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Abstract For a tropical prevariety in Rn given by a system of k tropical polynomials
in n variables with degrees at most d, we prove that its number of the connected
components is less than

(k+7n−1
3n

) · d3n
k+n+1 . On a number of 0-dimensional connected

components a better bound
(k
n

) · dn
k−n+1 is obtained, which extends the Bezout bound

due to B. Sturmfels from the case k = n to an arbitrary k ≥ n. Also we show that the
latter bound is close to sharp, in particular, the number of connected components can
depend on k.

Keywords Tropical prevariety · Connected components · Bezout bound
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1 Introduction

Let a tropical prevariety V ⊂ R
n (see e.g. [18]) be given by k tropical polynomials

f1, . . . , fk in n variableswith the (tropical) degrees atmost d. The principalmotivation
of this paper is to bound the number c of connected components of V . Recall (see e.g.
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[18]) that V is a polyhedral complex. The main result (Corollary 9.3) states the bound

c ≤
(
k + 7n − 1

3n

)
· d3n

k + n + 1
. (1)

For the number of isolated points of V (being its 0-dimensional connected compo-
nents) we obtain (Theorem 7.2) a better bound

(
k

n

)
· dn

k − n + 1
. (2)

It can be treated as a generalization of the Bezout inequality on the number of stable
solutions (see [18,22] and Sect. 5 below) proved in the case k = n to the case of
overdetermined (i.e. k > n) tropical systems. Recall that k ≥ n in order V to have
an isolated point since the local codimension at any point of V is less or equal to k
[4–6], see also Theorem 3.8. Moreover, the tropical Bezout Theorem [18] states that
the number of stable solutions (counted with multiplicities) of n tropical polynomials
f1, . . . , fn with degrees d1, . . . , dn respectively, equals d1 · · · dn .
In Sect. 8 we show that bound (2) is close to sharp by an explicit construction of

tropical systems.
The observed phenomenon of dependency of the number of connected components

on k in (1) and in (2) occurs similarly for real semialgebraic sets (moreover, for the
sum of Betti numbers which strengthens the bounds established byOleinik-Petrovskii,
Milnor, Thom) [2], while due to a different reason.

Note that in the case of an algebraic variety given by a polynomial system
g1 = · · · = gk = 0 where the degrees of polynomials in n variables do not exceed d,
the sum of the degrees of the irreducible components of the variety is bounded by dn ,
i.e. the latter bound does not depend on k. This holds because the variety remains the
same if one replaces g1, . . . , gk by n + 1 generic linear combinations of g1, . . . , gk
(see e.g. [7,12]).

Our conjecture is that the sumofBetti numbers of a tropical prevariety V is bounded
by (1). In Theorems 6.7 and 6.8 one can find somewhat weaker bounds on the sum of
Betti numbers.

The important technical tool to study a system of tropical polynomials (see Sect. 4)
is the star table (exploited in [13,14]) consisting of the set of monomials from the
given tropical system in which the minimum is attained at a given point v ∈ V
(here a monomial is treated as a classical linear function). In these terms we define a
generalized vertex v of V when the star table is maximal under inclusion. We produce
a description of generalized vertices in terms of the exponents vectors of the starred
monomials (Theorem4.11). Thenwe prove that any connected component of a tropical
prevariety given by a system of tropical polynomials of fixed degrees with all finite
coefficients contains a generalized vertex (Theorem 6.1).

In Sect. 5 we study stable points of a tropical prevariety given by n tropical polyno-
mials, and provide a criterion to be a stable point again in terms of the exponent vectors
of the starred monomials (Theorem 5.10). This implies that a generalized vertex of
V is a stable point of a suitable multisubset of { f1, . . . , fk}, consisting of n elements
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(Theorem 6.2). The established results provide a slightly better bound than (1) in case
of finite coefficients (Corollary 6.4).

To get the bound (2)we prove in Sect. 7 that an isolated point of V is a stable point of
an appropriate subset consisting of n elements among { f1, . . . , fk} (Theorem 7.1).We
emphasize that here we consider a subset, rather than a multisubset as in Theorem 6.2,
this explains the difference between bounds (1) and (2).

In Sect. 9 we show that adding n extra variables and 2n extra tropical polynomials
to { f1, . . . , fk} we get a compact tropical prevariety being homotopy equivalent to V .
Thus, the problem of bounding the number of connected components and moreover,
the sum of Betti numbers of V reduces to a compact tropical prevariety. Also in Sect. 9
we discuss systems of tropical polynomialswith coefficients allowed to include infinity
which completes the proof of the bounds (1).

2 Tropical Semi-ring and Tropical Prevarieties

Definition 2.1 Semi-fields R and R∞ = R ∪ {∞} endowed with operations
⊕ := min, ⊗ := +, 
 := − are called tropical semi-rings with or without infinity
correspondingly.

We will denote tropical semi-rings with or without infinity as K and K∞ corre-
spondingly.

We also will use the notation for a tropical power: x⊗i := x ⊗ · · · ⊗ x .
In this paper we will study tropical polynomials and at first we have to define a

tropical monomial:

Definition 2.2 A tropical monomial Q is defined as Q = a ⊗ x⊗i1
1 ⊗ · · · ⊗

x⊗in
n = a + i1 · x1 + · · · + in · xn , its tropical degree is i1 + · · · + in .

Note 2.3 As for classic monomials we will often omit multiplication sign when it is
clear whether we speak about the tropical multiplication or the classic one. In addition,
we will omit a multiplier of 0 as it is the neutral element of tropical multiplication.

Now we can define a tropical polynomial:

Definition 2.4 Tropical polynomial f is defined as

f =
⊕

j

(
a j ⊗ x

⊗i j1
1 ⊗ · · · ⊗ x

⊗i jn
n

) = min
j

{Q j },

where the tropical monomial Q j := a j ⊗ x
⊗i j1
1 ⊗ · · · ⊗ x

⊗i jn
n . The tropical degree of

f is the maximum of the tropical degrees of its monomials Q j .
We say that x = (x1, . . . , xn) ∈ R

n∞ is a tropical zero of f if at the point x either
the minimum min j {Q j (x)} is attained for at least two different values of j when
min j {Q j (x)} is finite or Q j (x) = ∞ for all j . If x ∈ R

n we say that the tropical zero
is finite.

If all the monomials with the tropical degree at most d are present at f we say that
f of the tropical degree d has all its coefficients finite.
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Then we define a tropical hypersurface:

Definition 2.5 The set of the tropical zeros in Rn of a tropical polynomial is called a
tropical hypersurface.

Definition 2.6 A tropical prevariety is the intersection of a finite number of tropical
hypersurfaces.

3 Hahn Series and Tropical Varieties

To introduce tropical varieties it will be convenient to use a generalization of Puiseux
series known as Hahn (or Hahn–Mal’cev–Neumann) series (see [16]).

Definition 3.1 The field of Hahn series K [[T �]] in the indeterminate T over a field
K and with a value (ordered) group � is the set of formal expressions of the form
f = ∑

e∈� ceT e with ce ∈ K such that the support {e ∈ � : ce �= 0} of f is
well-ordered. The sum and the product of f = ∑

e∈� ceT e and g = ∑
e∈� deT e are

given by f + g = ∑
e∈� (ce + de)T e and f g = ∑

e∈�

∑
e′+e′′=e ce′de′′T e (the sum∑

e′+e′′=e ce′de′′ is finite as a well-ordered set could not contain infinite decreasing
sequence).

To define a tropical variety we have to introduce the operation of the tropicalization.

Definition 3.2 The tropicalization of x ′ ∈ K [[T �]] is a point x ∈ � ∪ {∞} equal to
the least power of T in x ′ if x ′ is not equal to zero, or ∞ otherwise.

We will denote the operation of the tropicalization by trop.
The tropicalization V of a variety V ′ over the field of Hahn series K [[T �]] consists

of the closure in the euclidean topology of the set of points x ∈ �n

for which there is a point x ′ = (x ′
1, x

′
2, . . . x

′
n) ∈ V ′ with x ′

1 . . . x ′
n �= 0, such that

x = (trop(x ′
1), trop(x

′
2), . . . trop(x

′
n)). The set V is referred to as a tropical variety.

While any tropical hypersurface is a tropicalization of a hypersurface over the field
of Hahn series C[[TR]] (cf. [8]) some tropical prevarieties do not correspond to any
varieties over C[[TR]]. For example a tropical prevariety given by the linear system

A =
{
0 ⊕ x ⊕ y ⊕ z,

0 ⊕ x ⊕ 1y ⊕ 1z

is not a tropical variety. However, any tropical variety is a tropical prevariety and
moreover the following theorem holds (see [5,18]):

Theorem 3.3 For any variety V ′ given by a polynomial system A′ in Hahn series
C[[TR]]n its tropicalization V is a tropical prevariety inRn, and V coincides with the
intersection of tropical hypersurfaces being the tropicalizations of all the polynomials
from the ideal generated by A′. Moreover, V equals the tropical prevariety determined
by the intersection of a finite number of the tropicalizations of hypersurfaces provided
by polynomials from the ideal generated by A′ (such a finite subset is called a tropical
basis of the ideal).
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To study tropical prevarieties we will use some properties of Hahn series.

Theorem 3.4 [17] For any algebraically closed field K and ordered divisible group
� the field of Hahn series K [[T �]] is algebraically closed.

Thus (see e.g. [11,20]) we can apply Bezout’s theorem to C[[TR]].
Definition 3.5 Let n projective hypersurfaces be given in Pn(C[[TR]]) by n homoge-
neous polynomials in n + 1 variables. A point x is a stable intersection point of these
hypersurfaces with multiplicity e if under a generic small perturbation of the coeffi-
cients of the given polynomials the corresponding hypersurfaces will have exactly e
intersection points in a small neighborhood of x .

Theorem 3.6 (Bezout’s theorem) Let n projective hypersurfaces be given in
P
n(C[[TR]]) by n homogeneous polynomials in n + 1 variables, of degrees

d1, d2, · · · , dn. Then the number of stable intersection points of these hypersurfaces
is equal to d1d2 · · · dn.

Another important property of the field of Hahn series C[[TR]] implied by the fact
that it is algebraically closed is

Theorem 3.7 ( Dimension of intersection [20]) Let a variety V ′ be given by a polyno-
mial system A in n variables over the field of Hahn series C[[TR]]. Then if the system
A consists of k polynomials the codimension of each irreducible component of V ′ is
less or equal to k.

This properties of Hahn series are important for studying tropical varieties and
prevarieties due to the following theorem:

Theorem 3.8 [4–6] For any irreducible variety V ′ of dimension m over the field of
Hahn series C[[TR]] the local dimension at any point x of its tropicalization V is
equal to m.

Remark 3.9 While Theorem 3.8 was known for varieties over the field of Puiseux
series, the proof can be literally extended to Hahn series.

4 Generalized Vertices

To study tropical prevarieties it will be convenient to use the following definition of a
vertex:

Definition 4.1 By a vertex of a tropical prevariety we will mean a point for which
one can not choose a direction in such a way that there is a neighborhood of the point
where prevariety can be represented as a generalized open ended cylinder with axis
parallel to the chosen direction (a generalized open ended cylinder is a product of an
arbitrary set and a line interval).

In addition, we will need a generalization of this definition, and at first we give a
definition of a star table of a tropical system similar to one introduced in [14]:
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Definition 4.2 Let A be a tropical polynomial system of k polynomials in n variables
with the tropical degree d, and a point x ∈ R

n . We associate with A a table A∗x of
the size k × (n+d−1

d

)
with the rows corresponding to the polynomials and the columns

corresponding to all the possible monomials of degrees at most d in n variables. We
put ∗ to the entry (i, j) iff the j-th monomial treated as a (classical) linear function
attains a minimal value among all the monomials at the point x in i-th polynomial and
we leave all others entries empty (see Example 4.3).

Example 4.3 Consider a tropical system

A =
{
0 ⊕ 1x ⊕ y,

0 ⊕ −2x ⊕ −2y ⊕ −2x⊗2 ⊕ −3xy ⊕ −1y⊗2.

At the point (−1, 0) this system is equal to

A =
{
0 ⊕ 0 ⊕ 0

0 ⊕ −3 ⊕ −2 ⊕ −4 ⊕ −4 ⊕ −1,

so

A∗(−1,0) =
[
0 x y x⊗2 xy y⊗2

∗ ∗ ∗ ∗ ∗

]
.

At the point (1, 0) this system is equal to

A =
{
0 ⊕ 2 ⊕ 0

0 ⊕ −1 ⊕ −2 ⊕ 0 ⊕ −2 ⊕ −1,

so

A∗(1,0) =
[
0 x y x⊗2 xy y⊗2

∗ ∗∗ ∗

]
.

At the point (−2,−1) this system is equal to

A =
{
0 ⊕ −1 ⊕ −1

0 ⊕ −4 ⊕ −3 ⊕ −6 ⊕ −6 ⊕ −3,

so

A∗(−2,−1) =
[
0 x y x⊗2 xy y⊗2

∗ ∗ ∗ ∗

]
.

Observe that for any point y in an appropriate neighborhood of x the star table A∗y
is contained in A∗x . Note that a point x satisfies A iff each row of the table A∗x contains
at least two stars. All the local properties of the tropical prevariety can be expressed
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in terms of this table (see the next theorem). In the next section we will show how
to test stability of a solution of a tropical system using this table (Theorem 5.10), for
another example see [14] where the star table is used to calculate the local dimension
of a linear prevariety.

Theorem 4.4 Let a tropical prevariety V be given by a tropical system A, and y, z∈V .
If A∗y = A∗z then there is an ε, such that the ε-neighborhood of the point y of V is
homeomorphic to the ε-neighborhood of the point z of V , moreover this homeomor-
phism is given by a (linear) shift of the coordinates which sends y to x.

Proof Let d be the maximal (tropical) degree of the polynomials in A and
x = (x1, x2, . . . , xn) be a set of variables of these polynomials. Let’s denote by
�y and �z the minimal differences between the values of the starred and non-starred
monomials from the same polynomials at the point y and the point z correspondingly.
Let � = min(�y,�z). Denote ε = �

3d .
Now we will prove that ε fits the requirements of the theorem. Let’s make a change

of variables x ′
i = xi − yi which corresponds to a shift of tropical prevariety in such

a way that y is shifted to 0. The resulting tropical system we denote by B. Let’s
denote the shifted prevariety by W . Due to our choice of ε in the ε-neighborhood
of 0 only the monomials which are starred at 0 can be starred (they are not greater
than 0 + dε = �

3 , while others are not lesser than � − dε = 2�
3 ), so while studying

B in the ε-neighborhood of 0 we can w.l.o.g. assume that all non-starred monomi-
als are infinite. In particular, the ε-neighborhood of 0 in W is determined just by
the starred monomials. Moreover w.l.o.g. we can assume that all the coefficients in
the starred monomials in B are equal to zero, otherwise we could tropically multiply
the corresponding polynomials to change the coefficients to zero (see Example 4.5).

Now if we repeat the same operation replacing all the occurrences of y by z we will
obtain the system which will be the same as B up to the assumptions we made in the
end of the previous paragraph. So, the ε-neighborhood of z can be obtained from the
ε-neighborhood of y by a shift (as both of them can be obtained by a shift from the
ε-neighborhood of 0 of W ). ��

Example 4.5 Consider a system

{
2x⊗2 ⊕ x ⊕ 0.

Assume that we want to study the prevariety given by this system in the neighborhood
of the point x = −2. First we make a change of the variable x ′ = x + 2:

{
−2x ′⊗2 ⊕ −2x ′ ⊕ 0,

then tropically multiply the polynomial by 2:

{
x ′⊗2 ⊕ x ′ ⊕ 2.
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And in the 1
3 -neighborhood of 0 this system can be replaced by:

{
x ′⊗2 ⊕ x ′.

Now we can give a definition of a generalized vertex:

Definition 4.6 A point x is a generalized vertex of a tropical polynomial system A iff
x satisfies A and the star table A∗x is strictly maximal with respect to inclusion, i.e.
for any other point y �= x the star table A∗y does not contain A∗x .
Example 4.7 The point (−2,−1) is not a generalized vertex for a system A from
Example 4.3 as A∗(−1,0) is greater than A∗(−2,−1) with respect to inclusion.

Theorem 4.8 A point x is a generalized vertex of a tropical polynomial system A iff
there is no vector along which the directional derivative of every starred monomial in
A∗x in every polynomial is the same (the starredmonomials from different polynomials
can have different directional derivatives, see Example 4.9), i. e. there is no line that
passes through the point x along which we can move while preserving star table the
same in some neighborhood of x.

Proof (1) First we prove, that if there is a vector alongwhich the directional derivative
of every starred monomial in A∗x in every polynomial is the same, then x is not
a generalized vertex. It’s so because if we will move from point x in the direction
of this vector there will be a neighborhood where we will preserve the star table
(so initial star table was not strictly maximal).

(2) Now we prove the converse: if x is not a generalized vertex then there is a vector
along which the directional derivative of every starred monomial in A∗x in every
polynomial is the same. If x is not a generalized vertex, then there is a point y
whose star table A∗y contains A∗x . The directional derivative along the vector
x − y will be the same in each polynomial for all the points whose star table is
contained in A∗x , because the difference between these monomials’ values in the
same polynomial is the same (the monomials are equal both in the point x and in
the point y). ��

Example 4.9 Consider the system A from Example 4.3. The point (−2,−1) is not
a generalized vertex, because we can choose a vector (1, 1), and the directional
derivatives of all the starred monomials in the first polynomial along the euclidean
normalization of this vector will be the same and equal to 1√

2
, while the directional

derivatives of the starred monomials in the second polynomial along this vector will
be the same and equal to

√
2.

The points (1, 0) and (−1, 0) are generalized vertices because we can not find a
vector with the required property.

The corresponding prevariety is drawn in Fig. 1. The prevariety is depicted with the
double lines, the first hypersurface is depicted with the dashed lines and the second
one is depicted with the solid lines.

Let’s define function pn which takes a tropical monomial in n variables
x1, x2, · · · , xn as arguments and returns a vector in R

n in the following way:
pn(cx

⊗a1
1 x⊗a2

2 . . . x⊗an
n ) = (a1, a2, . . . , an).
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Fig. 1 Illustration for
Example 4.9

•
(–1,0)

•
(1,0)

•
(–2,–1)

Let’s define function vn which takes two tropical monomials in n variables as
arguments and returns a vector in R

n in the following way: vn(m1,m2) = pn(m2) −
pn(m1).

Example 4.10

• v2(0, x1) = (1, 0),
• v2(x

⊗2
1 x2, x1x

⊗2
2 ) = (−1, 1),

• v3(0, 2x1x2x3) = (1, 1, 1).

Now we can give a criterion of a point to be a generalized vertex in terms of the
star table just of this point invoking also the function vn .

Theorem 4.11 Assume that for a tropical polynomial system A of k polynomials in n
variables with a solution at x we can choose 2n monomials mi, j , 1 ≤ i ≤ n, j = 1, 2
with the following properties:

• one monomial can be chosen several times.
• the monomials mi,1 and mi,2 are marked with a star in A∗x in the same line,
• the linear span of the vectors vn(m1,1,m1,2), vn(m2,1,m2,2), . . . , vn(mn,1,mn,2)

has the dimension equal to n.

Then x is a generalized vertex of this system, and conversely if x is a generalized
vertex we can always choose 2n monomials in the described way.

Proof (1) Firstweprove the claim in onedirection: ifwe cannot choose 2nmonomials
with the required properties, then x is not a generalized vertex. If we could not
choose 2n monomials with the required properties, then it would mean that the
linear span of vectors vn(y, z)where y and z are arbitrary starred monomials from
the same polynomial has the dimension (over all the polynomials) lesser than n.
But if we choose a vector orthogonal to this linear span, the directional derivatives
of any pair of starred monomials from the same polynomial along this vector will
be the same (as the directional derivative of their difference will be equal to zero).
And by Theorem 4.8 this means that x is not a generalized vertex.

(2) Nowwe prove the converse: if x is not a generalized vertex then we can not choose
2n monomials with the required properties. By Theorem 4.8 we can choose a
vector v along which all the directional derivatives of the starred monomials
from the same polynomial will be the same (for all the polynomials from A).
And this means that v is orthogonal to vn(y, z) for any monomials y and z
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starred in the same polynomial. But the latter contradicts to that the dimension of
the linear span of the vectors vn(m1,1,m1,2), vn(m2,1,m2,2), . . . , vn(mn,1,mn,2)

equals n. ��

Generalized vertex is indeed a generalization of a vertex:

Theorem 4.12 If x is a vertex point of the prevariety V given by a tropical polynomial
system A then x is a generalized vertex point of A.

Proof Assume the contrary. Then by Theorem 4.8 we can choose a vector along which
all the directional derivatives of the monomials starred in A∗x will be the same. That
means that if we choose a line passing through the point x and directed by this vector,
then we can move along it in both directions while keeping the star table the same in
some neighborhood of the point x . And by Theorem 4.4 in this neighborhood of the
point x the prevariety V is a generalized open-ended cylinder. ��

However, the converse is not true:

(0,0)
(0,0)

(0,0)
(0,0)

0 ⊕ x ⊕ y ⊕ x⊗2y ⊕ xy⊗2 0 ⊕ x ⊕ xy⊗2 ⊕ x⊗4y⊗3 ⊕ x⊗4y⊗5

0 ⊕ y ⊕ yx⊗2 ⊕ y⊗4x⊗3 ⊕ y⊗4x⊗5
Intersection
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Example 4.13 For the system of the tropical polynomials

⎧
⎪⎨

⎪⎩

0 ⊕ x ⊕ y ⊕ x⊗2y ⊕ xy⊗2,

0 ⊕ x ⊕ xy⊗2 ⊕ x⊗4y⊗3 ⊕ x⊗4y⊗5,

0 ⊕ y ⊕ yx⊗2 ⊕ y⊗4x⊗3 ⊕ y⊗4x⊗5,

0 is a generalized vertex, but it is not a vertex [this prevariety is equal to the line
directed by the vector (−1, 1)].

5 Stability of Solutions Criteria

In this paper it will be convenient to use the following definition:

Definition 5.1 By the amplitude of a perturbation we will denote the maximal dif-
ference between the corresponding finite coefficients of the initial system and the
perturbed one (the infinite coefficients are not perturbed).

In this section we always consider tropical system of n equations in n variables.
Following Sturmfels, and others [18] we will use the following definition of stabil-

ity:

Definition 5.2 A point x is a stable point of a multiplicity s of a tropical polynomial
system A of n equations in n variables if s is the maximal number of points (provided,
there is a finite number of points) in a neighborhood of x of a tropical prevariety given
by a sufficiently small perturbation of the system A.

Our results will be heavily based on the tropical Bezout’s equality, which states the
following:

Theorem 5.3 (Tropical Bezout’s Equality [18]) Every n tropical polynomials with
finite coefficients in n variables have D stable finite solutions counted with the multi-
plicities where D is the product of the degrees of the given polynomials.

Remark 5.4 For tropical polynomials not necessary with finite coefficients the sum of
the multiplicities of the stable finite solutions does not exceed D [3,21]. Moreover, in
the latter papers the stronger bounds in terms of the Minkowski mixed volumes are
provided.

As it was mentioned by Tabera [22] from this theorem the following property of
stable points of a tropical prevariety can be obtained:

Theorem 5.5 Given n tropical hypersurfaces in n-dimensional space the stable points
of the prevariety being their intersection form a well-defined set that varies continu-
ously under perturbations of the given hypersurfaces.

In this section we will always consider systems with finite coefficients (see Sect. 2),
unless we set some of the coefficients to infinity explicitly.
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For the effective usage of Theorems 5.3 and 5.5 we have to introduce several simple
criteria of stability. While proving theorems we will often w. l. o. g. study stability at
point 0, and we will assume all the minimal coefficients (i. e. the coefficients of the
starred monomials in A∗0) to be equal to 0 (this specific case can be obtained from the
general case by the linear change of variables to shift the point under consideration to
0 and by the tropical multiplication of the equations by constants, see Example 4.5).

Theorem 5.6 Given a tropical polynomial system A with a solution in x, let us replace
all the coefficients of the monomials which are starred in A∗x by an arbitrary set of
real numbers and the rest of the coefficients by the infinity (the resulting system denote
by C). The point x is a stable solution of A iff for any set of the chosen real numbers
the system C has a finite tropical solution.

Example 5.7 Consider a tropical system:

{
0 ⊕ 3x ⊕ 0xy ⊕ 0x⊗2,

3 ⊕ 0x ⊕ 0y⊗3.

0 is a stable solution of this system as the system:

{
a1 ⊕ a2xy ⊕ a3x⊗2,

a4x ⊕ a5y⊗3,

has a finite solution for any reals a1, a2, a3, a4, a5.

Proof W. l. o. g. we can assume that x is zero and the coefficients of all the starred
monomials in A∗0 are equal to 0.

Let d be the maximal tropical degree of the polynomials in the system A and let
the smallest nonzero coefficient in A be equal to �.

(1) First we prove in one direction: if 0 is a stable point of A, then we can find a finite
solution of C for any set of the coefficients taken as in the theorem. We will prove
that for a fixed set of the coefficients there is a solution. W. l. o. g. we can assume
that all the coefficients in C are positive (otherwise, we can tropically multiply
the equations by a constant). Let the greatest (finite) coefficient in C be equal to
M . As 0 is a stable solution of A we can choose δ with the following properties:
• 0 < δ < �

4d ,• for any perturbation of the coefficients of A with an amplitude less or equal to
δ there will be a stable solution in the �

4d -neighborhood of 0.
Let’s consider a perturbation B of A with nonzero coefficients unchanged and
zero coefficients replaced by the corresponding coefficients from C multiplied
by δ

M .
By our choice of δ we can find a solution y of B in the �

4d -neighborhood of 0.
The non-starred monomials of A can not be minimal in this solution as they are
too large. Indeed, as the coefficients change is not greater than δ and the solution
coordinates are less than �

4d the value of any starred monomial of A after the
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perturbation in y is not greater than δ + d �
4d < �

2 , while the value of any non-
starred monomial of A in y, after the perturbation is at least � − δ − d �

4d > �
2 .

If we classically multiply the solution and the coefficients of the equation from B
by M

δ
, the point y will be a solution for the multiplied system, and if we change

all the coefficients which were nonzero by the infinity, the solution still remains
to be a solution as all the monomials we have changed were not minimal. So we
have found a solution for C .

(2) Now we prove the converse: if we can find a solution of a system C for any
replacement of the coefficients then 0 is a stable point. We will prove that we can
choose such a monotone function p that for any perturbation with an amplitude
δ < min

(
p−1

(
�
4d

)
, �
4d

)
there is a solution in p(δ)-neighborhood of 0. Let’s denote

the perturbed system by E .
Replace by the infinity all the monomials in E which are nonzero in the initial
system A. By our assumption the resulting system will have a solution, hence
an appropriate system L of linear equations and inequalities determined by the
monomials of E has a real solution. Observe that L has integral coefficients at the
variables and the constant part boundedby2M ,whereM is themaximal coefficient
of E . Therefore, the system L has a real solution with the absolute value bounded
by 2Mn!dn due to the Cramer’s rule. So we can choose p(δ) = 2δn!dn .

This solution will be a solution of E , as its monomials corresponding to the
non-starredmonomials of A are too large to beminimal (as the coefficients change
is not greater than δ and the solution coordinates are less than p(δ), the value of
a monomial which was starred in A∗0 after the perturbation in the new solution
point is at most δ + dp(δ) < �

2 and the value of a non-starred monomial after
the perturbation in the new solution point is at least � − δ − dp(δ) > �

2 ). For
any small perturbation we have found a solution in a neighborhood of 0, so 0 is a
stable point. ��

Using this theorem we can prove the following lemma:

Lemma 5.8 If x is a stable solution of a tropical system A, then for any tropical
system F and a point y, if F∗y = A∗x , then y is a stable point of F.

Proof W. l. o. g. we can assume that x and y are equal to 0, and that the coefficients
of the monomials starred in A∗0 and F∗0 are equal to zero.

As 0 is a stable point of A, by Theorem 5.6 if we set all the coefficients in the
monomials which are non-starred in A∗0 to the infinity and replace all the coefficients
of the starred monomials by arbitrary real values the obtained system C will have a
solution.

But the result of the replacement (the systemC) is the same for systems A and F , so
if in the system F we set all the coefficients in the monomials which are non-starred in
F∗0 to the infinity and replace all the coefficients of the starredmonomials by arbitrary
real values the obtained system will have a solution. And by Theorem 5.6 this means
that 0 is a stable solution of F . ��

This proposition can be strengthened to the following theorem:
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Theorem 5.9 If x is a stable solution of a tropical system A, then for any tropical
system F and point y, if F∗y contains A∗x , then y is a stable point of F.

Proof W. l. o. g. we can assume that x and y are equal to 0, and that the coefficients
of the monomials starred in A∗0 and F∗0 are equal to zero.

Due to the Theorems 5.5 and 5.3 we can refer to a stable points movement under a
parameter perturbation.Wewill prove that if we change one of the nonzero coefficients
to zero (the resulting system we denote by G), still 0 remains a stable solution of G.
The rest will immediately follow from Lemma 5.8. We will prove by contradiction.
Let 0 be an unstable solution of G.

Let � be a minimal distance from 0 to stable solutions of G.
We can choose ε > 0 such that if we perturb G with an amplitude less than ε then

every stable solution will move by a distance less than�. Now consider a perturbation
of G with a new zero coefficient replaced by ε and other coefficients unchanged. By
Lemma 5.8 the perturbed system has 0 as a stable solution, but by the choice of ε we
get a contradiction as no stable solution could move to 0. ��

Now we can formulate the last criterion of stability we need (we will use functions
vn defined in Sect. 4):

Theorem 5.10 Assume that for a tropical polynomial system A of n equations in n
variables with a solution at x we can choose 2n monomials mi, j , 1 ≤ i ≤ n, j = 1, 2
with the following properties:

• the monomials mi,1 and mi,2 are from i-th polynomial and they are starred in A∗x ,
• the linear span of the vectors vn(m1,1,m1,2), vn(m2,1,m2,2), . . . , vn(mn,1,mn,2)

has the dimension equal to n.

Then x is a stable solution of system A, conversely if x is a stable solution we can
always choose 2n monomials in the described way.

Proof W. l. o. g. we can assume that x is equal to 0, and that the coefficients of the
monomials starred in A∗0 are equal to zero.
(1) First wewill prove in one direction: if we could findmonomials with the described

properties, then 0 is a stable point. By Theorem 5.9 if we prove that 0 is a stable
point of a system with all the coefficients of the monomials except mi, j , 1 ≤
i ≤ n, j = 1, 2, replaced by say 1 (this system will have only 2 monomials
with the zero coefficients in each equation), then 0 is a stable point of the system
A. And by Theorem 5.6 0 is stable iff the system with the coefficients in the
nonzero monomials replaced by the infinity will have a solution for any set of
real coefficients replacing zeros. Now we can notice that a tropical polynomial
system with two monomials in each polynomial is just a classical linear system
(see Example 5.11) and the restriction on the monomials we imposed is just a
criterion of this system to have rank n. So as required this system will have a
solution for any set of coefficients.

(2) Nowwewill prove the converse: ifwe could not findmonomialswith the described
properties, then 0 is not a stable point. We will prove that we can replace all the
nonzero coefficients by the infinity and the zero coefficients by arbitrary real
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numbers in such a way that the obtained system will have no solution and thus,
by Theorem 5.6 0 is not a stable point.
Let’s replace all the zero coefficients by arbitrary real numbers which are linearly
independent overQ and the nonzero coefficients by the infinity.Consider a solution
of this system. Let’s choose fi, j , j = 1, 2 as the pairs of the starred monomials
from i-th equation (if there are more than two starred monomials, we will choose
just two arbitrary among them). The linear span of vn( fi,1, fi,2), 1 ≤ i ≤ n has
the dimension lesser than n by the assumption, so the system of classical linear
equations, expressing that fi,1 = fi,2, 1 ≤ i ≤ n will have the rank lesser than
n. This system has rational coefficients of the variables, while free terms from
its’ equations are linear independent overQ, so it has no solutions, as otherwise a
rational linear dependency between these constants could be found. So we come
to a contradiction and this means that 0 is not a stable point. ��

Note that Theorems 4.11 and 5.10 entail that any stable solution is a generalized
vertex.

Example 5.11 The tropical polynomial system:

{
x1x2 ⊕ x⊗3

1 ,

6x⊗5
1 ⊕ 4x⊗2

2 ,

is equivalent to the classical linear system:

{
x1 + x2 = 3x1,

6 + 5x1 = 4 + 2x2.

The criterion from Theorem 5.10 of a point being a stable solution of a tropical
system will be used further in our paper. In fact, this criterion can be tested in the
polynomial time, by means of an algorithm which produces a maximal rank subset of
an intersection of twomatroids, see e.g. [1,19], cf. also below the proof of Theorem7.1.

6 Estimating the Number of Connected Components for Tropical
Systems with Finite Coefficients

Using the theorems from Sect. 5 we can bound the number of connected components
of a tropical prevariety.

As in the previous section we assume that all the coefficients in a tropical system
are finite.

At first we will show that every connected component contains at least one gener-
alized vertex.

Theorem 6.1 If a tropical prevariety V is given by a tropical polynomial system A
with finite coefficients, then in any connected component of V there is at least one
generalized vertex.
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Proof Consider a point x of V . If it is not a generalized vertex then by Theorem 4.8
there is a vector along which all the directional derivatives of starred monomials in
each polynomial are the same. Let’s look at the star table while moving from the point
x forward and backward along this vector. In some neighborhood of x the star table
will not change, but at some point a new star has to appear (as the coefficients of
A are finite all the monomials are present, so there will be at least one non-starred
monomial whose derivative along the chosen vector differs from the derivatives of
the starred monomials in the same polynomial, as there is no vector along which the
derivatives of all the monomials are the same). Let’s choose this point as a new x .
By this procedure we have increased the number of stars in A∗x . Now we can repeat
the described process. But as there is a finite number of cells in the star table, we
can’t repeat this process up to infinity, so at some step the chosen point x must be a
generalized vertex. ��

To estimate the number of the generalized vertices we will prove the following
theorem:

Theorem 6.2 For any generalized vertex x of a tropical polynomial system in n vari-
ables we can choose a multiset of n polynomials from this system in such a way that
x is a stable solution for a tropical system given by the chosen polynomials (one
polynomial can be chosen several times). Moreover, if there were k ≥ n polynomials
in the initial system, then we can choose at least k − n + 1 different multisets of n
polynomials with the described properties.

Proof The existence of onemultisetwith the described properties immediately follows
from Theorems 4.11 and 5.10.

The second part of the theorem can be proved in the following way: consider a mul-
tiset {p1, p2, . . . , pn}, of n polynomials with the described properties. As x is a stable
point of these polynomialswe can choose a set ofmonomialsmi, j , 1 ≤ i ≤ n, j = 1, 2
as described in Theorem 5.10. Now we associate with each polynomial one vector:
ai = vn(mi,1,mi,2). By Theorem 5.10 these vectors form a basis in R

n . Now
we will prove that for any polynomial pn+1 which is not present in the multiset
{p1, p2, . . . , pn} we can choose a polynomial pi in such a way that x will be a stable
point of the system given by the polynomials {p1, p2, . . . , pi−1, pi+1, . . . , pn, pn+1}.
As x is a solution of pn+1 there are at least two monomials which are starred
in pn+1 at the point x . Let’s denote them by mn+1,1 and mn+1,2 (if there are
more than two starred monomials in pn+1 at the point x we will choose an arbi-
trary pair of the starred monomials). As {a1, a2, . . . , an} is a basis, there should
be a linear combination of this vectors which will be equal to vn(mn+1,1,mn+1,2),
this means that vn(mn+1,1,mn+1,2) = cai + L(a1, a2, . . . , ai−1, ai+1, . . . , an)
for some c �= 0 and some 1 ≤ i ≤ n, where L is a linear function. So
{a1, a2, . . . , ai−1, ai+1, · · · , an, vn(mn+1,1,mn+1,2)} is a basis of Rn , and by The-
orem 5.10, this means that x is a stable point of the system of the polynomials
{p1, p2, . . . , pi−1, pi+1, . . . , pn, pn+1}. As we can choose at least k−n polynomials
which are not included in the initial multiset, there are at least k−n+1 multisets with
the properties required in the theorem. ��
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As a consequence from this theorem we can obtain a bound on the number of the
generalized vertices:

Theorem 6.3 The number of the generalized vertices of a tropical prevariety in R
n

given by k polynomials with the tropical degrees bounded by d and with finite coeffi-
cients is not greater than

(k+n−1
n

)
dn.

Proof We can choose up to
(k+n−1

n

)
different multisets of equations and by Theo-

rem 5.3 the system formed by any of these multisets has at most dn stable points. This
implies the required bound. ��

By Theorem 6.1 we can obtain:

Corollary 6.4 The number of the connected components of a tropical prevariety in
R
n given by k polynomials with the tropical degrees bounded by d and with finite

coefficients is not greater than
(k+n−1

n

)
dn.

Remark 6.5 (i) Theorem 6.3 holds for any tropical prevariety (allowing also infinite
coefficients) due to Remark 5.4;

(ii) Corollary 6.4 holds for any compact tropical prevariety (allowing also infinite
coefficients) due to Theorem 4.12 because any compact connected component
contains a vertex;

(iii) The bounds in Theorem 6.3 and in Corollary 6.4 can be improved by(k+n−1
n

) dn
k−n+1 when k ≥ n due to Theorem 6.2.

However, this bound is not sharp, and while it’s rather precise for considerably
overdetermined system (in Theorem 8.1 wewill show that for overdetermined systems
a close bound can be achieved), for underdetermined systems a better bound can be
proved:

Theorem 6.6 The number of the connected components of a tropical prevariety in
R
n given by k polynomials with the tropical degrees bounded by d is not greater than

(d+n
d

)2k
.

Proof A tropical prevariety given by k tropical polynomials in n variables is a union

of at most
(d+n

d

)2k
convex polyhedra, each of them given by a star table with exactly

two stars in every row.

While this bound is not interesting for overdetermined system, for small k and d
comparatively to n it can be much better than the bound from Corollary 6.4.

Now we can obtain a bound on the Betti numbers of a tropical prevariety. Recall
that the discrete Morse’s theory states that the l-th Betti number of a compact tropical
prevariety is bounded by the number of faces of the dimension l, see e. g. [9].

Theorem 6.7 For any 0 ≤ l ≤ n the l-th Betti number of a compact tropical prevariety
given by a system of k polynomials of maximal degree at most d in n variables does
not exceed

((k+n−1
n

)
dn

)l+1
.
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Proof This result follows from the fact that any l-dimensional face of a compact
tropical prevariety contains at least l + 1 linearly independent vertices. In its turn,
the number of vertices does not exceed

(k+n−1
n

)
dn due to Theorems 6.3, 4.12, cf.

Remark 6.5. ��
However, this result is far from sharp, for example for small d it can be improved

by the bound on the number of faces for arrangements (an arrangement is a union of
several hyperplanes, see e.g. [10])

Theorem 6.8 For any 0 ≤ l ≤ n the l-th Betti number of a compact tropical prevariety
given by a system of k polynomials of the maximal degree d in n variables does not

exceed (l + 1)2n · (k(n+d
n )

2

n

)

Proof The number of l-dimensional faces in an arrangement can be estimated as
(l+1)2n ·(mn

)
where n is the dimension andm ≥ 2n is the number of hyperplanes (see

e.g. Buck’s formula in [10]). The set of the faces of a tropical prevariety is a subset of
the faces of the arrangement of hyperplanes, where for every pair of monomials from
the same polynomial we add a hyperplane where they are equal. Thus, we obtain the
required bound (the number of monomials in each polynomial does not exceed

(n+d
n

)
).
��

Remark 6.9 Observe that (unlike a tropical prevariety) a tropical variety can be com-
pact only when it is finite.

7 Tropical Bezout Inequality for Overdetermined Systems

While the bound on the number of connected components obtained in Corollary 6.4
can be used as a bound on the number of isolated points, in this particular case it can
be slightly improved.

Theorem 7.1 Given an overdetermined tropical polynomial system A of k ≥ n equa-
tions in n variables with an isolated solution at x we can always choose 2k monomials
mi, j , 1 ≤ i ≤ k, 1 ≤ j ≤ 2 with the following properties:

• monomials mi,1 and mi,2 are taken from i-th polynomial and starred in A∗x .
• the linear span of vectors vn(m1,1,m1,2), vn(m2,1,m2,2), . . . , vn(mk,1,mk,2) has
dimension equal to n.

Proof Assume the contrary. W. l. o. g. we can assume that x = 0 (we can always shift
a prevariety in such a way that it is).

Let A = { f1, . . . , fk}. Consider a set P of all the vectors vn(m1,m2) ∈ R
n where

monomials m1,m2 are taken from fi for some 1 ≤ i ≤ k being starred. W. l. o. g. one
can assume that the coefficients at all the starred monomials vanish.

Introduce two matroids on P . The first matroid has the rank function r1 equal the
number of polynomials in A from which the monomials are picked. In other words, an
independent set I consists of vectors of the form vn(m1,1,m1,2), vn(m2,1,m2,2), . . . ,

vn(ms,1,ms,2) such that monomials m j,1,m j,2 are taken from fi j , and i1 < · · · < is .
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Thus, r1(I ) = s. The second matroid has the rank function r2 with respect to the usual
linear independency.

Observe that the theorem claims that the intersection of these twomatroids contains
a subset with n elements (independent in both matroids).

Due to the Edmond’s theorem [19] the maximal cardinality of such subsets equals

min
U⊂P

{r1(U ) + r2(P \U )}.

Hence, by the assumption, there exists U ⊂ P for which r1(U ) + r2(P \ U ) <

n. Denote s := r1(U ) and let U contain (a maximal independent set of) vectors
vn(m j,1,m j,2), 1 ≤ j ≤ s, wherem j,1,m j,2 being starred monomials in fi j and i1 <

· · · < is . W. l. o. g. one can add toU all the vectors of this form from fi j , 1 ≤ j ≤ s.
Denote by L ⊂ R

n the linear hull of all the vectors of the form vn(m1,m2) where
m1,m2 being starred monomials from some polynomial fi with i /∈ {i1, . . . , is}. Then
r := dimL = r2(P \U ) < n − s.

Choose a basis vn(mp1 ,mq1), . . . , vn(mpr ,mqr ) in L. Denote polynomials (bino-
mials)

gl := mpl − mql ∈ (C[[TR]])[x1, . . . , xn], 1 ≤ l ≤ r.

Clearly, gl(1, . . . , 1) = 0, 1 ≤ l ≤ r .
Fix 1 ≤ j ≤ s for the time being and let fi j = ⊕

m cm
⊗

m. Since 0 is a tropical
zero of A, one can find among the coefficients at least two minima (recall that the
minima equal zero). Pick one of these minima cm0 = 0. Consider a polynomial

h j :=
∑

m �=m0

T cm · m −
( ∑

m �=m0

T cm
)

· m0 ∈ (C[[TR]])[x1, . . . , xn].

Then the tropicalization of h j coincides with fi j , and h j (1, . . . , 1) = 0.

Due to Theorems 3.7, 3.8 the tropicalization V ⊂ R
n of the variety in (C[[TR]]\0)n

given by r + s polynomials {gl , 1 ≤ l ≤ r} ∪ {h j , 1 ≤ j ≤ s} has a local dimen-
sion at 0 greater or equal to n − s − r ≥ 1. On the other hand, in an appropriate
neighborhood of 0 V satisfies system A taking into the account that the vectors
vn(mp1,mq1), . . . , vn(mpr ,mqr ) constitute a basis in L. This contradicts that 0 is
an isolated zero of A. ��

The latter theorem leads to the desired bound on the number of 0-dimensional
components of a tropical prevariety.

Theorem 7.2 The number of isolated solutions of an overdetermined tropical polyno-

mial system of k ≥ n polynomials in n variables is not greater than (kn)
(k−n+1) D, where

D is the product of n greatest degrees of the given polynomials.

Proof By Theorems 7.1 and 5.10 we can state that any isolated solution is a stable
solution of some subsystem of the size n (by a suitable shift of variables we can always
shift the solution to 0). There are less or equal than

(k
n

)
subsystems and by Bezout’s
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equality (seeTheorem5.3 andRemark 5.4) each of themhas atmost D stable solutions.
Moreover, each solution is counted at least k − n + 1 times (the reasoning is the same
as in Theorem 6.2). ��

As we will show in the next section, this bound is close to sharp.

8 Lower Bounds on the Number of Isolated Tropical Solutions

In this section we will build an example, which shows that Theorem 7.2 in case of
tropical polynomial systems is close to sharp. While we will omit some monomials
(i.e. we will use infinite coefficients), an example like this can be built with finite
coefficients only (replacing the infinite coefficients by sufficiently large real numbers).

Theorem 8.1 Given n one can build a series of tropical systems of k(n − 1), k ≥ 3
polynomials in n ≥ 2 variables of degree 4d, d ≥ 1 in such a way that the number of
isolated solutions of systems from this series is 2(k − 1)n−1dn.

Proof Consider a tropical polynomial system in 2 variables:

A =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

3 ⊕ 1x1 ⊕ x1x2 ⊕ 1x1 ⊕ x1x
⊗2
2 ⊕ 2x⊗2

2

3 ⊕ 1x1 ⊕ 3x1x2 ⊕ 4x2 ⊕ 6x1x
⊗2
2 ⊕ 8x⊗2

2

3 ⊕ 1x1 ⊕ 6x1x2 ⊕ 7x2 ⊕ 12x1x
⊗2
2 ⊕ 14x⊗2

2

· · ·
3 ⊕ 1x1 ⊕ (3k − 3)x1x2 ⊕ (3k − 2)x2 ⊕ (6k − 6)x1x

⊗2
2 ⊕ (6k − 4)x⊗2

2

The graph of the hypersurface H1 given by the first polynomial is depicted on Fig. 2.
The prevariety (curve) Hi of the i-th polynomial of A is obtained from H1 by a vertical
shift down by 3i − 3.

Therefore, the points (α, β − 3 j), 0 ≤ j ≤ k − 2 are solutions of A.
Moreover, these points are isolated solutions since the prevariety of A consists of

these points and of two vertical half-lines.
Now we construct a tropical system B in 2 variables consisting of k polynomials

of degrees 4d for any d ≥ 1. The Newton’s polygon of each of these polynomials is a
square with the mesh 2d which is obtained from the 2×2 square depicted in Fig. 3 by

Fig. 2 The hypersurface (the
curve) H1 given by the tropical
polynomial 3 ⊕ 1x1 ⊕ x1x2 ⊕
1x2 ⊕ x1x

⊗2
2 ⊕ 2x⊗2

2 and its
Newton’s polygon. α is equal to
2 and β is equal to 3 in the
picture

•
(α ,β )

•
(α ,β +3)
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Fig. 3 Newton’s polygon used
in Theorem 8.1

Fig. 4 Example for
Theorem 8.1

•(γ ,ν)

•(γ ,κ − 3)

•(γ ,κ)

•(γ ,δ)

• (γ +5, ν)

• (γ +5, κ − 3)

• (γ +5, κ)

• (γ +5, δ)

replicating it d2 times. The coefficients of these polynomials are chosen with suitable
conditions imposed on the distances which follow. The curve of the first polynomial of
B is depicted on Fig. 4. The curve consists of d horizontal layers of d hexagons each
of a height and a width equal to 3 each obtained from the previous one by a vertical
shift. We impose the condition that the first shift (which is equal δ − κ) is greater than
3k. In a similar way the second shift (κ − 3) − ν is also greater than 3k and so on.
The other polynomials are chosen in the way similar to system A: they give curves
which are vertical shifts of the curve given by the first polynomial. The second curve
is shifted down by 3, the third curve is shifted down by 6, . . ., the k-th curve is shifted
down by 3(k − 1).

The solutions of B form d series of isolated points, each series consists of 2(k−1)d
points and of 2d half-lines. For each 0 ≤ i ≤ d − 1 a series has the following
isolated points: (γ + 4i, δ), (γ + 4i + 1, δ), (γ + 4i, δ − 3), (γ + 4i + 1, δ − 3), . . .,
(γ +4i, δ−3k+3), (γ +4i+1, δ−3k+3); (γ +4i, (κ−3)−3), (γ +4i+1, (κ−3)−3),
(γ + 4i, (κ − 3) − 6), (γ + 4i + 1, (κ − 3) − 6), . . ., (γ + 4i, (κ − 3) − 3k + 3),
(γ + 4i + 1, (κ − 3) − 3k + 3); and so on.

Now consider a system Cn in n variables which consists of n − 1 copies of B such
that in the l-th copy, 1 ≤ l ≤ n − 1, the variable x2 is replaced by xl+1. The isolated
solutions of the system Cn form a n-dimensional lattice consisting of 2(k − 1)n−1dn

points (there are 2d series each with a fixed value of the coordinate x1 containing
((k − 1)d)n−1 isolated points). ��

Remark 8.2 The number of the solutions of the constructed system A in 2 variables
consisting of k cubic tropical polynomials, is linear in k. In contrast, one can prove
that a system in 2 variables consisting of an arbitrary number of quadratic tropical
polynomials, has at most 72 solutions.
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9 Compatification of Tropical Prevarieties

In this section we will show that for any tropical prevariety V we can build a compact
tropical prevariety being homotopy equivalent to V . This technique can be used to
reduce the problem of estimating the number of connected components of tropical
prevarieties to the case of compact prevarieties.

We will use the following theorem:

Theorem 9.1 Given a tropical prevariety V we can find a constant s such that the
intersection of V and a cube with the side equal to s and centered at the origin would
be homotopy equivalent to V . In this theorem we allow the prevariety to be given by
a system with infinite coefficients.

This theorem can be viewed as a simplification of Lemma 9 in [15], or it can be
proved directly with the help of Cramer’s rule in the same way as it was used in
Theorem 5.6.

Theorem 9.2 Consider a tropical prevariety V given by a tropical system A in n
variables. We can add 2n extra variables and 4n extra polynomials which being added
to the system A will form a system B that determines a compact tropical prevariety
W being a homotopy equivalent to V .

Proof Let 2s be a side of the cube from Theorem 9.1. For each variable xi we will add
two variables: ui and vi ; and four tropical (linear) polynomials: xi ⊕ ui , xi ⊕ ui ⊕ s,
vi ⊕ −s and xi ⊕ vi ⊕ −s. The first two polynomials will guarantee that ui = xi ≤ s,
and the last two will guarantee that xi ≥ vi = −s. Therefore, W is homeomorphic
to V ∩ [−s, s]n . The prevariety W is compact and by Theorem 9.1 it is homotopy
equivalent to V . While there are infinite coefficients in the added polynomials this is
not an obstacle as one can replace all the infinite coefficients by M + 2sd , where M
is the maximal coefficient occurring in the polynomials from A and d is the maximal
degree of the polynomials from A. No monomial with this coefficient M + 2sd could
be minimal as the absolute values of all the variables are guaranteed to be less or equal
than s. ��

The bound in Corollary 6.4 on the number of the connected components of a trop-
ical prevariety is established for systems with finite coefficients because we used that
a connected component contains a generalized vertex due to Theorem 6.1 [for com-
pact prevarieties see Remark 6.5 (iii)]. However, Theorem 9.2 gives us the following
generalizations to the case of arbitrary coefficients:

Corollary 9.3 The number of the connected components of a tropical prevariety given
by k polynomials with the tropical degrees bounded by d and with allowed infinite

coefficients is not greater than d3n
k+n+1

(k+7n−1
3n

)
.

The proof relies on Corollary 6.4 and on Remark 6.5 (iii).
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Corollary 9.4 The l-th Betti number of a tropical prevariety does not exceed((k+7n−1
3n

) · d3n)l+1
.

Follows from Theorem 6.7 and from Theorem 9.2.

Corollary 9.5 The l-th Betti number of a tropical prevariety does not exceed

(l + 1)23n · ((k+4n)·(3n+d
3n )

2

3n

)

Follows from Theorem 6.8 and from Theorem 9.2.
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