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Abstract Let ES(n) denote the minimum natural number such that every set of ES(n)
points in general position in the plane contains n points in convex position. In 1935,
Erdős and Szekeres proved that ES(n) ≤ (2n−4

n−2

)+ 1. In 1961, they obtained the lower
bound 2n−2 + 1 ≤ ES(n), which they conjectured to be optimal. In this paper, we
prove that

ES(n) ≤
( 2n − 5

n − 2

)
−

( 2n − 8
n − 3 + 2

)
≈ 7

16

( 2n − 4
n − 2

)
.
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1 Introduction

In 1933, Esther Klein asked about the existence of the least natural number ES(n)
such that every set of ES(n) points in general position in the plane contains n points
in convex position. Erdős and Szekeres [3] gave a positive answer in 1935, by proving
that ES(n) ≤ (2n−4

n−2

) + 1. In 1961, they gave a construction in [4] and proved that
2n−2 + 1 ≤ ES(n). The lower bound is conjectured to be tight.
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In 1998, Chung and Graham [2] improved the upper bound by 1. In the same
year, Kleitman and Pachter [5] proved that ES(n) ≤ (2n−4

n−2

) − 2n + 7. Shortly after
that, Tóth and Valtr [7] improved the bound roughly by a factor of 2 by showing that
ES(n) ≤ (2n−5

n−2

)+ 2. In [8], they combined the ideas from [2,7] to improve this bound
by another 1. We refer the reader to [1] for other questions and results related to the
Erdős–Szekeres theorem.

In his recent paper [9], Vlachos further improved the bound and showed that

ES(n) ≤
( 2n − 5

n − 2

)
−

( 2n − 8
n − 3

)
+

( 2n − 10
n − 3

)
+ 2, (1)

which implies

lim sup
n→∞

ES(n)( 2n − 5
n − 2

) ≤ 29

32
. (2)

Vlachos’ manuscript [9] has revitalized the subject and has led to further improve-
ments. Using slightly different techniques, Norin and Yuditsky [6] showed that

lim sup
n→∞

ES(n)

(2n−5
n−2 )

≤ 7

8
. (2′)

On the other hand, during the refereeing process of [9], each of the two current
authors independently fine-tuned the original arguments of [9] to get rid of the term(2n−10

n−3

)
in (1).

Our main result is the following.

Theorem 1.1 Let ES(n) be the minimum natural number such that every set of ES(n)
points in the plane contains n points in convex position. For any natural number n ≥ 6,
we have

ES(n) ≤
( 2n − 5

n − 2

)
−

( 2n − 8
n − 3

)
+ 2.

Note that this result is slightly stronger than that in [6], but it yields the same asymptotic
upper bound (2′).

In Sect. 2 of the paper, a partitioning of any point set, with some nice applications is
introduced. We use this partitioning to give an alternative proof of the first upper bound
for ES(n), which was obtained by Erdős and Szekeres [3]. In Sect. 3, we introduce an
auxiliary function called the convexification function h(m, l), and establish some of its
most important properties. Among them, Lemma 3.3 and Theorem 3.4 are taken from
[9]. We prove another property of h(m, l) in Theorem 3.5. Combining this result with
the other two will give us an improved upper bound on the convexification function.
By using this bound and applying a projective transformation taken from [7], we prove
Theorem 1.1 in the last section, and deduce the asymptotic bound (2′) from it.
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5–cup 5–cap

Fig. 1 A 5-cup and a 5-cap

2 Preliminary Results

First, we define a few properties of the point sets in the plane.

Definition 2.1 A set is said to be in general position, if it does not contain any three
collinear points.

A set is non-vertical, if any vertical line in the plane contains at most one point of
the set. In other words, no line spanned by the points of the set is vertical.

Unless otherwise stated, all sets we consider in this paper (even when considering the
union of two sets) are assumed to be finite, non-vertical and in general position.

Definition 2.2 (Cups and Caps) Let m ≥ 3 be a natural number. We say that the points
(x1, y1), (x2, y2), . . . , (xm, ym) form an m-cup (Fig. 1) if they satisfy the following
properties:

1. x1 < x2 < · · · < xm ;
2. y2−y1

x2−x1
<

y3−y2
x3−x2

< · · · < ym−ym−1
xm−xm−1

.

In a similar way, they form an m-cap (Fig. 1) if we have

1. x1 < x2 < · · · < xm ;
2. y2−y1

x2−x1
>

y3−y2
x3−x2

> · · · > ym−ym−1
xm−xm−1

.

The following definition introduces a partitioning of any point set in the plane
with some nice applications (Lemma 2.5). For any point p, let (px , py) denote its
coordinates.

Definition 2.3 (Upper and Lower subsets) Consider the point set S in the plane. Pick
an arbitrary s = (sx , sy) ∈ S and let

S−
s = {s′ ∈ S : s′

x < sx }, S+
s = S\(S−

s ∪ {s}).

For any s′ ∈ S\{s}, define the angle between s and s′, 
 (s, s′), in the following way.

1. If s′ ∈ S−
s : 
 (s, s′) = 
 (s′, s, (sx , sy + 1));

2. If s′ ∈ S+
s : 
 (s, s′) = 
 ((sx , sy − 1), s, s′).
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Fig. 2 Upper and lower points

Let 
 (s, ps) = min{
 (s, s′) : s′ ∈ S\{s}}. Note that since S is in general position,
ps is the unique point of S\{s} with that property. Now if ps ∈ S+

s , then we call s an
upper point for S; otherwise we call it a lower point. See Fig. 2. We denote the upper
and lower subsets of S by US and L S , which consist of the upper and lower points of
S, respectively.

Lemma 2.4 For any point set S, {US, L S} gives a nontrivial partition of S.

Proof According to Definition 2.3, it is easy to see that S = US ∪L S and US ∩L S = ∅.
So we know that at least one of US and L S is nonempty. Without loss of generality,
suppose there exists an s ∈ US . Consider the point ps ∈ S\{s} forming the minimum
angle with s. It is easy to check that ps ∈ L S , since otherwise we get 
 (s, pps ) <

 (s, ps), which is in contradiction with the choice of ps . Therefore, we also have
L S 
= ∅. �
Lemma 2.5 Consider the disjoint point sets B, S and let m, l ≥ 3 be natural numbers.
The following statements hold.

1. Any l-cap in B ∪ S with the rightmost point in US and the second rightmost point
in S can be extended to an (l + 1)-cap, by adding an appropriate point of L S to
its right.

2. Any m-cup in B ∪ S with the leftmost point in L S and the second leftmost point in
S can be extended to an (m + 1)-cup, by adding an appropriate point of US to its
left.

Proof We give the sketch of the proof for the first statement; the second one can be
proved in a similar way. Denote the l-cap by v1v2 . . . vl , where vl−1 ∈ S and vl ∈ US .
As described in Definition 2.3, consider the point pvl ∈ S\{vl} forming the minimum
angle with vl . By the proof of Lemma 2.4, we have pvl ∈ L S . All the points of S lying
to the left of vl are below the line vl pvl ; in particular vl−1 is below vl pvl . See Fig. 3.
So we get that v1v2 . . . vl−1vl pvl forms an (l + 1)-cap. �

Now we state the first upper bound which was obtained by Erdős and Szekeres [3].
First note that in the definition of the function ES(n) given in Theorem 1.1, we can
simply assume that the set is non-vertical, since by applying an appropriate rotation,
one can make the set non-vertical, by also preserving the convex subsets.
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Definition 2.6 ((m, l)-Free set) For the natural numbers m, l ≥ 3, we call a set (m, l)-
free if it contains no m-cup and no l-cap.

For the following theorem, we give a modification of the original proof, by using
the upper and lower subsets.

Theorem 2.7 (Erdős and Szekeres [3]) Consider the natural numbers m, l and let
f (m, l) denote the maximum natural number such that there exists an (m, l)-free set
of f (m, l) points in the plane. Then we have f (m, l) = (m+l−4

l−2

)
.

Proof We only prove f (m, l) ≤ (m+l−4
l−2

)
, since this is the part that we need for the

rest of the paper. For this, it is enough to prove

f (m + 1, l + 1) ≤ f (m + 1, l) + f (m, l + 1),

since if it holds for all m, l, one can apply induction to deduce f (m, l) ≤ (m+l−4
l−2

)
.

To prove this, we consider a set S with more than f (m + 1, l)+ f (m, l + 1) points
in the plane and prove that S must contain either an (m + 1)-cup or an (l + 1)-cap.
Let US, L S be the associated upper and lower subsets of S, respectively. By Lemma
2.4, we have

|S| = |US| + |L S| > f (m + 1, l) + f (m, l + 1),

so we either have |US | > f (m+1, l) or |L S| > f (m, l+1). Without loss of generality,
assume that |US| > f (m + 1, l). By the definition, US contains either an (m + 1)-cup
or an l-cap. In the former case, we are done. In the latter one, by Lemma 2.5, we obtain
an (l + 1)-cap in S. So we are done in both cases and the theorem is proved. �
Corollary 2.8 We have ES(n) ≤ (2n−4

n−2

) + 1.

Proof Since n-cups and n-caps are convex n-gons, we have ES(n) ≤ f (n, n)+ 1. So
the result is deduced by Theorem 2.7. �

Now we give a short motivation for the rest of the paper. Consider the point set S
with s ∈ S satisfying the following properties:

1. s is the right endpoint of an (n − 2)-cup in S;

Fig. 3 Extension of l-cap
v1v2 . . . vl by pvl

v1

v2
vl – 1

vl

pvl
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2. s is the left endpoint of an (n − 2)-cap in S;
3. s is the left endpoint of an (n − 1)-cup in S;
4. The right endpoint of the (n − 1)-cup does not coincide with the second point,

from the left, of the (n − 2)-cap.

Then it can be proven that S contains a convex n-gon or an (n − 1)-cap.
So a set that contains no convex n-gon and no (n−1)-cap does not contain any point

with all the above 4 properties. Using this fact, for (n, n − 1)-free sets that contain no
convex n-gon, we can improve the upper bound on ES(n) which Corollary 2.8 gives.

As a result, for any given positive integer n, we show the following: Any large
enough set of points contains either a convex n-gon, or an (n −1)-cap or a point s with
the above 4 properties. We construct such a point s inductively for sets of large size.
So the cardinality of any (n, n − 1)-free set that contains no convex n-gon must be
small enough that our inductive procedure does not produce such a point s. Therefore,
we bound the size of all (n, n − 1)-free sets that contain no convex n-gon. Next, we
combine this bound with a result of Tóth and Valtr [7] to get the improved bound for
ES(n).

3 Properties of the Convexification Function

The aim of this section is to obtain an upper bound on the convexification function
(Definition 3.2). For this, we first prove some of its most important properties. We
start with the definitions of convexifying point and convexification function.

Definition 3.1 ((m, l)-Convexifying point) Let m, l ≥ 3 be natural numbers. Consider
a set of points S and a point s ∈ S which is the leftmost point of an (l − 1)-cap in
S. We call s an (m, l)-convexifying point for S, if for arbitrary n ≥ 4, the following
holds. For any set B with B ∩ S = ∅, if B ∪ S contains an (n − 1)-cup whose left
endpoint is s and whose right endpoint is in B, then B ∪ S must contain at least one
of the followings:

1. An m-cup whose two leftmost points belong to S.
2. An l-cap whose two rightmost points belong to S.
3. A convex n-gon.

Definition 3.2 (Convexification function h(m, l)) For the natural numbers m, l ≥ 3,
define h(m, l) to be the maximum number such that there exists an (m, l)-free set of
h(m, l) points in the plane with no (m, l)-convexifying points. The function h(m, l)
is called the convexification function.

Lemma 3.3 (Subadditivity) The convexification function is subadditive. In other
words, for any natural numbers m, l ≥ 3, we have

h(m + 1, l + 1) ≤ h(m + 1, l) + h(m, l + 1).

Proof Consider the (m + 1, l + 1)-free set S containing more than h(m + 1, l) +
h(m, l + 1) points in the plane. We have to show that S has an (m + 1, l + 1)-
convexifying point. Let US, L S be the upper and lower subsets of S, respectively.
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Since by Lemma 2.4 we have

|S| = |US| + |L S| > h(m + 1, l) + h(m, l + 1),

we get either |US| > h(m + 1, l) or |L S| > h(m, l + 1).
Consider the former case. Note that by Lemma 2.5, US is an (m + 1, l)-free set,

since S is (m + 1, l + 1)-free. So US has an (m + 1, l)-convexifying point. Denote
this point by s. We show that s is also an (m + 1, l + 1)-convexifying point for S.
For this, first note that s is the leftmost point of an (l − 1)-cap in US . This cap can
be extended to an l-cap in S from right, by Lemma 2.5, so s is the left endpoint of
an l-cap in S. Now let n ≥ 4 be an arbitrary natural number and consider the set B
with B ∩ S = ∅, such that B ∪ S contains an (n − 1)-cup whose left endpoint is s and
whose right endpoint is in B. Call this (n − 1)-cup C and construct the set B ′ as

B ′ = (B ∪ L S) ∩ C = C\US .

Clearly, B ′ ∩US = ∅, and B ′ ∪US contains the (n −1)-cup C , whose left endpoint is s
and whose right endpoint is in B ′. So by the Definition 3.1 and (m +1, l)-convexifying
property of s for US , B ′ ∪ US must contain at least one of the following:

1. An (m + 1)-cup whose two leftmost points belong to US .
2. An l-cap whose two rightmost points belong to US .
3. A convex n-gon.

Since B ′∪US ⊂ B∪S and US ⊂ S, in the cases 1 and 3, we get a desired (m+1)-cup
and a convex n-gon in B∪S, respectively, which makes s an (m+1, l+1)-convexifying
point for S. Now consider case 2 and call this l-cap C ′. Since two rightmost points of
C ′ belong to US , by Lemma 2.5, C ′ can be extended to an (l + 1)-cap by adding an
appropriate point of L S to its right. This way, we get an (l + 1)-cap in B ∪ S whose
two rightmost points belong to S, which makes s an (m +1, l +1)-convexifying point
for S. So s is a convexifying point for S in all of these three cases and we are done.
The proof of the second case, where |L| > h(m, l + 1), is exactly similar to this one.

�
Theorem 3.4 For any natural number m ≥ 4, we have h(m, 4) ≤ (m−1

2

) + 1.

Proof The proof consists of two parts. First, we prove that for the (m, 4)-free set S,
if it contains an (m − 1)-cup with a point lying to the right of it, then the second
rightmost point of this cup is an (m, 4)-convexifying point of S. Secondly, we prove
that if |S| > (m−1

2

) + 1, then S contains such a cup.
Consider the first part and assume S contains the (m −1)-cup v1v2 . . . vm−1, which

is ordered in increasing order of x-coordinate, and consider r ∈ S lying to the right
of vm−1. Note that r must lie below the line spanned by vm−2vm−1, otherwise we
get an m-cup which is in contradiction with the (m, 4)-free property of S. We show
that vm−2 is an (m, 4)-convexifying point for S. For this, note that vm−2vm−1r is a
3-cap, so vm−2 is the leftmost point of a 3-cap in S. Now take an arbitrary natural
number n ≥ 4 and consider the set B with B ∩ S = ∅, such that B ∪ S contains the
(n − 1)-cup vm−2u2u3 . . . un−1, again ordered in increasing order of x-coordinate,
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where un−1 ∈ B. So in particular vm−1 
= un−1. We split the rest of the proof into the
following cases:

Case a: un−1 is to the left of vm−1 and above the line vm−2vm−1: (Note that in this
case we have vm−1 /∈ {u2, u3, . . . , un−2}.)

Subcase a1: un−2 is above the line vm−3vm−2:
v1v2 . . . vm−2un−2un−1 forms an m-cup with two leftmost points in S. This holds
since both vm−3vm−2un−2 and vm−2un−2un−1 form 3-cups.
Subcase a2: un−2 is below the line vm−3vm−2 and vm−1 is above the line
un−3un−2:
vm−2u2u3 . . . un−2vm−1un−1 forms a convex n-gon. This holds since
vm−2u2u3 . . . un−1 forms a convex (n − 1)-gon and vm−1 is to the right of un−1,
lies below vm−2un−1 and above un−3un−2.
Subcase a3: un−2 is below the line vm−3vm−2 and vm−1 is below the line
un−3un−2:
un−3un−2vm−1r forms a 4-cap with two rightmost points in S. This holds since
un−2 is below vm−3vm−2, so because it is between vm−2 and vm−1, it is also below
vm−2vm−1. On the other hand, r is also below vm−2vm−1, by the assumption. So
un−2vm−1r forms a 3-cap. un−3un−2vm−1 also forms a 3-cap, as well.

Case b: un−1 is to the left of vm−1 and below the line vm−2vm−1:
Subcase b1: vm−1 is above the line un−2un−1:
vm−2u2u3 . . . un−1vm−1 forms an n-cup, and as a result, a convex n-gon.
Subcase b2: vm−1 is below the line un−2un−1:
un−2un−1vm−1r forms a 4-cap with two rightmost points in S. This holds since
both un−1 and r are below vm−2vm−1, un−1vm−1r forms a 3-cap. un−2un−1vm−1
also forms a 3-cap.

Case c: un−1 is to the right of vm−1 and above the line vm−2vm−1:
v1v2 . . . vm−2vm−1un−1 forms an m-cup with two leftmost points in S.
Case d: un−1 is to the right of vm−1 and below the line vm−2vm−1:
vm−2u2u3 . . . un−1vm−1 forms a convex n-gon. This holds by following the same
reasoning as subcase a2. Just note that un−1 is below the line vm−2vm−1. Also,
all the points u2, u3, . . . , un−2 are below the line vm−2un−1, so we have vm−1 /∈
{u2, u3, . . . , un−2}.

So, according to Definition 3.1, vm−2 is an (m, 4)-convexifying point for S (Figs.
4, 5, 6).

Now we prove the second part. Suppose S is an (m, 4)-free set with more than(m−1
2

) + 1 points in the plane. Let r be the point of S with the largest x-coordinate.
Consider the set S\{r}. We have

|S\{r}| >
( m − 1

2

)
= f (m − 1, 4),

so by Theorem 2.7, S\{r} must contain either an (m − 1)-cup or a 4-cap. The latter
cannot happen since S is (m, 4)-free, so S\{r} contains an (m −1)-cup. By the choice
of r , it must lie to the right of the rightmost point of this cup, so we are done. This
completes the proof of the theorem. �
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Fig. 4 Case a in Theorem 3.4
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Fig. 5 Case b in Theorem 3.4

The following theorem gives an upper bound for h(4, l).

Theorem 3.5 For any natural number l ≥ 4, we have h(4, l) ≤ (l−1
2

) + 1.

Proof We split the proof into two parts as in the proof of Theorem 3.4. First we prove
that for the (4, l)-free set S, if it contains an (l − 1)-cap with a point lying to the left
of it, then the leftmost point of this cap is an (4, l)-convexifying point of S. Secondly,
we prove that if |S| > (l−1

2

) + 1, then S contains such a cap.
We proceed with the first part. First note that we cannot deduce this part from

Theorem 3.4 by symmetry, since in both of them, we are dealing with (n − 1)-cups.
Assume S contains the (l − 1)-cap v1v2 . . . vl−1, which is ordered in increasing order
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Case c Case d

vm–3

v2

v1

un–1

Fig. 6 Cases c, d in Theorem 3.4

of x-coordinate, and consider r ∈ S lying to the left of v1. Note that r must lie above
the line spanned by v1v2, otherwise we get an l-cap which is in contradiction with
the (4, l)-free property of S. We show that v1 is an (4, l)-convexifying point for S.
Evidently, v1 is the left endpoint of an (l − 1)-cap in S. Now take an arbitrary natural
number n ≥ 4 and consider the set B with B ∩ S = ∅, such that B ∪ S contains the
(n −1)-cup v1u2u3 . . . un−1, again ordered in increasing order of x-coordinate, where
un−1 ∈ B. Note that if there exists 2 ≤ i ≤ n −3 such that ui ∈ S, then v1ui un−2un−1
forms a 4-cup with the two leftmost points belonging to S, which means v1 is an (4, l)-
convexifying point for S. On the other hand, if we have un−2 = v2, then rv1v2un−1
forms a 4-cup with the required property.

So we can assume that ui ∈ B for all i = 2, . . . , n − 3, and un−2 
= v2. Now we
split the rest of the proof into the following cases:

Case a: un−1 is to the left of v2 and above the line v1v2:
Subcase a1: un−2 is above the line v1v2:
rv1un−2un−1 forms a 4-cup with two leftmost points in S. This holds since both
of r, un−2 lie above v1v2, so rv1un−2 forms a 3-cup. v1un−2un−1 also forms a
3-cup, by the assumption.
Subcase a2: un−2 is below the line v1v2 and v2 is above the line un−3un−2:
v1u2u3 . . . un−2v2un−1 forms a convex n-gon. This holds since v1u2u3 . . . un−1
forms a convex (n − 1)-gon, and v2 is below both of v1un−1 and un−2un−1, and
above un−3un−2.
Subcase a3: un−2 is below the line v1v2 and v2 is below the line un−3un−2:
un−3un−2v2v3 . . . vl−1 forms an l-cap with two rightmost points in S. First note
that un−2 /∈ {v3, . . . , vl−1}, since xun−2 < xun−1 < xv2 < xvi , for all i ≥ 3. It is
enough to show that un−3un−2v2 and un−2v2v3 form 3-caps. The first one is a
3-cap, since v2 is below un−3un−2. For the second one, since both of un−2 and
v3 are below v1v2, we get a 3-cap, too.

Case b: un−1 is to the left of v2 and below the line v1v2:
Subcase b1: v2 is above the line un−2un−1:
v1u2u3 . . . un−1v2 forms an n-cup, and as a result, a convex n-gon.
Subcase b2: v2 is below the line un−2un−1:
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Fig. 7 Case a in Theorem 3.5

un−2un−1v2v3 . . . vl−1 forms an l-cap with two rightmost points in S. First note
that with a similar reasoning as Subcase a3, we have un−2 /∈ {v3, . . . , vl−1}. So
it is enough to show that un−2un−1v2 and un−1v2v3 form 3-caps. The first one
is a 3-cap since v2 is below un−2un−1. For the second one, since un−1 and v3
are both below v1v2, un−1v2v3 must form a 3-cap.

Case c: un−1 is to the right of v2 and above the line v1v2:
rv1v2un−1 forms a 4-cup with two leftmost points in S. This holds because rv1v2
forms a 3-cup, since r is above v1v2. un−1 is above v1v2, so v1v2un−1 also forms a
3-cup.
Case d: un−1 is to the right of v2 and below the line v1v2:
v1u2u3 . . . un−1v2 forms a convex n-gon. This holds since v2 is to the right of v1, to
the left of un−1 and above v1un−1.

So, according to Definition 3.1, v1 is an (4, l)-convexifying point for S.
The second part can be proved in the same way as the second part in Theorem 3.4,

either by following that proof or using that result with symmetry in order to replace
cups with caps. �

Now we combine Theorems 3.4, 3.5 with Lemma 3.3 in order to get the following
bound on the convexification function h(m, l) (Figs. 7, 8, 9).

Theorem 3.6 For any natural numbers m, l ≥ 4, we have

h(m, l) ≤
( m + l − 4

l − 2

)
−

( m + l − 6
l − 3

)
.
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Subcase b1 Subcase b2

un–1

un–1

v2

un–2

vl–2

vl–1un–3

un–2
u2

v1

v1

v2

Fig. 8 Case b in Theorem 3.5

un–1

un–3

un–2

un–1

v2

v2 v1

u2

v1
r

Case c Case d

Fig. 9 Cases c, d in Theorem 3.5

Proof First define the function g(m, l) as

g(m, l) =
( m + l − 4

l − 2

)
−

( m + l − 6
l − 3

)
.

So we need to show that h(m, l) ≤ g(m, l), for all m, l ≥ 4. We apply double induction
on m and l. For the induction basis, suppose m = 4. Then according to Theorem 3.5
we have

h(4, l) ≤
( l − 1

2

)
+ 1 =

( l
2

)
−

( l − 2
1

)
= g(4, l).

Similarly, the other induction basis l = 4 can be proved by using Theorem 3.4. Now
suppose the inequality holds for (m+1, l) and (m, l +1), we prove it for (m+1, l +1).
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vm–1 vm–1

vmvm

v1

ul v2

u2 u3

ul

u3

u2

v2

v1

Case a Case b

Fig. 10 Case by case analysis in Lemma 4.1

Note that based on the identity

( s
t

)
=

( s − 1
t

)
+

( s − 1
t − 1

)
,

we can get that

g(m + 1, l + 1) = g(m + 1, l) + g(m, l + 1).

By Lemma 3.3 we have

h(m + 1, l + 1) ≤ h(m + 1, l) + h(m, l + 1) ≤ g(m + 1, l) + g(m, l + 1)

= g(m + 1, l + 1),

where the last inequality holds according to the induction hypothesis. This completes
the proof. �

4 Back to the Main Problem

In this section, we prove the main result of this paper, Theorem 1.1. We start with the
following lemma which we need for Theorem 4.2.

Lemma 4.1 [3] If a point is the rightmost point of a cup (cap) and also the leftmost
point of a cap (cup), then the cup or the cap can be extended to a larger cup or cap,
respectively.

Proof Denote the cup by v1v2 . . . vm and the cap by vmu2 . . . ul . We split the rest of
the proof into the following two cases. See Fig. 10.

Case a: u2 lies above the line spanned by vm−1vm : v1v2 . . . vmu2 forms an (m+1)-cup.
Case b: u2 lies below the line spanned by vm−1vm : vm−1vmu2 . . . ul forms an (l +1)-
cap. �

Theorem 4.2 Let n ≥ 6 be a natural number and consider the set S of f (n−1, n−1)
+ g(n, n − 2)+ 1 points in the plane, where the function g is defined in Theorem 3.6.
Then S contains an (n − 1)-cap or a convex n-gon.
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Proof Consider the partition of S into the upper and lower subsets US, L S as in
Definition 2.3. If |L S| > f (n − 1, n − 1), then it either contains an (n − 1)-cup
or an (n − 1)-cap. In the former case, we get an n-cup by Lemma 2.5, and in the
latter case, we are immediately done. So we can assume that |L S| ≤ f (n − 1, n − 1).
On the other hand, we can assume that US is (n, n − 2)-free, since otherwise we are
immediately done or again by Lemma 2.5. We have

|US| = |S| − |L S| = g(n, n − 2) + ( f (n − 1, n − 1) + 1 − |L S|),

where the last term is positive. So by applying Theorem 3.6 iteratively, we get f (n −
1, n − 1) + 1 − |L S| (n, n − 2)-convexifying points for US . Denote the set of these
convexifying points by G. Consider the set G ∪ L S . We have

|G ∪ L S| = f (n − 1, n − 1) + 1,

so it must contain either an (n − 1)-cup or an (n − 1)-cap. In the latter case, we are
done. In the former case, denote this (n − 1)-cup by v1v2 . . . vn−1. If v1 ∈ L S , by the
Lemma 2.5 we get an n-cup in S, which means we are done. On the other hand, every
point of G is the leftmost point of an (n − 3)-cap in US , which by Lemma 2.5, can be
extended to an (n − 2)-cap in S by adding a point to the right of it. So if vn−1 ∈ G,
then by Lemma 4.1, we either get an n-cup or an (n −1)-cap, which finishes the proof.

So we can assume that v1 ∈ G and vn−1 ∈ L S . Now by Definition 3.1, we conclude
that S contains at least one of the followings:

1. An n-cup;
2. An (n − 2)-cap whose two rightmost points belong to US ;
3. A convex n-gon.

In the cases 1, 3, we are done. In case 2, according to Lemma 2.5, we get an (n−1)-cap,
so we are also done in this case. This completes the proof of the theorem. �

The proof of the following theorem is completely based on and similar to the proof
of Theorem 5 in [8].

Theorem 4.3 [7,8] Define p(n) to be the minimum natural number such that every
set with at least p(n) points in the plane contains either an (n − 1)-cap or a convex
n-gon. Then we have

ES(n) ≤ p(n) + 1.

Proof Let S be a set of p(n)+ 1 points in the plane. We have to show that S contains
n points in convex position. Let s be a vertex of the convex hull of S, conv(S), and
take the point s′ outside conv(S) such that none of the lines spanned by the points of
S\{s} intersects the segment ss′. Also, take a line l through s′ which does not intersect
conv(S).

Now consider the projective transformation taking the line l to the line at infinity
and also mapping the segment ss′ to the vertical half-line emanating downwards from
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T (s). Since the line l avoided conv(S), T does not change convexity on the points of
S, i.e. P ⊂ S is in convex position if and only if T (P) ⊂ T (S) is in convex position.

One can see that none of the lines spanned by the points of T (S)\{T (s)} intersects
the vertical half-line emanating downwards from T (s). Furthermore, T (S)\{T (s)} is a
non-vertical set. So for any natural number l, any l-cap in T (S)\{T (s)} can be extended
to a convex (l + 1)-gon by adding the point T (s). Therefore, because |S| = p(n)+ 1,
we have |T (S)\{T (s)}| = p(n), and by the definition of the function p(n), we get that
T (S)\{T (s)} must contain either an (n − 1)-cap or a convex n-gon. Based on what
was stated before, T (S) contains a convex n-gon, and as a result, S contains a convex
n-gon, as well. This completes the proof. �

Finally, we prove Theorem 1.1, and use it to obtain the asymptotic upper bound
(2’).

Proof of Theorem 1.1 Recall the function p(n) from Theorem 4.3. By Theorem 4.2
we get

p(n) ≤ f (n − 1, n − 1) + g(n, n − 2) + 1

=
( 2n − 6

n − 3

)
+

( 2n − 6
n − 2

)
−

( 2n − 8
n − 3

)
+ 1

=
( 2n − 5

n − 2

)
−

( 2n − 8
n − 3

)
+ 1.

Combining the above with

ES(n) ≤ p(n) + 1

from Theorem 4.3, we get the desired bound. �
Corollary 4.4 We have

lim sup
n→∞

ES(n)
(2n−5

n−2

) ≤ 7

8
.

Proof By Theorem 1.1, it is enough to show that

lim sup
n→∞

(2n−5
n−2

) − (2n−8
n−3

) + 2
(2n−5

n−2

) = 7

8
.

But we have

lim sup
n→∞

(2n−5
n−2

) − (2n−8
n−3

) + 2
(2n−5

n−2

) = 1 + lim sup
n→∞

−(2n−8
n−3

)

(2n−5
n−2

) = 1 − lim inf
n→∞

(2n−8
n−3

)

(2n−5
n−2

)

= 1 − 1

8
= 7

8
.

�
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6. Norin, S., Yuditsky, Y.: Erdős–Szekeres without induction. http://arxiv.org/abs/1509.03332 (2015)
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