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Abstract We describe procedures for generating all 2-cell embedded simple graphs
with up to a fixed number of vertices on a given surface. We also modify these pro-
cedures to generate closed 2-cell embeddings and polyhedral embeddings. We give
results of computer implementations of these procedures for seven surfaces: the sphere,
the torus, the double torus, the projective plane, theKlein bottle, the triple cross surface,
and the quadruple cross surface.

Keywords Map · Irreducible triangulation · Open 2-cell embedding · Closed 2-cell
embedding · Polyhedral embedding
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1 Introduction

Amap is a simple graph embedded in a surface such that every face is simply connected.
A triangulation is a map in which every face has three edges. Section 2 contains
more detailed definitions. In Sects. 3, 4, and 5 we describe the operations or local
deformations which we apply to triangulations and maps.

The generation of triangulations and maps on surfaces such as the projective plane,
the torus, and the Klein bottle has similarities to the generation of triangulations and
maps on the sphere. There are also interesting differences.
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Fig. 1 Expansion for splitting a vertex

D

Fig. 2 Expansion for removing an edge

Brinkmann and McKay provide procedures for generating triangulations and maps
on the sphere [4,5]. They implement these procedures in a computer program plantri
[3]. We extend these techniques to non-spherical surfaces.

We know from the work of Steinitz [11] that we can generate all the triangulations
of the sphere with n > 4 vertices by applying the vertex splitting operation (Fig. 1
and Sect. 5) to the triangulations of the sphere with n − 1 vertices. The single initial
triangulation for this recursive process is K4 embedded in the sphere, the (boundary of
the) tetrahedron. The inverse of the vertex splitting operation is the operation of edge
contraction. To assure that the repeated application of the vertex splitting operation
generates all triangulations it is required that the edge contraction operation can always
be performed on any triangulation other than K4 and that the result of this edge
contraction operation is also a triangulation. For a triangulation of the sphere other
than K4 it is indeed always possible to find an edge for which the edge contraction
operation can be applied [11].

Triangulations of non-spherical surfaces can be generated in the same way. How-
ever, for any surface other than the sphere there are many but a finite number of
triangulations which do not have any contractible edges [2]. An edge is not con-
tractible if an attempt to apply the edge contraction operation would produce multiple
edges. We define a triangulation with no contractible edges to be an irreducible trian-
gulation. The initial triangulations used for generating all triangulations of a surface
are the irreducible triangulations of this surface. In Sect. 7 we provide a method for
producing the class of irreducible triangulations of a surface.

We next turn to the generation of maps which might not be triangulations. Maps
on the sphere can be obtained from the triangulations of the sphere by the operation
of edge removal (Fig. 2 and Sect. 4). For the repeated application of the operation of
edge removal to generate all the maps on the sphere, it must always be possible to
perform the inverse operation of adding an edge to a map which is not a triangulation
and, in the process, obtain another map. The edge must be added in such a way that
does not create multiple edges. By applying the Jordan curve theorem we can show
that for the sphere the operation of adding an edge is always possible for a map which
is not a triangulation.
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We would like to generate maps on other surfaces in a similar way. However, there
are maps which are not triangulations for which it is not possible to add an edge
without producing multiple edges. In Sect. 5 we introduce a class of maps, which
we call irreducible maps, which are analogous to irreducible triangulations for the
purpose of generating maps.

The generation of the maps with n vertices of a fixed surface consists of four steps:

1. Generate the irreducible triangulations of the surface (Sect. 7).
2. Generate the irreducible maps of the surface from the irreducible triangulations

by removing vertices (Sect. 6).
3. Split vertices (E-expansions) of the irreducible maps to obtain face irreducible

maps with n vertices (Fig. 1 and Sect. 5).
4. Remove edges (D-expansions) of the face irreducible maps while the maps remain

2-cell embeddings (Fig. 2 and Sect. 4).

Before describing these steps in Sects. 4–7 we give definitions related to graphs in
Sect. 2 and we provide notation used when describing operations for generating maps
in Sect. 3. The computer program surftri [14] is an implementation of the techniques
for generating triangulations andmaps described in this paper. Information on how this
was done is contained inSect. 8. In Sect. 9wediscuss how the steps for generatingmaps
can bemodified to generate closed 2-cell embeddings and polyhedral embeddings.We
display the irreducible maps on the projective plane and torus in Sect. 10.

2 Definitions

A surface is a two-dimensional compact manifold. We denote the orientable surface
with genus g, the sphere with g handles attached, as Sg and the nonorientable surface
with genus g, the sphere with g crosscaps attached, as Ng .

We consider only simple graphs which are graphs with no loops and no multiple
edges. LetG be a connected graph embedded on a surface S. A face ofG is a connected
component of the complement of G in S. The graph G is a map (or open 2-cell
embedding) on S if every face of G is homeomorphic to an open disk. If the three
edges v1v2, v2v3, and v3v1 are contained in the map G then the union of these three
edges is a 3-cycle of G denoted as v1v2v3. A map G on a surface S is a triangulation
of S if the boundary of every face of G is a 3-cycle and the map is not a single 3-cycle
embedded on the sphere.

Let F be a face of G with the boundary edges, in order, v1v2, v2v3, …, vmv1. The
face F is denoted by the list of vertices v1v2v3 . . . vm . These vertices do not need to be
distinct. We call F anm-face and we say that F has size m. If F has sizem ≥ 4 then F
is defined to be a large face. The subscripts of the vertices of a face are modulom. We
say we triangulate a large face F when we add vertices and edges to the interior of F
in such a way that all the new faces formed are 3-faces.

3 Recursive Generation

The basic “isomorph-free” generation technique that is used for the Steps 1–4 is
described in detail in [4,5,8]. For each generation process we specify the class C

123



338 Discrete Comput Geom (2017) 57:335–356

which is the class of maps to be generated, the initial class C0 ⊆ C which is the class
of maps from which the maps in C are generated, and F an expansion operation. The
expansion operation F is a function from C into the set of subclasses of C . We say
(C0; F) generates C if for each G ∈ C there is a sequence G0, G1, …, Gm = G
such that G0 ∈ C0 and for every i , 1 ≤ i ≤ m, we have Gi ∈ F(Gi−1). We call the
expansion operation F the F-expansion. The inverse of the expansion operation F is
the F-reduction.

Figures 1 and 2 represent expansion operations which we use to generate maps.
The left side of each figure shows a part of the embedded graph before the expansion
operation.The right side shows the samepart of the graph after the expansionoperation.
Each part of the graphs shown is contained in a simply connected component of the
surface. The full edges which are shown are required to be a part of the map being
modified. The shorter half edges (in Fig. 1) are other unchanged edges of the map.
The small flattened triangles (in Figs. 1, 2) represent the location of zero or more other
unchanged edges. The expansion operation replaces the subgraph on the left with the
subgraph on the right. The reduction operation replaces the right subgraph with the
left subgraph. Since the part of the graph being modified is contained in a simply
connected component the surface remains the same.

4 Removing Edges in Corners of Large Faces

We examine the steps of the overall map generation process in reverse order to help
clarify the choice of operations and initial classes which we use.

In Step 4 we generate M2, the class of all maps for a surface S. We consider an
arbitrary map of the type being generated and describe the reduction operation, the
D-reduction. The D-expansion is the inverse of the D-reduction. LetM1 ⊆ M2 be the
class of those maps on S for which the D-reduction is not possible. We characterize
M1 and show that (M1;D) generates M2.

Let G be a map on a surface S. We continue to call the map G even as it is modified
by the D-reduction. The D-expansion which is shown in Fig. 2 is the removal of an
edge from a 3-face. It can only be applied if the map has a 3-face. The D-reduction is
the addition of an edge in the “corner” of a large face. We only apply the D-reduction
if the edge to be added does not already exist in the map.

Let F = v1v2 . . . vm be a large face of G and let vi be a vertex on F . If vi = vi+2
then vi+1 has degree 1 and is not adjacent to vi+3. The edge vi+1vi+3 can be added
in the interior of F dividing F into a 3-face and a face of size m−1. Adding this edge
reduces the number of vertices of degree 1. Repeated addition of edges of this type
results in no faces having a vertex of degree 1.

We can now assume that the three vertices vi , vi+1, vi+2 on F are distinct. If vi
is not adjacent to vi+2 then again the edge vivi+2 can be added in the interior of F
dividing F into a 3-face and a face of size m−1.

The addition of an edge in this way is the D-reduction. Even though a D-reduction
adds an edge to the map it simplifies the map by making it more like a triangulation by
increasing the number of 3-faces. The application of a D-reduction reduces the size
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of one large face and does not change the size of the other large faces. So eventually
no more D-reductions are possible.

If S is the sphere then a D-reduction can always be applied in a large face. The
initial classM1 of maps on the sphere for which the D-reduction is not possible is the
class of triangulations of the sphere.

If S is a surface other than the sphere then it is possible to have a large face in which
it is not possible to use a D-reduction. For example, P4, in Fig. 5 shows K4 embedded
in the projective plane. Opposite points on the hexagon have been identified. The map
has three 4-faces. None of the faces are 3-faces and no edges can be added since the
graph is complete.

A large face F = v1v2 . . . vm of amap is an irreducible face if for every i , 1≤ i≤m,
the vertices vi and vi+2 are adjacent. A map is face irreducible if every face is an
irreducible face or a 3-face. Trivially, every triangulation is a face irreducible map.

So the initial class M1 of maps on S for which the D-reduction is not possible is
the class of face irreducible maps on S.

5 Splitting Vertices

We now consider Step 3 of the map generation process in which we generate the face
irreducible maps. The class of maps to be generated isM1 which is used as the initial
class in the previous section. The E-expansion shown in Fig. 1 is used. Below we
specify an initial classM0 such that (M0;E) generates M1.

Let G ∈ M1 be a face irreducible map on the surface S. The E-reduction, edge
contraction, is the inverse of the E-expansion. The E-reduction is applied only if the
faces on both sides of the edge being contracted are 3-faces. Also the E-reduction
is performed only if the resulting graph is still simple. Let v1 and v2 be the vertices
of the edge to be contracted and let u1v1v2 and u2v1v2 be the 3-faces on either side
of v1v2. The two ends of the contracted edge, v1 and v2, must not both be adjacent
to any vertices other than u1 and u2. Otherwise, multiple edges would be produced
when v1v2 is contracted. An edge is contractible if it is on exactly two 3-cycles both
of which are 3-faces. To apply the edge contraction operation to an edge the edge
must be contractible and the map must not be K4 embedded in the sphere. An edge
is noncontractible if there is at least one 3-cycle containing the edge which is not a
3-face. An edge is essentially noncontractible if at least one 3-cycle containing the
edge is an essential 3-cycle on S.

Theorem 5.1 Every edge on the boundary of an irreducible face is essentially non-
contractible.

Proof Let F = v1v2 . . . vm be an irreducible face and let vivi+1 be an edge on the
boundary of F . DefineCF,i to be the 3-cycle vivi+1vi+2. AssumeCF,i is not essential,
i.e. the interior of CF,i is simply connected. Let D be the disk consisting of CF,i and
its interior. The path vivi+1vi+2 is on the boundary of both F and D. The graph
consisting of the vertices and edges in D is a map on the sphere so F cannot be in D.
The vertex vi+3 must be adjacent to vi+1 but the edge vi+3vi+1 cannot be in the interior
of F or in the interior of D. So vi+3 = vi . Similarly, vi+2 = vi−1. Thus the edge
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e = vi+2vi+3 = vi−1vi = vi+2vi must occur twice on F and F is on both sides of e.
This is impossible since CF,i must be on one side of e. ��

Contracting edges of G does not change the surface S in which G is embedded so
CF,i in the proof of Theorem 5.1 remains essential and cannot become a 3-face when
edges are contracted. So an irreducible face of G remains an irreducible face of G
with the same size when edges of G are contracted. As edges of G are contracted the
number of irreducible faces and their sizes remain unchanged.

We apply the E-reduction while contractible edges remain in G. Each application
of the E-reduction reduces the number of vertices of G. So after a finite number of
E-reductions there are no contractible edges.

We define a map G as an irreducible map if G is face irreducible and no edge in G
is contractible. The following property of irreducible maps is a generalization of a
similar property of irreducible triangulations.

Theorem 5.2 Every edge of an irreducible map is essentially noncontractible.

Proof Let G be an irreducible map. An edge of G is either on the boundary of an
irreducible face or on two 3-faces. In the first case the edge is essentially noncon-
tractible by Theorem 5.1. In the second case since the edge is not contractible it must
be on a 3-cycle C which is not a 3-face. We show that C is essential. Assume C is
not essential. On the surface C bounds a disk D. A new map H on the sphere can be
obtained by replacing the exterior of D with a 3-face.

The map H cannot contain a large face. If H contains a large face F = v1v2 . . . vm
then at least one vertex, say v2, of F must be in the interior of the (assumed) non-
essential 3-cycle C . Then the essential 3-cycle v1v2v3 is in the disk D. But this is not
possible.

Themap H contains no large face and is a triangulation of the sphere. If H is K4 then
any interior edge of D is contractible in G. If H is not K4 then there are contractible
edges of H which are also contractible in G. ��

The initial classM0 is the class of all irreduciblemaps on the surface S and (M0;E)
generates M1, the class of all face irreducible maps on the surface S.

6 Generating Irreducible Maps

Irreducible maps which we generate in Step 2 have a very nice property which makes
them easy to obtain. Each irreducible map G is a “submap” of an irreducible trian-
gulation T , i.e. G is obtained by removing zero or more vertices and adjacent edges
from T .

The class to be generated is the class of irreduciblemaps. The initial class is the class
of irreducible triangulations. The expansion operation is to remove a set of vertices
and adjacent edges with the condition that the resulting embedded graph is in the class
of irreducible maps. Theorem 6.2 shows that this expansion operation does generate
all of the irreducible maps.

The following theorem proves another property of irreducible faces and provides
us with the tool to prove Theorem 6.2.
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Fig. 3 Expansion for removing
a vertex, k = 4

V

Theorem 6.1 Let F be an irreducible face of amapG (which need not be irreducible).
We may replace the interior of F with new vertices, edges, and faces to create a new
map G ′ such that the new faces are 3-faces, the new edges are noncontractible in G ′,
and the interior of the union of the new vertices, edges, and faces is simply connected.

Proof There is one special irreducible face which we handle separately. P3 shown in
Fig. 5 is a single 3-cycle embedded in the projective plane. The dotted lines and open
circles in the figure represent the edges and vertices which are added to obtain the
irreducible triangulation P1. So we now can assume that F is not the one face of P3.

Let F = v1v2 . . . vm be an irreducible face ofG. We could triangulate F by placing
an m-cycle w1w2 . . . wm in the interior of F and an additional vertex x inside this
m-cycle. Adding the edges wivi , wivi+1, wi x for i , 1 ≤ i ≤ m, would fill F with
3-faces. We could then contract edges in the interior of F until no more edges in the
interior of F are contractible. However, this map might not contain G. This might
occur if, while contacting edges in the interior of F , two vertices of the boundary of
F are the ends of an edge which is contracted thus merging these two vertices of G.
So triangulating of F must be done with more care.

We use the V-reduction to add one vertex at a time to the interior of F and to attach
the new vertex to vertices which are on the boundary of the large face. The V-reduction
is shown in Fig. 3. This figure is similar to the previous figures showing expansions
and reductions. Figure 3 shows only four vertices of the large face, more vertices
may be used. The figure also shows dashed curves. Each dashed curve represents part
of an edge which is not completely contained in the simply connected component
of the surface represented by the figure. One requirement for the application of the
V-reduction is that at least four edges are added joining consecutive vertices on the
boundary of the face to the new vertex.With each V-reduction the size of the large face
is reduced. We can apply the V-reduction only a finite number of times. Let the new
vertex be w and let these consecutive vertices on the boundary of the face be v1, v2,
…, vk with k ≥ 4. A second requirement for the application of the V-reduction is that
the 3-cycles vivi+1vi+2 be essential for i , 1 ≤ i ≤ k − 2. Since the 3-cycle wvivi+2
is homeomorphic in S to the essential 3-cycle vi+1vivi+2, for i , 1 ≤ i ≤ k − 2 each
new edge wvi is essentially noncontractible for i , 1 ≤ i ≤ k.

We now describe how to add the first vertex to the interior of F .
First assume the vertices v1, v2, …, vm of F are distinct. This is always the case

when m ≤ 5 since each vertex on F is adjacent to all the other vertices on F . Since F
is an irreducible face and m ≥ 4 we use all the vertices of F for the V-reduction.
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The added edges are all essentially noncontractible and all the new faces are 3-faces
satisfying the theorem.

Now assume the vertices of F are not distinct. There is at least one vertex which
occurs at least twice on the boundary of F . To triangulate the interior of F we must
add more than one new vertex to the interior of F to prevent multiple edges.

Let k be the number of vertices in the longest paths on the boundary of F . Since
there is at least one vertex which occurs at least twice on the boundary of F we have
k < m. If necessary we relabel the vertices so that p = v1v2 . . . , vk is one of the
longest paths on the boundary of F . The vertices v1, v2, …vk are all distinct. The
vertex vm occurs at least twice on F and is on p for, otherwise, we could extend p to
vm producing a longer path on the boundary of F . Since vm is adjacent to v1 and v2,
vm = va for some a, 3 ≤ a ≤ k. Likewise, vk+1 = vb for some b, 1 ≤ b ≤ k − 2.

We assert that k ≥ 4. Since F is an irreducible face vi , vi+1, and vi+2 are pairwise
adjacent and distinct for every i , 1 ≤ i ≤ m. So k ≥ 3. Suppose that k = 3.
Then for every i , 1 ≤ i ≤ m, we have vi = vi+3. The edges of F would be v1v2,
v2v3, v3v1, v1v2, v2v3, v3v1, …. Since a face can occur on an edge at most twice
F = v1v2v3v1v2v3 and the map is P3 contrary to our earlier assumption.

We use {v1, v2, . . . , vk} to apply a V-reduction and call the new vertex w1. The
resulting large face F1 is v1w1vk . . . vm . We observe that the face F1 might not be
irreducible but it almost satisfies the definition. For every i , k ≤ i ≤ m − 1, vi is
adjacent to vi+2. Since vm = va and vk+1 = vb, w1 is adjacent to vm and vk+1. The
only possible missing condition is that v1 might not be adjacent to vk .

In the remainder of the proof we add additional verticesw2,w3,…, in a similar way.
With each additional vertex wn+1 a face Fn+1 is produced which has fewer vertices
of the original face F than Fn has. When a face Fn+1 with no vertices of the original
face F is obtained then we finish triangulating F as described below.

Assume we have added n new vertices to the interior of F and we have a large face
Fn with boundary v1w1 . . . wnv j . . . vm such that j ≤ m and wn is adjacent to v j+1
(which is v1 if j = m). We have shown above that this assumption is true for n = 1.
Starting from this assumption for n we show either (i) that we can finish triangulating
F or (ii) that the assumption is true for n + 1 and the face Fn+1 has fewer vertices of
the original face F than Fn has. Thus the construction terminates in a finite number
of steps.

We obtain (i) when the vertices on the boundary of Fn are distinct. In this case,
the vertices for attaching wn+1 are {wn, v j , . . . , vm, v1, w1}. Recall that when w1 is
attachedw1 is adjacent to vm . If n+1 ≤ 3 then there is no longer a large face in F and
all the edgeswhich have been added in the interior of F are essentially noncontractible.
If n + 1 > 3 then there is a resulting large face Fn+1 with boundary w1w2 . . . wn+1.
We arbitrarily triangulate the face Fn+1 with edges wn+1wi for i , 1 < i < n. Some
of these n − 2 edges might be contractible but all the other edges which have been
added to the interior of F are essentially noncontractible. We repeatedly contract any
contractible edge in the interior of Fn+1 until there are no contractible edges in the
interior of Fn+1. All of the edges in the interior of F are then noncontractible and we
have triangulated the face F as required.

We can show (ii) when the vertices on the boundary of Fn are not distinct. The
vertices wn , v j , v j+1, and v j+2 are distinct since wn is not on the boundary of F
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and the vertices v j , v j+1, and v j+2 are pairwise adjacent. Let v j ′ be the vertex on
the boundary of Fn such that wn , v j , v j+1, v j+2, …, v j ′ are distinct and v j ′+1 is
in {v j , v j+1, v j+2, . . . , v j ′−2}. We use {wn, v j , v j+1, v j+2, . . . , v j ′ } to apply a V-
reduction with the new vertex wn+1. In this way we obtain a smaller face Fn+1 which
fulfills our assumption for n + 1 which is (ii). ��
Theorem 6.2 If G is an irreducible map on a surface S then there is at least one
irreducible triangulation T of S from which G may be obtained by removing a set of
vertices from T along with the edges containing these vertices.

Proof Let G be the irreducible map. Using Theorem 6.1 we “irreducibly triangulate”
each irreducible face of G to produce a triangulation T . The edges of T which are in
G are essentially noncontractible by Theorem 5.2. The edges of T which are not in G
are noncontractible by Theorem 6.1. It may be possible to triangulate the irreducible
faces of G in more than one way so the irreducible triangulation T may be one of
many which satisfy the theorem. ��

7 Generating Irreducible Triangulations

Irreducible triangulations which are generated in Step 1 have been extensively studied.
For any fixed surface the number of irreducible triangulations is finite [2]. Irreducible
triangulations have been determined and displayed by a number of authors: the single
irreducible triangulation of the sphere (S0) by Steinitz and Rademacher [11]; the two
irreducible triangulations of the projective plane or the cross surface (N1) by Barnette
[1]; the 21 irreducible triangulations of the torus (S1) by Lawrencenko [6]); and the
29 irreducible triangulations of the Klein bottle (N2) by Lawrencenko and Negami [7]
and Sulanke [13]. The irreducible triangulations of the double torus (S2), the triple
cross surface (N3), and the quadruple cross surface (N4) have been generated by the
author using an extension of computer program surftri [14]. The counts of irreducible
triangulations are shown in Table 1. The largest of these classes (N4) required 54 CPU
days. The author estimates it would take CPU centuries for this program to generate
the irreducible triangulations for S3 or N5.

We describe briefly how the two stage generation process for irreducible triangu-
lations of a surface S works. In the first stage we use the vertex splitting operation to
generate triangulations on slightly simpler surfaces than S. We impose certain condi-
tions necessary for the second stage on these triangulations. These conditions limit the
triangulations generated to a finite number. In the second stage these triangulations are
modified in such a way that new handles or crosscaps are added to produce irreducible
triangulations on S. Only the reduction operation for the second stage is described.
More details may be found in [12].

Let S (not the sphere) be the surface for which we are generating irreducible trian-
gulations. LetG be an irreducible triangulation of S. Theorem 7.1 below shows thatG
contains many nonseparating 3-cycles. Let w1w2w3 be a nonseparating 3-cycle of G.
We create a new triangulationG ′ of a different surface S′ using the operations described
below.
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Table 1 The number of irreducible triangulations and irreducible maps

Vertices S1 S2 N1 N2 N3 N4

Irreducible
triangulations

6 1

7 1 1

8 4 6

9 15 19 133 37

10 1 865 2 2521 10,347

11 26,276 2 4638 370,170

12 117,047 1320 1,891,557

13 159,205 946 2,067,817

14 54,527 93 956,967

15 38,195 50 700,733

16 664 7 186,999

17 5 89,036

18 19,427

19 3975

20 832

21 79

22 6

Irreducible
triangulations

Total 21 396,784 2 29 9708 6,297,982

Irreducible maps
with large faces

3 1

4 2 1 3 3

5 7 34 2 14 111 441

6 11 885 1 28 886 15,059

7 15 7522 43 3531 146,463

8 11 36,395 38 9285 784,407

9 1 124,890 14 17,229 2,872,513

10 314,021 4 18,703 7,473,401

11 526,436 10,124 13,025,842

12 480,596 4678 13,565,448

13 208,029 1026 9,468,143

14 82,073 282 5,557,358

15 3382 30 2,292,654

16 24 862,799

17 222,153

18 47,833

19 7978

20 636

21 30

Irreducible maps
with large faces

Total 47 1,784,287 5 144 65,888 56,343,158

Irreducible maps Total 68 2,181,071 7 173 75,596 62,641,140
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If the 3-cycle w1w2w3 in G is two-sided then we cut along w1w2w3 to produce
a surface S′ with a boundary consisting of two disjoint 3-cycles u′

1u
′
2u

′
3 and v′

1v
′
2v

′
3

where u′
i and v′

i come from the original vertex wi for i = 1, 2, 3. We cap the holes
with two 3-faces u′

1u
′
2u

′
3 and v′

1v
′
2v

′
3. G

′ is now a triangulation of S′ which has an
Euler genus two less than the Euler genus of S.

If the 3-cycle w1w2w3 in G is one-sided then we cut along w1w2w3 to produce a
surface S′ with a boundary consisting of the 6-cycle u′

1u
′
2u

′
3v

′
1v

′
2v

′
3 where u′

i and v′
i

again come from the original vertex wi for i = 1, 2, 3. We cap the hole with a new
vertex t ′ and six 3-faces t ′u′

1u
′
2, t

′u′
2u

′
3, t

′u′
3v

′
1, t

′v′
1v

′
2, t

′v′
2v

′
3, and t ′v′

3u
′
1. G

′ is now
a triangulation of S′ which has an Euler genus one less than the Euler genus of S.

The following theorem is similar to Lemma 4 of [1] and Lemma 4 of [6]. In a
triangulation the link of a vertex v is the cycle which is the boundary of the union of
the faces containing v.

Theorem 7.1 Let G be an irreducible triangulation of a surface other than the sphere,
let v be a vertex of G, and let L be the link of v. Then there are two nonseparating
3-cycles vvivk and vv jvl such that vi , v j , vk , and vl are distinct and one path from vi
to vk in L contains v j and the other path from vi to vk in L contains vl .

Proof Since G is irreducible, for any vertex u in L the edge vu is on a nonfacial
3-cycle vuw. Pick two vertices vi and vk in L for which vvivk is a nonfacial 3-cycle
and the distance from vi to vk in L is minimal. The shorter path from vi to vk in L must
have an interior vertex since vvivk is not a face. Let the vertex v j be such an interior
vertex on the shorter path from vi to vk in L . Let vl be a vertex in L such that vv jvl
is a nonfacial 3-cycle. vl is not on the path from vi to vk in L containing v j since the
distance from v j and vl in L is at least the distance from vi and vk in L . Suppose vvivk
separates the surface. Then v j and vl would be in different components but v jvl is an
edge. Therefore, vvivk is nonseparating and, similarly, vv jvl is also nonseparating. ��

8 Implementation

The computer program surftri [14] implements the procedures to generate maps on
various surfaces. Many of the ideas andmuch of the code used in surftri are taken from
thework of Brinkmann andMcKay. Their program plantri [3] generates triangulations
and maps on the sphere as well as other classes of planar graphs.

The operation of plantri is described in [4,5]. To obtain triangulations of the sphere
with n vertices plantri starts with the only irreducible triangulation of the sphere, K4,
and vertices are split using variations of the E-expansion until the triangulations have
n vertices. If maps with n vertices are being generated then as each triangulation with
n vertices is produced the program switches to the mode of using the operation of
removing edges. Edges are removed from 3-faces using the D-expansion.

To generate triangulations of a surface in the program surftri we start with the
irreducible triangulations of that surface. Vertices are split using the E-expansion to
obtain triangulations of the surface using procedures similar those used in plantri. The
list of the irreducible triangulations is provided as input to surftri.
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To generate maps on a surface with n vertices surftri generates the face irreducible
mapswith n vertices. Vertex splitting, the E-expansion, is again used. surftri starts with
irreducible maps and vertex splitting is only done if each irreducible face remains
irreducible. The irreducible maps are provided as input, having been pregenerated
and stored on disk. As each face irreducible map with n vertices is produced surftri
switches to the mode of using the operation of removing edges. Edges are removed
from 3-faces using the D-expansion.

The irreducible maps with at least one large face were generated using Theorem 6.2
rather than the construction used in its proof. For a fixed surface each irreducible tri-
angulation was processed by removing sets of vertices and checking if the results
were irreducible maps. Duplicates were removed by sorting all the irreducible maps
obtained in this way. The number of irreducible triangulations of a surface is finite [2]
and each irreducible map is obtained by removing vertices from an irreducible trian-
gulation. Therefore, the number of irreducible maps on a surface is finite. We also
show the counts of irreducible maps in Table 1.

Not only can we implement the procedures described in this paper in computer
software but we can also use the generated initial classes and the expansion operations
to provide inductive proofs.

As a simple example, we determine the minimum number of vertices in a map on
the double torus. By examining the irreducible maps on the double torus we see that
each one has at least five vertices. The E-expansion operation increases the number
of vertices by one while the D-expansion operation leaves the number of vertices
unchanged. Thus a map on the double torus has at least 5 vertices.

9 Maps, Closed 2-Cell Embeddings, and Polyhedral Embeddings

We have described the steps listed in Sect. 1 for generating maps (open 2-cell embed-
dings). We now consider how more restricted classes of maps can be generated by
modifying these steps.

The face-width of an embedded graph on a surface is the smallest number k such
that there is a noncontractible closed curve on the surface that intersects the graph at
k points [10].

Maps are embedded graphs which have face-width at least 1 and are 1-connected.
A closed 2-cell embedding is a map for which the closure of every face is a closed

2-cell. For every face F of a closed 2-cell embedding no vertex occurs more than
once on F . Closed 2-cell embeddings are those maps which have face-width at least 2
and are 2-connected [9]. The D-expansion does not increase the face-width or the
connectivity of a map. So in order to obtain a closed 2-cell embedding when we apply
the D-expansion we must apply the operation to another closed 2-cell embedding.
However, the E-expansion may increase the face-width of some maps from 1 to 2. We
only modify the final step used to generate maps to obtain a procedure for generating
closed 2-cell embeddings.

The generation of the closed 2-cell embeddings with n vertices of a fixed surface
consists of four steps:
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P1 P2

Fig. 4 Irreducible triangulations of the Projective Plane

P3 P4 P5

P6 P7

Fig. 5 Irreducible maps with large faces on the Projective Plane

1. Generate the irreducible triangulations of the surface.
2. Generate the irreducible maps of the surface from the irreducible triangulations

by removing vertices.
3. Split vertices (E-expansions) of the irreducible maps to obtain face irreducible

maps with n vertices.
4. Remove edges (D-expansions) of the face irreducible maps while the maps remain

closed 2-cell embeddings.

A polyhedral embedding is a map for which the closures of any pair of faces have
exactly one vertex, exactly one edge, or no points in common. Polyhedral embeddings
on a surface are those maps which have face-width at least 3 and are 3-connected
[9].

We use Theorem 5.1 to show that any map with an irreducible face has face-width
at most 2. Let F = v1v2 . . . vm be an irreducible face on a surface S. We construct a
closed curve consisting of two segments.One segment is in the interior of F connecting
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T 1 T 2 T 3

T 4 T 5 T 6

T 7 T 8 T 9

T 10 T 11 T 12

Fig. 6 Irreducible triangulations of the torus, T 1–T 12

v1 and v3. The other segment is close to the edge v1v3 and connects them. This closed
curve is homeomorphic in S to the essential 3-cycle v1v2v3 and thus is noncontractible.
This closed curve intersects the graph at only 2 points, v1 and v3.
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T 13 T 14 T 15

T 16 T 17 T 18

T 19 T 20 T 21

Fig. 7 Irreducible triangulations of the torus, T 13–T 21

Again we note that the D-expansion does not increase the face-width nor the con-
nectivity of a map of a map. Also, the E-expansion is restricted from eliminating
irreducible faces. So we do not need to use any maps with irreducible faces in the
generation of polyhedral embeddings.

The generation of the polyhedral embeddings with n vertices of a fixed surface
consists of only three steps:

1. Generate the irreducible triangulations of the surface.
2. Split vertices (E-expansions) of the irreducible triangulations to obtain triangula-

tions with n vertices.
3. Remove edges (D-expansion) of the triangulations while the maps remain polyhe-

dral embeddings.
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T 22 ⊂ T 5 T 23 ⊂ T 1 T 24 ⊂ T 19

T 25 ⊂ T 5 T 26 ⊂ T 5 T 27 ⊂ T 21

T 28 ⊂ T 1 T 29 ⊂ T 5 T 30 ⊂ T 19

T 31 ⊂ T 21 T 32 ⊂ T 5 T 33 ⊂ T 5

Fig. 8 Irreducible maps with large faces on the torus, T 22–T 33

In Table 2 we show the counts of maps, closed 2-cell embeddings, and polyhe-
dral embeddings on the projective plane for increasing numbers of vertices. We also
show the counts for irreducible maps and face irreducible maps. The surftri program
produced these values. Table 3 shows the counts for maps on the torus.
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T 34 ⊂ T 19 T 35 ⊂ T 5 T 36 ⊂ T 12

T 37 ⊂ T 1 T 38 ⊂ T 19 T 39 ⊂ T 19

T 40 ⊂ T 5 T 41 ⊂ T 21 T 42 ⊂ T 12

T 43 ⊂ T 19 T 44 ⊂ T 20 T 45 ⊂ T 18

Fig. 9 Irreducible maps with large faces on the torus, T 34–T 45
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T 46 ⊂ T 5 T 47 ⊂ T 14 T 48 ⊂ T 16

T 49 ⊂ T 20 T 50 ⊂ T 21 T 51 ⊂ T 18

T 52 ⊂ T 19 T 53 ⊂ T 16 T 54 ⊂ T 14

T 55 ⊂ T 19 T 56 ⊂ T 12 T 57 ⊂ T 13

Fig. 10 Irreducible maps with large faces on the torus, T 46–T 57
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T 58 ⊂ T 15 T 59 ⊂ T 17 T 60 ⊂ T 21

T 61 ⊂ T 14 T 62 ⊂ T 14 T 63 ⊂ T 5

T 64 ⊂ T 3 T 65 ⊂ T 5 T 66 ⊂ T 17

T 67 ⊂ T 14 T 68 ⊂ T 15

Fig. 11 Irreducible maps with large faces on the torus, T 58–T 68
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We estimate that the entries in the tables which are blank would require more
than 100 days of CPU time to compute on 2.4 GHz processors. We adapted the
data structures used in the surftri program to store the embeddings from the data
structures used in plantri. We modified these data structures to allow embeddings
in non-orientable surfaces. These modified data structures require more computer
operations than are used in plantri. The generation rates for surftri range from 1 to 1.4
million maps/second on a 2.4 GHz processor. When generating maps on the sphere
the rates for surftri are 0.7–0.95 of those rates observed using plantri.

10 Irreducible Maps on the Projective Plane and the Torus

We provide drawings of the irreducible maps on the projective plane and torus. For
each irreducible map with large faces we indicate one of the irreducible triangulations
fromwhich it may be obtained. The vertices and edges which have been removed from
the irreducible triangulation are shown as open circles and dotted lines. The irreducible
triangulation chosen requires the minimum number of vertices to be removed.

Figure 4 shows the two irreducible triangulations of the projective plane [1]. Figure 5
shows the five irreducible maps with large faces on the projective plane.

There are 21 irreducible triangulations, T 1–T 21, of the torus [6] which are shown
in Figs. 6 and 7. Figures 8, 9, 10 and 11 show the 47 irreducible maps, T 22–T 68, with
large faces on the torus.
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