Kc1 is obtained by gluing two triangulations of a Möbius band
along a cycle of length 3 (the triangle corresponding to this cycle is not part of the
triangulation). Let abc be this cycle. With a slight abuse of notation we identify this
cycle with its image in the (hypothetical) shortest path embedding into K . Our strategy
is to show that already abc cannot be embedded into K with shortest path edges, which
will give the required contradiction. By Proposition 4.1, we know that abc splits K to
two Möbius bands.

Let X = R
2 be the universal cover of K (with standard Euclidean metric). Let

π : X → K be the isometric projection corresponding to the cover. We will represent
the Klein bottle with the flat-square metric as the unit square [0, 1]2 with suitable iden-
tification of the edges (aba−1b, as in the previous section). We will use the convention
that π((0, 1)2) = (0, 1)2; that is, the projection is the identity on the interior of this
square. See Fig. 6.

Given a point p ∈ K we set X p := π−1(p). Finally, let Vp be the Voronoi diagram
in X corresponding to the set X p.

123



Discrete Comput Geom (2017) 58:921–945 933

(0, 0)

(3, 3)

a a
b c

points of Xa

a b

c

Fig. 6 The Klein bottle with a letter ‘�’, and its universal cover (left). A lift of the cycle abc (right)

Lemma 4.2 Let p and q be two points in K and γ be an arc (edge) connecting them,
considered as a subset of K . Then γ is the unique shortest path between p and q if
and only if there are p′ ∈ X p, q ′ ∈ Xq such that γ = π(p′q ′) where p′q ′ denotes the
straight edge connecting p′ and q ′ in X and q ′ belongs to the open Voronoi cell for
p′ in Vp.

Proof Any path κ with endpoints p and q lifts to some path κ ′ with endpoints p′ ∈ X p

and q ′ ∈ Xq (κ ′, p′, and q ′ are not determined uniquely). This lift preserves the length
of the path. Vice versa, any path connecting a point in X p with a point in Xq projects
to a path connecting p and q (not necessarily simple), again preserving the length.

Therefore, γ is the shortest path in K connecting p and q if and only if it lifts to a
straight edge realizing the distance between X p and Xq in X . Such an edge connects
p′ ∈ X p and q ′ ∈ Xq . By symmetry, we can fix q ′ arbitrarily and we look for the
closest p′. Then, a point p′ is the unique point of X p closest to q ′ if and only if q ′
belongs to the open Voronoi cell for p′ in Vp. This is what we need. 	


Now let us lift the cycle abc to a path a′b′c′a′′ in X ; see Fig. 6. Given a curve
in X , we call the length of its projection to the x-axis, the “horizontal length” of the
curve; similarly we speak about the horizontal distance and the vertical distance of
two points in X .

Lemma 4.3 The horizontal distance between a′ and a′′ is at least 2.

Proof If we consider the point a′ fixed, then the position of a′′ in Xa determines the
homotopy class of the cycle abc in π1(K ). Therefore, it also determines the homology
classes of this cycle in H1(K ;Z2) and in H1(K ;Z). We note that the cycle abc must
be homologically trivial in H1(K ;Z2) because it bounds a Möbius band; however,
it is homologically nontrivial in H1(K ;Z) because it bounds a Möbius band (which
is non-orientable) on both sides. In addition the cycle abc is two sided, that is, its
(regular) neighborhood is an annulus and not a Möbius band.

The horizontal distance between a′ and a′′ must be a non-negative integer. We will
rule out the cases when this distance is 0 or 1.

123



934 Discrete Comput Geom (2017) 58:921–945

If this distance is 1, then the cycle abc is not two-sided (this can be read on the lift),
a contradiction.

If the horizontal distance is 0 and the vertical distance is odd, then abc is homo-
logically nontrivial in H1(K ;Z2). (It is sufficient to consider the segment connecting
a′ and a′′ and project it to a cycle z in K . Then z is homotopy equivalent to abc.) A
contradiction.

Similarly, if the horizontal distance is 0 and the vertical distance is even, then abc
is homologically trivial in H1(K ;Z). (Again we project the segment connecting a′
and a′′.) A contradiction. 	

Lemma 4.4 Let γ be a unique shortest path in K connecting points p and q. Let γ ′
be a lift of γ with endpoints p′ and q ′. Then the horizontal distance in X between p′
and q ′ is less than 5/8.

Proof Let C be the open Voronoi cell for p′ in Vp. By Lemma 4.2, q ′ belongs to C .
Therefore, it is sufficient to check that every point c′ of C has horizontal distance less
than 5/8 from p′.

Without loss of generality, we may assume that the x-coordinate of p′ equals 0 since
shifting p′ in horizontal direction only shifts X p and Vp (note that this is not true for
the vertical direction). For contradiction, there is a c′ in C at distance at least 5/8 and
without loss of generality the x-coordinate of c′ is positive. Let p′′ be the point of X p

with x-coordinate equal 1 which is vertically closest to c′ (pick any suitable point in
case of draw); see the picture on the left. The vertical distance between c′ and p′′ is
at most 1/2. A simple calculation, using the Pythagoras theorem, gives that p′′ is at
most as far from c′ as p′. A contradiction. 	


Finally, we summarize how the previous lemmas yield a contradiction. By
Lemma 4.3, the horizontal distance between a′ and a′′ is at least 2. On the other
hand, Lemma 4.4 gives that the horizontal length of each of the edges a′b′, b′c′, and
c′a′′ is at most 5/8, altogether at most 15/8. This gives the required contradiction,
which finishes the proof of Theorem 1.2.

5 Asymptotically Almost all Hyperbolic Metrics are not Universal

Before stating the main theorem of this section, we will give some very quick back-
ground on the geometry of surfaces, we refer to Farb and Margalit [10] for a proper
introduction. The Teichmüller space Tg of a surface S of genus g denotes the set of
hyperbolic metrics on S, such that two metrics are equivalent if they are related by an
isometry isotopic to the identity. In some contexts, like ours, one might also want to
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identify metrics related by an isometry (not necessarily isotopic to the identity). The
corresponding space is called the moduli space Mg of the surface, and is obtained by
quotienting Tg by the mapping class group of S, i.e., its group of homeomorphisms.
This moduli space can be endowed with multiple structures, here we will be interested
in a particular one, called the Weil–Petersson metric. This metric provides Mg with
a Riemannian structure of finite volume, and therefore by renormalizing, we obtain
a probability space, allowing to choose a random metric. We can now state the main
theorem of this section.

Theorem 1.3 For any ε > 0, with probability tending to 1 as g goes to infinity,
a random hyperbolic metric is not an O(g1/3−ε)-universal shortest path metric. In
particular, with probability tending to 1 as g goes to infinity, a random hyperbolic
metric is not a universal shortest path metric.

The proof is a consequence of two important results on random hyperbolic metrics.
The first is a small variant of a theorem of Guth, Parlier, and Young [15, Thm. 1] that
relies on the work of Wolpert [37]. Before stating it, we need some definitions.

Given a hyperbolic metric m on a surface S, we say that m has total pants length
at least 	 if in any pants decomposition � of S, the lengths of the closed curves of �

sum up to at least 	. We say that m has total pants length of type ξ at least 	 if in any
pants decomposition � of S of type ξ , the lengths of the closed curves of � sum up to
at least 	.

Theorem 5.1 For any ε > 0 and any family of types of pants decomposition (ξg), a
random metric on Mg has total pants length of type ξg at least g4/3−ε with probability
tending to 1 as g → ∞.

Proof This bound is obtained with a similar technique as the proof of Theorem 1 of
Guth, Parlier, and Young [15]. We refer to their article for more details, and as in their
proof, we will discard non super-exponential terms, e.g., n! ≈ nn . For every a, b, c ∈
R

+ there exists a unique hyperbolic metric on a pair of pants with boundary lengths
a, b and c (see for example Ratcliffe [26, Thm. 9.7.3]). For a pants decomposition of
fixed type ξg , the Weil–Petersson volume form on moduli space is the push forward
of the form d	1 ∧ . . . ∧ d	3g−3 ∧ dτ1 ∧ . . . ∧ dτ3g−3 on Teichmüller space which
is identified with R

6g−6 and the 	i denote the lengths of the (geodesic) boundaries
of the pants decomposition, while the τi quantify how much the metric twists around
each geodesic. Since every full twist gives a homeomorphic metric, the subset of
Teichmüller space {(	i , τi ) | ∑

i 	i ≤ L , 0 ≤ τi ≤ 	i } projects surjectively onto the
region of moduli space corresponding to surfaces with total pants length of type ξg at
most L . The volume of this set is bounded by � (L/g)6g , which is to be compared
with the total volume of moduli space ≈ g2g . For L smaller than g4/3−ε, the ratio
tends to zero, which proves the theorem. 	


The following is an immediate corollary of this theorem.

Corollary 5.2 Let Tg be a family of triangulations of Sg, such that every member of
Tg contains a pants decomposition of fixed type ξg. For any ε > 0, with probability
tending to 1 as g → ∞, a shortest embedding of Tg into a random hyperbolic surface
of genus g has length at least �(g4/3−ε).
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The next theorem was proved by Mirzakhani [22, Thm. 4.10].

Theorem 5.3 With probability tending to 1, the diameter of a random hyperbolic
surface of genus g is O(log g).

Theorem 1.3 is proved by providing an explicit family of graphs Gg which will
embed badly. It is defined in the following way for g ≥ 2. Let ξg be a type of pants
decompositions for every value of g.

• We start with a pants decomposition of type ξg of a surface Sg .
• We place four vertices on every boundary curve.
• We triangulate each pair of pants with a bounded size triangulation so that each
cycle of length 3 bounds a triangle in the triangulation, and any path connecting
two boundary components of the pair of pants has length at least 4 (in particular
Gg is a simple graph and each cycle of length 3 in the graph Gg bounds a triangle
in the triangulation).

The following proposition controls the issues related to the flexibility of embeddings
of graphs into surfaces.

Proposition 5.4 There is a unique embedding of Gg into Sg, up to a homeomorphism;
in particular every embedding contains a pants decomposition of type ξg.

Proof Let v be the number of vertices, e be the number of edges and t be the number of
triangles of the triangulation in the definition of Gg (triangles in the graph-theoretical
sense). By Euler’s formula and by the construction we get v − e + t = χ where χ is
the Euler characteristic of Sg . Let us consider an embedding  of Gg into Sg . Let f
be the number of faces of this embedding and F be the set of faces. Euler’s formula
for this embedding gives v − e + f ≥ χ (we get an inequality because some of the
faces need not be embedded cellularly). In particular, we get f ≥ t . On the other
hand, we get 2e = 3t and 2e = ∑

σ∈F deg σ ≥ 3 f since each edge is in exactly two
faces. This gives 3t ≥ 3 f . Therefore, both of the aforementioned inequalities have to
be equalities. In particular, each σ ∈ F is a triangle bounded by a cycle of length 3
in Gg . Since the number of cycles of length 3 in Gg equals t = f , we deduce that 
coincides with the embedding from the definition of Gg up to a homeomorphism. 	

Remark We preferred to use a hands-on construction of the graphs Gg , but another
approach could be to rely on the theory of LEW-embeddings and use one of its results
on uniqueness of embeddings, see for exampleMohar and Thomassen [24, Cor. 5.2.3].

With these three results at hand we are ready to provide a proof of the theorem.

Proof of Theorem 1.3 We use the family of graphs Gg previously defined. Since
there are O(g) curves in a pants decomposition, it contains O(g) edges, and every
embedding of Gg into Sg contains a pants decomposition of type ξg by Proposition 5.4.

Now, by Corollary 5.2, for every ε > 0, and for g large enough, the probability
that the shortest possible embedding of Gg into a random metric has length at least
O(g4/3−ε) is at least 1 − ε/2. In particular, since there are O(g) edges in Gg , some
edge eg in this embedding must have length at least �(g1/3−ε). By Theorem 5.3,
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we can choose g large enough so that with probability at least 1 − ε/2, the random
hyperbolic metric has diameter O(log g). Hence, by the union bound, with probability
1−ε both properties hold. Therefore, for every ε > 0, there exists some value g0 such
that for any g ≥ g0, in any embedding of Gg , there exists an edge eg = (x, y) such
that 	m(eg) = �(g1/3−ε), but dm(x, y) ≤ diam(m) ≤ O(log g). This implies that
e is not drawn by a shortest path. Similarly, subdividing each edge O(g1/3−ε) times
will run into the same issue. This concludes the proof. 	


6 Higher Genus: Positive Results

Theorem 1.4 For every g > 1, there exists an O(g)-universal shortest path hyper-
bolic metric m on the orientable surface S of genus g.

Our approach to prove Theorem 1.4 is to cut the surface Sg with a hexagonal
decomposition �, so that every edge of G is cut O(g) times by this decomposition �.
The construction to do this is a slight modification of the octagonal decompositions
provided by É. Colin de Verdière and Erickson [4, Thm. 3.1]. Each of the hexagons
is then endowed with a specific hyperbolic metric m H , and pasting these together
yields the hyperbolic metric m on Sg . The hyperbolic metric m H is chosen so that
the hexagons are convex, i.e., the shortest paths between points of a hexagon stay
within this hexagon. Therefore, there only remains to embed the graph G cut along
�, separately in every hexagon with shortest paths. To do this, we use a variant of a
theorem of Y. Colin de Verdière [7] which generalizes Tutte’s barycentric method to
metrics of non-positive curvature.

Hexagonal decompositions A hexagonal decomposition, respectively an octagonal
decomposition of Sg is an arrangement of closed curves on Sg that is homeomorphic to
the one pictured in Fig. 7b, respectively Fig. 7a. In particular, every vertex has degree
four and every face has six sides, respectively eight sides.

Octagonal decompositions were introduced by É. Colin de Verdière and Erick-
son [4] where they showed how to compute one that does not cross the edges of an
embedded graph too many times. We restate their theorem in our language.

ba

c

Fig. 7 a An octagonal decomposition. b A hexagonal decomposition. c How to add one closed curve to
upgrade an octagonal decomposition to a hexagonal decomposition
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Theorem 6.1 ([4], Thm. 3.1) Let G be a graph embedded in a surface Sg for g ≥ 2.
There exists an octagonal decomposition � of Sg such that each edge of G crosses
each closed curve of � a constant number of times.

We observe that this octagonal decomposition can be upgraded to a hexagonal
decomposition that still does not cross G too much:

Corollary 6.2 Let G be a graph embedded in a surface Sg. There exists a hexagonal
decomposition � of Sg such that each edge of G crosses each closed curve of � a
constant number of times, except for maybe one closed curve which is allowed to cross
each edge of G at most O(g) times. In particular, the number of crossings between
every edge of G and � is O(g).

Proof The decomposition � is simply obtained by taking the decomposition � and
adding a single curve that follows closely a concatenation of O(g) subpaths of curves
of �, see Fig. 7c. The resulting arrangement of curves has the topology of a hexagonal
decomposition, and the bounds on the number of crossings results directly from the
construction. 	

Remark We remark that É. Colin de Verdière and Erickson [4] actually build a
decomposition with hexagonal faces before discarding cycles to get an octagonal
decomposition. However, their decomposition is not homeomorphic to our notion of
hexagonal decomposition, and would be less adapted for the proof of Theorem 1.4
since some of their hexagonal faces are glued to themselves (in particular Proposi-
tion 6.3 would not hold).

The hyperbolic metric We first endow each hexagon of the hexagonal decomposition
with the hyperbolic metric m H of an equilateral right-angled hyperbolic hexagon.
Since the hexagons have right angles and the vertices of a hexagonal decomposition
have degree 4, this metric can be safely pasted between hexagons to endow Sg with a
hyperbolic metric m. The main property of this metric that we will use is the following
one:

Proposition 6.3 Every hexagon H, viewed as a subset of Sg endowed with m, is
convex, i.e., every path between x, y ∈ H that is a shortest path in H is also a shortest
path in Sg.

Proof We will prove that for any two points x, y ∈ H , there exists a shortest path (in
Sg) that is entirely contained in H . The proof relies on an exchange argument based
on the symmetries of the hexagonal decomposition. We rely on two involutions which
we first define on the intersection graph3 of the hexagonal decomposition. This graph
should be thought of as embedded on the surface of a g ×1×1 rectangular block (see
Fig. 8), and

• The map σ1 is the reflection across the mid-plane of the top and bottom facets,
sending vertices above that plane to the corresponding ones below.

3 The intersection graph of the hexagonal decomposition is defined by taking one vertex for each hexagon
and edges between adjacent hexagons (we allow multiple edges).
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. . .

. . .

σ1

σ 2

σ2

Fig. 8 The intersection graph of the hexagonal decomposition and the two involutions: σ1 is the reflection
across the horizontal plane pictured in gray, and σ2 swaps every pair of triply-linked adjacent vertices
(pictured by disks and stars)

• The map σ2 is the reflection accross the mid-plane of the front and back facets.
Equivalently, it swaps each hexagon with its neighbor in the original octagonal
decomposition.

Since all the hexagons are isometric, these two maps induce isometric involutions of
the surface Sg endowed with m, which we also denote by σ1 and σ2. They allow us
to cut Sg into four quadrants, each of them being a linear concatenation of hyperbolic
hexagons: the first one, which we denote by Q1 is pictured in Fig. 9, and we obtain
Q2, Q3 and Q4 by applying respectively σ1, σ2 and σ1σ2 to Q1.

Now, let x and y be two points in a hexagon H , which we assume without loss of
generality (by applying σ1 and/or σ2) to be in Q1, and let γ be a shortest path between
x and y. This path γ may wander out of H , but in this case we show that there is
another shortest path between x and y that is entirely contained within H . For every
maximal subpath α of γ in the interior of Q3 ∪ Q4, we reflect α into Q1 ∪ Q2 using
σ2. This results in a new path γ ′ between x and y, with the same length as γ (since σ1
is an isometry) that is entirely contained in Q1∪ Q2. Then, for every maximal subpath
α′ of γ ′ in the interior of Q2, we reflect α′ into Q1 by applying σ1, which yields a
path γ ′′ between x and y entirely contained within Q1. Since γ ′′ has the same length
as γ , it is also a shortest path.

At this stage, we claim that γ ′′ is actually contained in H . Indeed, if it were not,
since Q1 is a linear concatenation of hexagons, there would be another hexagon H ′
that contains a subpath α′′ of γ ′′ such that the two endpoints e1 and e2 of α′′ lie on
the same side s of H ′, and α′′ �⊂ s. But then γ ′′ cannot be a shortest path, since this
subpath α′′ could be shortcut by following the side s between e1 and e2 instead of
entering H ′, see Fig. 9.

Thus we have found a shortest path between x and y that is entirely contained
within H , which proves the proposition. 	


Finishing the proof We prove in this paragraph how to reembed a graph embedded
in a hexagon so that its edges are shortest paths. This allows us to finish the proof.

Theorem 6.4 Let G be a graph embedded as a triangulation in a hyperbolic hexagon
H endowed with the metric m H . If there are no dividing edges in G, i.e., edges
between two non-adjacent vertices on the boundary of H, then G can be embedded
with geodesics, with the vertices on the boundary of H in the same positions as in the
initial embedding.
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x

y

x
y

Fig. 9 Top The surface is cut into four quadrants, and Q1 is pictured here with a darker color. Bottom If
γ ′′ enters another hexagon than H , it can be shortcut

Let us postpone the proof of this theorem for now, and show how to conclude the
proof of Theorem 1.4. We first show how to upgrade a graph embedded in a disk to a
triangulation.

Lemma 6.5 For any graph G embedded in a disk without dividing edges, there exists
a triangulation G ′ of the disk that contains G as a subgraph and that does not contain
any dividing edges.

Proof For every face F of G, we start by adding a vertex in F and edges connecting
it to the vertices adjacent to the face. This does not add loops or dividing edges, but
may add multiple edges if one vertex occurs multiple times on the boundary of a face.
These are taken care of by subdividing them once again and triangulating. 	


All the pieces are now in place for the proof of Theorem 1.4.

Proof of Theorem 1.4 By Corollary 6.2, one can embed G into Sg such that every
edge of G is cut O(g) times by the hexagonal decomposition �. This defines a graph
G ′ = ⋃

i G ′
i such that each of the graphs G ′

i is embedded in a single hexagon and G ′
is obtained from G by subdividing every edge O(g) times. If there are dividing edges
in G ′

i , they can be removed by subdividing the edge once. By Lemma 6.5, one can
upgrade all the G ′

i to triangulations. We can then apply Theorem 6.4 in each of the
hexagons separately, yielding embeddings with shortest paths. Since the vertices on
the boundary did not move during the reembedding, this defines an embedding of G
into Sg . Since H is simply connected and m H is hyperbolic, there is a unique geodesic
connecting any two points, and this geodesic is a shortest path. Therefore the edges
of G ′ are shortest paths in H . By Proposition 6.3, each edge of G ′ is also a shortest
path in Sg . Therefore each edge of G is embedded as a concatenation of O(g) shortest
paths. 	


We note that by subdividing each edge once more, the shortest paths we obtain are
unique.

The proof of Theorem 6.4 is obtained in a spirit similar to the proof of the one of
the celebrated spring theorem of Tutte [35]. However, there are two main differences
which prevent us from directly appealing to the literature: on the one hand the metric
is not Euclidean but hyperbolic, and on the other hand the boundary of the input
polygon is not strictly convex, since there may be multiple vertices of G on a geodesic
boundary of H . The hypothesis on dividing edges is tailored to circumvent the second
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issue, and in a Euclidean setting it was proved by Floater [12] that the corresponding
embedding theorem holds. Regarding the first issue, Y. Colin de Verdière stated a
Tutte embedding theorem [7, Thm. 3] for the hyperbolic setting with strictly convex
boundary, yet he actually did not provide a proof for it. In Appendix A we show how
to prove Theorem 6.4 in the generality that we need following the ideas laid out by Y.
Colin de Verdière in the rest of his article [7]. This concludes the proof of Theorem 1.4.

Finally, we remark that this proof technique provides an alternative proof of
Negami’s Theorem [25] for orientable surfaces. If G1 and G2 are two graphs embed-
ded on the orientable surface of genus g, a crude application of Theorem 1.4 shows that
one can reembed both graphs with a homeomorphism such that each edge is realized
as a concatenation of O(g) shortest paths for our hyperbolic metric. Since hyperbolic
shortest paths in general position cross at most once, this gives embeddings of G1
and G2 such that there are O(g2) crossings between each edge of G1 and each edge
of G2. Negami proved that O(g) crossings are actually enough, and a deeper look at
our construction also achieves this better bound: it is easy to see that in our reembed-
dings, each edge is actually cut into O(1) subedges realized as shortest paths in each
hexagon. Since there are O(g) hexagons, there are in total O(g) crossings between
each edge of G1 and G2, which yields the following:

Corollary 6.6 There exists an absolute constant c > 0 such that if Sg is an ori-
entable surface of genus g, for any two embedded graphs G1, G2 → Sg there exists
a homeomorphism h : Sg → Sg such that cr(h(G1), G2) ≤ cg|E(G1)| · |E(G2)|
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Appendix A: Tutte’s Embedding Theorem in a Hyperbolic Setting

In this section, we explain the proof of the subsequent theorem, following the argu-
ments of Y. Colin de Verdière [7].

Theorem 6.4 Let G be a graph embedded as a triangulation in a hyperbolic hexagon
H endowed with the metric m H . If there are no dividing edges in G, i.e., edges
between two non-adjacent vertices on the boundary of H, then G can be embedded
with geodesics, with the vertices on the boundary of H in the same positions as in the
initial embedding.

As announced, the proof follows from a spring-like construction, i.e. we think of
the edges of the graph G as springs with some arbitrary stiffness, the vertices which
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are not on the boundary are allowed to move and we prove that the equilibrium state
for this physical system is an embedding of the graph.

For an embedding ϕ : G → H , denote by ei j the map [0, 1] → H representing
the edge (i, j). Starting with an embedding ϕ0 : G → H and given assignments
ci, j : E(G) → R

+, we are interested in the map ϕ : G → H minimizing the energy
functional

Eϕ =
∑

(i, j)∈E

∫ 1

0
ci j‖e′

i j (t)‖2dm H

with fixed vertices on the boundary of H . This is the equilibrium state of the spring
system with the ci, j coefficients specifying the stiffness of the springs. We claim that
ϕ is an embedding such that the edges are geodesics.

Step 1: Existence. The existence of ϕ follows from classical compactness considera-
tions, since an Arzelà-Ascoli argument proves the compactness of sets with bounded
energy. Then an extremum of Eϕ corresponds to a ϕ where all the arcs ei, j are
geodesics. Furthermore, every vertex ϕ(x) which is not on the boundary lies in the
strict hyperbolic convex hull of its neighbors which are not mapped to the same point.

Step 2:Curvature considerations. Since ϕ0 provides an embedding of G into H , G can
be seen as a topological subspace of H . The corresponding simplicial complex will
be denoted by X (it is of course homeomorphic to H ) and its set of vertices, edges and
triangles by V , E , and T . By extending ϕ separately with a local homeomorphism in
the interior of each non-degenerate triangle, we can extend it into a map � : X → H
agreeing with ϕ on G.

Now, the map � : X → H provides values for the angles of the non-degenerate
triangles in X . For degenerate triangles, values of the angles are taken arbitrarily so
that they sum to π (therefore morally their hyperbolic area is zero). For an interior
vertex v, let us define the curvature K (v) = 2π − ∑

i αi
v , where αi

v are the angles
adjacent to v. For a vertex v on the interior of a geodesic boundary, we define it by
K (v) = π−∑

i αi
v , and on the six vertices of H , we take it to be K (v) = π/2−∑

i αi
v .

The area of a geodesic hyperbolic triangle isπ minus the sumof its angles. Summing
over all the triangles of �(X), we obtain |T |π − ∑

v

∑
i αi

v = ∑
t∈T Area(t). With

Euler’s formula and double counting, this gives
∑

t∈T Area(t) = π +∑
v K (v). Since

the boundary is fixed, � has degree one and is thus surjective, therefore the sum of
the areas of the triangles is at least the area of the hexagon, which is π since it is
right-angled. Therefore

∑
v K (v) ≥ 0.

Step 3: Punctual degeneracies. In this step we investigate which subcomplexes of X
can be mapped to a single point. We show that no triangle can be mapped to a single
point, and that a set of edges mapped to a single point forms a path subgraph in G.

Let X1 be a maximal connected subcomplex of X which is mapped to a point x by
�. This subcomplex has to be simply connected, otherwise the region inside could be
mapped to x as well which would reduce the value of Eϕ . Since the boundary edges
are fixed by ϕ, X1 does not contain any edge on the boundary or triangle adjacent to
the boundary.
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H∂X∂

ϕ

ϕ

Fig. 10 Any triangulation inducing a linear degeneracy would require either multiple edges (top) or a
dividing edge (bottom)

For every vertex v in �−1(x), �(v) = ϕ(v) lies in the strict convex hull of its
neighbors which are not mapped to x , as was observed in Step 1. Therefore the angles
of the non-degenerate triangles adjacent to v sum up to at least 2π . Indeed the angular
opening at ϕ(v) has to be at least π by the convexity hypothesis, but if a map S1 → S

1

is not surjective then every point in the image has at least two pre-images, inwhich case
this angular opening of at least π amounts to at least 2π in the sum of angles around v.
This shows that K (x) := ∑

v∈�−1(x) K (v) is non-positive. Since the boundary edges
are fixed, we also have K (v) ≤ 0 for the vertices on the boundary.

Summing over all the values of x , we obtain that
∑

v K (v) ≤ 0, and thus this sum
is zero by the previous paragraph, and each of the K (x) is also zero.

From that we infer that X1 contains no triangle: if it did, there would be at least 3
preimages of x for which the angles of the adjacent non-degenerate triangles would
sum up to at least 2π . Summing them into K (x) we would obtain a nonzero value.
Similarly, X1 can only be a linear subgraph of G, and every triangle adjacent to a X1
not reduced to a point is degenerate.

Step 4: Linear degeneracies. Now that we showed that triangles cannot be mapped
to points, we show that triangles are not mapped to lines either, or equivalently that
edges are not mapped to points.

Let X2 be amaximal connected subcomplex of X such that the image of the triangles
of X2 by ϕ are degenerate. Let us assume that X2 is non-empty. Then the image�(X2)

is an arc of a geodesic of H : indeed if there was a broken line in �(X2), around the
breaking points there would be non-degenerate triangles adjacent to a X1 not reduced
to a point, which is absurd by the previous paragraph.

If this geodesic is not a boundary geodesic of H , two of the points on the boundary
of X2 are mapped to the endpoints of the arc of geodesic, and all the other vertices
have their adjacent edges within X2 because of the convexity condition. Therefore,
there must be two arcs connecting the two boundary points, as in the top of Fig. 10,
which is impossible in the simplicial complex X .

If this geodesic is on the boundary of H , then by the same convexity argument,
two vertices of ∂ X must map to the endpoints of this arc of geodesic, and the other
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vertices have all their edges within X2. Therefore there is a dividing edge connecting
these two vertices, as in the bottom of Fig. 10, which is a contradiction.

Step 5: Conclusion. Since X2 is empty, no triangle in the image of � is degenerate.
Furthermore, all the X1 are reduced to a single point and thus K (v) is zero for all the
vertices v. The only remaining possible pathology is if all the triangles adjacent to
a non-boundary vertex v are mapped to a half-plane around �(v). By the convexity
constraint, this can only happen if the edges adjacent to v are aligned, but this would
yield degenerate triangles. Therefore � is a local homeomorphism of degree 1, hence
it is a global homeomorphism and ϕ is an embedding.
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