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Abstract A classification of SL(n) invariant valuations on the space of convex poly-
topes inRn without any continuity assumptions is established. A corresponding result
is obtained on the space of convex polytopes in Rn that contain the origin.
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1 Introduction

Since Felix Klein announced his Erlangen program nearly 150 years ago, the study and
classification of invariants of geometric objects with respect to transformation groups
are among the most important tasks in geometry. In Euclidean space Rn , volume and
the Euler characteristic are invariant under translations and rotations. They are even
invariant under maps from the special linear group, SL(n). Both invariants turn out to
have a further natural property. They satisfy the inclusion–exclusion principle showing
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that these functionals are valuations. Here, a functional � is called a valuation on
a collection S of sets if

�(P) + �(Q) = �(P ∪ Q) + �(P ∩ Q) (1)

whenever P, Q, P ∩ Q, P ∪ Q ∈ S. Hence it is a natural task to classify invariants
which are also valuations.

The aim of this paper is to obtain a complete classification of SL(n) invariantswhich
are valuations on the set Pn of convex polytopes in Rn . We show that besides volume
and theEuler characteristic there are further invariant valuations.We characterize these
SL(n) invariant valuations and prove that among these volume and Euler characteristic
are essentially the only invariants with certain continuity properties.

The classification of valuations using invariance and continuity properties is a clas-
sical part of geometry with important applications in integral geometry (cf. [5] and
[11, Chap. 6]). Such results are useful in the affine geometry of convex bodies and for
affine invariant problems in analysis. As mentioned above, the n-dimensional volume
Vn : Pn → R and the Euler characteristic V0 : Pn → R (for which V0(P) = 1 for
P �= ∅) are the most important such functionals. Since we do not assume continuity,
also functionals that depend on (possibly discontinuous) solutions ψ : [0,∞) → R

of Cauchy’s functional equation

ψ(x + y) = ψ(x) + ψ(y)

for x, y ∈ [0,∞) will occur.
Denote by Pn

0 the subspace of convex polytopes that contain the origin. First, we
consider valuations defined on Pn

0 and obtain the following result. Let dim P be the
dimension of the polytope P , that is, the dimension of its affine hull, aff P , and write
relint P for the relative interior of P with respect to aff P . Let n ≥ 2 throughout the
paper.

Theorem 1.1 A functional � : Pn
0 → R is an SL(n) invariant valuation if and

only if there are constants c0, c′
0 ∈ R and a solution ψ : [0,∞) → R of Cauchy’s

functional equation such that

�(P) = c0 V0(P) + c′
0 (−1)dimP1relintP (0) + ψ(Vn(P))

for every P ∈ Pn
0 .

Here 1Q is the indicator function of Q ⊂ R
n , that is, 1Q(x) = 1 if x ∈ Q and

1Q(x) = 0 otherwise.
Let Pn and Pn

0 be equipped with the standard topology, which comes from the
Hausdorff metric. A functional on Pn or Pn

0 is (Borel) measurable if the pre-image of
every open set in R is a Borel set. In Sect. 5, we show that P �→ (−1)dim P1relint P (0)
is measurable. It is well known that every measurable solution of Cauchy’s functional
equation is linear. This immediately implies the following result.
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Corollary 1.2 A functional � : Pn
0 → R is a measurable and SL(n) invariant

valuation if and only if there are constants c0, c′
0, cn ∈ R such that

�(P) = c0 V0(P) + c′
0 (−1)dim P1relint P (0) + cn Vn(P) (2)

for every P ∈ Pn
0 .

LetKn denote the space of convex bodies (that is, compact convex sets) inRn and let
Kn

0 be the subspace of convex bodies that contain the origin. On these spaces, important
upper semicontinuous functionals exist that are defined as certain curvature integrals.
Classification results for SL(n) invariant and upper semicontinuous valuations were
established in [6,9,10]. For SL(n) invariant valuations on polytopes containing the
origin, the following result is a consequence of Corollary 1.2.

Corollary 1.3 A functional � : Pn
0 → R is an upper semicontinuous and SL(n)

invariant valuation if and only if there are constants c0, cn ∈ R such that

�(P) = c0 V0(P) + cn Vn(P)

for every P ∈ Pn
0 .

We remark that for upper semicontinuous and SL(n) invariant valuations on Pn
(0),

that is, the set of convex polytopes that contain the origin in their interiors, a complete
classification was established by Haberl and Parapatits [3]. For homogeneous, mea-
surable and SL(n) invariant valuations such a result was established in [7]. Recently,
Haberl and Parapatits [4] strengthened these results and obtained a complete classifi-
cation of measurable and SL(n) invariant valuations on Pn

(0).
Next, we consider the space of all convex polytopes Pn . For P ∈ Pn , we write

[0, P] for the convex hull of the origin and P .

Theorem 1.4 A functional � : Pn → R is an SL(n) invariant valuation if and only
if there are constants c0, c′

0, d0 ∈ R and solutions φ,ψ : [0,∞) → R of Cauchy’s
functional equation such that

�(P) = c0 V0(P) + c′
0 (−1)dim P1relint P (0) + ψ(Vn(P)) + d01P (0) + φ(Vn([0, P]))

for every P ∈ Pn.

Taking into account that all measurable solutions of Cauchy’s functional equation
are linear immediately gives the following corollary.

Corollary 1.5 A functional � : Pn → R is a measurable and SL(n) invariant
valuation if and only if there are constants c0, c′

0, cn, d0, dn ∈ R such that

�(P) = c0 V0(P) + c′
0 (−1)dim P1relint P (0) + cn Vn(P) + d01P (0) + dn Vn([0, P])

for every P ∈ Pn.

As in Corollary 1.3, we also impose stronger assumptions on the valuations and
obtain the following results.
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Corollary 1.6 A functional � : Pn → R is an upper semicontinuous and SL(n)

invariant valuation if and only if there are constants c0, cn, dn ∈ R and d0 ≥ 0 such
that

�(P) = c0 V0(P) + cn Vn(P) + d01P (0) + dn Vn([0, P])

for every P ∈ Pn.

Corollary 1.7 A functional � : Pn → R is a continuous and SL(n) invariant
valuation if and only if there are constants c0, cn, dn ∈ R such that

�(P) = c0 V0(P) + cn Vn(P) + dn Vn ([0, P])

for every P ∈ Pn.

We remark that deducing Theorem 1.4 from Theorem 1.1 is similar to the
corresponding step for convex-body valued valuations. Classification results for
convex-body valued valuations intertwining SL(n) were first established on Kn

0 in
[8] (also see [2]) and then extended to classification results on Kn by Schuster and
Wannerer [12] and Wannerer [13].

2 Notation and Preliminaries

We work in n-dimensional Euclidean space, Rn , and denote its standard basis by
e1, . . . , en . We write lin for linear hull and [v1, . . . , vi ] for the convex hull of
v1, . . . , vi ∈ R

n .
A valuation � : Pn → R can be extended to a valuation on finite unions of convex

polytopes such that the inclusion–exclusion principle holds (cf. [5] or [11, Thms. 6.2.1
and 6.2.3]), that is, for P1, . . . , Pm ∈ Pn ,

�(P1 ∪ · · · ∪ Pm) =
m∑

j=1

(−1) j−1
∑

1≤i1<···<i j ≤m

�(Pi1 ∩ · · · ∩ Pi j ). (3)

This is also called finite additivity.
Let Q be a finite union of k-dimensional polytopes. We define a triangulation

of Q into simplices as a set of k-dimensional simplices {T1, . . . , Tm} which have
pairwise disjoint interiors, with Q = ⋃

Ti and with the property that for arbitrary
1 ≤ i1 < · · · < i j ≤ m the intersections Ti1 ∩ · · · ∩ Ti j are again simplices. This
guarantees that when making use of the inclusion–exclusion principle in this setting,
on the right hand side only simplices occur.

We also require the following special case of a result by Haberl [1, Lem. 3.2] (or
see [2, Lem. 2]) for simple valuations, that is, for valuations which vanish on lower
dimensional sets.

Lemma 2.1 (Haberl [1]) If � : Pn
0 → R is a simple valuation and �(T ) = 0 for

every n-dimensional simplex T with one vertex at the origin, then �(P) = 0 for every
P ∈ Pn

0 .
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3 Proof of Theorem 1.1

First, we check that � : Pn
0 → R defined by �(P) = (−1)dim P1relint P (0) is a

valuation, that is, we check that (1) holds for all P, Q ∈ Pn
0 with P ∪ Q ∈ Pn

0 . Note
that (1) holds if P ⊆ Q or Q ⊆ P . If there is no inclusion, then P∪Q ∈ Pn

0 implies that
P and Q have the same affine hull and hence dim P = dim Q = dim(P ∪ Q). If 0 ∈
relint P and 0 ∈ relint Q, then 0 ∈ relint(P ∩ Q) and 0 ∈ relint(P ∪ Q) and therefore
(1) holds. If 0 ∈ relint P and 0 /∈ relint Q (or vice versa), then 0 ∈ relint(P ∪ Q)

and 0 /∈ relint(P ∩ Q) and therefore (1) holds. If 0 /∈ relint P and 0 /∈ relint Q
while 0 /∈ relint(P ∪ Q), then 0 /∈ relint(P ∩ Q) and therefore (1) holds. Finally, if
0 /∈ relint P and 0 /∈ relint Q while 0 ∈ relint(P ∪ Q), then 0 ∈ relint(P ∩ Q) and
dim(P ∪ Q) = dim(P ∩ Q) + 1 and therefore (1) holds. Thus � is a valuation and
it clearly is SL(n) invariant. Hence for c0, c′

0 ∈ R and ψ : [0,∞) → R a solution of
Cauchy’s functional equation

P �→ c0 V0(P) + c′
0 (−1)dim P1relint P (0) + ψ(Vn(P))

is an SL(n) invariant valuation on Pn
0 . We have to show that every SL(n) invariant

valuation � : Pn
0 → R is of such form.

For i = 0, . . . , n, let T i be the set of i-dimensional simplices T ⊂ R
n with one

vertex at the origin 0.

Lemma 3.1 If � : Pn
0 → R is an SL(n) invariant valuation, then there are a constant

c0 ∈ R and a solution ψ : [0,∞) → R of Cauchy’s functional equation such that

�(T ) = c0 V0(T ) + ψ(Vn(T ))

for every T ∈ T 1 ∪ · · · ∪ T n.

Proof Note that for k ≤ n − 1, any simplex T ∈ T k is an SL(n) image of the simplex
[0, e1, . . . , ek]. Set

c0 = � ([0, e1]) .

We show that
�(T ) = c0 for all T ∈ T 1 ∪ · · · ∪ T n−1. (4)

By definition this holds true for T ∈ T 1.
For n ≥ 3, assume T1, T2, T1 ∪ T2 ∈ T 2 and T1 ∩ T2 ∈ T 1. By the additivity of �,

we have

�(T1) + �(T2) = � (T1 ∪ T2) + � (T1 ∩ T2) .

Since all simplices in T 2 are SL(n) images of [0, e1, e2], we obtain

� ([0, e1, e2]) = � (T1 ∩ T2) = � ([0, e1]) = c0.
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We continue by induction. Assume that for k ≤ n−2we already know that�(T ) = c0
for all T ∈ T 1 ∪ · · · ∪ T k−1. Further, let T1, T2, T1 ∪ T2 ∈ T k and T1 ∩ T2 ∈ T k−1.
By the additivity of �, we have

�(T1) + �(T2) = �(T1 ∪ T2) + �(T1 ∩ T2).

Since all simplices in T k are SL(n) images of [0, e1, . . . , ek] for k ≤ n −1, we obtain

� ([0, e1, . . . , ek]) = � (T1 ∩ T2) = � ([0, e1, . . . , ek−1]) = c0.

This proves (4).
In the last step, let T ∈ T n . There is A ∈ SL(n) such that

AT = [0, e1, . . . , en−1, n!v en]

where v = Vn(T ). Define α : [0,∞) → R by

α(v) = � ([0, e1, . . . , en−1, n!v en])

and note that by the SL(n) invariance �(T ) = α
(
Vn(T )

)
for all T ∈ T n .

For x, y ≥ 0, let T ∈ T n be such that x + y = Vn(T ). We choose T1, T2 ∈ T n

such that x = Vn(T1) and y = Vn(T2) while T = T1 ∪ T2 and T1, T2 have disjoint
interiors. It follows that

α(x + y) = �(T ) = �(T1) + �(T2) − �(T1 ∩ T2) = α(x) + α(y) − c0.

Thus α−c0 is a solution, sayψ : [0,∞) → R, of Cauchy’s functional equation. Thus
we obtain

�(T ) = c0 V0(T ) + ψ(Vn(T ))

which proves the lemma. ��

Let c0 and ψ be as in Lemma 3.1 and set c′
0 = �({0}) − c0. Define � ′ : Pn

0 → R

as

� ′ = � − c0 V0 − ψ ◦ Vn − c′
0(−1)dim P1relint P (0).

Note that � ′ is an SL(n) invariant valuation, that � ′({0}) = 0 and that � ′ vanishes
by Lemma 3.1 on T 1 ∪ · · · ∪ T n . The following lemma completes the proof of the
theorem.

123



Discrete Comput Geom (2017) 57:571–581 577

Lemma 3.2 The valuation � ′ vanishes on Pn
0 .

Proof Since � ′ vanishes on T 0 ∪ T 1, for s, t > 0 we have � ′ ([0, te1]) = 0 and

� ′ ([−se1, te1]) = � ′ ([−se1, 0]) + � ′ ([0, te1]) = 0.

Thus � ′ vanishes on all at most 1-dimensional polytopes in Pn
0 .

We proceed by induction on k = dim P and assume that� ′(P) = 0 holds for all at
most (k − 1)-dimensional P ∈ Pn

0 . Hence � ′ is simple when restricted to polytopes
in Pn

0 in a k-dimensional subspace. Since � ′ vanishes on T k , Lemma 2.1 implies that
� ′ vanishes on all polytopes inPn

0 in this k-dimensional subspace. Hence� ′ vanishes
on all at most k-dimensional polytopes in Pn

0 . This completes the proof of the lemma.
��

4 Proof of Theorem 1.4

It is easy to check (as in the proof of Theorem 1.1) that P �→ (−1)dim P1relint P (0) is
a valuation on Pn and also P �→ 1P (0) is a valuation on Pn . They clearly are SL(n)

invariant. Hence for c0, c′
0, d0 ∈ R and φ,ψ : [0,∞) → R solutions of Cauchy’s

functional equation

P �→ c0 V0(P) + c′
0 (−1)dim P1relint P (0) + ψ

(
Vn(P)

) + d01P (0) + φ
(
Vn([0, P]))

is an SL(n) invariant valuation on Pn . We have to show that every SL(n) invariant
valuation � : Pn → R is of such form.

We apply Theorem 1.1 to the restriction of � to Pn
0 and obtain a0, a′

0 ∈ R and a
solution α : [0,∞) → R of Cauchy’s functional equation such that

�(P) = a0 V0(P) + a′
0 (−1)dim P1relint P (0) + α

(
Vn(P)

)

for P ∈ Pn
0 . Set b0 = �({e1}). Define � ′ : Pn → R by

� ′(P) = �(P) − a0 1P (0) − a′
0 (−1)dim P1relint P (0) − b01Pc (0) − α

(
Vn(P)

)
,

where Pc is the complement of P in Rn . Note that � ′ is an SL(n) invariant valuation
on Pn which vanishes on Pn

0 .
First we consider � ′ on at most (n − 2)-dimensional polytopes.

Lemma 4.1 The valuation� ′ vanishes on every polytope P ∈ Pn withdim P ≤ n−2.

Proof Note that� ′ vanishes already onPn
0 and thus we have to take care of polytopes

P in Pn \ Pn
0 . We prove the statement by induction on k = dim P . For k = 0, we

have � ′({x}) = � ′({e1}) = 0 for x �= 0. Assume � ′(P) = 0 for all P ∈ Pn with
dim P ≤ k − 1. We prove the statement for dim P = k ≤ n − 2.

First, let T be a k-dimensional simplex and 0 /∈ aff T . There is a special linear map
from T onto [e1, e2, . . . , ek+1] and if we dissect T into two k-dimensional simplices
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T1 and T2, then there are special linear maps from T1 and T2 onto [e1, e2, . . . , ek+1].
By the SL(n) invariance of � ′, the valuation property and the induction assumption,
we obtain

� ′(T ) = � ′(T1) + � ′(T2) − � ′(T1 ∩ T2) = 2� ′(T )

which proves � ′(T ) = 0.
Second, let P be a k-dimensional polytope with 0 /∈ aff P . Triangulate P into

k-dimensional simplices T1, . . . , Tm . By the inclusion–exclusion principle (3), the
induction assumption and the statement just proved for simplices, we have

� ′(P) =
m∑

j=1

(−1) j−1
∑

1≤i1<···<i j ≤m

� ′(Ti1 ∩ · · · ∩ Ti j ) = 0.

Third, let P be a k-dimensional polytope with 0 ∈ aff P . For P ∈ Pn
0 we already

have � ′(P) = 0. So assume 0 /∈ P and let F1, . . . , Fm be the facets of P visible
from the origin, i.e. relint Fi ⊆ relint[0, P]. Triangulate the facets Fi into sim-
plices T ′

1, . . . , T ′
l , and thus the closure of [0, P] \ P into simplices T1 = [0, T ′

1], . . . ,
Tl = [0, T ′

l ] with a vertex at the origin. Using the inclusion–exclusion principle (3),
the fact that � ′ vanishes on Pn

0 , and by the induction hypothesis also on polytopes of
dimension at most k − 1, we obtain

0 = � ′([0, P]︸ ︷︷ ︸
∈Pn

0

) =
m∑

j=1

(−1) j−1
∑

1≤i1<···<i j ≤m

� ′(Ti1 ∩ · · · ∩ Ti j︸ ︷︷ ︸
∈Pn

0

)

+
m∑

j=1

(−1) j
∑

1≤i1<···<i j ≤m

� ′(Ti1 ∩ · · · ∩ Ti j ∩ P
︸ ︷︷ ︸

dim≤k−1

) + � ′(P)

= � ′(P).

This completes the proof of the lemma. ��
It remains to investigate polytopes of dimension at least n − 1.

Lemma 4.2 There is a solution β : [0,∞) → R of Cauchy’s functional equation
such that

� ′(P) = β(Vn([0, P]))

for every (n − 1)-dimensional polytope P ∈ Pn.

Proof First, let T be an (n −1)-dimensional simplex with 0 /∈ aff T . There is a special
linearmap from T onto the simplex [e1, . . . , en−1, n!v en]with v = Vn([0, T ]). Define
the function β : [0,∞) → R by

β(v) = � ′([e1, . . . , en−1, n!v en]) = � ′(T ).
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Dissecting T into two (n − 1)-dimensional simplices T1 and T2 and setting
vi = Vn([0, Ti ]) for i = 1, 2, we obtain by Lemma 4.1 that

β(v) = � ′(T ) = � ′(T1) + � ′(T2) = β(v1) + β(v2)

where clearly v = v1 + v2. Thus β is a solution of Cauchy’s functional equation, and
we have � ′(T ) = β(Vn([0, T ])).

Second, let P be an (n − 1)-dimensional polytope with 0 /∈ aff P . Triangulate
P into simplices T1, . . . , Tl . Using the inclusion–exclusion principle (3) and that � ′
vanishes on at most (n − 2)-dimensional polytopes, we obtain

� ′(P) =
l∑

j=1

� ′(Tj ) =
l∑

j=1

β(Vn([0, Tj ]) = β(Vn([0, P])),

where we used the previous calculation for simplices and the finite additivity of Vn .
Third, let P be an (n − 1)-dimensional polytope with 0 ∈ aff P . Then the polytope

[0, P] is (n − 1)-dimensional and thus β(Vn([0, P])) = 0. So we have to prove that
� ′(P) = 0. If P ∈ Pn

0 we already know that � ′(P) = 0. So assume 0 /∈ P , and
as in the proof of Lemma 4.1 triangulate the facets of P visible from the origin, and
thus the closure of [0, P] \ P into simplices T1, . . . , Tl with a vertex at the origin.
Using that � ′ vanishes on Pn

0 and on at most (n − 2)-dimensional polytopes and the
inclusion–exclusion principle (3), we obtain

0 = � ′([0, P]) =
l∑

j=1

� ′(Tj ) + � ′(P) = � ′(P)

which completes the proof of the lemma. ��
Observe that Vn([0, P]) = Vn([0, P] \ P) for every (n − 1)-dimensional polytope

P ∈ Pn . Thus Lemmas 4.1 and 4.2 yield

� ′(P) = β(Vn([0, P] \ P))

if dim P ≤ n − 1. It remains to prove this also for polytopes P of dimension n.
For P ∈ Pn

0 , the assertion is trivial since � ′ vanishes on Pn
0 . Let P ∈ Pn\Pn

0 , and
let F1, . . . , Fm be the facets of P visible from the origin. Since � ′ vanishes on Pn

0

and on all at most (n −2)-dimensional polytopes, we have by the inclusion–exclusion
principle (3)

0 = � ′ ([0, P])
=

m∑

j=1

(−1) j−1
∑

1≤i1<···<i j ≤m

� ′([0, Fi1 ] ∩ · · · ∩ [0, Fi j ]︸ ︷︷ ︸
∈Pn

0

)
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+
m∑

j=2

(−1) j
∑

1≤i1<···<i j ≤m

� ′([0, Fi1 ] ∩ · · · ∩ [0, Fi j ] ∩ P
︸ ︷︷ ︸

dim≤n−2

)

−
∑

1≤i≤m

� ′([0, Fi ] ∩ P︸ ︷︷ ︸
=Fi

) + � ′(P)

= � ′(P) −
m∑

i=1

� ′(Fi ).

Hence Lemma 4.2 implies that

� ′(P) =
m∑

i=1

� ′(Fi ) =
m∑

i=1

β(Vn([0, Fi ])) = β(Vn([0, P]\P)).

Thus we obtain the following for �. For all P ∈ Pn ,

�(P) = a0 1P (0) + a′
0 (−1)dim P1relint P (0) + b01Pc (0)

+α(Vn(P)) + β(Vn([0, P]\P)).

Set c0 = a0 + b0 and c′
0 = a′

0 as well as d0 = −b0. Further define the functions
φ,ψ : [0,∞) → R as ψ = α − β and φ = β. This gives the representation from
Theorem 1.4.

5 Proofs of the Corollaries

For Corollaries 1.2 and 1.5, we show that the function P �→ (−1)dim P1relint P (0)
is measurable. For k = 0, . . . , n, the set {P ∈ Pn

0 : dim P ≤ k} is closed in Pn
0 .

Hence Pn
0,k = {P ∈ Pn

0 : dim P = k} is a Borel set in Pn
0 for k = 0, . . . , n.

Since the set {P ∈ Pn
0 : dim P = k, 0 ∈ relint P} is open in Pn

0,k , this shows that
{P ∈ Pn

0 : dim P = k, 0 ∈ relint P} is a Borel set in Pn
0 and in Pn for k = 0, . . . , n,

which implies measurability.
For Corollaries 1.3 and 1.6, it suffices to show that the valuation

�(P) = c′
0(−1)dim P1relint P (0)

is upper semicontinuous if and only if c′
0 = 0. Indeed,

lim
s→0

�([−se1, se1]) = −c′
0 ≤ �(0) = c′

0

and hence c′
0 ≥ 0. On the other hand

lim
s→0

�([−se1, se1,−e2, e2]) = c′
0 ≤ �([−e2, e2]) = −c′

0
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and thus c′
0 ≤ 0 which gives c′

0 = 0.
For Corollary 1.6 it remains to note that P �→ d01P (0) is upper semicontinuous

for d0 ≥ 0.
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