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Abstract Intrinsic volumes and Minkowski tensors have been used to describe the
geometry of real world objects. This paper presents an estimator that allows approx-
imation of these quantities from digital images. It is based on a generalized Steiner
formula for Minkowski tensors of sets of positive reach. When the resolution goes to
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positive reach. The underlying algorithm is based on a simple expression in terms of
the cells of a Voronoi decomposition associated with the image.
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1 Introduction

Intrinsic volumes, such as volume, surface area, and Euler characteristic, are widely-
used tools to capture geometric features of an object; see, for instance, [1,22,24].
Minkowski tensors are tensor valued generalizations of the intrinsic volumes, associ-
ating with every sufficiently regular compact set inRd a symmetric tensor, rather than
a scalar. They carry information about geometric features of the set such as position,
orientation, and eccentricity. For instance, the volume tensor—defined formally in
Sect. 2—of rank 0 is just the volume of the set, while the volume tensors of rank 1
and 2 are closely related to the center of gravity and the tensor of inertia, respectively.
For this reason, Minkowski tensors are used as shape descriptors in materials science
[29,31], physics [14], and biology [3,36].

The main purpose of this paper is to present estimators that approximate all the
Minkowski tensors of a set K when only weak information on K is available. More
precisely, we assume that a finite set K0 which is close to K in the Hausdorff metric
is known. The estimators are based on the Voronoi decomposition of Rd associated
with the finite set K0, following an idea of Mérigot et al. [21]. What makes these esti-
mators so interesting is that they are consistent; that is, they converge to the respective
Minkowski tensors of K when applied to a sequence of finite approximations con-
verging to K in the Hausdorff metric. We emphasize that the notion of ‘estimator’ is
used here in the sense of digital geometry [17] meaning ‘approximation of the true
value based on discrete input’ and should not be confused with the statistical concept
related to the inference from data with random noise. The main application we have
in mind is the case where K0 is a digitization of K . This is detailed in the following.

As data is often only available in digital form, there is a need for estimators that
allow us to approximate the Minkowski tensors from digital images. In a black-and-
white image of a compact geometric object K ⊆ R

d , each pixel (or voxel) is colored
black if its midpoint belongs to K and white otherwise. Thus, the information about
K contained in the image is the set of black pixel (voxel) midpoints K0 = K ∩ aL,
where L is the lattice formed by all pixel (voxel) midpoints and a−1 is the resolution.
A natural criterion for the reliability of a digital estimator is that it yields the correct
tensor when a → 0+. If this property holds for all objects in a given family of sets,
for instance, for all sets with smooth boundary, then the estimator is called multigrid
convergent for this class.

Digital estimators for the scalar Minkowski tensors, that is, for the intrinsic vol-
umes, are widespread in the digital geometry literature; see, e.g., [17,24,25] and the
references therein. For Minkowski tensors up to rank two, estimators based on binary
images are given in [28] for the two-dimensional and in [30] for the three-dimensional
case. Even for the class of convex sets, multigrid convergence has not been proven for
any of the above mentioned estimators. The only exception are volume related quanti-
ties. Most of the above mentioned estimators are n-local for some given fixed n ∈ N.
We call an estimator n-local if it depends on the image only through the histogram of
all n×· · ·×n configurations of black and white points. For instance, a natural surface
area estimator [19] in three-dimensional space scans the image with a voxel cube of
size 2× 2× 2 and assigns a surface contribution to each observed configuration. The
sum of all contributions is then the surface area estimator, which is clearly 2-local.
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The advantage of n-local estimators is that they are intuitive, easy to implement, and
the computation time is linear in the number of pixels or voxels.

However, many n-local estimators are not multigrid convergent for convex sets;
see [32] and the detailed discussion in Sect. 6. This implies that many established
estimators, like the mentioned one in [19] cannot be multigrid convergent for convex
sets. All the estimators of 2D-Minkowski tensors in [28] are 2-local. By the results
in [32], the estimators for the perimeter and the Euler characteristic can thus not be
multigrid convergent for convex sets. Themultigrid convergenceof the other estimators
has not been investigated. The algorithms for 3D-Minkowski tensors in [30] have as
input a triangulation of the object’s boundary, and theway this triangulation is obtained
determines whether the resulting estimators are n-local or not. There are no known
results on multigrid convergence for these estimators either. Summarizing, to the best
of our knowledge, this paper presents for the first time estimators of all Minkowski
tensors of arbitrary rank that come with a multigrid convergence proof for a class of
sets that is considerably larger than the class of convex sets.

The present work is inspired by [21], and we therefore start by recalling some basic
notions from this paper. For a nonempty compact set K , the authors of [21] define a
tensor valued measure, which they call the Voronoi covariance measure, defined on a
Borel set A ⊆ R

d by

VR(K ; A) =
∫
K R

1A(pK (y))(y − pK (y))(y − pK (y))� dy.

Here, K R is the set of points at distance at most R > 0 from K and pK is the metric
projection on K : the point pK (x) is the point in K closest to x , provided that this
closest point is unique. The metric projection of K is well-defined on R

d with the
possible exception of a set of Lebesgue-measure zero; see, e.g., [7].

The paper [21] uses the Voronoi covariance measure to determine local features of
surfaces. It is proved there that if K ⊆ R

3 is a smooth surface, then

VR(K ; B(x, r)) ≈ 2π
3 R3r2

(
u(x)u(x)� + r2

4

∑
i=1,2

ki (x)
2Pi (x)Pi (x)

�)
, (1)

where B(x, r) is the Euclidean ball with midpoint x ∈ K and radius r , u(x) is one
of the two surface unit normals at x ∈ K , P1(x), P2(x) are the principal directions
and k1(x), k2(x) the corresponding principal curvatures. Hence, the eigenvalues and -
directions of the Voronoi covariance measure carry information about local curvatures
and normal directions.

Assuming that a compact set K0 approximates K , Mérigot et al. [21] suggest to
estimate VR(K ; ·) by VR(K0; ·). It is shown in that paper that VR(K0; ·) converges
to VR(K ; ·) in the bounded Lipschitz metric when K0 → K in the Hausdorff metric.
Moreover, if K0 is a finite set, then the Voronoi covariance measure can be expressed
in the form

VR(K0; A) =
∑

x∈K0∩A

∫
B(x,R)∩Vx (K0)

(y − x)(y − x)� dy.
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(a) (b)

Fig. 1 a TheVoronoi cells of a finite set of points on a surface. bAdigital image and the associated Voronoi
cells

Here, Vx (K0) is the Voronoi cell of x in the Voronoi decomposition of Rd associ-
ated with K0. Thus, the estimator which is used to approximate VR(K ; A) is easily
computed. Given the Voronoi cells of K0, each Voronoi cell contributes with a simple
integral. Figure 1a shows the Voronoi cells of a finite set of points on an ellipse. The
Voronoi cells are elongated in the normal direction. This is the intuitive reason why
they can be used to approximate (1).

The Voronoi covariance measure VR(K ; A) can be identified with a symmetric
2-tensor. In the present work, we explore how natural extensions of the Voronoi
covariance measure can be used for estimating general Minkowski tensors. The gen-
eralizations of the Voronoi covariance measure, which we will introduce, will be
called Voronoi tensor measures. We will then show how the Minkowski tensors can
be recovered from these. When we apply the results to digital images, we will work
with full-dimensional sets K , and the finite point sample K0 is obtained from the
representation K0 = K ∩ aL of a digital image of K . The Voronoi cells associated
with K0 = K ∩ aL are sketched in Fig. 1b. Taking point samples from K with
increasing resolution, convergence results will follow from an easy generalization of
the convergence proof in [21].

The paper is structured as follows: In Sect. 2, we recall the definition of Minkowski
tensors and the classical as well as a local Steiner formula for sets of positive reach. In
Sect. 3, we define theVoronoi tensormeasures, discuss how they can be estimated from
finite point samples, and explain how the Steiner formula can be used to connect the
Voronoi tensor measures with the Minkowski tensors. Section 4 is concerned with the
convergence of the estimator. The results are specialized to digital images in Sect. 5.
Finally, the estimator is compared with existing approaches in Sect. 6.

2 Minkowski Tensors

Wework in Euclidean spaceRd with scalar product 〈· , ·〉 and norm | · |. The Euclidean
ball with center x ∈ R

d and radius r ≥ 0 is denoted by B(x, r), and we write Sd−1

for the unit sphere in R
d . Let ∂A and intA be the boundary and the interior of a set

A ⊆ R
d , respectively. The k-dimensional Hausdorff-measure inRd is denoted byHk ,

0 ≤ k ≤ d. Let Cd be the family of nonempty compact subsets of Rd and Kd ⊆ Cd
the subset of nonempty compact convex sets. For two compact sets K , M ∈ Cd , we
define their Hausdorff distance by
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dH (K , M) = inf{ε > 0 | K ⊆ Mε, M ⊆ K ε}.

Let Tp denote the space of symmetric p-tensors (tensors of rank p) over Rd .
Identifying R

d with its dual (via the scalar product), a symmetric p-tensor defines a
symmetric multilinear map (Rd)p → R. Letting e1, . . . , ed be the standard basis in
R
d , a tensor T ∈ T

p is determined by its coordinates

Ti1...i p = T (ei1 , . . . , ei p )

with respect to the standard basis, for all choices of i1, . . . , i p ∈ {1, . . . , d}. We use
the norm on Tp given by

|T | = sup{|T (v1, . . . , vp)| | |v1| = · · · = |vp| = 1}

for T ∈ T
p. The same definition is used for arbitrary tensors of rank p.

The symmetric tensor product of y1, . . . , ym ∈ R
d is given by the symmetrization

y1 � · · · � ym = (m!)−1 ∑⊗m
i=1yσ(i), where the sum extends over all permutations

σ of {1, . . . ,m} and ⊗ is the usual tensor product. We write xr for the r -fold tensor
product of x ∈ R

d . For two symmetric tensors of the form T1 = y1 � · · · � yr and
T2 = yr+1 � · · · � yr+s , where y1, . . . , yr+s ∈ R

d , the symmetric tensor product
T1 � T2 of T1 and T2, which we often abbreviate by T1T2, is the symmetric tensor
product of y1, . . . , yr+s . This is extended to general symmetric tensors T1 and T2 by
linearity. Moreover, it follows from the preceding definitions that

|y1 � · · · � ym | ≤ |y1| · · · |ym |,

y1, . . . , ym ∈ R
d .

For any compact set K ⊆ R
d , we can define an element of Tr called the r th volume

tensor

Φ
r,0
d (K ) = 1

r !
∫
K
xr dx .

For s ≥ 1 we define Φ
r,s
d (K ) = 0. Some of the volume tensors have well-known

physical interpretations. For instance, Φ0,0
d (K ) is the usual volume of K , Φ1,0

d (K ) is

up to normalization the center of gravity, andΦ
2,0
d (K ) is closely related to the tensor of

inertia. All three tensors together can be used to find the best approximating ellipsoid
of a particle [36]. The sequence of all volume tensors (Φ

r,0
d (K ))∞r=0 determines the

compact set K uniquely. For convex sets in the plane even the following stability
result [10, Rem. 4.4.] holds: If K , L ∈ K2 are contained in the unit square and have
coinciding volume tensors up to rank r , then their distance, measured in the symmetric
difference metricH2((K \ L) ∪ (L \ K )), is of order O(r−1/2) as r → ∞.

We will now define Minkowski surface tensors. These can also be used to charac-
terize the shape of an object or the structure of a material as in [3,14]. They require
stronger regularity assumptions on K . Usually, like in [26, Sect. 5.4.2], the set K is
assumed to be convex. However, as Minkowski tensors are tensor-valued integrals
with respect to the generalized curvature measures (also called support measures) of
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K , they can be defined whenever the latter are available. We will use this to define
Minkowski tensors for sets of positive reach.

First, we recall the definition of a set of positive reach and explain how
curvature measures of such sets are determined (see [8,35]). For a compact set
K ∈ Cd , we let dK (x) denote the distance from x ∈ R

d to K . Then, for R ≥ 0,
K R = {x ∈ R

d | dK (x) ≤ R} is the R-parallel set of K . The reach Reach(K )

of K is defined as the supremum over all R ≥ 0 such that for all x ∈ R
d with

dK (x) < R there is a unique closest point pK (x) in K . We say that K has positive
reach if Reach(K ) > 0. Smooth surfaces (of class C1,1) are examples of sets of pos-
itive reach, and compact convex sets are characterized by having infinite reach. By
definition, the map pK is defined everywhere on K R if R < Reach(K ). Let K ⊆ R

d

be a (compact) set of positive reach. The (global) Steiner formula for sets with positive
reach states that for all R < Reach(K ) the R-parallel volume of K is a polynomial,
that is,

Hd(K R) =
d∑

k=0

κd−k R
d−kΦ

0,0
k (K ). (2)

Here κ j is the volume of the unit ball in R
j . The numbers Φ

0,0
0 (K ), . . . , Φ

0,0
d (K )

are the intrinsic volumes of K . They are special cases of the Minkowski tensors to be
definedbelow. Someof themhavewell-known interpretations.Asmentioned,Φ0,0

d (K )

is the volume of K . Moreover, 2Φ0,0
d−1(K ) is the surface area,Φ0,0

d−2(K ) is proportional

to the total mean curvature, and Φ
0,0
0 (K ) is the Euler characteristic of K . For convex

sets, (2) is the classical Steiner formula which holds for all R ≥ 0.
Zähle [35] showed that a local version of (2) can be established giving rise to the

generalized curvature measures Λk(K ; ·) of K , for k = 0, . . . , d − 1. An extension
to general closed sets is considered in [12]. The generalized curvature measures (also
called support measures) are measures on Σ = R

d × Sd−1. They are determined by
the following local Steiner formula which holds for all R < Reach(K ) and all Borel
set B ⊆ Σ :

Hd({x ∈ K R\K | (
pK (x), x−pK (x)

|x−pK (x)|
) ∈ B

}) =
d−1∑
k=0

Rd−kκd−kΛk(K ; B). (3)

The coefficientsΛk(K ; B) on the right side of (3) are signed Borel measuresΛk(K ; ·)
evaluated on B ⊆ Σ . These measures are called the generalized curvature measures
of K . Since the pairs of points in B on the left side of (3) always consist of a boundary
point of K and an outer unit normal of K at that point, each of the measures Λk(K , ·)
is concentrated on the set of all such pairs. For this reason, the generalized curva-
ture measures Λk(K ; ·), k ∈ {0, . . . , d − 1}, are also called support measures. They
describe the local boundary behavior of the part of ∂K that consists of points x with
an outer unit normal u such that (x, u) ∈ B. A description of the generalized curvature
measures Λk(K , ·) by means of generalized curvatures living on the normal bundle of
K was first given in [35] (see also [26, §2.5, p. 217] and the references given there).
The total measures Λk(K ,Σ) are the intrinsic volumes.
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Based on the generalized curvature measures, for every k ∈ {0, . . . , d−1}, r, s ≥ 0
and every set K ⊆ R

d with positive reach, we define theMinkowski tensor

Φ
r,s
k (K ) = 1

r !s!
ωd−k

ωd−k+s

∫
Σ

xrusΛk(K ; d(x, u))

in T
r+s . Here ωk is the surface area of the unit sphere Sk−1 in R

k . More information
on Minkowski tensors can for instance be found in [13,15,20,27]. As in the case of
volume tensors, the Minkowski tensors carry strong information on the underlying
set. For instance, already the sequence (Φ

0,s
1 (K ))∞s=0 determines any K ∈ Kd up to a

translation. A stability result also holds: if K and L are both contained in a fixed ball
and have the same tensorsΦ0,s

1 of rank s ≤ s0, then a translation of K is close to L in the

Hausdorff metric and the distance is O(s−β
0 ) as s0 → ∞ for any 0 < β < 3/(n + 1);

see [18, Thm. 4.9].
One can define local Minkowski tensors in a similar way (see [11]). For a Borel set

B ⊆ Σ , for k ∈ {0, . . . , d −1}, r, s ≥ 0 and a set K ⊆ R
d with positive reach, we put

Φ
r,s
k (K ; B) = 1

r !s!
ωd−k

ωd−k+s

∫
B
xrus Λk(K ; d(x, u))

and, for a Borel set A ⊆ R
d ,

Φ
r,0
d (K ; A) = 1

r !
∫
K∩A

xr dx .

In order to avoid a distinction of cases, we also write Φ
r,0
d (K ; A × Sd−1) instead

of Φ
r,0
d (K ; A). Moreover, we define Φ

r,s
d (K ; ·) = 0 if s ≥ 1. The local Minkowski

tensors can be used to describe local boundary properties. For instance, local 1- and
2-tensors are used for the detection of sharp edges and corners on surfaces in [6]. They
also carry information about normal directions and principal curvatures as explained
in the introduction.

We conclude this section with a general remark on continuity properties of the
Minkowski tensors. Although the functions K �→ Φ

r,s
k (K ) are continuous when con-

sidered in the metric space (Kd , dH ), they are not continuous on Cd . (For instance,
the volume tensors of a finite set are always vanishing, but finite sets can be used to
approximate any compact set in the Hausdorff metric.) This is the reason why our
approach requires an approximation argument with parallel sets as outlined below.
The consistency of our estimator is mainly based on a continuity result for the metric
projection map. We quote this result [4, Thm. 3.2] in a slightly different formulation
which is symmetric in the two bodies involved. Let ‖ f ‖L1(E) be the usual L

1-norm
of the restriction of f to a Borel set E ⊆ R

d .

Proposition 2.1 Let ρ > 0 and let E ⊆ R
d be a bounded measurable set. Then there

is a constant C1 = C1 (d, diam(E ∪ {0}), ρ) > 0 such that

‖pK − pK0‖L1(E) ≤ C1dH (K , K0)
1
2
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for all K , K0 ∈ Cd with K , K0 ⊆ B(0, ρ).

Proof Let E ′ be the convex hull of E and observe that

‖pK − pK0‖L1(E) ≤ ‖pK − pK0‖L1(E ′).

It is shown in [4, Lem. 3.3] (see also [8, Thm. 4.8]) that the map vK : Rd → R given
by vK (x) = |x |2 −d2K (x) is convex and that its gradient coincides almost everywhere
with 2pK . Since E ′ has rectifiable boundary, [4, Thm. 3.5] implies that

‖pK − pK0‖L1(E ′) ≤ c1(d)(Hd(E ′) + (c2 + ‖d2K − d2K0
‖

1
2
∞,E ′)Hd−1(∂E ′))

× ‖d2K − d2K0
‖

1
2
∞,E ′ .

Here c2 = diam(2pK (E ′) ∪ 2pK0(E
′)) ≤ 2 diam(K ∪ K0) ≤ 4ρ and the supremum-

norm ‖ · ‖∞,E ′ on E ′ can be estimated by

‖d2K − d2K0
‖∞,E ′ ≤ 2 diam(E ′ ∪ K ∪ K0)‖dK − dK0‖∞,E ′

≤ 2[diam(E ′ ∪ {0}) + 2ρ]dH (K , K0).

Moreover, intrinsic volumes are increasing on the class of convex sets, so

Hd(E ′) ≤ Hd(B(0, diam(E ′ ∪ {0}))),
Hd−1(∂E ′) ≤ Hd−1(∂B(0, diam(E ′ ∪ {0}))).

Together with the trivial estimate dH (K , K0) ≤ 2ρ and with the equality
diam(E ∪ {0}) = diam(E ′ ∪ {0}), this yields the claim. ��

The authors of [4] argue that the exponent 1/2 in Proposition 2.1 is best possible.

3 Construction of the Estimator

InSect. 3.1 below,wedefine theVoronoi tensormeasures and showhow theMinkowski
tensors can be obtained from these. We then explain in Sect. 3.2 how the Voronoi
tensor measures can be estimated from finite point samples. As a special case, we
obtain estimators for all intrinsic volumes. This is detailed in Sect. 3.3.

3.1 The Voronoi Tensor Measures

Let K be a compact set. Here and in the following subsections, we let r, s ∈ N0 and
R ≥ 0. Define the Tr+s-valued measures Vr,s

R (K ; ·) given on a Borel set A ⊆ R
d by

Vr,s
R (K ; A) =

∫
K R

1A(pK (x)) pK (x)r (x − pK (x))s dx . (4)
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When K is a smooth surface, V0,2
R (K ; ·) corresponds to the Voronoi covariance mea-

sure in [21].Wewill refer to themeasures defined in (4) as theVoronoi tensormeasures.
Note that if f : Rd → R is a bounded Borel function, then

∫
Rd

f (x)Vr,s
R (K ; dx) =

∫
K R

f (pK (x)) pK (x)r (x − pK (x))s dx ∈ T
r+s . (5)

Suppose now that K has positive reach with Reach(K ) > R. Then a special case
of the generalized Steiner formula derived in [12] [or an extension of (3)] implies the
following version of the local Steiner formula for the Voronoi tensor measures:

Vr,s
R (K ; A) =

d∑
k=1

ωk

∫
Σ

∫ R

0
1A(x)t s+k−1xrus dt Λd−k(K ; d(x, u))

+ 1{s=0}
∫
K∩A

xr dx

= r !s!
d∑

k=0

κk+s R
s+kΦ

r,s
d−k(K ; A × Sd−1), (6)

where A ⊆ R
d is a Borel set. In particular, the total measure is

Vr,s
R (K ) = Vr,s

R (K ;Rd) = r !s!
d∑

k=0

κk+s R
s+kΦ

r,s
d−k(K ).

Note that the special case r = s = 0 is the Steiner formula (2) for sets with positive
reach.

Equation (6), used for different parallel distances R, can be solved for the
Minkowski tensors. More precisely, choosing d + 1 different values 0 < R0 < · · · <

Rd < Reach(K ) for R, we obtain a system of d + 1 linear equations:

⎛
⎜⎝
Vr,s
R0

(K ; A)

...

Vr,s
Rd

(K ; A)

⎞
⎟⎠ = r !s!

⎛
⎜⎝

κs Rs
0 . . . κs+d R

s+d
0

...
...

κs Rs
d . . . κs+d R

s+d
d

⎞
⎟⎠

⎛
⎜⎝

Φ
r,s
d (K ; A × Sd−1)

...

Φ
r,s
0 (K ; A × Sd−1)

⎞
⎟⎠ . (7)

Since the Vandermonde-type matrix

Ar,s
R0,...,Rd

= r !s!
⎛
⎜⎝

κs Rs
0 . . . κs+d R

s+d
0

...
...

κs Rs
d . . . κs+d R

s+d
d

⎞
⎟⎠ ∈ R

(d+1)×(d+1) (8)
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in (7) is invertible, the system can be solved for the tensors, and thus we get

⎛
⎜⎝

Φ
r,s
d (K ; A×Sd−1)

...

Φ
r,s
0 (K ; A×Sd−1)

⎞
⎟⎠ =

(
Ar,s
R0,...,Rd

)−1

⎛
⎜⎝
Vr,s
R0

(K ; A)

...

Vr,s
Rd

(K ; A)

⎞
⎟⎠ . (9)

If s > 0, then Φ
r,s
d (K ; A × Sd−1) = 0 by definition, so we may omit one of the

equations in the system (7).

3.2 Estimation of Minkowski Tensors

Let K be a compact set of positive reach. Suppose that we are given a compact set K0
that is close to K in the Hausdorff metric. In the applications we have in mind, K0 is
a finite subset of K , but this is not necessary for the algorithm to work. Based on K0,
we want to estimate the local Minkowski tensors of K . We do this by approximating
Vr,s
Rk

(K ; A) in Formula (9) by Vr,s
Rk

(K0; A), for k = 0, . . . , d and A ⊆ R
d a Borel set.

This leads to the following set of estimators for Φ
r,s
k (K ; A × Sd−1), k ∈ {0, . . . , d}:

⎛
⎜⎝

Φ̂
r,s
d (K0; A × Sd−1)

...

Φ̂
r,s
0 (K0; A × Sd−1)

⎞
⎟⎠ =

(
Ar,s
R0,...,Rd

)−1

⎛
⎜⎝
Vr,s
R0

(K0; A)

...

Vr,s
Rd

(K0; A)

⎞
⎟⎠ (10)

with Ar,s
R0,...,Rd

given by (8). Setting A = R
d in (10), we obtain estimators

Φ̂
r,s
k (K0) = Φ̂

r,s
k (K0;Rd × Sd−1)

of the intrinsic volumes. Note that this approach requires an estimate for the reach of
K because we need to choose 0 < R0 < · · · < Rd < Reach(K ). The idea to invert
the Steiner formula is not new. It was used in [4] to approximate curvature measures of
sets of positive reach. In [16,23] it was used to estimate intrinsic volumes but without
proving convergence for the resulting estimator.

We now consider the case where K0 is finite. Let

Vx (K0) = {y ∈ R
d | pK0(y) = x}

denote the Voronoi cell of x ∈ K0 with respect to the set K0. Since Rd is the union of
the finitely many Voronoi cells of K0, it follows that K R

0 is the union of the R-bounded
parts B(x, R) ∩ Vx (K0), x ∈ K0, of the Voronoi cells Vx (K0), x ∈ K0, which have
pairwise disjoint interiors. Thus (4) simplifies to

Vr,s
R (K0; A) =

∑
x∈K0∩A

xr
∫
B(x,R)∩Vx (K0)

(y − x)s dy. (11)
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Fig. 2 The Voronoi
decomposition (blue lines) and
R-parallel set (red curve)
associated with a digital image

Like the Voronoi covariance measure, the Voronoi tensor measure Vr,s
R (K0; A) is a

sum of simple contributions from the individual Voronoi cells.
An example of a Voronoi decomposition associated with a digital image is sketched

in Fig. 2. The original set K is the disk bounded by the inner black circle, and the disk
bounded by the outer black circle is its R-parallel set K R . The finite point sample is
K0 = K ∩ Z

2, which is shown as the set of red dots in the picture, and the red curve
is the boundary of its R-parallel set. The Voronoi cells of K0 are indicated by blue
lines. The R-bounded part of one of the Voronoi cells is the part that is cut off by the
red arc.

3.3 The Case of Intrinsic Volumes

Recall thatΦ0,0
k (K ) = Λk(K ;Rd) is the kth intrinsic volume. Thus, Sect. 3.2 provides

estimators for all intrinsic volumes as a special case. This case is particularly simple.
The measure V0,0

R (K ; A) is simply the volume of a local parallel set

V0,0
R (K ; A) = Hd({x ∈ K R | pK (x) ∈ A}),
V0,0
R (K ) = Hd(K R).

In particular, if K ⊆ R
d is a compact set with Reach(K ) > R, then (6) reduces to the

usual local Steiner formula

Hd({x ∈ K R | pK (x) ∈ A}) =
d∑

k=0

κk R
kΛd−k(K ; A × Sd−1),

and to the (global) Steiner formula (2) if A = R
d .

In this case, our algorithm approximates the parallel volumeHd(K R) byHd(K R
0 ).

In the example in Fig. 2, this corresponds to approximating the volume of the larger
black disk by the volume of the region bounded by the red curve. This volume is again
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the sum of the volumes of the regions bounded by the red and blue curves. In other
words, it is the sum of volumes of the R-bounded Voronoi cells on the right-hand side
of the equation

V0,0
R (K0; A) =

∑
x∈K0∩A

Hd(B(x, R) ∩ Vx (K0)).

3.4 Estimators for General Local Minkowski Tensors

In Sect. 3.2 we have only considered estimators for local tensors of the form
Φ

r,s
k (K ; A × Sd−1), where K ⊆ R

d is a set with positive reach. The natural way
to estimate Φ

r,s
k (K ; B), for a measurable set B ⊆ Σ , would be to copy the idea in

Sect. 3.2 with Vr,s
R (K ; A) replaced by the following generalization of the Voronoi

tensor measures,

Wr,s
R (K ; B) =

∫
K R\K

1B(pK (x), uK (x))pK (x)r (x − pK (x))s dx, (12)

where uK (x) = (x − pK (x))/|x − pK (x)| estimates the normal direction. Of course,
this definition works for any K ∈ Cd . Moreover, we could define estimators related
to (12) whenever we have a set K0 which approximates K . However, even if K
has positive reach, the map x �→ uK (x) is not Lipschitz on K R\K , and therefore
the convergence results in Sect. 4 will not work with this definition. Since the map
x �→ uK (x) is Lipschitz on K R\K R/2, it is natural to proceed as follows. For any
K ∈ Cd , we define

Vr,s
R (K ; B) =

∫
K R\K R/2

1B(pK (x), uK (x))pK (x)r (x − pK (x))s dx . (13)

Note that
Vr,s
R (K ; ·) = Wr,s

R (K ; ·) − Wr,s
R/2(K ; ·), (14)

where Wr,s
R (K ; ·) is defined in (12). We will not use the notation Wr,s

R (K ; ·) in the
following. If K has positive reach and 0 < R < reach(K ), then the generalized Steiner
formula yields

Vr,s
R (K ; B) = r !s!

d∑
k=1

κs+k R
s+k(1 − 2−(s+k))Φ

r,s
d−k(K ; B).

Again, choosing 0 < R1 < · · · < Rd < reach(K ), we can recover the Minkowski
tensors from

⎛
⎜⎝

Φ
r,s
d−1(K ; B)

...

Φ
r,s
0 (K ; B)

⎞
⎟⎠ =

(
A
r,s
R1,...,Rd

)−1

⎛
⎜⎝
Vr,s
R1

(K ; B)
...

Vr,s
Rd

(K ; B)

⎞
⎟⎠
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where

A
r,s
R1,...,Rd

= 1
r !s!

⎛
⎜⎝

κs+1(1 − 2−(s+1))Rs+1
1 . . . κs+d(1 − 2−(s+d))Rs+d

1
...

...

κs+1(1 − 2−(s+1))Rs+1
d . . . κs+d(1 − 2−(s+d))Rs+d

d

⎞
⎟⎠

is a regular matrix. Using this, we can define estimators for Φ
r,s
k (K ; B), for 0 ≤ k ≤

d − 1, by

⎛
⎜⎝

Φ
r,s
d−1(K0; B)

...

Φ
r,s
0 (K0; B)

⎞
⎟⎠ =

(
A
r,s
R1,...,Rd

)−1

⎛
⎜⎝
Vr,s
R1

(K0; B)
...

Vr,s
Rd

(K0; B)

⎞
⎟⎠ ,

where K0 is a compact set which approximates K . Convergence of these modified
estimators will be discussed in Sect. 4.

The estimatorsΦ
r,s
k can be used to approximate local tensors of the formΦ

r,s
k (K ; B)

where the set B ⊆ Σ involves normal directions. Thus, they are more general than
Φ̂

r,s
k . However, (14) shows that estimating Vr,s

R (K ; B) requires an approximation of
two parallel sets, rather than one. We therefore expect more severe numerical errors
for Φ

r,s
k .

4 Convergence Properties

In this section we prove the main convergence results. This is an immediate general-
ization of [21, Thm. 5.1].

4.1 The Convergence Theorem

For a bounded Lipschitz function f : Rd → R, we let | f |∞ denote the usual supre-
mum norm,

| f |L = sup
{ | f (x)− f (y)|

|x−y| | x �= y
}

the Lipschitz semi-norm, and

| f |bL = | f |L + | f |∞

the bounded Lipschitz norm. Let dbL be the bounded Lipschitz metric on the space
of bounded Tp-valued Borel measures on Rd . For any two such measures μ and ν on
R
d , the distance with respect to dbL is defined by

dbL(μ, ν) = sup
{∣∣

∫
f dμ −

∫
f dν

∣∣ | | f |bL ≤ 1
}
,
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where the supremum extends over all bounded Lipschitz functions f : Rd → R with
| f |bL ≤ 1. The following theorem shows that the map

K �→ Vr,s
R (K ; ·)

is Hölder continuous with exponent 1
2 with respect to the Hausdorff metric on Cd

(restricted to compact subsets of a fixed ball) and the bounded Lipschitz metric. In the
proof, we use the symmetric difference AΔB = (A \ B)∪ (B \ A) of sets A, B ⊆ R

d .

Theorem 4.1 Let R, ρ > 0 and r, s ∈ N0 be given. Then there is a positive constant
C2 = C2(d, R, ρ, r, s) such that

dbL(Vr,s
R (K ; ·),Vr,s

R (K0; ·)) ≤ C2dH (K , K0)
1
2

for all compact sets K , K0 ⊆ B(0, ρ).

Proof Let f with | f |bL ≤ 1 be given. Then (5) yields

∣∣ ∫
Rd

f (x)Vr,s
R (K ; dx) −

∫
Rd

f (x)Vr,s
R (K0; dx)

∣∣

= ∣∣
∫
K R

f (pK (x)) pK (x)r (x − pK (x))s dx

−
∫
K R
0

f (pK0(x))pK0(x)
r (x − pK0(x))

s dx
∣∣

≤ I + I I , (15)

where I is the integral

∫
K R∩K R

0

| f (pK (x))pK (x)r (x − pK (x))s − f (pK0(x)) pK0(x)
r (x − pK0(x))

s | dx

and

I I = ρr RsHd(K RΔK R
0 ).

By [4, Cor. 4.4], there is a constant c1 = c1(d, R, ρ) > 0 such that

Hd(K RΔK R
0 ) ≤ c1 dH (K , K0) (16)

when dH (K , K0) ≤ R/2. Replacing c1 by a possibly even bigger constant, we can
ensure that (16) also holds when R/2 ≤ dH (K , K0) ≤ 2ρ. Hence,

I I ≤ c2 dH (K , K0)
1
2 (17)

with some constant c2 = c2(d, R, ρ, r, s) > 0.
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Using the inequalities (and interpreting empty products as 1)

∣∣ m⊙
i=1

yi −
m⊙
i=1

zi
∣∣ ≤ ∣∣ m⊗

i=1

yi −
m⊗
i=1

zi
∣∣ ≤

m∑
j=1

|y j − z j |
j−1∏
i=1

|yi |
m∏

i= j+1

|zi |, (18)

with m = r + s and the rank-one tensors

y1 = · · · = yr = pK (x), yr+1 = · · · = yr+s = x − pK (x),
z1 = · · · = zr = pK0(x), zr+1 = · · · = zr+s = x − pK0(x),

we get

| f (pK (x)) pK (x)r (x − pK (x))s − f (pK0(x)) pK0(x)
r (x − pK0(x))

s |
≤ | f (pK (x)) − f (pK0(x))||pK (x)|r |x − pK (x)|s

+ | f (pK0(x))|
r∑
j=1

|pK (x) − pK0(x)||pK (x)| j−1|pK0(x)|r− j |x − pK0(x)|s

+ | f (pK0(x))|
s∑

j=1

|pK (x)− pK0(x)||pK (x)|r |x − pK (x)| j−1|x − pK0(x)|s− j .

Since we assumed that | f |bL ≤ 1, we get

I ≤ (r + s + 1)max{ρ, 1}r max{R, 1}s
∫
K R∩K R

0

|pK (x) − pK0(x)| dx

≤ c3 dH (K , K0)
1
2 . (19)

The existence of the constant c3 = c3(d, R, ρ, r, s) in the last inequality is guaranteed
by Proposition 2.1 with K R ∩ K R

0 as the set E , because this choice of E satisfies
diam(E ∪ {0}) ≤ 2(ρ + R). ��

When r = s = 0 and f = 1, the above proof simplifies to Inequality (16) as
I vanishes. Hence we obtain the following strengthening of the theorem, which is
relevant for the estimation of intrinsic volumes.

Theorem 4.2 Let R, ρ > 0. Then there is a constant C3 = C3(d, R, ρ) > 0 such
that

|V0,0
R (K ) − V0,0

R (K0)| ≤ C3 dH (K , K0)

for all compact sets K , K0 ⊆ B(0, ρ).

For local tensors, the proof of Theorem 4.1 can also be adapted to show a conver-
gence result.

123



560 Discrete Comput Geom (2017) 57:545–570

Theorem 4.3 Let r, s ∈ N0 and R > 0. If Ki → K with respect to the Hausdorff
metric on Cd , as i → ∞, then Vr,s

R (Ki ; A) → Vr,s
R (K ; A) in the tensor norm, for

every Borel set A ⊆ R
d which satisfies

Hd(p−1
K (∂A) ∩ K R) = 0. (20)

Proof Convergence of tensors is equivalent to coordinate-wise convergence. Hence,
it is enough to show that the coordinates satisfy

Vr,s
R (Ki ; A)i1...ir+s → Vr,s

R (K ; A)i1...ir+s as i → ∞,

for all choices of indices i1, . . . , ir+s; see the notation at the beginning of Sect. 2.
We write TK (x) = pK (x)r (x − pK (x))s . Then

Vr,s
R (K ; A)i1...ir+s =

∫
K R

1A(pK (x))TK (x)i1...ir+s dx

is a signedmeasure. Let TK (x)+i1...ir+s
and TK (x)−i1...ir+s

denote the positive andnegative
part of TK (x)i1...ir+s , respectively. Then

Vr,s
R (K ; A)±i1...ir+s

=
∫
K R

1A(pK (x))TK (x)±i1...ir+s
dx

are non-negative measures such that

Vr,s
R (K ; ·)i1...ir+s = Vr,s

R (K ; ·)+i1...ir+s
− Vr,s

R (K ; ·)−i1...ir+s
.

The proof of Theorem 4.1 can immediately be generalized to show that
Vr,s
R (Ki ; ·)±i1...ir+s

converges to Vr,s
R (K ; ·)±i1...ir+s

in the bounded Lipschitz norm (as
i → ∞), and hence the measures converge weakly. In particular, they converge on
every continuity set of Vr,s

R (K ; ·)±i1...ir+s
. If Hd(p−1

K (∂A) ∩ K R) = 0, then A is such
a continuity set. ��

Remark 4.4 Though relatively mild, the condition Hd(p−1
K (∂A) ∩ K R) = 0 can be

hard to control if K is unknown. It is satisfied if, for instance, K and A are smooth and
their boundaries intersect transversely. A special case of this is when K is a smooth
surface and A is a small ball centered on the boundary of K . This is the case in the
application from [21] that was described in the introduction. Examples where it is not
satisfied are when A = K or when K is a polytope intersecting ∂A at a vertex.

Remark 4.5 Let f : Rd → R be a bounded measurable function. We define

Vr,s
R (K ; f ) :=

∫
Rd

f (x)Vr,s
R (K ; dx).
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Hence Vr,s
R (K ; A) = Vr,s

R (K ;1A) for every Borel set A ⊆ R
d . Then, Theorem 4.3 is

equivalent to saying that, for all continuous test functions f : Rd → R,

Vr,s
R (Ki ; f ) → Vr,s

R (K ; f ) as i → ∞,

in the tensor norm, whenever Ki → K with respect to the Hausdorff metric on Cd , as
i → ∞. Thus, if one is interested in the local behaviour ofΦr,s

k (K ; ·) at a neighborhood
A, like in [21], then one can study

Φ
r,s
k (K ; f ) :=

∫
Σ

f (x)xrus Λk(K ; d(x, u)),

where f is a continuous function with support in A. This avoids the extra condition
(20).

As the matrix Ar,s
R0,...,Rd

in the definition (10) of Φ̂
r,s
k (K0; A × Sd−1) does not

depend on the set K0, the above results immediately yield a consistency result for the
estimation of the Minkowski tensors. We formulate this only for A = R

d .

Corollary 4.6 Let ρ > 0 and K be a compact subset of B(0, ρ) of positive reach such
that Reach(K ) > Rd > · · · > R0 > 0. Let K0 ⊆ B(0, ρ) be a compact set. Then
there is a constant C4 = C4(d, R0, . . . , Rd , ρ) such that

|Φ̂0,0
k (K0) − Φ

0,0
k (K )| ≤ C4 dH (K0, K ),

for all k ∈ {0, . . . , d}.
For r, s ∈ N0 there is a constant C5 = C5(d, R0, . . . , Rd , ρ, r, s) such that

|Φ̂r,s
k (K0) − Φ

r,s
k (K )| ≤ C5 dH (K0, K )

1
2 ,

for all k ∈ {0, . . . , d − 1}.
Finally, we state the convergence results for themodified estimators forΦr,s

k (K ; B),
where B ⊆ Σ is a Borel set, that were defined in Sect. 3.4. The map x �→ x/|x |
is Lipschitz on R

d\ int(B(0, R/2)) with Lipschitz constant 4/R, and therefore the
mapping uK , which was defined after (12), satisfies

|uK (x) − uK0(x)| ≤ 4
R |pK (x) − pK0(x)|,

for x ∈ (K R\K R/2) ∩ (K R
0 \K R/2

0 ). Moreover,

(K R\K R/2)Δ(K R
0 \K R/2

0 ) ⊆ (K RΔK R
0 ) ∪ (K R/2ΔK R/2

0 ).

Using this, it is straightforward to generalize the proofs of Theorems 4.1 and 4.3 to
obtain the following result.
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Theorem 4.7 Let R, ρ > 0 and r, s ∈ N0 be given. Then there is a positive constant
C6 = C6(d, R, ρ, r, s) such that

dbL(Vr,s
R (K ; ·),Vr,s

R (K0; ·)) ≤ C6dH (K , K0)
1
2

for all compact sets K , K0 ⊆ B(0, ρ).

This in turn leads to the next convergence result.

Theorem 4.8 Let r, s ∈ N0 and R > 0. If K , Ki ∈ Cd are compact sets such
that Ki → K in the Hausdorff metric, as i → ∞, then Vr,s

R (Ki ; B) converges to
Vr,s
R (K ; B) in the tensor norm, for any measurable set B ⊆ Σ satisfying

Hd({x ∈ K R | (pK (x), uK (x)) ∈ ∂B}) = 0.

Here ∂B is the boundary of B as a subset of Σ .
If B satisfies this condition and Reach(K ) > Rd, then

lim
i→∞ Φ

r,s
k (Ki ; B) = Φ

r,s
k (K ; B).

Remark 4.9 We can argue as in Remark 4.5 to see that if K , Ki ∈ Cd are compact
sets such that Ki → K in the Hausdorff metric, as i → ∞, then

Vr,s
R (Ki ; g) → Vr,s

R (K ; g), as i → ∞,

whenever g : Σ → R is a continuous test function and Vr,s
R (K ; g) is defined similarly

as before.
If K satisfies Reach(K ) > Rd , we get Φ

r,s
k (Ki ; g) → Φ

r,s
k (K ; g) as i → ∞.

5 Application to Digital Images

Our main motivation for this paper is the estimation ofMinkowski tensors from digital
images. Recall that we model a black-and-white digital image of K ⊆ R

d as the set
K∩aL, whereL ⊆ R

d is a fixed lattice and a > 0.We refer to [2] for basic information
about lattices.

The lower dimensional parts of K are generally invisible in the digital image.When
dealing with digital images, we will therefore always assume that the underlying set
is topologically regular, which means that it is the closure of its own interior.

In digital stereology, the underlying object K is often assumed to belong to one of
the following two set classes:

– K is called δ-regular if it is topologically regular and the reach of its closed
complement cl(Rd\K ) and the reach of K itself are both at least δ > 0. This is a
kind of smoothness condition on the boundary, ensuring in particular that ∂K is a
C1 manifold (see the discussion after [34, Def. 1]).
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– K is called polyconvex if it is a finite union of compact convex sets. While convex
sets have infinite reach, note that polyconvex sets do generally not have positive
reach. Also note that for a compact convex set K ⊆ R

d , the set cl(Rd\K ) need
not have positive reach.

It should be observed that for a compact set K ⊆ R
d both assumptions imply that the

boundary of K is a (d − 1)-rectifiable set in the sense of [9] (i.e., ∂K is the image of
a bounded subset of Rd−1 under a Lipschitz map), which is a much weaker property
that will be sufficient for the analysis in Sect. 5.1.

5.1 The Volume Tensors

Simple and efficient estimators for the volume tensors Φ
r,0
d (K ) of a (topologically

regular) compact set K are already known and are usually based on the approximation
of K by the union of all pixels (voxels) with midpoint in K . This leads to the estimator

φ
r,0
d (K ∩ aL) = 1

r !
∑

z∈K∩aL

∫
z+aV0(L)

xr dx,

where V0(L) is the Voronoi cell of 0 in the Voronoi decomposition generated by L.
This, in turn, can be approximated by

φ̂
r,0
d (K ∩ aL) = ad

r ! Hd (V0(L))
∑

z∈K∩aL
zr .

When r ∈ {0, 1}, we even have φ
r,0
d (K ∩ aL) = φ̂

r,0
d (K ∩ aL).

Choose C > 0 such that V0(L) ⊆ B(0,C). Then

KΔ
⋃

z∈K∩aL
(z + aV0(L)) ⊆ (∂K )aC .

In fact, if x ∈ [⋃z∈K∩aL(z+aV0(L))]\K , then there is some z ∈ K∩aL such that x ∈
z+aV0(L) and x /∈ K . Since z ∈ K and x /∈ K , we have [x, z]∩ ∂K �= ∅. Moreover,
x − z ∈ aV0(L) ⊆ B(0, aC), and hence |x − z| ≤ aC . This shows that x ∈ (∂K )aC .
Now assume that x ∈ K and x /∈ (∂K )aC . Then B(x, ρ) ⊆ K for some ρ > aC .
Since

⋃
z∈aL(z + aV0(L)) = R

d , there is some z ∈ aL such that x ∈ z + aV0(L).
Hence x − z ∈ aV0(L) ⊆ B(0, aC). We conclude that z ∈ B(x, aC) ⊆ K , therefore
z ∈ K ∩ aL and thus x ∈ ⋃

z∈K∩aL(z + aV0(L)).
Hence

|φr,0
d (K ∩ aL) − Φ

r,0
d (K )| ≤ 1

r !
∫

(∂K )aC
|x |r dx . (21)

If Hd(∂K ) = 0, then the integral on the right-hand side goes to zero by monotone
convergence, so

lim
a→0+

φ
r,0
d (K ∩ aL) = Φ

r,0
d (K ). (22)
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If ∂K is (d − 1)-rectifiable in the sense of [9, Sect. 3.2.14], that is, ∂K is the image
of a bounded subset of Rd−1 under a Lipschitz map, then Hd(∂K ) = 0. Since ∂K
is compact, [9, Thm. 3.2.39] implies that lima→0+ Hd((∂K )aC )/a exists and equals
a fixed multiple of Hd−1(∂K ) which is finite. Hence, (21) shows that the speed of
convergence in (22) is O(a) as a → 0+.

Inequality (18) yields that |xr −zr | ≤ aCr(|x |+aC)r−1 whenever x ∈ z+aV0(L)

and r ≥ 1. Therefore,

|φ̂r,0
d (K ∩ aL) − φ

r,0
d (K ∩ aL)| ≤ aC

(r−1)!
∑

z∈K∩aL

∫
z+aV0(L)

(|x | + aC)r−1 dx

≤ aC
(r−1)!

∫
KaC

(|x | + aC)r−1 dx,

which shows that
lim

a→0+
φ̂
r,0
d (K ∩ aL) = Φ

r,0
d (K ),

provided thatHd(∂K ) = 0. If ∂K is (d−1)-rectifiable, then the speed of convergence
is of the order O(a).

Hence, we suggest to simply use the estimators φ̂
r,0
d (K∩aL) for the volume tensors.

This estimator can be computed much faster and more directly than Φ̂
r,0
d (K ∩ aL).

Moreover, it does not require an estimate for the reach of K , and it converges for a
much larger class of sets than those of positive reach.

5.2 Convergence for Digital Images

For the estimation of the remaining tensors we suggest to use the Voronoi tensor
measures. Choosing K0 = K ∩ aL in (11), we obtain

Vr,s
R (K ∩ aL; A) =

∑
x∈K∩aL∩A

xr
∫
B(x,R)∩Vx (K∩aL)

(y − x)s dy, (23)

where A ⊆ R
d is a Borel set.

To show some convergence results in Corollary 5.2 below, we first note that the
digital image converges to the original set in the Hausdorff metric.

Lemma 5.1 If K is compact and topologically regular, then

lim
a→0+

dH (K , K ∩ aL) = 0.

If K is δ-regular, then dH (K , K ∩ aL) is of order O(a). The same holds if K is
topologically regular and polyconvex.

Proof Recall from [2, p. 311] that μ(L) = maxx∈Rd dist(x,L) is well defined and
denotes the covering radius of L.
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Let ε > 0 be given. Since K is compact, there are points x1, . . . , xm ∈ K such that

K ⊆
m⋃
i=1

B(xi , ε).

Using the fact that K is topologically regular, we conclude that there are points
yi ∈ int(K ) ∩ int(B(xi , 2ε)) for i = 1, . . . ,m. Hence, there are εi ∈ (0, 2ε) such that
B(yi , εi ) ⊆ K ∩ B(xi , 2ε) for i = 1, . . . ,m. Let

0 < a < min{εi/μ(L) | i = 1, . . . ,m}.

Since εi/a > μ(L) it follows that aL∩ B(yi , εi ) �= ∅, for i = 1, . . . ,m. Thus we can
choose zi ∈ aL∩ B(yi , εi ) ⊆ aL∩K for i = 1, . . . ,m. By the triangle inequality, we
have |zi − xi | ≤ εi +2ε ≤ 4ε, and hence xi ∈ (K ∩aL)+ B(0, 4ε), for i = 1, . . . ,m.
Therefore, K ⊆ (K ∩ aL) + B(0, 5ε) if a > 0 is sufficiently small.

Assume that K is δ-regular, for some δ > 0. We choose 0 < a < δ/(2μ(L)). Since
aμ(L) < δ/2, for any x ∈ K there is a ball B(y, aμ(L)) of radius aμ(L) such that
x ∈ B(y, aμ(L)) ⊆ K . From aL ∩ B(y, aμ(L)) �= ∅ we conclude that there is a
point z ∈ K ∩ aL with |x − z| ≤ 2aμ(L). Hence x ∈ (K ∩ aL)+ B(0, 2aμ(L)), and
therefore dH (K , K ∩ aL) ≤ 2aμ(L).

Finally, we assume that K is topologically regular and polyconvex. Then K is the
union of finitely many compact convex sets with interior points. Hence, for the proof
we may assume that K is convex with B(0, ρ) ⊆ K for a fixed ρ > 0. Choose
0 < a < ρ/(2μ(L)) and put r = 2aμ(L) < ρ. If x ∈ K , then B((1− r/ρ)x, r) ⊆ K
and B((1 − r/ρ)x, r) contains a point z ∈ aL. Since

|x − z| ≤ r + (r/ρ)|x | ≤ 2aμ(L) (1 + diam(K )/ρ) ,

we get

K ⊆ (K ∩ aL) + B(0, 2aμ(L)(1 + diam(K )/ρ)),

which completes the argument. ��
Thus Theorems 4.1 and 4.2 and Corollary 4.6 together with Lemma 5.1 yield the

following result.

Corollary 5.2 If K is compact and topologically regular, then

lim
a→0+

dbL(Vr,s
R (K ; ·),Vr,s

R (K ∩ aL; ·)) = 0,

lim
a→0+

Vr,s
R (K ∩ aL) = Vr,s

R (K ).

If, in addition, K has positive reach, then

lim
a→0+

Φ̂
r,s
k (K ∩ aL) = Φ

r,s
k (K ). (24)
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If K is δ-regular or a topologically regular convex set, then the speed of convergence
is O(a) when r = s = 0 and O(

√
a) otherwise.

The property (24) means that Φ̂
r,s
k (K ∩ aL) is multigrid convergent for the class of

sets of positive reach as defined in the introduction. A similar statement about local
tensors, but without the speed of convergence, can be made. We omit this here.

5.3 Possible Refinements of the Algorithm for Digital Images

We first describe how the number of necessary radii R0 < R1 < · · · < Rd in (10) can
be reduced by one if s = 0 and A = R

d . Setting s = 0 and A = R
d and subtracting

(r !)Φr,0
d (K ) on both sides of (6) yields

∫
K R\K

pK (x)r dx = Vr,0
R (K ) − (r !)Φr,0

d (K ) = (r !)
d∑

k=1

κk R
kΦ

r,0
d−k(K ). (25)

As mentioned in Sect. 5.1, the volume tensor Φ
r,0
d (K ) can be estimated by

φ̂
r,0
d (K ∩aL). Wemay takeVr,0

R (K ∩aL)−(r !)φ̂r,0
d (K ∩aL) as an improved estimator

for (25). This corresponds to replacing the integration domains B(x, R)∩Vx (K ∩aL)

in (23) by

(B(x, R) ∩ Vx (K ∩ aL))\Vx (aL).

This makes sense since Vx (aL) is likely to be contained in K while the left-hand side
of (25) is an integral over K R\K . The Minkowski tensors can now be isolated from
only d equations of the form (25) with d different values of R.

We now suggest a slightly modified estimator for the Minkowski tensors satisfying
the same convergence results as Φ̂

r,s
k (K ∩ aL) but where the number of summands in

(23) is considerably reduced. As the volume tensors can easily be estimated with the
estimators in Sect. 5.1, we focus on the tensors with k < d.

Let K be a compact set. We define the Voronoi neighborhood NL(0) of 0 to be
the set of points y ∈ L such that the Voronoi cells V0(L) and Vy(L) of 0 and y,
respectively, have exactly one common (d−1)-dimensional face. Similarly, for z ∈ L

the Voronoi neighborhood NL(z) of z is defined, and thus clearly NL(z) = z+NL(0).
When L ⊂ R

2 is the standard lattice, NL(z) consists of the four points in L that
are neighbors of z in the usual 4-neighborhood [24]. Define I (K ∩ aL) to be the
set of points z ∈ K ∩ aL such that NaL(z) ⊆ K ∩ aL. The relative complement
B(K ∩ aL) = (K ∩ aL) \ I (K ∩ aL) of I (K ∩ aL) can be considered as the set of
lattice points in K ∩ aL that are close to the boundary of the given set K .

We modify (23) by removing contributions from I (K ∩ aL) and define

Ṽr,s
R (K ∩ aL; A) =

∑
x∈B(K∩aL)∩A

xr
∫
B(x,R)∩Vx (K∩aL)

(y − x)s dy. (26)

Assuming that K has positive reach, let 0 < R0 < R1 < . . . < Rd < Reach(K ). We
write again K0 for K ∩ aL. Then we obtain the estimators
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⎛
⎜⎝

Φ̃
r,s
d (K0; A × Sd−1)

...

Φ̃
r,s
0 (K0; A × Sd−1)

⎞
⎟⎠ =

(
Ar,s
R0,...,Rd

)−1

⎛
⎜⎝
Ṽr,s
R0

(K0; A)

...

Ṽr,s
Rd

(K0; A)

⎞
⎟⎠ (27)

with Ar,s
R0,...,Rd

given by (8).

Working with Ṽr,s
R (K ∩ aL; A) reduces the workload considerably. For instance,

when K is δ-regular or polyconvex and topologically regular, the number of elements
in I (K ∩ aL) increases with a−d , whereas the number of elements in B(K ∩ aL)

only increases with a−(d−1) as a → 0+. The set I (K ∩ aL) can be obtained from the
digital image of K in linear time using a linear filter. Moreover, we have the following
convergence result.

Proposition 5.3 Let K be a topologically regular compact set with positive reach and
let C be such that V0(L) ⊆ B(0,C). If A is a Borel set in R

d and aC < R0 < R1 <

. . . < Rd < Reach(K ) and K0 = K ∩ aL, then

Φ̃
r,s
k (K0; A × Sd−1) = Φ̂

r,s
k (K0; A × Sd−1)

for all k ∈ {0, . . . , d−1}, whenever s = 0or s is odd. If s is evenand k ∈ {0, . . . , d−1},
then

lim
a→0+

Φ̃
r,s
k (K0; A × Sd−1) = lim

a→0+
Φ̂

r,s
k (K0; A × Sd−1).

Proof Let aC < R < Reach(K ). For x ∈ I (K ∩ aL), we have

B(x, R) ∩ Vx (K ∩ aL) = Vx (aL),

so the contribution of x to the sum in (23) is (s!)xrΦs,0
d (V0(aL)). It follows that

Vr,s
R (K ∩ aL; A) − Ṽr,s

R (K ∩ aL; A) = (s!)Φs,0
d (V0(aL))

∑
x∈I (K∩aL)∩A

xr . (28)

For odd s we have Φ
s,0
d (V0(aL)) = 0, so the claim follows. For s = 0 the right-hand

side of (28) does not vanish, but it is independent of R. A combination of

(
Ar,0
R0,...,Rd

)−1

⎛
⎜⎜⎜⎝

1
1
...

1

⎞
⎟⎟⎟⎠ =

⎛
⎜⎜⎜⎝

(r !)−1

0
...

0

⎞
⎟⎟⎟⎠ ,

with (28), (10) and (27) gives the claim.
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For even s > 0, we have that Φs,0
d (V0(aL)) = ad+sΦ

s,0
d (V0(L)), while

∣∣ ∑
x∈I (K∩aL)∩A

xr
∣∣ ≤

∑
x∈I (K∩aL)

|x |r

≤ sup
x∈K

|x |r
∑

x∈I (K∩aL)

(
adHd(V0(L))

)−1Hd(Vx (aL))

≤ sup
x∈K

|x |r · a−d · Hd(V0(L))−1 · Hd(KaC ).

Therefore, the expression on the right-hand side of (28) converges to 0. ��
It should be noted that a similar modification for Φ

r,s
k is not necessary. In fact the

modified Voronoi tensor measure (13) with K = K0 has the advantage that small
Voronoi cells that are completely contained in the R0/2-parallel set of K ∩ aL do
not contribute. In particular, contributions from I (K ∩ aL) are automatically ignored
when a is sufficiently small.

6 Comparison to Known Estimators

Most existing estimators of intrinsic volumes [17,19,24] and Minkowski tensors [28,
30] are n-local for some n ∈ N. The idea is to look at all n × · · · × n pixel blocks
in the image and count how many times each of the 2n

d
possible configurations of

black and white points occur. Each configuration is weighted by an element of Tr+s

and Φ
r,s
k (K ) is estimated as a weighted sum of the configuration counts. It is known

that estimators of this type for intrinsic volumes other than ordinary volume are not
multigrid convergent, even when K is known to be a convex polytope; see [32]. It is
not difficult to see that there cannot be a multigrid convergent n-local estimator for the
(even rank) tensors Φ

0,2s
k (K ) with k = 0, . . . , d − 1, s ∈ N, for polytopes K , either.

In fact, repeatedly taking the trace of such an estimator would lead to a multigrid
convergent n-local estimator of the kth intrinsic volume, in contradiction to [32].

The algorithm presented in this paper is not n-local for any n ∈ N. It is required in
the convergence proof that the parallel radius R is fixed while the resolution a−1 goes
to infinity. The non-local operation in the definition of our estimator is the calculation
of the Voronoi diagram. The computation time for Voronoi diagrams of k points is
O(k log k + k�d/2�), see [5], which is somewhat slower than n-local algorithms for
which the computation time for k data points is O(k). The computation time can be
improved by ignoring interior points as discussed in Sect. 5.3.

The idea to basedigital estimators for intrinsic volumesonan inversionof theSteiner
formula as in (9) has occurred before in [16,23]. In both references, the authors define
estimators for polyconvex sets which are not necessarily of positive reach. This more
ambitious aim leads to problems with the convergence.

In [16], the authors use a version of the Steiner formula for polyconvex sets given
in terms of the Schneider index, see [26]. Since its definition is, however, n-local in
nature, the authors choose an n-local algorithm to estimate it. As already mentioned,
such algorithms are not multigrid convergent.
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In [23], it is used that the intrinsic volumes of a polyconvex set can, on the one
hand, be approximated by those of a parallel set with small parallel radius, and on
the other hand, the closed complement of this parallel set has positive reach, so that
its intrinsic volumes can be computed via the Steiner formula. The authors employ a
discretization of the parallel volumes of digital images, but without showing that the
convergence is preserved.

It is likely that the ideas of the present paper combined with the ones of [23] could
be used to construct multigrid convergent digital algorithms for polyconvex sets. The
price for this is that the notion of convergence in [23] is slightly artificial for practical
purposes, requiring very small parallel radii in order to get good approximations and
at the same time large radii compared to resolution.

In [33], n-local algorithms based on grey-valued images are suggested. They are
shown to converge to the true value when the resolution tends to infinity. However,
they only apply to surface and certain mean curvature tensors. Moreover, they are hard
to apply in practice, since they require detailed information about the underlying point
spread function which specifies the representation of the object as grey-value image.
If grey-value images are given, the algorithm of the present paper could be applied
to thresholded images, but there may be more efficient ways to exploit the additional
information of the grey-values.
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