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Abstract The tolerant Tverberg theorem generalizes Tverberg’s theorem by intro-
ducing a new parameter t called tolerance. It states that there is a minimal number N
so that any set of at least N points inRd can be partitioned into r disjoint sets such that
they remain intersecting even after removing any t points from X . In this paper we give
an asymptotically tight bound for the tolerant Tverberg Theorem when the dimension
and the size of the partition are fixed. To achieve this, we study certain partitions of
order-type homogeneous sets and use a generalization of the Erdős–Szekeres theorem.
As far as we know, this is the first time that a Ramsey-type theorem has been used to
prove a Tverberg-type result.
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1 Introduction

Tverberg’s theorem [18] states that any set with at least (d + 1)(r − 1) + 1 points in
R
d can be partitioned into r disjoint sets A1, . . . , Ar such that

⋂r
i=1 conv(Ai ) �= ∅.

Furthermore, this bound is tight. For a gentle introduction to this theorem and some
of its relatives see [11, Chap. 8].

The tolerantTverberg theoremgeneralizesTverberg’s theoremby introducing anew
parameter t called tolerance. It states that there is a minimal number N = N (d, t, r)
so that any set X of at least N points in R

d can be partitioned into r disjoint sets
A1, . . . , Ar such that

⋂r
i=1 conv(Ai\Y ) �= ∅ for any Y ⊂ X with at most t points.

In contrast with the classical Tverberg theorem, the best known bounds for
N (d, t, r) are not tight. Larman [10] proved that N (d, 1, 2) ≤ 2d + 3, García-Colín
showed that N (d, t, 2) ≤ (t + 1)(d + 1) + 1 in her PhD thesis [7], later published in
[8]. This was later generalized by Strausz and Soberón who gave the general bound
N (d, t, r) ≤ (r − 1)(t + 1)(d + 1) + 1 [16]. Later, Mulzer and Stein gave the bound
N (d, t, r) ≤ 2d−1(r(t + 2) − 1) which improves the previous bound for d ≤ 2 and is
tight for d = 1 [13].

As for lower bounds, Ramírez-Alfonsín [14] and García-Colín [8], using oriented
matroids, proved that � 5d

3 �+3 ≤ N (d, 1, 2) and 2d+t+1 ≤ N (d, t, 2), respectively.
Furthermore, Larman’s upper bound is known to be sharp for d = 1, 2, 3 and 4 [5,10].
Lastly, Soberón gave the bound r(� d

2 	 + t + 1) ≤ N (d, t, r) [15].
In this paper we show that for fixed d and r , the correct value for N (d, t, r) is

asymptotically equal to r t . To be precise, we prove the following theorem.

Theorem 1.1 For fixed r and d we have that

N (d, t, r) = r t + o(t).

This improves all previously known upper bounds whenever t is large compared to r
and d, and comes with a matching lower bound.

The proof follows from studying the behavior of t with respect to N and using a
generalization of the Erdős–Szekeres theorem for cyclic polytopes in Rd . We include
a short review of cyclic polytopes and this theorem in Sect. 2. As far as we know, this
is the first time that a Ramsey-type result, such as this generalization of the Erdős–
Szekeres theorem, has been used to prove a Tverberg-type theorem. In Sect. 3.1 we
prove a useful lemma about alternating partitions of a cyclic polytope which leads to
an interesting open problem. The proof of Theorem 1.1 is detailed in Sect. 4.

2 Preliminaries

In this section we introduce some definitions and recall some well-known concepts
which we later use in the proofs of this paper.
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2.1 Order-Type Homogeneous Sets

Any ordered set of points X ⊂ R
d with the property that the orientation of any ordered

subset of X with d+1 elements is always the same is called an order-type homogeneous
set.

A classic example of such a set is the set of vertices of a cyclic polytope, X , which
is constructed as follows: consider the moment curve γ (α) = (α, α2, . . . , αd), given
real numbers α1 < α2 < · · · < αn , define X = {γ (α1), γ (α2), . . . , γ (αn)}. The
set conv(X) is the d-dimensional cyclic polytope on n points and any other polytope
combinatorially equivalent to the cyclic polytope is also sometimes referred to as a
cyclic polytope or, more generally, as an order-type homogeneous set.

Order-type homogeneous sets have been studied extensively [2,6,9,11,19] and have
proven to be very effective in giving examples with extremal properties in various
combinatorial problems. In our case they will prove useful in finding better bounds
for the tolerant Tverberg number N (d, t, r).

The following lemma, due to Gale [6] is one of the most powerful tools for studying
the properties of order-type homogeneous sets.

Lemma 2.1 (Gale’s evenness criterion) Let X = {x1, x2, . . . , xn} ⊂ R
d be an order-

type homogeneous set. A subset F ⊂ X such that |F | = d determines a facet of
conv(X) if and only if, any two vertices in X\F have an even number of vertices of F
between them in the order.

As a consequence of Lemma 2.1, the polytopes that arise as the convex hulls of
order-type homogeneous sets are known to be � d

2 	-neighborly. That is, the convex hull
of every � d

2 	 points in X is contained in a facet of C and, since C is simplicial, the
convex hull of such vertices is a � d

2 	 − 1 face of C .
Another useful fact when working with order-type homogeneous sets is [1, Lem.

2.1]. Recall that a set of points X ⊂ R
d is in general position if no k + 2 points of X

are contained in a k-dimensional subspace of Rd for every k ≥ 0.

Lemma 2.2 An ordered set X = {x1, x2, . . . xn} in general position in R
d is order-

type homogeneous if and only if the polygonal path π = x1x2 . . . xn intersects every
hyperplane in at most d points, with the exception of the hyperplanes that contain an
edge of π .

2.2 A Generalization of the Erdős–Szekeres Theorem

In 1935Erdős and Szekeres proved two important theorems in combinatorial geometry
[4]. The first Erdős–Szekeres theorem implies that any sequence of numbers with
length (n − 1)2 + 1 always contains a monotone (either increasing or decreasing)
subsequence. The second Erdős–Szekeres theorem states that among any 2Θ(n) points
in the plane there are n of them in convex position.

These two theorems can be thought of as results on order-type homogeneous sets
in dimensions 1 and 2. The following theorem, whose upper bound was proved by
Suk [17] and lower bound by Bárány et al. [1], generalizes both results to order-type
homogeneous sets in any d-dimensional space.
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Theorem 2.3 Let OTd(n) be the smallest integer such that any set of OTd(n) points
in general position in Rd contains an order-type homogeneous subset of size n. Then
OTd(n) = twrd(Θ(n)), where the tower function twrd is defined by twr1(α) = α and
twri+1(α) = 2twri (α).

3 Tolerance of Partitions of Sets

Let X = {x1, x2, . . . , xn} be a set of points in R
d . We define the tolerance t (X, r)

of X as the maximum number of points such that there is a partition A1, . . . , Ar of
X with the property that

⋂r
i=1 conv(Ai\Y ) �= ∅ for any Y ⊂ X with at most t (X, r)

points.
The following observation can be found as [13, Lem. 3.1].

Observation 3.1 Let X1, X2 be disjoint sets of points of Rd . Then t (X1 ∪ X2, r) ≥
t (X1, r) + t (X2, r) + 1.

We also define the following two numbers

t (n, d, r) = min
X⊂R

d

|X |=n

{t (X, r)} and T (n, d, r) = max
X⊂R

d

|X |=n

{t (X, r)},

where the sets X are also required to be in general position.
The value t (n, d, r) indicates that for every set X of n points in general position

there is a partition A1, . . . , Ar of X such that
⋂r

i=1 conv(Ai\Y ) �= ∅ for any Y ⊂ X
with at most t (X, r) = t (n, d, r) points. Meanwhile, T (n, d, r) indicates that there
exists a set X of n points in general position with a partition A1, . . . , Ar such that⋂r

i=1 conv(Ai\Y ) �= ∅ for any Y ⊂ X with at most t (X, r) = T (n, d, r) points.

3.1 Tolerance of Order-Type Homogeneous Sets

In order to prove Theorem 1.1 we need to study a specific type of partitions. Let
X = {x1, x2, . . . , xn} be an ordered set of points in R

d with the order specified by
its indexes and let r > 0 be a fixed integer. The partition of X into r sets A1, . . . , Ar

given by Ai = {x j : j ≡ i mod r} is called the alternating partition. Our main interest
is to determine when the convex hulls of the sets Ai intersect and how tolerant they
are, in the sense of howmany points can be removed from the Ai ’s so that their convex
hulls are still intersecting.

Lemma 3.2 Let X = {x1, x2, . . . , xn} be an order-type homogeneous set of points
in R

d with alternating partition A1, . . . , Ar . Then there is a number c(d, r) ≤
(d + 1)(� d

2 	+ 1)(r−1)+ 1 ≈ rd2
2 such that, if n ≥ c(d, r), then

⋂r
i=1 conv(Ai ) �= ∅.

Proof Let O be a center point for X . This means that every closed semi-space contain-
ing O also contains at least � n

d+1� points of X . We will show that O ∈ conv(Ai ) for
every i . Suppose this is not the case. Then there is a hyperplane H strictly separating
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Fig. 1 An example for
Lemma 3.2 with n = 14, d = 6
and r = 3. The set A3, in red, is
to the left of H and the path π

intersects H at most d times

H

A3 x3

x2

x4

x5
x6

x9

x12

x10 x14
x8
x11

x13

x7

x1

O from some conv(Ai ). We may assume (by perturbing H if necessary) that no point
in X is contained in H .

Let H+ be the closed semi-space bounded by H that contains O . Since O is a
center point then X ∩ H+ contains at least � n

d+1� > (� d
2 	 + 1)(r − 1) points.

On the other hand, by Lemma 2.2, the polygonal path π generated by X intersects
H at most d times. Therefore π ∩H+ has at most � d

2 	+1 connected components and,
since Ai ∩ H+ = ∅, each of these components is a sub-path of π contained between
two consecutive points of Ai ⊂ π (see Fig. 1). Thus, each component contains at most
r − 1 points from X , so X ∩ H+ has at most (� d

2 	+ 1)(r − 1) points. This contradicts
our assumption that O /∈ conv(Ai ). ��

The bound for c(d, r) given in the previous lemma is not tight. In fact it can be
improved when d is even by noticing that, if n ≡ i (mod r ), then X ∩ H+ can
have at most d

2 (r − 1) + i points. The bound obtained in this case is c(d, r) ≤
mini

{ d(d+1)
2 (r−1)+i(d+1)+si

}
, where si be the smallest positive integer such that

si ≡ d(d+1)
2 − id (mod r ). When r is large compared to d this simply equals d(d+1)

2 r .
However this bound is still not tight, giving rise to an interesting open question.

Problem 3.3 Determine the smallest value for c(d, r) for which Lemma 3.2 holds.

There are two easy cases in this problem. The first one is when r = 1, then the
partition contains only A1, so we immediately have that c(d, 1) = 1. The other is
when d = 1, then the set X is an increasing sequence of real numbers and in this case
it is easy to show that c(1, r) = 2r − 1.

The case d = 2 is also not difficult. The first value c(2, 2) = 4 comes from
the fact that the diagonals of a convex quadrilateral intersect. However, if r ≥ 3
we have c(2, r) = 3r instead. To prove that c(2, r) ≤ 3r it is enough, by Helly’s
theorem, to show that c(2, 3) = 9. If this were not the case then there would be a
line L separating conv(A1) ∪ conv(A2) from A3, but since the partition is alternating
conv(A1) and conv(A2) must intersect on the side of L containing A3. In order to
prove that c(2, r) ≥ 3r , consider the example in Fig. 2.

If r = 2, a simple separating-hyperplane argument using Lemma 2.2 shows that
c(d, 2) = d + 2. In general, it can also be proved that c(d, r) ≥ (d + 1)r whenever
r > d, but this is also not tight. The following example shows that c(3, 4) > 16:
Consider the four alternating tetrahedra with vertices on the moment curve (t, t2, t3)
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Fig. 2 An example showing
c(2, r) ≥ 3r

1
r − 1

1
r − 1

1

r − 1

r

r

when t takes the values −4, −3, −2, −2, −2, −1, −1, −1, 0, 1, 2, 6, 6, 7, 8 and 9.
It can be shown that these tetrahedra do not have a common point. This example has
small integer coordinates but some of the points are repeated, this can be avoided by
slightly perturbing the values of t .

Now we are ready to study the tolerance of an order-type homogeneous set.

Theorem 3.4 Let X = {x1, x2, . . . , xn} be an order-type homogeneous set of points
in Rd . Then � n

r 	 − � c(d,r)
r � ≤ t (X, r), where c(d, r) is the number from Lemma 3.2.

Proof For the lower bound, consider the alternatingpartition A1, . . . , Ar of X .Assume
that Y ⊂ X satisfies |Y | ≤ � n

r 	−� c(d,r)
r �. Subdivide X into � n

r 	 consecutive blocks of
size r (ignoring the remaining points from X ), then each block has exactly one point
of each color. After removing Y from X , at least � c(d,r)

r � blocks remain complete.
Let X ′ be the set containing the points from these blocks. Then X ′ has at least c(d, r)
points and the restriction of the partition of X to X ′ (i.e. A1 ∩ X ′, . . . , Ar ∩ X ′) is also
an alternating partition. Thus, by Lemma 3.2 we have that

⋂r
i=1 conv(Ai ∩ X ′) �= ∅

and the theorem follows. ��
An upper bound of t (X, r) ≤ � n

r 	 − � d
2 	 was proved by Soberón in [15, Cla. 4.1],

when X is an order-type homogeneous set in Rd .

3.2 Tolerance of Partitions of General Sets

The bound N (d, t, r) ≤ (r − 1)(t + 1)(d + 1) + 1 for the tolerant Tverberg number
implies that for any set X of n points, its tolerance is bounded by n−1

(r−1)(d+1) − 1 ≤
t (X, r). On the other hand, we can argue that the tolerance under any partition of a set
can never be greater than the size of the smallest part in the partition, i.e. T (n, d, r) ≤
� n
r 	.
The arguments in the previous paragraphs imply that n−1

(r−1)(d+1) −1 ≤ t (n, d, r) ≤
t (X, r) ≤ T (n, d, r) ≤ � n

r 	 holds for any X ⊂ R
d with |X | = n.

In this section we exhibit improved bounds for the tolerance of partitions of general
sets.
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Proposition 3.5 Foranypositive integers n, d, r wehave that T (n, d, r) ≤ � n
r 	−� d

2 	.
Proof Let X ⊂ R

d be a set with n points in general position. Assume that A1, . . . , Ar

is a partition of X such that
⋂r

i=1 conv(Ai\Y ) �= ∅ for any Y ⊂ X with at most
T = T (n, d, r) points.

Let Ai , A j be parts such that i �= j . We may assume that |Ai ∪ A j | ≥ d + 2,
otherwise T = 0. Then for any subset D of d points in Ai ∪ A j , the hyperplane
H = aff(D) dividesRd into two closed semi-spaces H+ and H− so that |H+ ∩ Ai |+
|H− ∩ A j | > T and |H− ∩ Ai | + |H+ ∩ A j | > T .

Hence |Ai |+|A j |−d > 2T and adding through all the different pairs,
∑

i< j |Ai |+
|A j | >

(r
2

)
(2T+d). That is, (r−1)

∑
i∈[r ]|Ai | >

(r
2

)
(2T+d) and thus n > r

2 (2T+d).

Rearranging the later equation we can obtain n
r > T + d

2 . Therefore
n
r > T + � d

2 	
and so � n

r 	 ≥ T + � d
2 	. ��

Lemma 3.6 Let r, d be fixed natural numbers. For a large enough n we have that
t (n, d, r) ≥ n

r − o(n).

Proof Fix small ε > 0. We shall construct a large number n satisfying that, for any set
X of n points inRd , we have t (X, r) ≥ n

r (1− ε). Let c = c(d, r) be as in Lemma 3.2.
Assume that n = OTd(k) + (m − 1)k for some positive integers m and k, where

OTd is the bound from Theorem 2.3. Then, given a set X of n points in general
position in R

d , we can select m pairwise-disjoint order-type homogeneous subsets
X1, X2, . . . , Xm of size k from X .

Partition the points of each Xi into r parts using the alternating method proposed
in Sect. 3.1. By Theorem 3.4, we have that t (Xi , r) ≥ k−c

r and therefore, by Obser-
vation 3.1, t (X, r) ≥ t (X1, r) + · · · + t (Xm, r) ≥ m

( k−c
r

)
. We may rewrite this last

value as

m
(k − c

r

)
= n

r

(mk − mc

n

)
= n

r

(
1 − OTd(k) + mc

OTd(k) + mk

)
.

By choosing a large enough k so that 1+c
1+k < ε and m = OTd(k), we obtain

t (X, r) ≥ n
r

(
1 − 1+c

1+k

)
> n

r (1 − ε). ��
A practical algorithm for finding highly tolerant colorings of a given set of points

in R
d remains elusive. While the constructive nature of the above proof might seem

to give an algorithm, a practical implementation would fail. Extracting an order-type
homogeneous set from a given set of points is not a trivial task. Another problem is that
the term OTd(k) is too large. For example, if we wanted an order-type homogeneous
set of size k in dimension 3, we would need approximately 22

k
points which is too

large even for a relatively small k.
In the plane, however, one could construct a highly tolerant coloring of a given set of

points by successively removing large convex sets and coloring them in an alternating
fashion. There is an O(N 3) dynamic programming algorithm for finding the convex
set with the most points, given an initial set of points in the plane (see [3, Problem 4]
and [12]).
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4 Bounds on the Tolerant Tverberg Number

So far we have been concerned with studying the behavior of t with respect to n, d
and r . By a simple manipulation of the results in the previous section, we may now
easily prove Theorem 1.1.

Proof of Theorem 1.1 Fix r and d. By Proposition 3.5 we have that t ≤ � n
r 	 − � d

2 	,
which implies n ≥ tr + r(d−1)

2 . Lemma 3.6 can be rewritten as n ≤ tr + o(n). These
inequalities imply n = Θ(t), so we have that

r t + r(d − 1)

2
≤ n ≤ r t + o(t),

which yields the result. ��
This result clarifies why the search for a definite N (d, r, t) has been elusive. It

seems that the relationship between t and N changes as t increases, as opposed to
being a constant multiple of t (for a fixed d and r ).

From the analysis made in Lemma 3.6 it follows that the term o(t) in Theorem 1.1
decays like t

log(d)(t)
, where log(d) represents the composition of d logarithm functions.

This decay is extremely slow, it is our impression that N (d, t, r) approaches r t much
faster than this.
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