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Abstract A notion of open rank, related with generic power sum decompositions
of forms, has recently been introduced in the literature. The main result here is that
the maximum open rank for plane quartics is eight. In particular, this gives the first
example of n, d, such that the maximum open rank for degree d forms that essentially
depend on n variables is strictly greater than the maximum rank. On one hand, the
result allows to improve the previously known bounds on open rank, but on the other
hand indicates that such bounds are likely quite relaxed. Nevertheless, some of the
preparatory results are of independent interest, and stillmayprovide useful information
in connection with the problem of finding the maximum rank for the set of all forms of
given degree and number of variables. For instance, we get that every ternary form of
degree d ≥ 3 can be annihilated by the product of d − 1 pairwise independent linear
forms.
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1 Introduction

Part of the considerable amount of work that the scientific community is devoting to
recently emerged aspects of tensor theory addresses the polynomial Waring problem
(see [23]). If in a power sum decomposition

f = l1
d + · · · + lr

d (1)

of a degree d homogeneous polynomial, the number r of summands is the minimum
possible, then r =: rk f is the (Waring) rank of f , and (1) is often called a Waring
decomposition. When f can be regarded as a symmetric tensor (in particular, when the
coefficients are in afieldof characteristic zero), theWaring rankbecomes the symmetric
rank.1 Perhaps, in its broadest sense, the polynomial Waring problem consists of
finding the rank of specified polynomials (see [10, Introduction]). In a restricted sense,
and in analogy with the number-theoretic Waring problem, one wonders about the
maximal rank of homogeneous polynomials of fixed degree and number of variables
(see [18]). The solution to the main (‘generic’) version of such a problem, given in
[1], is now a classical result. But the maximum rank rk(n, d) for all homogeneous
polynomials of degree d and number n of variables, at the time of writing, is known
only when n ≤ 2, when d ≤ 2, and in a few special cases: for n = 3 we have
rk(3, 3) = 5 (see [22, Chap. 2] or [24]), rk(3, 4) = 7 (see [22, Chap. 3] or [12]) and
rk(3, 5) = 10 (see [9,13]); see [9] for more details.

To improve our knowledge on rk(n, d), we may exploit outcomes of care-
ful investigations on polynomials of low dimension and degree (such as those in
[4,12,13,22,24]), or on some classes of polynomials of special interest (as done in
[10]). One may also look for general bounds, as in [21], which improve a bound given
earlier in [5,6], by means of a modified version of the inductive procedure involved.
Since the rank is not well-behaved in view of the inductive steps in [5,21], the authors
of thementioned papers introduce auxiliary notions of rank, based on theminimization
over decompositions that are ‘sufficiently generic’ in some sense. They also need to
provisionally focus on forms that essentially depend on n variables. For more details,
see [21, Introduction]. In particular, in [21, Def. 2], the open (Waring) rank Ork(F) of
a form F , and the maximum open rank Ork(n, d) for degree d forms that essentially
depend on n variables, are introduced. With these notions, one can give estimates on
Ork(n, d) by induction, and use the obvious inequality rk(n, d) ≤ Ork(n, d) to get
estimates on the Waring rank. Moreover, at the time of publishing of [21], no pairs
(n, d) with rk(n, d) �= Ork(n, d) were known, so that the general validity of the
equality rk(n, d) = Ork(n, d) could not have been excluded.

Successively, the bound given in [21, Cor. 6] has been drastically improved by [7,
Cor. 9], by means of a simple argument. The improvement also implies that, in the
hypothesis that rk(n, d) = Ork(n, d) holds in general, then the inductive bound given
in [21, Thm. 4] cannot be sharp (this is less surprising, because the improvement given

1 Sometimes the term “Waring decomposition” has been used to indicate simply a power sum decompo-
sition, without the minimality hypothesis. We also mention that the symmetric rank is sometimes called
polar rank: see [25].
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by [21, Cor. 6] with respect to the earlier results in [5] is precisely based on the failing
of sharpness of [21, Thm. 4] for (n, d) = (3, 3)).

In spite of such weakness, we believe that investigations based on the open rank still
are of use. To say the least, they convey attention on some interesting aspects of tensor
rank theory. Furthermore, open rank is about generic power sum decompositions, that
are of their own interest (the fact that they arewell-behavedwith respect to induction on
n, d gives an indication). Note also that [21, Cor. 6] does not rely on the Alexander–
Hirschowitz theorem, so that the overall complexity of its proof is actually much
smaller than that of [7, Cor. 9].

In this paper we show that that Ork(3, 4) = 8. Hence, we get an example where
Ork(n, d) �= rk(n, d) (for this part of the story the inequality Ork(3, 4) ≥ 8 suffices,
and it is a consequence of Example 3.3). The inequality Ork(3, 4) ≤ 8 is worked out
in Sect. 4, and requires considerably more work, but we believe that has some interest
as well. For instance, note that the inductive procedure based on degree 3 gives a
bound of 9 in degree 4. We also mention that a condition considered while the present
article was in preparation, has successively played a nontrivial role in [13], where the
sharp upper bound rk(3, 5) ≤ 10 has been found. We also believe that Proposition 4.3
(a development of [12, Prop. 4.1]) deserves some interest.

2 Preparation

All vector spaces will be understood over a fixed algebraically closed field K. For
simplicity of exposition, we also assume char K = 0 (though the results hold under
more general hypotheses; e.g., when dealing with a degree d form, it might often be
assumed charK > d, as in [5]). A projective space PV is understood as the set of
all one-dimensional subspaces 〈v〉, v �= 0, of the vector space V . When the scheme
structure is needed, PV has to be replaced by Proj Sym• V ∗.

Throughout the paper S• = Sym• S1, S• = Sym• S1 will denote standard graded
rings, dually paired by apolarity, that is a perfect pairing naturally induced by a fixed
perfect pairing between S1 and S1 (see [12, Introduction]). Apolarity may also be
viewed as a particular case of tensor contraction and, conversely, contraction of forms
in S• by forms in S• can be defined in terms of apolarity (see again [12, Introduction]
for more details). When dual bases

x0, . . . , xn ∈ S1, x0, . . . , xn ∈ S1

are fixed, the contraction of f ∈ S• by xi is simply the partial derivation with respect
to xi . By this reason, for all p ∈ S• we denote by

∂p : S• → S•,

the contraction by p operator. We also have that p 
→ ∂p is a linear operation and
∂pq = ∂p ◦ ∂q . This allows to identify S• with the ring of constant coefficients lin-
ear differential operators on S• (apolarity is often directly defined by means of this
property). It is convenient to explicitly mention that for a linear form t ∈ S1 and all
f, g ∈ S•, we have
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∂t ( f g) = (∂t f )g + f ∂t g.

The sign ⊥ will refer to orthogonality with respect to the perfect pairing in fixed
degree; we shall not use it to denote apolar ideals. The partial polarization map
fδ,d : Sδ → Sd of f ∈ Sd+δ , is given by fδ,d(t) := ∂t f .
The (Waring) rank of f ∈ Sd , denoted by rk f , is the minimum of all nonneg-

ative integers r for which there exists a decomposition f = v1
d + · · · + vr

d with
〈v1〉, . . . , 〈vr 〉 ∈ PS1. This can also be regarded as a particular instance of a more
general notion of rank of a point with respect to an arbitrary variety in a projective
space (see [23, 5.2.1]). Let us also rephrase below the definition of open rank given in
[21, Def. 2].

Definition 2.1 The open (Waring) rank of f ∈ Sd , denoted by Ork f , is the minimum
of all nonnegative integers r with the following property: for every Zariski closed,
proper subset X � PS1, there exists a decomposition

f = v1
d + · · · + vr

d

with 〈v1〉, . . . , 〈vr 〉 ∈ PS1 \ X . The minimum r for a fixed X is denoted by Ork( f, X)

(in particular, rk f = Ork( f,∅)).

Loosely speaking, the open rank of f is the least number of summands for which
f admits a generic power sum decomposition.

3 Open Rank in Comparison with Rank

An obvious relationship between rank and open rank is rk f ≤ Ork f . Moreover, in
the many cases where f admits an essentially unique Waring decomposition, we have
rk f < Ork f .

On one hand, open rank may have its own interest, at least from a theoretical
viewpoint. Even from the applicative viewpoint, since Waring decompositions are
related with tensor decompositions (which have many applications: see [23]), it can
not be excluded that for some purposes one might want to exclude decompositions of
some special kind. On the other hand, since rk f �= Ork f in many cases, one would
not expect that the open rank can give information on rank. But, as a matter of fact,
to some extent it can, as shown by a simple result about binary forms we are going to
state.

Let us first recall that when dim S1 = 2, the length of f ∈ Sd , which we denote by
�( f ), is the least of all s for which there exists a nonzero l ∈ Ss such that ∂l f = 0. In
other words, it is the initial degree of the apolar ideal of f , I f := {x ∈ S• : ∂x f = 0}
(see [20, Def. 1.32 and Lem. 1.33]). The notion of length of a binary form can be
generalized in various ways for forms in more indeterminates: see [20, Def. 5.66].
Nowadays, terms related to length are replaced by similar terms related with rank,
probably because of the renewed interest in the interplay with the rank of tensors. For
instance, according to [20, Thm. 1.44], for binary forms the length coincides with the
border rank.
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Proposition 3.1 Assume dim S1 = 2. For all nonzero f ∈ Sd we have

Ork f = d + 2 − �( f ).

Proof We have 2 ≤ 2b ≤ d + 2, with b := �( f ). Let P := 〈 f 〉 ∈ PSd and C be
the rational normal curve given by d-th powers in PSd . For any integer k, let Z(P, k)
be the set of all degree k zero-dimensional schemes W ⊂ C such that P ∈ 〈W 〉
(scheme-theoretic, projective span). The set Z(P, k) is naturally identified with the
projective space associated to the degree k component of the ideal I f , apolar to f .
The Artin graded algebra A f = S•/I f is a complete intersection, with I f generated
by a form of degree b and a form of degree d + 2− b [20, Thm. 1.44]. Z(P, k) = ∅ if
k < b. If 2b = d +2, then rkC P = b = d +2−b and hence Ork f ≥ b = d +2−b.

Now assume 2b �= d + 2. In this case Z(P, b) has a unique element, Z , and if
b < k < d + 2 − b, then each element of Z(P, k) is the union of Z and a scheme
E ⊂ C of degree k − b. Hence Ork f ≥ d + 2 − b in this case, too.

To prove the opposite inequalityOrk f ≤ d+2−b, it suffices to prove that the linear
system of divisors onPS1 given by (I f )d+2−b has no base points. But this immediately
follows from the fact that I f is the ideal of a complete intersection, generated by a
form of degree b and a form of degree d + 2 − b ≥ b. ��
Remark 3.2 Every rational normal curve in a d-dimensional projective space P

d cor-
responds to the curve given by d-th powers in PSd through some isomorphism of
projective spaces. Hence Prop. 3.1 holds as well if we consider a point P ∈ P

d in
place of f , its open rank with respect to a rational normal curve γ ⊆ P

d and its border
rank with respect to γ in place of length (taking into account [20, Thm. 1.44]).

From the Comas–Seiguer theorem (see [11, Thm. 11] or [23, Thm. 9.2.2.1]) imme-
diately follows that Ork f = rk f for all binary forms f with rank higher than the
generic. This fact indicates that the open rank may help to solve the polynomial War-
ing’s problem that asks for the maximum rank for the set of all forms of given degree
and number of variables. Pursuing this indication, let us consider the maximum rank
and the maximum open rank for degree d binary forms: they are, respectively, d and
d+1. Note also that Ork f = d+1 only for d-th powers of linear forms, which can be
regarded as forms in only one variable. Hence the maximum rank coincides with the
maximum open rank on the set of all essentially binary forms. Moreover, Jelisiejew
showed in [21] that one can bound the maximum open rank for forms of degree d that
essentially depend on n variables, basically following the induction procedure on n, d
introduced by Białynicki-Birula and Schinzel in [5].

On the other hand, the above encouraging features of open rank seem not to suffice
for the determination of maximum rank. Indeed, the Jelisiejew’s improvement of the
bound proved by Białynicki-Birula and Schinzel, exploit the fact that the induction
procedure does not give a sharp upper bound for essentially ternary cubics (neither on
rank nor on open rank). Even the Jelisiejew’s bound, as a bound on maximum rank, is
known to be not sharp for quartics. What is more, below we point out that the equality
between maximum rank for ternary quartics and maximum open rank for essentially
ternary quartics fails. To this end we shall give a geometric example, with some use
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of specific results from modern algebraic geometry. A more explicit and genuinely
algebraic example, suggested by an anonymous referee, will follow.

To introduce the geometric example, let us recall, in general, that given subschemes
X,Y of a projective space Proj S•, with respective ideals I (X), I (Y ) ⊆ S•, the sub-
scheme Y ′ defined by the ideal

(I (X) : I (Y )) := { f : f g ∈ I (X) ∀g ∈ I (Y )}

always contains X \Y (as sets).When X is reduced we have Y ′ = X \ Y as topological
spaces, but if, say, Y is a hyperplane defined by a (nonzero) linear form l, I (Y ) = (l),
and X is its double, I (X) = (l2), then we have Y ′ = Y and X \ Y = ∅. We shall
need to consider a case where Y is a line in the plane and X a zero-dimensional
scheme (intuitively a set of points, some of them coinciding in a way that is encoded
in the scheme structure). In this case, or more generally whenever Y is a hyper-
plane, I (Y ) = (l), the intersection ideal I (X) ∩ I (Y ) clearly consists of all l f with
f ∈ (I (X) : I (Y )). This gives rise to an exact sequence of graded S•-modules

0 → (I (X) : I (Y ))(−1) → I (X) → I (X)

I (X) ∩ I (Y )
→ 0,

where (−1) denotes a degree shift and the first map is the multiplication by l. Taking
into account that I (X)/(I (X)∩ I (Y )) ∼= (I (X)+ I (Y ))/I (Y ), and passing to sheaves
(generalities about the technical procedure can be found, e.g., in [19, Def., p. 116]),
we get the operative description [3, Not. 4.3] that underlies [3, Lem. 5.1], a result we
are going to use. The scheme Y ′ can be called the residual scheme of Y to X ∪ Y with
respect to Proj S•, according to [17, Def. 9.2.1], and we shall use a notation of the
form ResY (X).

A technical condition of the form h1(IX (d)) = 0, involved in the statement of
the mentioned lemma, simply amounts to say that X imposes independent conditions
to degree d forms. More geometrically, this also means that for whatever subscheme
X ′

� X ′′ of X , there always exists a degree d form that vanishes on (the whole of) X ′
but not on X ′′. Residual schemes are also involved in the other auxiliary [4, Lem. 34],
but at the technical core of the example lies a further interesting result in a similar
vein, for which we refer to [16, Rem. (i), p. 116].

Example 3.3 Assume dim S1 = 3 and let ν : PS1 → PS4, 〈v〉 
→ 〈v4〉 be the
Veronese embedding. We can certainly fix a degree 4 curvilinear zero-dimensional
scheme Z ⊂ PS12 such that dim〈ν(Z)〉 = 3 and deg(Z ∩ L) = 3 for (exactly) one
line L . Since dim〈ν(Z)〉 = 3, we can fix P = 〈 f 〉 ∈ PS4, such that P ∈ 〈ν(Z)〉 and
P /∈ 〈ν(Z ′)〉 for every subscheme Z ′

� Z . We show that Ork f ≥ 8.
Assume that a := Ork f ≤ 7. Fix a closed set X � PS1 containing the union of

the finitely many lines D with deg(Z ∩D) ≥ 2. In particular, X contains L ∪ Zred. Fix
a set B ⊂ PS1 \ X such that �(B) = a, P ∈ 〈ν(B)〉 and P /∈ 〈ν(B ′)〉 for all B ′

� B.
Because of the last condition, h1(IB(4)) = 0. Therefore, at most five of the points of

2 We say that a zero-dimensional scheme is curvilinear if it can be embedded in some smooth curve.
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B are collinear. Since Zred ⊂ X , we have Z ∩ B = ∅, and since P ∈ 〈ν(B)〉∩ 〈ν(Z)〉,
we have h1(IZ∪B(4)) > 0. Since deg(Z ∪ B) = 4 + a ≤ 11 < 4 · 3, either there is
a line R ⊂ PS1 such that deg(R ∩ (Z ∪ B)) ≥ 6 or there is a conic C ⊂ PS1 such
that deg(C ∩ (Z ∪ B)) ≥ 10 (see [16, Rem. (i), p. 116] and take into account that,
according to [16, p. 112, l. 3], by a “groupe de points” is meant a zero-dimensional
scheme, not necessarily reduced).

First assume the existence of a line R ⊂ PS1 such that deg(R∩(Z ∪B)) ≥ 6. Since
deg(Z) = 4, B ∩ X = ∅ and X contains each line D with deg(Z ∩ D) ≥ 2, we have
deg(Z ∩ R) ≤ 1. Hence �(B ∩ R) ≥ 5. Since h1(IB(4)) = 0, we get �(B ∩ R) = 5,
deg(Z∩R) = 1 anddeg(R∩(Z∪B)) = 6.Wehavedeg(ResR(Z∪B)) = a+4−6 ≤ 5.
Hence either h1(IResR(Z∪B)(3)) = 0 or a = 7 and there is a line R′ ⊂ PS1 such
that R′ ⊇ ResR(Z ∪ B) [4, Lem. 34]. First assume h1(IResR(Z∪B)(3)) = 0. Since
Z ∩ B = ∅, we can exploit [3, Lem. 5.1] and deduce that Z ∪ B ⊂ R, because P is in
〈ν(B)〉 ∩ 〈ν(Z)〉, but not in the span of subschemes that are smaller than B or smaller
than Z . Hence Z is contained in a line. Since deg(Z ∩ L) = 3, we get a contradiction.
Now assume a = 7 and the existence of a line R′ such that R′ ⊇ ResR(Z ∪ B).
Since deg(R ∩ Z) = 1, we have deg(ResR(Z)) = 3. Since R′ contains the degree
3 subscheme ResR(Z) of Z , we have R′ = L . Since B ∩ L = ∅, we get B ⊂ R, a
contradiction.

Now assume the existence of a conic C ⊂ PS1 such that deg(C ∩ (Z ∪ B)) ≥ 10
(we do not assume that the conic is smooth). Since deg(ResC (Z ∪ B)) ≤ 1, we have
h1(IResC (Z∪B)(2)) = 0. As in the proof of [2, Thm. 1], or as in [3, Lem. 5.1], with the
degree two divisorC instead of a hyperplane, and since Z∩B = ∅, we get Z∪B ⊂ C .
Since C is a conic and deg(Z ∩ L) = 3, L must be a component of C , say C = L ∪ L ′
with L ′ a line (we allow the case L ′ = L). Since L ⊂ X , we have B ∩ L = ∅. Hence
B ⊂ L ′. Since deg(C ∩ (Z ∪ B)) ≥ 10, we have a ≥ 6. Hence h1(IB(4)) > 0, a
contradiction.

A more explicit example with a simpler check (due to an anonymous referee) can
be given as follows.

Example 3.4 Let S• = K[x0, x1, x2] and f = x04 + x14 + (x0 + x1)4 + x24. For each
g ∈ S• let al(g) be the dimension of the space {∂t g : t ∈ S•} (in other words, the length
of the apolar algebra) and let X ⊂ PS1 be the line x2 = 0, with 〈x2〉 := 〈x0, x1〉⊥.
We have

Ork( f, X) ≥ al( f ) − al(∂x2 f )

(see [9, Prop. 3] which, as explicitly mentioned right before its statement, is a result
that was essentially observed in [15]). A calculation on each degree up to 4 gives
al( f ) = 1 + 3 + 4 + 3 + 1 = 12 and al(∂x2 f ) = 1 + 1 + 1 + 1 = 4. Hence
Ork( f, X) ≥ 8. Note also that f essentially depends on three variables, because
∂x0 f , ∂x1 f and ∂x2 f are linearly independent.

We shall see later (see Rem. 4.16) that f essentially depends on three variables
in the more general situation of Example 3.3. Therefore, the maximum open rank
for essentially ternary quartics is at least 8. Note that the maximum rank for ternary
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quartics is 7 instead (see [22, Chap. 3] or [12]). Independently of this remark, even
before Blekherman and Teitler’s work [7] there were signs that the upper bounds given
by the induction procedure on open rank are quite relaxed. On the other hand, the
ability of giving nontrivial upper bound, in a relatively simple way, provides another
indication on the attention that the notion of open rank may deserve. By this reason,
we start now proving that the maximum open rank of essentially ternary quartics is
actually 8 (in particular, it is strictly less than the value given by the induction procedure
based on maximum open rank in degree 3).

4 Maximum Open Rank for Ternary Quartics

Our goal in this section is to prove that Ork f ≤ 8 for all f ∈ S4 when dim S1 = 3.
We need some auxiliary results, some of them of independent interest.

Proposition 4.1 Assume dim S1 = 3 and that a closed X � PS1 is given. Let f ∈ S4
and suppose that there exist distinct 〈l0〉, 〈l1〉 ∈ PS1 such that

– none of the lines l0 = 0, l1 = 0 in PS1 is contained in X,
– ∂l0l1 f = 0.

Then Ork( f, X) ≤ 8.

Proof For each i ∈ {0, 1}, let Xi be the intersection of X with the line li = 0 and let
us consider the dually paired graded rings R•

i := S•/(li ) and Ri,• := Ker ∂li ⊂ S•.
Let us pick f0 ∈ R0,4 such that ∂l1+(l0) f0 = ∂l1 f and set f1 := f − f0. We have
f = f0 + f1 with f0 ∈ R0,4, f1 ∈ R1,4.
Suppose first that ∂l0 f �= 0 and ∂l1 f �= 0. Let 〈v01〉 := 〈l0, l1〉⊥ and note that

f0, f1 can be replaced with f0 + λv01
4, f1 − λv01

4, for any λ ∈ K. Moreover, each
of f0 − λv01

4 and f1 − λv01
4 may be a fourth power of a linear form for at most

two values of λ (see, e.g., [13, Rem. 2.2] and take into account that f0, f1 /∈ 〈v014〉
because of the assumption ∂l0 f �= 0, ∂l1 f �= 0). Hence we can assume that f0, f1 are
not fourth powers. Since they can be regarded as binary forms, by Proposition 3.1 we
have that their open ranks as such, which we denote by OrkR0 f0 and OrkR1 f1, are at
most 4. Therefore

Ork( f, X) ≤ Ork( f0, X) + Ork( f1, X) ≤ OrkR0( f0, X0) + OrkR1( f1, X1) ≤ 8.

When ∂l0 f = 0 or ∂l1 f = 0, f can be regarded as a binary form and we deduce
Ork( f, X) ≤ 5 < 8 from Proposition 3.1. ��
Lemma 4.2 Assume dim S1 = 3, let g ∈ S3 and 	 ⊂ PS1 be a finite set such that

∂l ′l ′′g �= 0, for all 〈l ′〉, 〈l ′′〉 ∈ 	.

Then there exist distinct 〈l〉, 〈m〉 ∈ PS1 \ 	 such that

∂lmg = 0.

123



904 Discrete Comput Geom (2017) 57:896–914

Proof The dimension of L := Ker g2,1 is at least three because the partial polarization
g2,1 maps S2 into S1. Since the locus X ⊂ PS2 given by reducible forms is a hyper-
surface, we have that the intersection Y := PL ∩ X is an algebraic set of dimension
at least one. For distinct 〈a〉 , 〈b〉 ∈ PS1, we have that if 〈a2〉, 〈b2〉 ∈ Y , λ ∈ K, then
〈a2 + λb2〉 ∈ Y , and a2 + λb2 is a simply degenerate quadratic form for all λ �= 0
(charK = 0 �= 2). We deduce that the set of all 〈lm〉 ∈ Y with distinct 〈l〉, 〈m〉 ∈ PS1,
is a dense open subset U ⊆ Y . We have to choose 〈lm〉 ∈ U with 〈l〉, 〈m〉 /∈ 	.

We can certainly assume that there exist 〈r〉 ∈ 	 and two distinct points 〈x〉, 〈y〉 ∈
PS1 such that 〈r x〉, 〈r y〉 ∈ Y , otherwise the required 〈l〉, 〈m〉 can obviously be found,
since U is an infinite set. Let us fix such 〈r〉, 〈x〉, 〈y〉. They are linearly independent
because r ∈ 〈x, y〉would lead to ∂r2g = 0, contrary to the hypothesis on	. Hence we
have dually paired graded rings R• := K[x, y] ⊂ S• and R• := Ker ∂r ⊂ S•. Since
∂r x g = 0 and ∂r yg = 0 we have g = v3 + h for some h ∈ R3 and v ∈ 〈x, y〉⊥ ⊂ S1.
Since the partial polarization h2,1 maps R2 into R1, and R• is a ring of binary forms,
we can find nonzero l, t ∈ R1 such that ∂lt h = 0. By the hypothesis on 	 we can
assume that 〈l〉 /∈ 	. For infinitely many λ ∈ K we have 〈t + λr〉 /∈ 	 ∪ {〈l〉}, and let
us fix m := t + λr for whatever one of them. Since ∂lv = 0, ∂r h = 0, ∂lt h = 0 and
g = v3 + h, we conclude that ∂lmg = 0. ��
Proposition 4.3 Assume dim S1 = 3, let f ∈ Sd with d ≥ 3 and suppose that
	 ⊂ PS1 is a finite set such that ∂l ′l ′′ f �= 0 for all 〈l ′〉, 〈l ′′〉 ∈ 	. Then there exist
distinct

〈l1〉, . . . , 〈ld−1〉 ∈ PS1 \ 	

such that ∂l1···ld−1 f = 0.

Proof The case f = 0 being trivial, let us assume f �= 0. Recall that for every nonzero
h ∈ Se and nonzero x ∈ S1, we have that ∂xm h = 0 if and only if 〈x〉 is a point of
multiplicity at least e + 1 − m of the curve h = 0 in PS1. In particular, when m ≤ e,
the set of all 〈x〉 ∈ PS1 with ∂xm h �= 0 is nonempty and open. Exploiting this simple
fact, we can inductively pick distinct 〈l3〉, . . . , 〈ld−1〉 ∈ PS1 \ 	 such that

∂li l j l3···ld−1 f �= 0 , for all 〈li 〉, 〈l j 〉 ∈ 	′ := 	 ∪ {〈l3〉 , . . . , 〈ld−1〉}.

Then the result follows from Lemma 4.2 with g := ∂l3···ld−1 f and 	′ in place of 	. ��
Exploiting the above proposition in the case when f is a quartic, we can keep

three distinct lines, l1 = 0, l2 = 0, l3 = 0 with ∂l1l2l3 f = 0, from falling into a
given forbidden locus X , unless ∂l ′l ′′ f = 0 for some lines l ′ = 0, l ′′ = 0 (which
unfortunately fall into X and may be not distinct). A decomposition procedure along
three lines, similar to that along two which was used in the proof of Proposition 4.1,
looks promising. This idea has been successful for the maximum rank of ternary
quartics: see [12, Props. 3.1 and 5.1]. In that case as well, a condition ∂l ′l ′′ f = 0
with coinciding lines needs to be worked out separately ([12, Prop. 5.2]). One of
the outcomes of the present work is that the strategy used for [12, Prop. 3.1] can be
considerably simplified under the hypothesis that ∂l1l2 f is not a square. Note that this
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condition is only slightly stronger: we wish that the rank of ∂l1l2 f is at least two,
whereas ∂l ′l ′′ f �= 0 means that the rank is at least one.

A further simplification of the line of proof of [12, Prop. 3.1] was set up in [14]. To
let it work with open rank, we need to slightly adapt [14, Lems. 2.6 and 2.7], by adding
the information that the decompositions given in those lemmas can be chosen out of
a given algebraic set (we shall also slightly weaken the hypothesis of [14, Lem. 2.7]).
Let us recall that when dim S1 = 3, f ∈ Sd and ∂l f = 0 for some nonzero l ∈ S1,
f can be regarded as a binary form in the graded subring R• := Ker ∂l ⊂ S, which is
dually paired with the quotient S/(l) in a natural way. In this case, the length of f as
an element of Rd does not depend on the choice of l. We call it the binary length of
f ∈ Sd and denote it by b� f (see [14, Def. 2.1] for a general definition).

Lemma 4.4 Let 〈g′〉 ∈ PSd with dim S1 = 3, d > 0, and let us write d = 2s+ε, with
ε ∈ {0, 1} and s integer. Let 〈l0〉, . . . , 〈lt 〉 ∈ PS1 be distinct and such that ∂l0g

′ = 0,
and for each i ∈ {1, . . . , t} let gi ∈ Sd+1 be such that ∂li gi = g′. Moreover, suppose
that a closed subset Y ⊂ PS1 that does not contain the line l0 = 0 is given. If

b�g′ = s + 1, b�∂l0g1 ≥ s + ε, . . . , b�∂l0gt ≥ s + ε,

then there exists a power sum decomposition

g′ = v1
d + · · · + vr

d (2)

such that: r ≤ s+1+ε, Y contains none of 〈v1〉, . . . , 〈vr 〉 and, for each i ∈ {1, . . . , t},
– li vanishes on none of v1, . . . , vr ,
– b�(gi − Fi ) = s + 1 + ε, where

Fi := 1

(d + 1)li (v1)
v1

d+1 + · · · + 1

(d + 1)li (vr )
vr

d+1.

Proof The proof can go in the same way as that of [14, Lem. 2.7], with the following
additional cautions.

At the beginning of that proof, dually paired rings R•
0 := S•/(li ) and R0,• :=

Ker ∂li ⊂ S• are considered (among others Ri s). Then a line PL in a subspace PH ≤
PRs+1+ε

0 is chosen. The vectors v1, . . . , vr are the roots in PR0,1 (the line l0 = 0) of
a form h, with 〈h〉 chosen in a suitable cofinite subset of PL , say it V .

The above choices are allowed by [14, Lem. 2.6]. In the proof of that lemma, two
coprime generators of the apolar ideal of g′ are used (and denoted by l and h0). The
fact that they are coprime easily implies that the algebraic set ˜Y of all 〈h〉 ∈ PH that
have at least one root in Y does not fill PH . Hence, in the proof of [14, Lem. 2.7], the
line PL can certainly be chosen with the additional property of being not contained in
˜Y . Therefore 〈h〉 can be chosen in V \ ˜Y , because that set is cofinite in PL as well.

Moreover, note that a condition b�∂l0g1 = · · · = b�∂l0gt = s + 1 is used in
the proof of [14, Lem. 2.7], but only to get [14, Eq. (8)]. It is easy to see that [14,
Eq. (8)] holds also under the weaker hypothesis b�∂l0g1 ≥ s+ε, . . . , b�∂l0gt ≥ s+ε,
if one takes into account that those binary lengths cannot exceed s + 1, because
d = 2s + ε. ��
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Now the proof of [14, Prop. 3.2] can easily be adapted as follows.

Proposition 4.5 Assume dim S1 = 3 and that a closed X � PS1 is given. Let f ∈ S4
and suppose that there exist distinct 〈l0〉, 〈l1〉, 〈l2〉 ∈ PS1 such that

– none of the lines l0 = 0, l1 = 0, l2 = 0 in PS1 is contained in X,
– ∂l0l1l2 f = 0,
– ∂l1l2 f is not a square.

Then Ork( f, X) ≤ 8.

Proof According to Proposition 4.1, we can assume ∂l0l1 f �= 0, ∂l0l2 f �= 0. Hence
we can exploit Lemma 4.4 with t = 2, g′ = ∂l1l2 f , g1 = ∂l2 f , g2 = ∂l1 f and Y = X .
We get 〈v1〉, 〈v2〉 ∈ PS1 \ X such that

∂l1l2 f = v1
2 + v2

2,

li (v j ) �= 0 for all i, j ∈ {1, 2}, and setting

F ′
1 := 1

3l1(v1)
v1

3 + 1

3l1(v2)
v2

3, F ′
2 := 1

3l2(v1)
v1

3 + 1

3l2(v2)
v2

3,

we have b�
(

∂l2 f − F ′
1

) = b�
(

∂l1 f − F ′
2

) = 2.
Let

F1 := 1

12l1(v1)l2(v1)
v1

4 + 1

12l1(v2)l2(v2)
v2

4

and let us exploit again Lemma 4.4, now with t = 1, l1, l2 in place of l0, l1, ∂l2 f − F ′
1

in place of g′, f − F1 in place of g1 and Y = X . We get

〈w1〉, . . . , 〈wr 〉 ∈ PS1 \ X

such that r ≤ 3,

∂l2 f − F ′
1 = w1

3 + · · · + wr
3,

l2(wi ) �= 0 for all i ∈ {1, . . . , r}, and setting

G2 := 1

4l2(w1)
w1

4 + · · · + 1

4l2(wr )
wr

4,

we have b�( f − F1−G2) = 3. We have OrkR2( f − F1−G2) = 3 by Proposition 3.1.
Since X does not contain the line l2 = 0 we also have

Ork( f − F1 − G2, X) ≤ OrkR2( f − F1 − G2) = 3.

We conclude that

Ork( f, X) ≤ Ork( f − F1 − G2, X) + r + 2 ≤ 3 + 3 + 2 = 8. ��
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Our next job is to work out the special case where ∂l1l2 f is a square. Of course,
since the indices can be rearranged, we can suppose that ∂l1l2 f , ∂l0l2 f and ∂l0l1 f are
all squares.

Lemma 4.6 Assume dim S1 = 3 and that a finite set 	 ⊂ PS1 is given. Let f ∈ S4
and suppose that, whenever 〈l0〉, 〈l1〉, 〈l2〉 ∈ PS1 \ 	 are distinct and such that
∂l0l1l2 f = 0, we have that ∂l1l2 f , ∂l0l2 f and ∂l0l1 f are all squares.

Then there exist nonzero x, y ∈ S1 such that ∂xy f = 0. Moreover, for each fixed
l0, l1, l2 as before (when they exist), we can take x = l1.

Proof Assume first that distinct

〈l0〉, 〈l1〉, 〈l2〉 ∈ PS1 \ 	,

such that ∂l0l1l2 f = 0, do exist. Then ∂l1l2 f = v2 for some v ∈ S1. Therefore
∂l ′l1l2 f = 0 for all l ′ ∈ 〈v〉⊥. Hence, for all 〈l ′〉 ∈ P〈v〉⊥ \ (	 ∪ {〈l1〉, 〈l2〉}), ∂l1l ′ f is
a square. By [13, Lem. 4.1] (for a correct statement of that lemma, f ∈ Sd must be
replaced with f ∈ Sd+1, d ≥ 2), we can find a nonzero l ′ ∈ 〈v〉⊥ such that ∂l1l ′ f = 0.
Therefore, it suffices to set x = l1, y = l ′.

In the case when it is not possible to find distinct 〈l0〉, 〈l1〉, 〈l2〉 ∈ PS1 \ 	 with
∂l0l1l2 f = 0, Proposition 4.3 assures that ∂xy f = 0 for some 〈x〉, 〈y〉 ∈ 	. ��

Now the case where the simplifying assumption in Proposition 4.5 is missed has
been reduced to the case where ∂xy f = 0 for some 〈x〉, 〈y〉 ∈ PS1. When 〈x〉 = 〈y〉
that condition becomes the same as in the hypothesis of [12, Prop. 5.2]. The basic idea
in the proof of that proposition can be illustrated for 〈x〉 �= 〈y〉 as follows.
Lemma 4.7 Assume dim S1 = 3 and let f ∈ S4. Suppose that:

– there are distinct 〈x〉, 〈y〉 ∈ PS1 with ∂xy f = 0,
– there is 〈w〉 ∈ PS3 with ∂w f = 0 and
– the curve w = 0 intersects the lines x = 0 and y = 0 in two groups of dis-
tinct points P0, P1, P2 and Q0, Q1, Q2, not coinciding with the intersection point
O = 〈x, y〉⊥.

Then, if li = 0 is the line through Pi and Qi for each i (with li ∈ S1), we have
∂l0l1l2 f = 0.

Proof The curve l0l1l2 = 0 contains the complete intersection of w = 0 and xy = 0
(a set of six distinct points, different from O). Then l0l1l2 = λw + mxy for some
λ ∈ K and m ∈ S1, by elementary intersection theory in algebraic geometry. Since
∂w f = 0 and ∂xy f = 0, we get ∂l0l1l2 f = λ∂w f + ∂m∂xy f = 0. ��

The cubicw in the above statement can actually be found, except for a special case.
This fact will be stated in Lemma 4.10 below, along with an additional property of
w which implies that, for the above obtained three lines, ∂l1l2 f is not a square. As a
matter of fact, the outcomeof the subsequentLemmas4.11 and4.12 is precisely that the
simplifying assumption needed in the hypothesis of Proposition 4.5 cannot be missed,
if not in a special case: when ∂z f is a cube for some nonzero z ∈ S1 (equivalently, its
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rank is at most one). This result will be refined further by Lemma 4.13 and explicitly
stated in Proposition 4.14.

To begin with, we recall a fact already pointed out at the beginning of [12, proof of
Prop. 5.2].

Lemma 4.8 Assume dim S1 = 3, let f ∈ S4, l ∈ S1 and suppose that ∂l f is not a
cube. Then

dim
(

Ker f3,1 ∩ l S2
) ≤ 4.

Proof Let g := ∂l f . The space Ker f3,1 ∩ l S2 is isomorphic to Ker g2,1 through
multiplication by l. Then its dimension equals 6− rk g2,1. A general and easy result is
that if p ∈ Sd+δ for some positive integers d, δ, then rk pδ,d = rk p whenever one of
these numbers is at most one (this holds regardless of dim S1). Hence dim(Ker f3,1 ∩
l S2) ≤ 4 if and only if rk g ≥ 2, that is, ∂l f is not a cube. ��

With a bit of extra work we get the following.

Lemma 4.9 Assume dim S1 = 3, let f ∈ S4, 〈x〉, 〈y〉 ∈ PS1 be distinct and suppose
that ∂xy f = 0, ∂x f �= 0 and ∂y f is not a cube. Then

dim
(

Ker f3,1 ∩ yS2
) = 4 and dimKer f3,1 = 7.

Proof For every w ∈ Ker f3,1 + yS2 we have ∂xw f = 0, because ∂xy f = 0. Since
∂x f �= 0, there exists w ∈ S3 such that ∂xw f �= 0, hence w /∈ Ker f3,1 + yS2. This
shows that dim

(

Ker f3,1 + yS2
) ≤ dim S3 − 1 = 9, hence

dimKer f3,1 − dim
(

Ker f3,1 ∩ yS2
) = dim

(

Ker f3,1 + yS2
) − dim yS2

≤ 9 − 6 = 3.

But dimKer f3,1 ≥ dim S3 − dim S1 = 7 and, by the preceding lemma, we also have
dim(Ker f3,1 ∩ yS2) ≤ 4, so the result readily follows. ��

The above technical result has the following useful outcome.

Lemma 4.10 Assume dim S1 = 3, let f ∈ S4, W := Ker f3,1, 〈x〉, 〈y〉 ∈ PS1 be
distinct and X be a finite subset of the line y = 0. Suppose that ∂xy f = 0 and that
∂z f is not a cube for every nonzero z ∈ S1. Then there exists a nonempty (Zariski)
open subset U ⊂ PW such that for all 〈u〉 ∈ U the curve u = 0 intersects y = 0
in three distinct points outside X, and every form in W that vanishes on two of them,
vanishes on the other point too.

Proof The ring R• := S•/(y) can be regarded as the graded ring of the line y = 0,
and for each u ∈ Sd the intersection of u = 0 and y = 0 is the zero locus of
u := u + (y) ∈ Rd . Then the linear system on y = 0 cut by all 〈w〉 ∈ PW is given
by the groups of roots of the forms in W := W/(W ∩ yS2). Since ∂z f is not a cube
for every nonzero z ∈ S1, the linear system of curves given by W := Ker f3,1 has no
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base points by [22, Lem. 2.1]. Henceforth, the linear system on the line y = 0 given
by W has no base points, and by Lemma 4.9 we have dimW = 3. Hence there is a
nonempty open subset U ⊂ PW such that for every 〈u〉 ∈ U we have:

– u has three distinct roots outside X ,
– every form in W that vanishes on two of them, vanishes on the other root too.

Then it suffices to take U as the preimage of U through the natural projection PW \
P(yS2) → PW . ��
Lemma 4.11 Assume dim S1 = 3 and that a finite set 	 ⊂ PS1 is given. Let f ∈ S4
and suppose that there exist distinct 〈x〉, 〈y〉 ∈ PS1 such that ∂xy f = 0 and that ∂z f is
not a cube for every nonzero z ∈ S1. Then there exist distinct 〈l0〉, 〈l1〉, 〈l2〉 ∈ PS1 \	

such that ∂l0l1l2 f = 0 and ∂l1l2 f is not a square.

Proof Let X be the set of all points on the line y = 0 that belong to li = 0 for some
li ∈ (	∪{〈x〉})\{〈y〉}, and let Y be similarly defined for the line x = 0.We can exploit
Lemma 4.10 for x , y, X , and also for y, x , Y in place of them (respectively). We get
nonempty open subsets of PKer f3,1, and whatever chosen 〈w〉 in their (nonempty)
intersection fulfills the requirements in Lemma 4.7. That lemma gives three distinct
lines l0 = 0, l1 = 0, l2 = 0 with ∂l0l1l2 f = 0, and by construction we have l0, l1, l2 ∈
PS1 \	. To exclude that ∂l1l2 f = v2 for some v ∈ S1, note that in this case l0(v) = 0,
hence 〈v〉 cannot be the intersection point of x = 0 and y = 0. Therefore we can pick
〈m0〉 ∈ 〈v〉⊥ \ {〈l0〉}, and the two lines m0 = 0, l0 = 0 intersect at least one of the
lines x = 0, y = 0, say the first one, in different points. But this is excluded because
∂m0l1l2 f = 0 and the curve m0l1l2 = 0 shares with w = 0 two intersections with
x = 0, but not the other. ��

For the case where ∂xy = 0 with 〈x〉 = 〈y〉, we can follow the line of the proof of
[12, Prop. 5.2].

Lemma 4.12 Assume dim S1 = 3 and that a finite set 	 ⊂ PS1 is given. Let f ∈ S4
and suppose that there exists a nonzero l ′ ∈ S1 such that ∂l ′2 f = 0, and that ∂z f is
not a cube for every nonzero z ∈ S1. Then there exist distinct 〈l0〉, 〈l1〉, 〈l2〉 ∈ PS1 \	

such that ∂l0l1l2 f = 0 and ∂l1l2 f is not a square.

Proof Let V := Ker f3,1, W := V ∩ l ′S2. By Lemma 4.8 we have dimW ≤ 4. In the
second part of the proof of [12, Prop. 5.2] distinct points P0, P1, P2 on the line l ′ = 0
are chosen. In the present situation, we can furthermore impose that none of them
belongs to l ′′ = 0 for any 〈l ′′〉 ∈ 	 \ {〈l ′〉}, unless the linear system that is cut on the
line l ′ = 0 by the curves p = 0with 〈p〉 ∈ PV admits a fixed point; but this is excluded
by [22, Lem. 2.1], because of our hypothesis that ∂z f , with 〈z〉 ∈ PS1, is never a cube.
Then we can find, as in the mentioned proof, distinct 〈x0〉, 〈x1〉, 〈x2〉 ∈ PS1 such that
∂x0x1x2 f = 0 and for each i , xi = 0 meets l ′ = 0 in Pi only. It readily follows that
〈x0〉, 〈x1〉, 〈x2〉 ∈ PS1 \ 	. At this point we do not know if ∂x1x2 f may be a square,
but we can find the required 〈l0〉, 〈l1〉, 〈l2〉 as follows.

Suppose that there exists a nonzero y1 ∈ S1 such that ∂x1y1 f = 0. If 〈x1〉 �= 〈y1〉 the
statement follows from Lemma 4.11 with x1, y1 in place of x, y. When 〈x1〉 = 〈y1〉
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we have ∂x12 f = 0 and the statement follows again from Lemma 4.11, now with
l ′ + x1, l ′ − x1 in place of x, y. Thus, we can assume that ∂x1y1 f �= 0 for all nonzero
y1 ∈ S1. But with this assumption the statement follows from Lemma 4.6. ��

Now we work out the special case where ∂z f is a cube for some nonzero z ∈ S1,
at the cost of leaving out an even more special case, which we now briefly introduce.
As mentioned before Proposition 3.1, in [20, Def. 5.66] some extensions of the notion
of length are presented. In particular, let us recall the notion of scheme length, which
nowadays is often called cactus rank. Given f ∈ Sd , its cactus rank (or scheme length)
is the minimum among the degrees of the zero dimensional schemes Z in Proj S•, such
that the ideal I (Z) in S• is contained in the apolar ideal I f = {x ∈ S• : ∂x f = 0} of
f . We shall denote it by crk f .
We have also the following more geometric interpretation of crk f when f �=

0. Let 〈x〉 ∈ PSd , and νd : S1 → Sd , νd(v) := vd , be the Veronese map. Let
I (Z) and I f be the ideal of Z and the apolar ideal of f . Then x ∈ I (Z) if and
only if the hyperplane P〈x〉⊥ in PSd contains νd(Z), and x ∈ I f if and only if
the same hyperplane contains 〈 f 〉. For forms y ∈ Se of lower degree, we have that
y ∈ I (Z) if and only if ySd−e ⊆ I (Z) and y ∈ I f if and only if ySd−e ⊆ I f .
It easily follows that I (Z) ⊆ I f if and only if 〈 f 〉 ∈ 〈ν(Z)〉 (scheme-theoretic,
projective span, under the natural identification of PS1 with the set of all closed points
of Proj S• and the similar identification for PSd and Proj Sym• Sd ). Hence crk f
is the minimum among the degrees of the zero dimensional schemes Z such that
〈 f 〉 ∈ 〈ν(Z)〉.
Lemma 4.13 Assume dim S1 = 3 and that a finite set 	 ⊂ PS1 is given. Let f ∈ S4
with crk f ≥ 4, and suppose that ∂z f is a cube for some nonzero z ∈ S1. Then there
exist distinct 〈l0〉, 〈l1〉, 〈l2〉 ∈ PS1 \ 	 such that ∂l0l1l2 f = 0 and ∂l1l2 f is not a
square.

Proof Let ∂z f = v3 for some v ∈ S1 and nonzero z ∈ S1. Let us consider the graded
rings R• := Ker ∂z ⊂ S•, R• := S•/(z), with the induced apolarity pairing. We shall
distinguish the two cases z(v) �= 0 and z(v) = 0.

Suppose first that z(v) �= 0. Let

g := f − 1

4z(v)
v4,

so that ∂zg = 0. We have b�g ≥ 3 because crk f ≥ 4 (if a subscheme Z works for g
then Z ∪ {〈v〉} works for f ). Hence b�g = 3 because deg g = 4. By [20, Thm. 1.44],
the apolar ideal Ig ⊂ R• is generated by two coprime forms in R3. Then we can find

l0l1l2 ∈ Ig , with l0, l1, l2 ∈ R1, such that its roots in PR1 are distinct and lie on no
line l ′ = 0 with 〈l ′〉 ∈ 	 \ {〈z〉}. Note that ∂

l1l2
g �= 0 because I f is generated by

degree 3 forms, and is a square v0
2, with l0(v0) = 0 because ∂

l0l1l2
g = 0. We can

certainly choose representatives l0, l1, l2 ∈ S1 (that is, li = li + (z) ∈ R• = S•/(z))
such that l0(v) = 0, l1(v) �= 0, l2(v) �= 0. We have ∂l0l1l2g = 0 and ∂l0v

4 = 0, hence
∂l0l1l2 f = 0. We have that 〈l0〉, 〈l1〉, 〈l2〉 are distinct and do not lie in 	, because the
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lines l0 = 0, l1 = 0 and l2 = 0 intersect z = 0 in the roots of l0, l1, l2. Moreover, we
have

∂l1l2 f = v0
2 + 3l1(v)l2(v)

z(v)
v2,

which is not a square because 〈v0〉 �= 〈v〉.
Suppose now z(v) = 0. If v = 0, then f ∈ R• and this is excluded because b� f ≤ 3

is incompatible with the hypothesis crk f ≥ 4. Let us pick 〈x〉 ∈ 〈v〉⊥ \ (	 ∪ {〈z〉})
and set h := ∂x f , so that ∂zh = ∂xv

3 = 0. Since deg h = 3, we can find a nonzero
l1l2 ∈ R2, with l1, l2 ∈ R1 and ∂

l1l2
h = 0. If 〈l1〉, 〈l2〉 can be chosen different from

〈x〉, with x = x + (z) ∈ R1, then for whatever chosen representatives l1, l2 ∈ S1

we have ∂xl1l2 f = 0 and since l1, l2 /∈ 〈x, z〉 also l1(v) �= 0, l2(v) �= 0, so that
∂zl1l2 f = ∂l1l2v

3 is a nonzero multiple of v. If ∂l1l2 f were a square w2, we would
have either ∂zl1l2 f = 0 (in the case w ∈ 〈v〉) or that ∂zl1l2 f is a nonzero multiple of
w with 〈w〉 �= 〈v〉. This shows that ∂l1l2 f is not a square, and hence it suffices to set
l0 := x and take care of choosing 〈l1〉, 〈l2〉 outside 	. It remains to exclude that for
every 〈l1〉, 〈l2〉 ∈ PR1 with ∂

l1l2
h = 0, at least one of them coincides with 〈x〉. We

shall more generally exclude, for whatever 〈l ′〉 ∈ PR1, that ∂xl ′h = 0.
Let us suppose the contrary and let l ′ ∈ S1 be a representative of l ′. We have

∂xl ′ f = λv2

for some scalar λ, because ∂x (∂xl ′ f ) = ∂xl ′h = 0 and ∂z(∂xl ′ f ) = ∂l ′∂xz f = 0. It
must be λ �= 0, for otherwise the apolar ideal of f would contain the ideal (z2, zx, xl ′)
of a degree three zero-dimensional scheme, in contrast with the hypothesis crk f ≥ 4.
We also have

∂zl ′ f = ∂l ′v
3 = μv2,

for some scalar μ. Hence, setting l ′′ := λz − μx , we have

∂l ′l ′′ f = 0.

Then the apolar ideal of f in S• contains the ideal I := (z2, zx, l ′l ′′). If 〈l ′′〉 �= 〈z〉
(i.e., μ �= 0), then I is the ideal of a degree three zero-dimensional scheme, which
is excluded because crk f ≥ 4. If 〈l ′′〉 = 〈z〉, we have ∂l ′v3 = ∂l ′z f = 0, hence
〈l ′〉 = 〈x〉. In this case we have ∂x3 f = 0, hence the apolar ideal of f contains
I ′ := (z2, zx, x3). Then [8, Lem. 2.3] predicts that 〈 f 〉 is in the span of the image
through the Veronese map of some curvilinear zero-dimensional scheme supported on
〈v〉 and of degree less than 4; this is excluded because crk f ≥ 4. This ends the proof,
but we also mention that such a scheme may also be explicitly exhibited. To this end,
let us choose y ∈ PS1 \ 〈x, z〉 and consider the ideal (z2, zx, λ′zy − μ′x2), where
λ′, μ′ are the scalars determined by the relations ∂x2 f = λ′v2, ∂zy f = μ′v2( �= 0).
When λ′ �= 0, this is the ideal of the mentioned curvilinear scheme. When λ′ = 0,
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the scheme is of degree three (which suffices for the purposes of the proof) but not
curvilinear; one may detect in a similar way an apolar to f linear generator of the
ideal of a smaller scheme. ��

Let us summarize the information given by the above results in the following propo-
sition.

Proposition 4.14 Assume dim S1 = 3, let f ∈ S4 with crk f ≥ 4, and 	 be a finite
subset of PS1. Then there exist distinct 〈l0〉, 〈l1〉, 〈l2〉 ∈ PS1 \	 such that ∂l0l1l2 f = 0
and ∂l1l2 f is not a square.

Proof If ∂xy f �= 0 for all nonzero x, y ∈ S1, the result follows from Proposition 4.3
and Lemma 4.6. If ∂z f is a cube for some nonzero z ∈ S1, the result follows from
Lemma 4.13. When ∂xy = 0 for some nonzero x, y ∈ S1 and ∂z f is not a cube for
every nonzero z ∈ S1, the result follows from Lemma 4.11 if 〈x〉 �= 〈y〉, and from
Lemma 4.12 (with l ′ := x) if 〈x〉 = 〈y〉. ��

Now we work out the special case crk f = 3, using similar techniques as in Exam-
ple 3.3.

Proposition 4.15 Let f ∈ S4, with dim S1 = 3. If crk f = 3, then Ork f = 7.

Proof Let ν : PS1 → PS4 be the Veronese embedding and set P := 〈 f 〉 ∈ PS4.
If crk f = 3, then there exists a degree three zero-dimensional subscheme Z of
PS1, such that P ∈ 〈ν(Z)〉, and P /∈ 〈ν(Z ′)〉 for every subscheme Z ′

� Z . By
[8, Lem. 2.3], Z is curvilinear.

We first check that Ork f ≥ 7. Assume that a := Ork f ≤ 6. Fix a closed subset
X � PS1. Since Z is curvilinear, there are only finitely many lines L ⊂ PS1 such that
deg(L ∩ Z) ≥ 2. Increasing if necessary X , we may assume that X contains the union
of these lines. In particular, X contains Zred. Take a degree a reduced subscheme B
of PS1 \ X , with P ∈ 〈ν(B)〉 and such that P /∈ 〈ν(B ′)〉 for any B ′

� B. Since
Zred ⊂ X and B ⊂ PS1 \ X , we have B ∩ Z = ∅, and in particular B �= Z . But
P ∈ 〈ν(B)〉 ∩ 〈ν(Z)〉, hence h1(IZ∪B(4)) > 0. Since deg(Z ∪ B) = 3 + a ≤ 9,
by [4, Lem. 34] there is a line L ⊂ P

2 such that deg(L ∩ (Z ∪ B)) ≥ 6. For any
effective divisor D ⊂ P

2 and any zero-dimensional scheme W ⊂ PS1 we have
deg(W ) = deg(D ∩ W ) + deg(ResD(W )). Since deg(L ∩ (Z ∪ B)) ≥ 6, we have
deg(ResL(Z ∪ B)) ≤ 3. Since Z ∩ B = ∅, by [3, Lem. 5.1] we get Z ∪ B ⊂ L . Since
X contains any line L with deg(L ∩ Z) ≥ 2 and B ∩ X = ∅, we get a contradiction.

Now we check that Ork f ≤ 7. Fix a closed set X � PS1 and let C ⊂ PS1 be a
general conic containing Z . Since C is general, C � X . Since Z is curvilinear and not
contained in a line (otherwise P ∈ 〈ν(Z ′)〉 for some Z ′

� Z ), C is a smooth conic.
It follows that P has border rank 3 with respect to the rational normal curve ν(C).
By Remark 3.2, the open rank of P with respect to ν(C) is 7, and therefore there exists
E ⊂ C \ C ∩ X such that �(E) = 7 and P ∈ 〈ν(E)〉. Hence Ork f ≤ 7. ��
Remark 4.16 If f is as in Example 3.3, then ∂l f �= 0 for all nonzero l ∈ S1 (that
is, f essentially depends on three variables). Suppose indeed the contrary, and note
that in this case b� f ≤ 3, hence crk f ≤ 3. Proposition 4.15 excludes crk f = 3. If
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crk f ≤ 2, then there is some zero-dimensional scheme Z ′ ⊂ PS1, of degree at most
two, such that 〈 f 〉 is in the span of ν(Z ′), with ν : PS1 → PS4 being the Veronese
embedding. Then h1(IZ∪Z ′(4)) > 0, with Z as in Example 3.3. Since deg Z ∪ Z ′ ≤ 6,
Z ∪ Z ′ must lie on a line. But, by construction, Z is not on a line. Hence f essentially
depends on three variables.

With the following result we reach the goal of the present section.

Proposition 4.17 Assume dim S1 = 3 and let f ∈ S4. We have Ork( f ) ≤ 8.

Proof Let X � PS1 be a (proper) closed subset. Let 	 be the (necessarily finite) set
of all 〈l〉 ∈ PS1 such that the line l = 0 is contained in X .

When crk f ≥ 4, Propositions 4.14 and 4.5 give Ork( f, X) ≤ 8. When crk f = 3,
Proposition 4.15 gives Ork( f, X) = 7 < 8. Finally, if crk f ≤ 2, then there is a zero-
dimensional scheme Z ⊂ PS1 of degree at most 2, such that 〈 f 〉 is in the span of ν(Z),
with ν : PS1 → PS4 being the Veronese embedding. Hence we can find distinct
〈l0〉, 〈l1〉 ∈ S1, such that none of the lines l0 = 0, l1 = 0 is contained in X , and l0l1

= 0 contains Z . Therefore ∂l0l1 f = 0, and Proposition 4.1 gives Ork( f, X) ≤ 8. ��
Proposition 4.17 and Remark 4.16 (or Example 3.4) together show that the maxi-

mum open rank for quartics in essentially three variables is actually eight: in notation
of [21, Def. 2], Ork(3, 4) = 8.

Remark 4.18 Proposition 4.17 and [21, Thms. 4 and 5] allow to improve [21, Cor. 6],
giving

(

n + d − 2

d − 1

)

−
(

n + d − 6

d − 3

)

−
(

n + d − 7

d − 4

)

(3)

as an upper bound on open rank, hence on rank, for every n ≥ 3, d ≥ 4. Though (3) is
the best bound on open rank that we know to date, of course it is likely very far from
being sharp. As a bound on rank, it is the best only for (n, d) = (4, 4) (likely far from
being sharp, as well).
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