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Abstract We consider tessellations of the Euclidean (d − 1)-sphere by (d − 2)-
dimensional great subspheres or, equivalently, tessellations of Euclidean d-space by
hyperplanes through the origin; these we call conical tessellations. For random poly-
hedral cones defined as typical cones in a conical tessellation by random hyperplanes,
and for random cones which are dual to these in distribution, we study expectations
for a general class of geometric functionals. They include combinatorial quantities,
such as face numbers, as well as, for example, conical intrinsic volumes. For isotropic
conical tessellations (those generated by random hyperplanes with spherically sym-
metric distribution), we determine the complete covariance structure of the random
vector whose components are the k-face contents of the induced spherical random
polytopes. This result can be considered as a spherical counterpart of a classical result
due to Roger Miles.
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1 Introduction

Amajor theme of stochastic geometry, since the seminal work of Rényi and Sulanke in
1963/64, has always been the investigation of geometric functionals of random convex
polytopes. The survey articles [19,33,39] give an impressive picture of the progress
in recent years. They also reveal that, as far as expectations and higher moments, a
prerequisite for the study of limit theorems, are concerned, one generally has to be
satisfied with asymptotic results and estimates, whereas explicit results are very rare.

Most of the random polytopes studied so far live in Euclidean spaces. In other
spaces of constant curvature, several results may have parallel versions, but also new
phenomena are to be expected, in particular in spherical space due to its compactness.A
recent study [7] of spherically convex hulls of random points in Sd−1 already exhibited
some phenomena which cannot be observed in Euclidean spaces. The present paper
is devoted to random polytopes in the unit sphere S

d−1 of Euclidean space R
d . For

basic classes of random convex polytopes in S
d−1, we find explicit formulas for the

first and mixed second moments of a series of quite general geometric functionals.
The spherically convex polytopes in Sd−1 are in one-to-one correspondence with their
positive hulls, which are convex polyhedral cones in R

d . Thus, the study of random
polytopes in the sphere is equivalent to the study of random polyhedral convex cones
in Euclidean space. The geometry of polyhedral cones has recently found increased
interest, due to applications in convex optimization and compressed sensing (see, e.g.,
[2,3,5,11,16,24]).

Let us first describe the random polytopes in Sd−1 and the geometric functionals of
them that we consider. First, take n ≥ d independent, identically distributed random
points in S

d−1. Their distribution need only satisfy some mild requirements, besides
evenness they guarantee general position with probability one. The spherically convex
hull of the random points, under the condition that it is not the whole sphere, defines
a random polytope. It was first studied by Cover and Efron [9]. Therefore, we call
its positive hull a Cover–Efron cone. In distribution, this random cone is dual to the
random Schläfli cone, which we define as follows. To the given random vectors in the
unit sphere, we consider the orthogonal hyperplanes through the origin. They induce
a random tessellation of Rd into convex cones. Among its d-dimensional cones, we
choose one at random, with equal chances. This defines what we call a random Schläfli
cone. Its intersection with S

d−1 yields the second type of spherical random polytope
that we consider, again following Cover and Efron.

For a spherical polytope P , contained in an open hemisphere, the j th quermass-
integral U j (P) is, up to a normalizing factor, the total invariant measure of the set
of (n − j)-flats through the origin that meet P . Then, we define Yk, j (P) as the sum
of U j (F) over all (k − 1)-faces F of P (or correspondingly for polyhedral cones).
These general functionals comprise combinatorial functionals, such as numbers of
k-faces, as well as metric functionals, such as total k-face contents, and they allow to
express the kth conical intrinsic volume. These conical, or spherical, intrinsic volumes
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appeared first, with different terminology, in Santaló’s work on integral geometry and
the Gauss–Bonnet formula in spherical spaces, for example, in [34,35]. To the linear
relations between the spherical intrinsic volumes listed in [34], McMullen [25] later
found, in the case of polyhedral cones, a new combinatorial approach. For later appear-
ances of the spherical intrinsic volumes in spherical geometry, we refer to [14,15], [40,
Sect. 6.5], [13]. More recently, the conical intrinsic volumes, and also their integral
geometry, have found very interesting applications in convex optimization and com-
pressed sensing. We refer to [2,5,16,24]. As a sequel to this, new approaches to, and
new perspectives on, conical intrinsic volumes of polyhedral cones came forward, with
relations to combinatorial aspects being in the foreground; see [1,4]. We emphasize,
however, that the following is meant as a contribution to stochastic geometry, where
first and higher moments of geometric random variables are in the focus of interest,
often as a first step towards more sophisticated distribution and limit results.

In the following, after introducing the announced random cones and geometric
functionals and some of their properties, we first extend the work of Cover and Efron
by determining the expectations of the functionals Yk, j for random Schläfli cones. By
specialization, this yields the results of Cover and Efron on face numbers, and also new
results, such as for the conical intrinsic volumes. By dualization, corresponding results
for the Cover–Efron cones are obtained. The major part of this paper is devoted to the
functionals Λk = Yk,k−1 of a polyhedral cone. For a spherical polytope P ⊂ S

d−1,
the valueΛk+1(pos P) is the total k-face content, that is, the sum of the k-dimensional
normalized Lebesgue measures of the k-faces of P , in other words, the k-dimensional
normalizedHausdorffmeasure of its k-skeleton.As examples, for k = 0, 1, d−2, d−1
weget, respectively, the vertex number and, up to constant factors, the total edge length,
the surface area and the volume of P . Thus, these functionals interpolate, in a natural
way, between vertex number and volume. Recently, Amelunxen ([1], with different
notation) has proved kinematic formulas for these functionals in the case of polyhedral
cones. The expectations of the Λk for a random Schläfli cone are special cases of our
results mentioned above.

Our main result is the determination of the complete covariance structure of the
sequenceΛ0(S), . . . , Λd(S) for an isotropic random Schläfli cone S. This is a conical
counterpart to a result of Miles, who in [26] considered the typical cell of a stationary,
isotropic Poisson hyperplane mosaic in R

d and determined all mixed moments of its
total face contents. Miles presented his result also in [30, Formula (63)]. As remarked
in [38], the proof given by Miles in [26] makes heavy use of ergodic theory and is
not explicitly carried out in all details. A simpler proof was given in [38], where the
result of Miles was extended to the non-isotropic case and to typical faces of lower
dimensions. Our proof in the following carries over an idea of Miles to the conical
case, but is essentially different in the details.

Since our random Schläfli cones are induced by random hyperplanes through the
origin, this paper is also a contribution to random conical tessellations (which explains
the title), or equivalently to tessellations of the sphere by random great subspheres,
yielding special spherical mosaics. Randommosaics in Euclidean spaces are an inten-
sively studied topic of stochastic geometry. We refer the reader to Chapter 10 in the
book [40] and to the more recent survey articles [8,19,32,41]. A much investigated
particular class, besides the Voronoi tessellations, are hyperplane tessellations, in par-
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ticular those generated by stationary Poisson processes of hyperplanes, initiated by the
seminal work of Miles [26–30] and Matheron [22,23]. Relatively little has been done
on random tessellations of spaces other than the Euclidean. Tessellations of the sphere
of arbitrary dimension by great subspheres (of codimension 1) were briefly considered
by Cover and Efron [9], and those of the two-dimensional sphere in more detail by
Miles [31]; see in particular Theorem 6.3 on some mixed second moments, which
is widely generalized by our result. Relations between various densities of random
mosaics in spherical spaces were studied by Arbeiter and Zähle [6].

In Sect. 2 we introduce the geometric functionals of polyhedral cones that will be
studied, and in Sect. 3 the two types of random cones for which we investigate first
and second moments of these functionals. Expectation results for the functionals Yk, j ,
which extend formulas of Cover and Efron, are derived in Sect. 4. Sections 5, 6 and
7 are then preparatory to our main result on mixed second moments, which is finally
obtained in Sect. 8. Hints to the proof strategy are given at the beginning of Sects. 6
and 8.

2 Geometric Functionals of Convex Cones

We work in d-dimensional Euclidean space R
d (d ≥ 2), with scalar product 〈· , ·〉,

and denote by S
d−1 its unit sphere. Let σm , m ∈ N0, be the m-dimensional spherical

Lebesgue measure (i.e., the m-dimensional Hausdorff measure) on m-dimensional
great subspheres of Sd−1. For n ∈ N we put

ωn := σn−1(S
n−1) = 2πn/2

Γ (n/2)
.

Let Cd denote the set of (nonempty) closed convex cones in R
d , which includes

k-dimensional linear subspaces, k ∈ {0, . . . , d}. We equip Cd with the topology
induced by the Fell topology (see [40, Sect. 12.2]), or equivalently, with the topology
induced by the EuclideanHausdorff distance restricted to the intersections of the cones
in Cd with the unit ball centered at the origin. A cone C ∈ Cd is called pointed if it
does not contain a line. We write PCd for the set of polyhedral cones in Cd . This set
is a Borel subset of Cd . For C ∈ PCd and for k ∈ {0, . . . , d}, we denote by Fk(C) the
set of k-dimensional faces of C .

For C ∈ Cd , the dual cone is defined by

C◦ := {y ∈ R
d : 〈y, x〉 ≤ 0 for all x ∈ C}.

This is again a cone in Cd , and C◦◦ := (C◦)◦ = C . If C is pointed and d-dimensional,
then C◦ has the same properties. If C ∈ PCd and F ∈ Fk(C) for k ∈ {0, . . . , d}, then
the normal cone N (C, F) of C at F is a (d − k)-face of the polyhedral cone C◦, also
called the conjugate face (of F with respect to C) and denoted by ̂FC . If ̂FC = G,
then ̂GC◦ = F .

The following fact is occasionally useful. We give a proof for convenience.

123



Discrete Comput Geom (2016) 56:395–426 399

Lemma 2.1 Suppose that C ∈ Cd is pointed, and let L ⊂ R
d be a linear subspace.

Then

L ∩ C 
= {0} ⇔ L⊥ ∩ int C◦ = ∅.

Proof Suppose that L ∩ C 
= {0}. Choose v ∈ L ∩ C , v 
= 0. Suppose there exists
y ∈ L⊥ ∩ int C◦. Since y ∈ L⊥, we have 〈y, v〉 = 0. Since y ∈ int C◦, the points
y′ in some neighbourhood of y belong to C◦ and hence satisfy 〈y′, v〉 ≤ 0. But since
〈y, v〉 = 0 and v 
= 0, this is impossible.

Suppose that L⊥ ∩ int C◦ = ∅. The disjoint convex sets L⊥ and int C◦ can be
separated by a hyperplane, hence there is a vector v 
= 0 with 〈v, y〉 ≤ 0 for all
y ∈ int C◦ and 〈v, z〉 ≥ 0 for all z ∈ L⊥; the latter implies 〈v, z〉 = 0 for z ∈ L⊥ and
thus v ∈ L . Since C does not contain a line, int C◦ 
= ∅, hence 〈v, y〉 ≤ 0 holds for
all y ∈ C◦. Therefore, v ∈ C◦◦ = C . Thus, v ∈ L ∩ C . ��

A set M ⊂ S
d−1 is spherically convex if pos M is convex; here pos denotes the

positive hull. To include some degenerate cases in the following, we define pos ∅ :=
{0}. If C ∈ Cd , the set K = C ∩ S

d−1 is called a convex body in S
d−1, and we have

C = pos K . In particular, the empty set and k-dimensional great subspheres, that is,
intersections of (k+1)-dimensional linear subspaces with Sd−1, for k ∈ {0, . . . , d−1}
(and thus including Sd−1), are convex bodies in Sd−1. The set of convex bodies in Sd−1

is denoted by Ks (this notation, as well as the term ‘convex body’, differs from the
usage in [40, Sect. 6.5], where the empty set is excluded). For K ∈ Ks , the dual convex
body K ◦ is defined by

K ◦ := {y ∈ S
d−1 : 〈y, x〉 ≤ 0 for all x ∈ K } = (pos K )◦ ∩ S

d−1.

To introduce the conical quermassintegrals and the conical intrinsic volumes, we
make use of the correspondence between convex cones in Rd and spherically convex
sets in S

d−1. For the latter, the functionals to be considered were already introduced
by Santaló, see [36, Part IV], with different notation. We follow here the approach of
Glasauer [14] and refer to [40, Sect. 6.5] for further details.

Let G(d, k) denote the Grassmannian of k-dimensional linear subspaces ofRd , and
let νk be its normalized Haar measure (the unique rotation invariant Borel probability
measure on G(d, k)), k = 0, . . . , d. For K ∈ Ks , the spherical quermassintegrals are
defined by

U j (K ) := 1
2

∫

G(d,d− j)
χ(K ∩ L) νd− j (dL), j = 0, . . . , d, (1)

whereχ denotes theEuler characteristic. (Of course,U0(K ) = 1
2χ(K ) andUd(K )=0,

but this is included for formal reasons). These are, essentially, the ‘Grassmann angles’
of Grünbaum [18], who derived for them various polyhedral relations. We recall from
[40, p. 262] that if K is a convex body in S

d−1 and not a great subsphere, then
χ(K ∩ L) = 1{K ∩ L 
= ∅} for νd− j almost all L ∈ G(d, d − j). Hence, in this case
2U (K ) is the total invariant probability measure of the set of all (d − j)-dimensional
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linear subspaces hitting K . Since χ(Sk) = 1 + (−1)k for a great subsphere S
k of

dimension k ∈ {0, . . . , d − 1}, we have

U j (S
k) =

{1 if k − j ≥ 0 and even,
0 if k − j < 0 or odd.

For cones C ∈ Cd , we now define

U j (C) := U j (C ∩ S
d−1). (2)

If C ∈ Cd is not a linear subspace, then

U j (C) = 1
2

∫

G(d,d− j)
1{C ∩ L 
= {0}} νd− j (dL), j = 0, . . . , d. (3)

If Lk ⊂ R
d is a linear subspace of dimension k, then

U j (Lk) =
{ 1 if k − j > 0 and odd,
0 if k − j ≤ 0 or even.

(4)

Let 0 ≤ j ≤ m ≤ d − 1, let M ⊂ R
d be an m-dimensional linear subspace

and C ∈ Cd a cone with C ⊂ M . The image measure of νd− j under the map L �→
L ∩ M from G(d, d − j) to the Grassmannian of (m − j)-subspaces in M is the
normalized Haar measure on the latter space. Here (and subsequently) we tacitly use
the fact that νd− j ({L ∈ G(d, d − j) : L ∩ M /∈ G(d, m − j)}) = 0; see [40, Lem.
13.2.1]. Therefore, it follows from (1), (2) that U j (C) does not depend on whether it
is computed in Rd or in M .

In particular, for C ∈ Cd and m ∈ {1, . . . , d}, we have

dim C ≤ m ⇒ Um−1(C) = σm−1(C ∩ S
d−1)

ωm
.

If C ∈ Cd is not a linear subspace, the duality relation

U j (C) + Ud− j (C
◦) = 1

2 (5)

holds for j = 0, . . . , d. If C is pointed and d-dimensional, this follows from (3)
and Lemma 2.1. If C ∈ Cd is not a subspace, the assertion can be obtained from the
previous case by approximation, using easily established continuity properties. If C
is a subspace, duality is of little interest, in view of (4).

We now recall the spherical intrinsic volumes and refer to [40, Sect. 6.5] for
details. Let ds be the spherical distance on S

d−1; thus, for x, y ∈ S
d−1, ds(x, y) =

arccos 〈x, y〉. For K ∈ Ks \ {∅} and x ∈ S
d−1, the distance of x from K is

ds(K , x) := min{ds(y, x) : y ∈ K }. For 0 < ε < π/2, the (outer) parallel set
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of K at distance ε is defined by

Mε(K ) := {x ∈ S
d−1 : 0 < ds(K , x) ≤ ε}.

By the spherical Steiner formula, the measure of this set can be written in the form

σd−1(Mε(K )) =
d−2
∑

m=0

gd,m(ε)vm(K )

with

gd,m(ε) := ωm+1ωd−m−1

∫ ε

0
cosm ϕ sind−m−2 ϕ dϕ

for 0 ≤ ε < π/2. This defines the numbers v0(K ), . . . , vd−2(K ) uniquely. The
definition is supplemented by setting vm(∅) := 0,

vd−1(K ) := σd−1(K )

ωd
,

and

v−1(K ) := vd−1(K ◦).

Note that vm(Sd−1) = 0 for m = 0, . . . , d − 2 and vd−1(S
d−1) = 1. The numbers

vi (K ) are the spherical intrinsic volumes of K . In particular, for K ∈ Ks and m =
0, . . . , d − 1,

dim K ≤ m ⇒ vm(K ) = σm(K )

ωm+1
.

For spherical polytopes, the spherical intrinsic volumes have representations in terms
of angles, similar as in the Euclidean case. For a spherical polytope P and for k ∈
{0, . . . , d − 2}, we denote by Fk(P) the set of k-faces of P . Let P be a spherical
polytope and F ∈ Fk(P). The external angle γ (F, P) of P at F is defined by

γ (F, P) := γ (pos F, pos P) := σd−k−2(N (pos P, pos F) ∩ S
d−1)

ωd−k−1
.

With these notations, we have

vm(P) = 1

ωm+1

∑

F∈Fm(P)

σm(F)γ (F, P), m = 0, . . . , d − 2.

123



402 Discrete Comput Geom (2016) 56:395–426

For cones C ∈ Cd , the conical intrinsic volumes are now defined by

Vm(C) := vm−1(C ∩ S
d−1), m = 0, . . . , d.

The shift in the index has the advantage that the highest occurring index is equal to the
maximal possible dimension of C . Since C is a cone, there is no danger of confusion
with the intrinsic volumes of compact convex bodies.

For a cone C ∈ Cd with dim C = k, the internal angle of C at 0 is defined by

β(0, C) = σk−1(C ∩ S
d−1)

ωk
.

Then, for an arbitrary polyhedral cone C ∈ PCd and for m = 1, . . . , d − 1, we have

Vm(C) =
∑

F∈Fm (C)

β(0, F)γ (F, C).

In particular, if dim C = m, then Vm(C) = β(0, C).
In contrast to the quermassintegrals and intrinsic volumes of convex bodies in

Euclidean space, which differ only by their normalizations, the conical quermassin-
tegrals and conical intrinsic volumes are essentially different functionals. However,
they are closely related. A spherical integral-geometric formula of Crofton type (see
[40, (6.63)]) implies that

U j (C) =
� d−1− j

2 �
∑

k=0

Vj+2k+1(C) (6)

for C ∈ Cd and j = 0, . . . , d − 1. From (6) it follows that

Vj = U j−1 − U j+1 for j = 1, . . . , d − 2,
Vd−1 = Ud−2,

Vd = Ud−1.

⎫

⎬

⎭

(7)

The duality relation

Vm(C) = Vd−m(C◦), m = 0, . . . , d, (8)

holds for C ∈ Cd . For m ∈ {0, d} it holds by definition. For m ∈ {1, . . . , d − 1}, it
follows from (5) and (7) if C is not a subspace, and from

Vj (Lk) = δ jk (9)

(Kronecker symbol) if C = Lk is a k-dimensional subspace; here (9) follows from (4)
and (7).
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As did Miles [26, Sect. 5.8] for convex polytopes in R
d , we use the conical quer-

massintegrals to define a more general series of functionals for polyhedral cones,
which comprises the geometrically most interesting functionals as special cases. For
C ∈ PCd , k = 1, . . . , d and j = 0, . . . , k − 1, let

Yk, j (C) :=
∑

F∈Fk(C)

U j (F). (10)

Then, in particular,

Ydim C, j (C) = U j (C).

According to (7), also the conical intrinsic volumes can be expressed in terms of
suitable functions Yk, j .

If C ∈ PCd is such that the k-faces of C are not linear subspaces, then

Yk,0(C) = 1
2 fk(C), (11)

where fk(C) denotes the number of k-faces of C .
We see that for a d-dimensional pointed polyhedral cone both, the combinatorial

functionals given by the face numbers and the metric functionals given by the conical
intrinsic volumes, can be expressed in terms of suitable functionals Yk, j .

Further, for C ∈ PCd and k ∈ {1, . . . , d}, we define the functional Λk by

Λk(C) :=
∑

F∈Fk(C)

Vk(F). (12)

As explained in the introduction,Λk can be considered as the total k-face content, also
for a polyhedral cone, if ‘content’ is interpreted properly. Since the conical intrinsic
volumes and the conical quermassintegrals are intrinsically defined, it follows from
(7) that

Yk,k−1(C) = Λk(C).

3 Conical Tessellations and the Cover–Efron Model

In this section, we introduce random conical tessellations and the two basic types of
random polyhedral cones that they induce. These random cones were first considered
by Cover and Efron [9]. We slightly modify and formalize the approach of [9], to meet
our later requirements.

Recall that G(d, d − 1) denotes the Grassmannian of (d − 1)-dimensional linear
subspaces of Rd . We say that hyperplanes H1, . . . , Hn ∈ G(d, d − 1) are in general
position if any k ≤ d of them have an intersection of dimension d − k. For a vector
x ∈ R

d \ {0}, let
x⊥ = {y ∈ R

d : 〈y, x〉 = 0}, x− = {y ∈ R
d : 〈y, x〉 ≤ 0}.
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We shall repeatedly make use of the duality

(pos{x1, . . . , xn})◦ =
n

⋂

i=1

x−
i , pos{x1, . . . , xn} =

(
n

⋂

i=1

x−
i

)◦
(13)

for x1, . . . , xn ∈ R
d .

Vectors x1, . . . , xn ∈ R
d are said to be in general position if any d or fewer of these

vectors are linearly independent. Thus, the hyperplanes x⊥
1 , . . . , x⊥

n are in general
position if and only if x1, . . . , xn are in general position. If this is the case, then

pos{x1, . . . , xn} 
= R
d ⇔

n
⋂

i=1

x−
i 
= {0} ⇔ dim

n
⋂

i=1

x−
i = d, (14)

where the last implication ⇒ follows from general position. In fact, suppose that
C := ⋂n

i=1 x−
i satisfies 0 < k = dim C < d. Let Lk = linC . Choose p ∈ relintC

and define I := {i ∈ {1, . . . , n} : p ∈ x⊥
i }, hence p ∈ int x−

j for j ∈ {1, . . . , n} \ I .

Then C ⊂ ⋂

i∈I x⊥
i implies that Lk ⊂ ⋂

i∈I x⊥
i ⊂ ⋂

i∈I x−
i . Since p ∈ int x−

j for

j ∈ {1, . . . , n} \ I , we also have
⋂

i∈I x−
i ⊂ Lk , and thus Lk = ⋂

i∈I x⊥
i = ⋂

i∈I x−
i

and L⊥
k = pos{xi : i ∈ I }, by (13). But then necessarily |I | ≥ d − k. The assumption

of general position implies that |I | = d −k, which is a contradiction to L⊥
k = pos{xi :

i ∈ I }.
Suppose that H1, . . . , Hn ∈ G(d, d − 1) are in general position. Then the hyper-

planes H1, . . . , Hn induce a tessellation T ofRd into d-dimensional polyhedral cones.
We call T a conical tessellation of Rd . For k ∈ {1, . . . , d}, the set of k-faces of T is
defined as the union of the sets of k-faces of these polyhedral cones (the d-dimensional
cones are the d-faces). We write Fk(H1, . . . , Hn) for the set of k-faces of the tessel-
lation T . Later, we shall often abbreviate (H1, . . . , Hn) =: ηn and then write Fk(ηn)

forFk(H1, . . . , Hn). By fk(T )we denote the number of k-faces of the tessellation T .
The spherical polytopes C ∩ S

d−1, where C is a cone of T , form a tessellation of
the sphere Sd−1, or spherical tessellation. In the following, it will be more convenient
to work with convex cones than with their intersections with S

d−1.
If we denote by H− one of the two closed halfspaces bounded by the hyperplane

H , then it follows from (14) that the d-dimensional cones of the tessellation T induced
by H1, . . . , Hn are precisely the cones different from {0} of the form

n
⋂

i=1

εi H−
i , εi = ±1.

We call these cones the Schläfli cones induced by H1, . . . , Hn , n ≥ 1, because Schläfli
(generalizing a result of Steiner) has shown that there are exactly

C(n, d) := 2
d−1
∑

r=0

(

n − 1

r

)

(15)
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of them (the simple inductive proof is reproduced in [40, Lem. 8.2.1]; also references
are found there). We consistently define C(0, d) := 1 (where the only cone is Rd

itself) and C(n, d) := 0 for n < 0.
Each choice of d − k indices 1 ≤ i1 < · · · < id−k ≤ n determines a k-dimensional

subspace L = Hi1 ∩ · · · ∩ Hid−k . For i ∈ {1, . . . , n} \ {i1, . . . , id−k}, the intersec-
tions of L with the hyperplanes Hi are in general position in L and hence determine
C(n − d + k, k) Schläfli cones with respect to L . Each of these is a k-face of the
tessellation T , and each k-face of T is obtained in this way. Thus, the total number of
k-faces is given by

fk(T ) =
(

n

d − k

)

C(n − d + k, k) =: C(n, d, k) (16)

for k = 1, . . . , d. In particular, fk(T ) = 1 if n = d − k and fk(T ) = 0 if n < d − k.
Now we turn to random cones. The random vectors appearing in the following can

be assumed as unit vectors, since only their spanned rays are relevant. All measures
on Sd−1 or G(d, d − 1) appearing in the following are Borel measures. Generally, we
denote by B(T ) the σ -algebra of Borel sets of a given topological space T . Let φ be a
probability measure on S

d−1 which is symmetric with respect to 0 (also called even)
and assignsmeasure zero to each (d−2)-dimensional great subsphere. Let X1, . . . , Xn

be independent random points in Sd−1 with distribution φ. With probability 1, they are
in general position. In the following, we denote probabilities by P and expectations
by E.

From Schläfli’s result (15), Wendel has deduced that

p(d)
n := P(pos{X1, . . . , Xn} 
= R

d) = C(n, d)

2n
(17)

(see [40, Thm. 8.2.1]). This result, having an essentially geometric core, does not
depend on the choice of the distribution φ, as long as the latter has the specified
properties.

Cover and Efron [9] have considered the spherically convex hull of X1, . . . , Xn ,
under the condition that this convex hull is different from the whole sphere. We talk of
the Cover–Efron model if a spherically convex random polytope or its spanned cone
is generated in this way.

Definition 3.1 Let φ be as above. Let n ∈ N and let X1, . . . , Xn be independent
random points with distribution φ. The

(φ, n)-Cover–Efron cone Cn

is the random cone defined as the positive hull of X1, . . . , Xn under the condition that
this is different from R

d .

Thus, Cn is a random convex cone with distribution given by P(Cn = R
d) = 0 and

P(Cn ∈ B) = 1

p(d)
n

∫

(Sd−1)n
1B(pos{x1, . . . , xn}) φn(d(x1, . . . , xn)) (18)
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for B ∈ B(PCd
p), wherePCd

p := PCd \{Rd}. Hence,C ∈ B ⊂ PCd
p impliesC 
= R

d .
By duality, the Cover–Efron model is connected to random conical tessellations, as

we now explain.
Let φ∗ be the image measure of φ under the mapping x �→ x⊥ from the sphere

S
d−1 to the Grassmannian G(d, d −1). Every probability measure φ∗ on G(d, d −1)

that assigns measure zero to each set of hyperplanes in G(d, d − 1) containing a fixed
line is obtained in this way. Let H1, . . . ,Hn be independent random hyperplanes in
G(d, d − 1) with distribution φ∗. With probability 1, they are in general position.

Definition 3.2 Let φ∗ be as above. Let n ∈ N and let H1, . . . ,Hn be independent
random hyperplanes with distribution φ∗. The

(φ∗, n)-Schläfli cone Sn

is obtained by picking at random (with equal chances) one of the Schläfli cones induced
byH1, . . . ,Hn .

Since consecutive random constructions, of which this is an example, will also
appear later, we indicate, once and for all, how such a procedure can be formalized.
LetΩn

1 := G(d, d −1)n∗ be the set of n-tuples of (d −1)-subspaces in general position.
The probability measure Pn on Ωn

1 is defined by Pn := φ∗n Ωn
1 (where denotes

the restriction of a measure). We interpret the choice described in Definition 3.2 as a
two-step experiment and define a kernel K 1

2 : Ωn
1 × B(PCd) → [0, 1] by

K 1
2 (ηn, B) := 1

C(n, d)

∑

C∈Fd (ηn)

1B(C)

for ηn ∈ Ωn
1 and B ∈ B(PCd). Then (following, e.g., [12, Satz 1.8.10]), we define a

probability measure Pn × K 1
2 on B(Ωn

1 ) ⊗ B(PCd) by

(Pn × K 1
2 )(A) =

∫

G(d,d−1)n

∫

PCd
1A(ηn, ω2) K 1

2 (ηn, dω2) φ∗n(dηn)

=
∫

G(d,d−1)n

1

C(n, d)

∑

C∈Fd (ηn)

1A(ηn, C) φ∗n(dηn)

for A ∈ B(Ωn
1 ) ⊗B(PCd). Now Sn is defined as the random cone whose distribution

is equal to (Pn × K 1
2 )(Ω

n
1 × ·). Thus,

P(Sn ∈ B) =
∫

G(d,d−1)n

1

C(n, d)

∑

C∈Fd (H1,...,Hn)

1B(C) φ∗n(d(H1, . . . , Hn)) (19)

for B ∈ B(PCd).
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To relate Sn and Cn , we rewrite Eq. (18), using the symmetry of φ and then (17)
and (13). For B ∈ B(PCd

p), we obtain

P(Cn ∈ B) = 1

p(d)
n

∫

(Sd−1)n

1

2n

∑

εi =±1

1B(pos{ε1x1, . . . , εn xn}) φn(d(x1, . . . , xn))

=
∫

(Sd−1)n

1

C(n, d)

∑

εi =±1

1B

((
n

⋂

i=1

εi x−
i

)◦)
φn(d(x1, . . . , xn))

=
∫

(Sd−1)n

1

C(n, d)

∑

C∈Fd (x⊥
1 ,...,x⊥

n )

1B(C◦) φn(d(x1, . . . , xn))

=
∫

G(d,d−1)n

1

C(n, d)

∑

C∈Fd (H1,...,Hn)

1B(C◦) φ∗n(d(H1, . . . , Hn))

= P(S◦
n ∈ B),

where (19) was used in the last step. Since also P(S◦
n = R

d) = P(Sn = ∅) = 0, we
can formulate the following.

Theorem 3.1 Let φ be an even probability measure on S
d−1 which assigns measure

zero to each (d − 2)-dimensional great subsphere, let n ∈ N. Then the (φ, n)-
Cover–Efron cone Cn and the dual of the (φ∗, n)-Schläfli cone, S◦

n , are stochastically
equivalent,

Cn = S◦
n in distribution. (20)

4 Expectations for Random Schläfli and Cover–Efron Cones

In this section, φ∗ is a probability measure on the Grassmannian G(d, d − 1) with the
property that it is zero on each set of hyperplanes containing a fixed line through 0. For
n ∈ N, we consider the (φ∗, n)-Schläfli cone and want to compute the expectations of
the geometric functionals Yk, j , defined by (10), for this random cone.

In his study of Poisson hyperplane tessellations in Euclidean spaces, Miles
[26, Chap. 11] has employed the idea of defining, by means of combinatorial selection
procedures, different weighted random polytopes, which could then be combined to
give results about first and second moments. In this and subsequent sections, we adapt
this approach to conical tessellations.

First we describe a combinatorial random choice. Let H1, . . . , Hn ∈ G(d, d − 1)
be hyperplanes in general position, and let L ∈ G(d, k), for k ∈ {1, . . . , d}, be a
k-dimensional linear subspace in general position with respect to H1, . . . , Hn , which
means that H1 ∩ L , . . . , Hn ∩ L are (k − 1)-dimensional subspaces of L which are
in general position in L . Let j ∈ {1, . . . , k}. The tessellation TL induced in L by
H1 ∩ L , . . . , Hn ∩ L has C(n, k, j) faces of dimension j , by (16). If n < k − j ,
then clearly C(n, k, j) = 0. The following is an immediate consequence of general
position.
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Lemma 4.1 Let j ≥ 1. To each j-face Fj of TL , there is a unique (d − k + j)-face
F of the tessellation T induced by H1, . . . , Hn, such that Fj = F ∩ L.

Conversely, if F ∈ Fd−k+ j (T ) and F ∩ L 
= {0}, then F ∩ L is a j-face of TL .

In the following, we assume that n ≥ k − j . We choose one of the j-faces of
TL at random (with equal chances) and denote it by Fj . Then Fj = L ∩ F with
a unique face F ∈ Fd−k+ j (T ). The face Fj is contained in 2k− j Schläfli cones of
TL and thus in 2k− j Schläfli cones of T . These are precisely the Schläfli cones of
T that contain F . We select one of these at random (with equal chances) and call it
C [k, j](H1, . . . , Hn, L).

LetH1, . . . ,Hn be independent randomhyperplaneswith distributionφ∗.We apply
the described procedure to these hyperplanes and to a random k-dimensional subspace.
This random subspace will here be chosen as explained below, and in a different way
in Sect. 6.

Let L ∈ G(d, k) be a random subspace with distribution νk , which is independent
of H1, . . . ,Hn ; for k = d, L = R

d is deterministic. We may assume, since this
happens with probability 1, that H1, . . . ,Hn and L are in general position. Then we
define

C [k, j]
n := C [k, j](H1, . . . ,Hn,L). (21)

More formally, C [k, j]
n is a random polyhedral cone with distribution given by

P(C [k, j]
n ∈ B) =

∫

G(d,d−1)n

∫

G(d,k)

1

C(n, k, j)

∑

F∈Fd−k+ j (ηn)

F∩L 
={0}

1

2k− j

×
∑

C∈Fd (ηn)

C⊃F

1B(C) νk(dL) φ∗n(dηn) (22)

for B ∈ B(PCd) andn ≥ k− j (recall thatηn is a shorthandnotation for (H1, . . . , Hn)).
If n > k − j , then almost surely F ∈ Fd−k+ j (ηn) is not a linear subspace. Thus, (3)

implies that the inner integral in (22), up to the combinatorial factors, can be written
as

∫

G(d,k)

∑

F∈Fd−k+ j (ηn)

1{F ∩ L 
= {0}}
∑

C∈Fd (ηn)

1{F ⊂ C}1B(C) νk(dL)

=
∑

C∈Fd (ηn)

1B(C)
∑

F∈Fd−k+ j (ηn)

1{F ⊂ C}
∫

G(d,k)

1{F ∩ L 
= {0}} νk(dL)

=
∑

C∈Fd (ηn)

1B(C)
∑

F∈Fd−k+ j (ηn)

1{F ⊂ C}2Ud−k(F)

= 2
∑

C∈Fd (ηn)

1B(C)Yd−k+ j,d−k(C),
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according to (10). Therefore, we obtain

P(C [k, j]
n ∈ B)= 2

2k− j C(n, k, j)

∫

G(d,d−1)n

∑

C∈Fd (ηn)

1B(C)Yd−k+ j,d−k(C) φ∗n(dηn).

(23)
From (19) and (23) (both formulated for expectations)weget, for every nonnegative,

measurable function g on PCd and n > k − j , the equation

E g(C [k, j]
n ) = 2C(n, d)

2k− j C(n, k, j)
E (gYd−k+ j,d−k)(Sn). (24)

Choosing g = 1 in (24), we obtain the following theorem.

Theorem 4.1 The expected size functionals E Yi, j of the (φ∗, n)-Schläfli cone Sn are
given by

EYd−k+ j,d−k(Sn) = 2k− j C(n, k, j)

2C(n, d)
(25)

for 1 ≤ j ≤ k ≤ d and n > k − j .

As a consequence, we can also write

E g(C [k, j]
n ) = E (gYd−k+ j,d−k)(Sn)

EYd−k+ j,d−k(Sn)
.

Thus, the distribution of C [k, j]
n is obtained from the distribution of Sn by weighting

it with the function Yd−k+ j,d−k . This is the conical counterpart to [26, Sect. 11.3,
Lemma]. In analogy to [26, Sect. 11.3], we point out some special cases.

If k = j = 1, the procedure described above is equivalent to choosing a uniform
random point in S

d−1, independent of H1, . . . ,Hn , and taking for C [1,1]
n the Schläfli

cone containing it. The weight function satisfies Yd,d−1(C) = Vd(C).
If k = d, the procedure is equivalent to choosing a j-face of the tessellation T at

random (with equal chances) and then choosing at random (with equal chances) one
of the Schläfli cones containing it, which gives C [d, j]

n . The weight function satisfies
Y j,0(C) = 1

2 f j (C), since the assumption n > d − j implies that the j-faces of C

are not linear subspaces. In particular, for j = d it is constant, and C [d,d]
n = Sn in

distribution.
By specialization, Eq. (25) includes the following results, which were obtained by

Cover and Efron [9].

Corollary 4.1 For k = 1, . . . , d,

E fk(Sn) = 2d−k
( n

d−k

)

C(n − d + k, k)

C(n, d)
, (26)
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and for k = 0, . . . , d − 1,

E fk(Cn) = 2k
(n

k

)

C(n − k, d − k)

C(n, d)
. (27)

Equation (26) is formula (3.1) in [9], after correction of misprints. This equation is
obtained from (25) by choosing k = d and then replacing j by k (and observing (11)
and (16)), if n > d − k. For n = d − k, both sides are equal to 1, and for n < d − k
both sides are zero. The duality (20) gives (27), which is formula (3.3) in [9].

The following expectations do not appear in [9].

Corollary 4.2 The expected conical quermassintegrals of the (φ∗, n)-Schläfli cone
Sn and the (φ, n)-Cover–Efron cone Cn are given by

EUk(Sn) = C(n, d − k)

2C(n, d)
(28)

for k = 0, . . . , d − 1, and by

EUk(Cn) = C(n, d) − C(n, k)

2C(n, d)
(29)

for k = 1, . . . , d − 1.

Equation (28) is obtained by replacing k and j in (25) both by d − k. Note that
if n ≤ d − k, then both sides of the equation are equal to 1/2. Since Cn is almost
surely pointed, the dualities (5) and (20) yield (29), where both sides of the equation
are equal to 0 if n < k.

We can now apply (7) for j = 1, . . . , d together with (28), and (8) for j = 0
together with (20) and (29), to obtain (30) below. The duality relations (8) and (20)
then yield (31).

Corollary 4.3

E Vj (Sn) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(

n

d − j

)

C(n, d)−1, j = 1, . . . , d,

(

n − 1

d − 1

)

C(n, d)−1, j = 0,
(30)

and

E Vj (Cn) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

(

n

j

)

C(n, d)−1, j = 0, . . . , d − 1,
(

n − 1

d − 1

)

C(n, d)−1, j = d.

(31)

Remark. After a first version of this manuscript had been posted in the arXiv,
Martin Lotz kindly pointed out to the authors that relation (30) can also be deduced
from a result of Klivans and Swartz [21], for which he sketched a simpler proof.
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Let A be an arrangement of n hyperplanes through 0 in R
d . The main result of [21]

connects the polynomial
∑d

k=0
∑

Vk(C)tk , where the inner sum extends over the
d-cones of the tessellation induced byA, with the characteristic polynomial ofA and
thus with the Möbius function of the intersection poset of A. Under our assumption
of general position, this Möbius function is easily determined, therefore the result
of [21] yields (30) (though with a less direct proof). Meanwhile, a short proof of
the Klivans–Swartz formula has independently been given by Kabluchko et al. in
[20, Thm. 4.1], and Amelunxen and Lotz [4, Thm. 6.1] have generalized that formula
to faces of all dimensions.

In the summary of their paper [9], Cover and Efron also announced results on the
‘expected natural measure of the set of k-faces’. As such a natural measure one can
consider the total k-face contentΛk defined by (12) for polyhedral cones (or its natural
analogue in the case of spherical polytopes). The following can be stated.

Proposition 4.1 For the functionals defined by Λk(C) = ∑

F∈Fk(C) Vk(F), the
expectations for random Schläfli cones are given by

EΛk(Sn) = 2d−k
( n

d−k

)

C(n, d)
(32)

for k = 1, . . . , d, and for Cover–Efron cones by

EΛk(Cn) =
(n

k

)

C(n − k, d − k)

C(n, d)
(33)

for k = 1, . . . , d − 1.

In contrast to (33), relation (32) holds also for k = d, by (25). Cover and Efron did
not formulate these results; however, some arguments leading to them are contained
in the proofs of their Theorems 2 and 4. We note that (32) is the special case of (25)
which is obtained by replacing k by d − k + 1 and setting j = 1. Here we use that
for n > d − k, the k-faces of Sn are not in G(d, k). For n ≤ d − k, the equation is
apparently true as well.

For (33), we extend and complete the arguments given in [9]. For the proof, we can
assume that n ≥ k. Let k ∈ {1, . . . , d − 1}. By (19) and (20),

EΛk(Cn) = EΛk(S◦
n) =

∫

G(d,d−1)n

1

C(n, d)

∑

C∈Fd (ηn)

Λk(C
◦) φ∗n(dηn).

Let ηn = (H1, . . . , Hn), where H1, . . . , Hn ∈ G(d, d − 1) are in general position.
Let F ∈ Fd−k(ηn). Then there are indices 1 ≤ i1 < · · · < ik ≤ n such that

F ⊂ Li1,...,ik := Hi1 ∩ · · · ∩ Hik .

Let CF be the set of Schläfli cones C ∈ Fd(ηn) with F ⊂ C . Let u j be a unit normal
vector of Hi j , j = 1, . . . , k. Then the cones C ∈ CF are in one-to-one correspondence
with the choices ε1, . . . , εk ∈ {−1, 1} such that
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C ⊂
k

⋂

j=1

ε j u
−
j .

The face of C◦ conjugate to F (with respect to C) is then given by

̂FC = pos{ε1u1, . . . , εkuk}.

It follows that the faces ̂FC , C ∈ CF , form a tiling of L⊥
i1,...,ik

, and therefore

∑

C∈Fd (ηn)

1{F ⊂ C}Vk(̂FC ) = 1. (34)

The faces F ∈ Fd−k(ηn) with F ⊂ Li1,...,ik are the Schläfli cones of the tessellation
induced in Li1,...,ik , hence there are precisely C(n −k, d −k) of them. Nowwe obtain,
using (34) and the latter remark,

∑

C∈Fd (ηn)

Λk(C
◦) =

∑

C∈Fd (ηn)

∑

G∈Fk (C◦)
Vk(G) =

∑

C∈Fd (ηn)

∑

F∈Fd−k (C)

Vk(̂FC )

=
∑

F∈Fd−k (ηn)

∑

C∈Fd (ηn)

1{F ⊂ C}Vk(̂FC )

=
∑

1≤i1<···<ik≤n

∑

F∈Fd−k (ηn)

1{F ⊂ Li1,...,ik }

×
∑

C∈Fd (ηn)

1{F ⊂ C}Vk(̂FC )

=
(

n

k

)

C(n − k, d − k),

which yields (33).
We point out that the results obtained so far hold for general distributions φ∗, as

specified at the beginning of this section (which exhibits their essentially combinatorial
character).

5 Some First and Second Order Moments

We have defined the random Schläfli cone by picking at random, with equal chances,
one of the d-cones generated by a finite number of i.i.d. random hyperplanes through 0
(with a suitable distribution). A different model of a random cone is obtained by taking
the (almost surely unique) cone that contains a fixed given ray. This is in analogy to
the Euclidean case, where, for a stationary random mosaic, the typical cell and the
zero cell (containing the origin) are classical examples of random polytopes. In that
case, it is known (e.g., [40, Thm. 10.4.1]) that the distribution of the zero cell is, up
to translations, the volume-weighted distribution of the typical cell. In this section,
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we derive an analogous statement for conical tessellations generated by hyperplanes
with rotation invariant distribution (Lemma 5.2), and also some expectation results in
analogy to the Euclidean case. While this is of independent interest, our main goal is
to derive from this, together with the expectation (39), the mixed second moment (41),
because this is an essential prerequisite for the proof of our main result, Theorem 8.1.

Recall that νd−1 denotes the unique rotation invariant probability measure on the
Grassmannian G(d, d − 1). The subsequent results require this special distribution
for the considered random hyperplanes, instead of the general distribution φ∗ of the
previous sections.

First we formulate a simple lemma.

Lemma 5.1 If A ∈ B(Sd−1) and k ∈ {1, . . . , d − 1}, then

∫

G(d,d−1)k
σd−k−1(A∩H1∩· · ·∩Hk) νk

d−1(d(H1, . . . , Hk)) = ωd−k

ωd
σd−1(A). (35)

Proof As a function of A, the left-hand side of (35) is a finite measure, which, due to
the rotation invariance of νd−1 and of σd−k−1, must be invariant under rotations. Up
to a constant factor, there is only one such measure on B(Sd−1), namely σd−1. The
choice A = S

d−1 then reveals the factor. ��
Now letH1, . . . ,Hn be independent random hyperplanes through 0 with distribu-

tion νd−1. Before treating the (νd−1, n)-Schläfli cone, we consider a different random
cone, which corresponds to the zero cell in the theory of Euclidean tessellations.
Let e ∈ S

d−1 be a fixed vector. With probability 1, the vector e is contained in
a unique Schläfli cone induced by H1, . . . ,Hn , and we denote this cone by Se

n . If
e /∈ H ∈ G(d, d − 1), we denote by He the closed halfspace bounded by H that
contains e.

Let k ∈ {0, . . . , d − 1}. Almost surely, each (d − k)-face of Se
n is the intersection

of Se
n with exactly k of the hyperplanesH1, . . . ,Hn . Conversely, each intersection of

k distinct hyperplanes from H1, . . . ,Hn a.s. intersects Se
n either in a (d − k)-face or

in {0}. Observing this, we compute

EΛd−k(Se
n) = E

∑

1≤i1<···<ik≤n

Vd−k
(

Se
n ∩ Hi1 ∩ · · · ∩ Hik

)

=
∑

1≤i1<···<ik≤n

E Vd−k
(He

1 ∩ · · · ∩ He
n ∩ Hi1 ∩ · · · ∩ Hik

)

=
(

n

k

)

E Vd−k
(He

k+1 ∩ · · · ∩ He
n ∩ H1 ∩ · · · ∩ Hk

)

=
(

n

k

)∫

G(d,d−1)n−k

∫

G(d,d−1)k
Vd−k

(

He
k+1 ∩ · · · ∩ He

n ∩ H1 ∩ · · · ∩ Hk
)

× νk
d−1

(

d(H1, . . . Hk)
)

νn−k
d−1

(

d(Hk+1, . . . , Hn)
)

.

If n = k, the outer integration does not appear, and He
k+1 ∩ · · · ∩ He

n has to be
interpreted as Rd . For n < k, both sides of the equation are zero.
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By Lemma 5.1, the inner integral is equal to

1

ωd
σd−1(He

k+1 ∩ · · · ∩ He
n ∩ S

d−1,

hence we obtain

EΛd−k(Se
n) =

(

n

k

)

E Vd(Se
n−k) (36)

for k = 0, . . . , d − 1. Here both sides of the equation are zero if n < k, and they are
equal to 1 for n = k.

We next derive a similar formula for E fd−k(Se
n) (in analogy to [37, Sect. 5]). Let

k ∈ {0, . . . , d − 1} and n > k. As above, we obtain

E fd−k(Se
n) = E

∑

1≤i1<···<ik≤n

1
{

Se
n ∩ Hi1 ∩ · · · ∩ Hik 
= {0}}

=
(

n

k

)∫

G(d,d−1)n−k

∫

G(d,d−1)k
1
{

He
k+1 ∩ · · · ∩ He

n ∩ H1 ∩ · · · ∩ Hk 
= {0}}

× νk
d−1

(

d(H1, . . . Hk)
)

νn−k
d−1

(

d(Hk+1, . . . , Hn)
)

.

Let G(d, d − 1)k∗ denote the set of all k-tuples of (d − 1)-dimensional linear sub-
spaces with linearly independent normal vectors. The image measure of νk

d−1 under
the mapping (H1, . . . , Hk) �→ H1 ∩ · · · ∩ Hk from G(d, d − 1)k∗ to G(d, d − k) is the
invariant measure νk , hence

∫

G(d,d−1)k
1
{

C ∩ H1 ∩ · · · ∩ Hk 
= {0}} νk
d−1

(

d(H1, . . . Hk)
) = 2Uk(C)

forC = He
k+1∩· · ·∩He

n ∈ Cd and νn−k
d−1 almost all (Hk+1, . . . , Hn) ∈ G(d, d−1)n−k .

We conclude that

E fd−k(Se
n) = 2

(

n

k

)

EUk
(

Se
n−k

)

for k ∈ {0, . . . , d − 1} and n > k. If n = k, then E fd−k(Se
n) = 1, and the expectation

is zero for n < k.
To compute E Vd(Se

n), let P ⊂ S
d−1 be a closed spherically convex set containing

e. Writing u ∈ S
d−1 in the form u = te + √

1 − t2 u with u ∈ e⊥ ∩ S
d−1, we have

σd−1(P) =
∫

e⊥∩Sd−1

∫ 1

cos ρ(P,u)

(1 − t2)
d−3
2 dt σd−2(du) (37)

with

ρ(P, u) = max{ρ ∈ [0, π ] : (cos ρ)e + (sin ρ)u ∈ P}, u ∈ e⊥ ∩ S
d−1.
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Let Ze
n := Se

n ∩S
d−1. For fixed u ∈ e⊥ ∩S

d−1, the distribution function of the random
variable ρ(Ze

n, u) is given by

F(x) = P
(

ρ(Ze
n, u) < x

) = 1 − (

1 − x
π

)n
,

since ρ(Ze
n, u) > x holds if and only if none of the hyperplanesH1, . . . ,Hn intersects

the great circular arc connecting e and (cos x)e + (sin x)u. Let

G(x) :=
∫ 1

cos x
(1 − t2)

d−3
2 dt =

∫ x

0
sind−2 α dα for x ∈ [0, π ].

From (37) we have G(π) = ωd/ωd−1. Since the distribution of the random variable
ρ(Ze

n, u) does not depend on u, we obtain

E σd−1(Ze
n) = E

∫

e⊥∩Sd−1

∫ 1

cos ρ(Ze
n ,u)

(1 − t2)
d−3
2 dt σd−2(du)

= ωd−1EG(ρ(Ze
n, u))

= ωd−1

∫ π

0
G(x)F ′(x) dx

= ωd−1

[

G(π) −
∫ π

0
G ′(x)F(x) dx

]

= ωd−1

[ ωd

ωd−1
−

∫ π

0
sind−2 x

(

1 − (

1 − x

π

)n)dx
]

= ωd−1

∫ π

0

(

1 − x

π

)n sind−2 x dx .

After using the binomial theorem, the integral can be evaluated by using recursion
formulas and known definite integrals; e.g., see [17, p. 117]. (The evaluation of the
integral for d = 3 in [31, (6.16)] is corrected in [10].)

Defining the constant θ(n, d) by

θ(n, d) := ωd−1

ωd

∫ π

0

(

1 − x
π

)n sind−2 x dx, for n ∈ N0, (38)

and by θ(n, d) := 0 for n < 0, and recalling that Vd(Se
n) = σd−1(Ze

n)/ωd , we can
write the result as

E Vd(Se
n) = θ(n, d). (39)

Note that θ(0, d) = 1. As a corollary, we obtain from (36) that

EΛd−k(Se
n) =

(

n

k

)

θ(n − k, d) (40)

for k ∈ {0, . . . , d − 1}. For n = k both sides are equal to 1, and they are zero for
n < k.
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The following lemma relates the distribution of Se
n to that of the random (νd−1, n)-

Schläfli cone Sn .

Lemma 5.2 Let H1, . . . ,Hn be independent random hyperplanes with distribution
νd−1, and let Se

n be the induced Schläfli cone containing the fixed given vector e ∈ S
d−1.

Let f be a nonnegative measurable function on PCd which is invariant under
rotations. Then

E f (Se
n) = C(n, d)E ( f Vd)(Sn).

Proof In the following,wedenote byν the invariant probabilitymeasure on the rotation
group SO(d), and we make use of the fact that

∫

SO(d)

g(ϑe) ν(dϑ) = 1

ωd

∫

Sd−1
g(u) σd−1(du)

for every nonnegative measurable function g on Sd−1. Using the rotation invariance of
the function f and of the probability distribution νd−1, we obtain, with ϑ ∈ SO(d),

E f (Se
n) = E

∑

C∈Fd (H1,...,Hn)

f (C)1int C (e)

= E

∑

C∈Fd (H1,...,Hn)

f (C)1int C (ϑe)

= E

∫

SO(d)

∑

C∈Fd (H1,...,Hn)

f (C)1int C (ϑe) ν(dϑ)

= 1

ωd
E

∫

Sd−1

∑

C∈Fd (H1,...,Hn)

f (C)1int C (u) σd−1(du)

= 1

ωd
E

∑

C∈Fd (H1,...,Hn)

f (C)σd−1(C ∩ S
d−1)

= C(n, d)E ( f Vd)(Sn)

by (19) (with φ∗ = νd−1). ��
From Lemma 5.2 and (40) we get

E (Λd−k Vd)(Sn) =
(n

k

)

θ(n − k, d)

C(n, d)
(41)

for k = 0, . . . , d − 1. The case k = 0 reads

E V 2
d (Sn) = θ(n, d)

C(n, d)
.

Equation (41) is a conical counterpart to Miles [26, Thm. 11.1.1]. The special case
d = 3 of (41) is contained in Miles [31, Thm. 6.3].
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6 Another Selection Procedure

In this section, we begin with the proof of our main result, Theorem 8.1, which will
yield all the mixed moments E (ΛsΛr )(Sn). Before that, we sketch the proof strategy.
The principal idea can already be seen from the way the mixed second moment (41)
for the random Schläfli cone Sn was obtained. We had defined another random cone,
Se

n , with the property (expressed in Lemma 5.2) that its distribution is the Vd -weighted
distribution of Sn . Since the expectation ofEΛd−k(Se

n) (see (40)) could be determined
by a direct geometric argument, we thus obtained the expectation E (Λd−k Vd)(Sn).

A more sophisticated version of this argument will finally allow us to determine
explicitly the mixedmomentsE (ΛsΛr )(Sn). In the present section, we use successive
random choices to define a random cone D[k, j]

n , for which we show in (43) that
its distribution is the Yd−k+ j,d−k-weighted distribution of Sn−d+k . The expectation

EΛr (D[k, j]
n ) is expressed in (48) in terms of expectations for certain Schläfli cones.

To obtain this, a geometric decomposition argument is needed, which is provided in
Sect. 7. Both results together yield the expectationE (Λr Yd−k+ j,d−k)(Sn−d+k), which
we can specialize and simplify to obtain E (ΛsΛr )(Sn).

In Sect. 4, we have used a selection procedure to define a random cone C [k, j]
n . This

selection procedure will now be modified. The assumptions are the same as in Sect.
5:H1, . . . ,Hn are independent random hyperplanes through 0, each with distribution
νd−1, the rotation invariant probability measure on G(d, d − 1).

The second selection procedure is equivalent to a conical analogue of the one in
[26, Sect. 11.4], though we describe it in a different way. We assume again that 1 ≤
j ≤ k ≤ d and n ≥ d − j (that is, n − (d − k) ≥ k − j). Now a subspace L ∈ G(d, k)

is chosen at random (with equal chances) from the k-dimensional intersections of the
hyperplanes H1, . . . ,Hn . (If k = d, then L = R

d is deterministic. Corresponding
adjustments can bemade below.) There are indices i1, . . . , id−k ∈ {1, . . . , n} such that

L = Hi1 ∩ · · · ∩ Hid−k ,

since n ≥ d − j ≥ d − k. In the following, if ηn = (H1, . . . , Hn), we denote
by ηn〈i1, . . . , id−k〉 the (n − d + k)-tuple that remains when Hi1 , . . . , Hid−k have
been removed from (H1, . . . , Hn). Similarly, Hn〈i1, . . . , id−k〉 is obtained from
Hn = (H1, . . . ,Hn). Then, employing the definition (21), we define

D[k, j]
n := C [k, j](Hn〈i1, . . . , id−k〉,L).

(Note that the indices i1, . . . , id−k are determined by L.)
Let B ∈ B(PCd). According to the definition of D[k, j]

n , we have

P(D[k, j]
n ∈ B) =

∫

G(d,d−1)n

1
( n

d−k

)

∑

1≤i1<···<id−k≤n

1

C(n − d + k, k, j)

×
∑

F∈Fd−k+ j (ηn〈i1,...,id−k 〉)
F∩Hi1∩···∩Hid−k 
={0}

1

2k− j

∑

C∈Fd (ηn〈i1,...,id−k 〉)
C⊃F

1B(C) νn
d−1(dηn).
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For k = d, the condition F ∩ Hi1 ∩ · · · ∩ Hid−k 
= {0} is empty and can be deleted.

Moreover, if n = d − k, then j = k, F = C = R
d and D[k, j]

n = D[k,k]
d−k = R

d almost
surely. After interchanging the integration and the first summation, the summands of
the sum

∑

1≤i1<···<id−k≤n are all the same. Therefore, we obtain

P
(

D[k, j]
n ∈ B

)

= 1

2k− j C(n − d + k, k, j)

×
∫

G(d,d−1)n

∑

F∈Fd−k+ j (ηn〈1,...,d−k〉)
F∩H1∩···∩Hd−k 
={0}

∑

C∈Fd (ηn〈1,...,d−k〉)
C⊃F

1B(C) νn
d−1(dηn)

= 1

2k− j C(n − d + k, k, j)

∫

G(d,d−1)n−d+k

∫

G(d,d−1)d−k

∑

F∈Fd−k+ j (Hd−k+1,...,Hn)

F∩H1∩···∩Hd−k 
={0}

×
∑

C∈Fd (Hd−k+1,...,Hn)

C⊃F

1B(C) νd−k
d−1 (d(H1, . . . , Hd−k)) νn−d+k

d−1 (d(Hd−k+1, . . . , Hn)).

(42)

If n = d − k, then the outer integration is omitted and F = C = R
d . We have split

the n-fold integration, since the image measure of the measure νd−k
d−1 under the map

(H1, . . . , Hd−k) �→ H1 ∩ · · · ∩ Hd−k from G(d, d − 1)d−k∗ to G(d, k) is (for reasons
of rotation invariance) the Haar probability measure νk on G(d, k). Therefore, for the
inner integral we obtain

∫

G(d,d−1)d−k

∑

F∈Fd−k+ j (Hd−k+1,...,Hn)

F∩H1∩···∩Hd−k 
={0}

∑

C∈Fd (Hd−k+1,...,Hn)

C⊃F

1B(C) νd−k
d−1 (d(H1, . . . , Hd−k))

=
∫

G(d,k)

∑

F∈Fd−k+ j (Hd−k+1,...,Hn)

1{F ∩ L 
= {0}}
∑

C∈Fd (Hd−k+1,...,Hn)

C⊃F

1B(C) νk(dL).

Assume now that n > d − j . Then, arguing as in the derivation of (23), we see that
the latter is equal to

∑

F∈Fd−k+ j (Hd−k+1,...,Hn)

2Ud−k(F)
∑

C∈Fd (Hd−k+1,...,Hn)

1{C ⊃ F)}1B(C)

=
∑

C∈Fd (Hd−k+1,...,Hn)

∑

F∈Fd−k+ j (Hd−k+1,...,Hn)

1{C ⊃ F}2Ud−k(F)1B(C)

= 2
∑

C∈Fd (Hd−k+1,...,Hn)

Yd−k+ j,d−k(C)1B(C).
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We conclude that

P(D[k, j]
n ∈ B) = 2

2k− j C(n − d + k, k, j)

∫

G(d,d−1)n−d+k

×
∑

C∈Fd (ηn−d+k )

1B(C)Yd−k+ j,d−k(C) νn−d+k
d−1 (dηn−d+k).

Together with (19) (for φ∗ = νd−1) this yields the following.

Lemma 6.1 For every nonnegative, measurable function g onPCd and for n > d − j ,

E g(D[k, j]
n ) = 2C(n − d + k, d)

2k− j C(n − d + k, k, j)
E (gYd−k+ j,d−k)(Sn−d+k). (43)

As a consequence, we have

E g(D[k, j]
n ) = E (gYd−k+ j,d−k)(Sn−d+k)

E Yd−k+ j,d−k(Sn−d+k)
.

This is the conical counterpart to [26, Thm. 11.5.1] (but in contrast to that, we have
no equivalence here: n on the left side and n − d + k on the right side).

For later application, we note the special case k = j . From (42) and (43) we obtain

∫

G(d,d−1)n

∑

C∈Fd (Hd− j+1,...,Hn)

C∩H1∩···∩Hd− j 
={0}

g(C) νn
d−1(d(H1, . . . , Hn))

= C(n − d + j, j)E g(D[ j, j]
n )

= 2C(n − d + j, d)E (gUd− j )(Sn−d+ j ) (44)

for n > d − j .

7 A Geometric Identity

To draw conclusions from the previous results, we need a geometric identity, given
by (46), in analogy to [26, Sect. 11.6]. Let ηn = (H1, . . . , Hn) ∈ G(d, d − 1)n∗, let
j ∈ {1, . . . , d − 1}, n > d − j and

L j := H1 ∩ · · · ∩ Hd− j .

Let Fj ∈ F j (ηn) be a j-face such that Fj ⊂ L j . Let k ∈ { j, . . . , d}. We delete
the hyperplanes Hk− j+1, . . . , Hd− j . From the tessellation induced by the remaining
hyperplanes, we collect the d-cones containing Fj and then classify their r -faces for
fixed r . Thus, we define

Fd(ηn, Fj , k) := {C ∈ Fd(ηn〈k − j + 1, . . . , d − j〉) : Fj ⊂ C}.
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Let r ∈ {1, . . . , d}. For p ∈ N with r ≤ p ≤ d and d − p ≤ k − j , let

Fr,p := {

F ∈ Fr (C) : C ∈ Fd(ηn, Fj , k), F ⊂ Hi

for precisely d − p indices i ∈{1, . . . , k − j}}.

We recall that Λr (C), defined for C ∈ PCd by (12), is the normalized spherical
(r − 1)-volume of the (r − 1)-skeleton of C ∩ S

d−1, that is,

Λr (C) =
∑

F∈Fr (C)

Vr (F) =
∑

F∈Fr (C)

σr−1(F ∩ S
d−1)

ωr
.

We have

∑

C∈Fd (ηn ,Fj ,k)

Λr (C) =
∑

C∈Fd (ηn ,Fj ,k)

∑

F∈Fr (C)

Vr (F)

=
d

∑

p=max{r,d−k+ j}
2d−p

∑

F∈Fr,p

Vr (F),

since each F ∈ Fr,p belongs to precisely 2d−p cones C ∈ Fd(ηn, Fj , k).
Let Q be the unique cone in Fd(ηn〈1, . . . , d − j〉) with Fj ⊂ Q, and define

Cp := {

Q ∩ Hi1 ∩ · · · ∩ Hid−p : 1 ≤ i1 < · · · < id−p ≤ k − j
}

.

Thus, Cp is a set of p-dimensional cones, and Cd = {Q}. Each r -face F ∈ Fr,p

satisfies F ⊂ G ∈ Fr (D) for a unique D ∈ Cp and a unique G ∈ Fr (D). Conversely,
for D ∈ Cp and G ∈ Fr (D), the r -face G is the union of r -faces from Fr,p, which
pairwise have no relatively interior points in common. It follows that

∑

F∈Fr,p

Vr (F) =
∑

D∈Cp

∑

F∈Fr (D)

Vr (F).

We conclude that

∑

C∈Fd (ηn ,Fj ,k)

Λr (C) =
d

∑

p=max{r,d−k+ j}
2d−p

∑

D∈Cp

∑

F∈Fr (D)

Vr (F)

=
d

∑

p=max{r,d−k+ j}
2d−p

∑

D∈Cp

Λr (D). (45)

Relation (45) was derived for any Fj ∈ F j (ηn) with Fj ⊂ L j . We sum over all
such j-faces and note that C ∈ Fd(ηn〈k − j + 1, . . . , d − j〉) satisfies Fj ⊂ C for
some j-face Fj ∈ F j (ηn) with Fj ⊂ L j if and only if C ∩ L j 
= {0}. (Recall that
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ηn〈i1, . . . , id−k〉 was defined early in Sect. 6.) Concerning the set Cp appearing on the
right-hand side of (45), we note that Q ∈ Fd(ηn〈1, . . . , d − j〉) satisfies Fj ⊂ Q for
some j-face Fj ∈ F j (ηn) with Fj ⊂ L j if and only if Q ∩ L j 
= {0}. Therefore, we
obtain the geometric identity

∑

C∈Fd (ηn〈k− j+1,...,d− j〉)
C∩L j 
={0}

Λr (C)

=
d

∑

p=max{r,d−k+ j}
2d−p

∑

1≤i1<···<id−p≤k− j

∑

Q∈Fd (ηn〈1,...,d− j〉)
Q∩L j 
={0}

Λr (Q ∩ Hi1 ∩ · · · ∩ Hid−p ),

(46)

which will be required in Sect. 8. (For k = j , the middle sum on the right-hand
side has to be deleted, and the equation becomes a tautology.) This holds for ηn =
(H1, . . . , Hn) ∈ G(d, d − 1)n∗, j ∈ {1, . . . , d − 1}, with L j := H1 ∩ · · · ∩ Hd− j ,
r = 1, . . . , d, k ∈ { j, . . . , d} and for n > d − j .

8 A Covariance Matrix

We are now in a position to combine the preceding results, in order to finish the proof
of Theorem 8.1. The crucial task is to compute the expectation EΛr (D[k, j]

n ) (Formula
(48)). To do this, we use the explicit representation (42) of the distribution of D[k, j]

n
and employ the geometric decomposition result (46) obtained in Sect. 7, together with
properties of invariant measures.

We use (42), extended to expectations and then applied to the expectation of Λr ,
for given r ∈ {1, . . . , d}. However, it will be convenient to replace the index tuple
(1, . . . , d−k)by (k− j+1, . . . , d− j), for given j ∈ {1, . . . , d−1} and k ∈ { j, . . . , d}.
As before we assume that n > d − j . Then we have (splitting the multiple integral
appropriately)

EΛr (D[k, j]
n )

= 1

2k− j C(n − d + k, k, j)

∫

G(d,d−1)n−d+ j

∫

G(d,d−1)k− j

∫

G(d,d−1)d−k

×
∑

F∈Fd−k+ j (ηn〈k− j+1,...,d− j〉)
F∩Hk− j+1∩···∩Hd− j 
={0}

∑

C∈Fd (ηn〈k− j+1,...,d− j〉)
C⊃F

Λr (C)

× νd−k
d−1 (d(Hk− j+1, . . . , Hd− j )) ν

k− j
d−1(d(H1, . . . , Hk− j ))

× ν
n−d+ j
d−1 (d(Hd− j+1, . . . , Hn)). (47)

(Recall that, for k = d, the condition F ∩ Hk− j+1 ∩ · · · ∩ Hd− j 
= {0} is empty and
can be deleted.) If k > j , we split the first sum above in the form
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∑

F∈Fd−k+ j (ηn〈k− j+1,...,d− j〉)
F∩Hk− j+1∩···∩Hd− j 
={0}

=
∑

1≤i1<···<ik− j ≤n
i1,...,ik− j /∈{k− j+1,...,d− j}

∑

F∈Fd−k+ j (ηn〈k− j+1,...,d− j〉)
F∩Hk− j+1∩···∩Hd− j 
={0}, F⊂Hi1∩···∩Hik− j

.

Then, after interchanging in (47) the first summation on the right side and integra-
tion, the outer sum has

(n−d+k
k− j

)

equal terms, hence we obtain (again regrouping the
integrals)

EΛr (D[k, j]
n ) =

(n−d+k
k− j

)

2k− j C(n − d + k, k, j)

∫

G(d,d−1)k− j

∫

G(d,d−1)n−k+ j

×
∑

F∈Fd−k+ j (ηn〈k− j+1,...,d− j〉)
F⊂H1∩···∩Hk− j , F∩Hk− j+1∩···∩Hd− j 
={0}

∑

C∈Fd (ηn〈k− j+1,...,d− j〉)
C⊃F

Λr (C)

× ν
n−k+ j
d−1 (d(Hk− j+1, . . . , Hn)) ν

k− j
d−1(d(H1, . . . , Hk− j )).

(If k = j , the condition F ⊂ H1 ∩ · · · ∩ Hk− j is empty and can be deleted.) For fixed
subspaces H1, . . . , Hk− j , we consider the inner integral

I :=
∫

G(d,d−1)n−k+ j

∑

F∈Fd−k+ j (ηn〈k− j+1,...,d− j〉)
F⊂H1∩···∩Hk− j , F∩Hk− j+1∩···∩Hd− j 
={0}

∑

C∈Fd (ηn〈k− j+1,...,d− j〉)
C⊃F

Λr (C)

× ν
n−k+ j
d−1 (d(Hk− j+1, . . . , Hn)).

A cone C ∈ Fd(ηn〈k − j + 1, . . . , d − j〉) has a face F ∈ Fd−k+ j (ηn〈k − j +
1, . . . , d − j〉) satisfying

F ⊂ H1 ∩ · · · ∩ Hk− j and F ∩ Hk− j+1 ∩ · · · ∩ Hd− j 
= {0}

if and only if

C ∩ H1 ∩ · · · ∩ Hd− j 
= {0},

and it can have at most one such face. Using this and (46), we obtain

I =
∫

G(d,d−1)n−k+ j

∑

C∈Fd (ηn〈k− j+1,...,d− j〉)
C∩H1∩···∩Hd− j 
={0}

Λr (C) ν
n−k+ j
d−1 (d(Hk− j+1, . . . , Hn))

=
d

∑

p=max{r,d−k+ j}
2d−p

∑

1≤i1<···<id−p≤k− j

∫

G(d,d−1)n−k+ j

×
∑

Q∈Fd (Hd− j+1,...,Hn)

Q∩H1∩···∩Hd− j 
={0}

Λr (Q ∩ Hi1 ∩ · · · ∩ Hid−p ) ν
n−k+ j
d−1 (d(Hk− j+1, . . . , Hn)).
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We conclude that

EΛr (D[k, j]
n )

=
(n−d+k

k− j

)

2k− j C(n − d + k, k, j)

d
∑

p=max{r,d−k+ j}
2d−p

∑

1≤i1<···<id−p≤k− j

×
∫

G(d,d−1)n

∑

Q∈Fd (Hd− j+1,...,Hn)

Q∩H1∩···∩Hd− j 
={0}

Λr (Q ∩ Hi1 ∩ · · · ∩ Hid−p ) νn
d−1(d(H1, . . . , Hn))

=
(n−d+k

k− j

)

2k− j C(n − d + k, k, j)

d
∑

p=max{r,d−k+ j}
2d−p

(

k − j

d − p

) ∫

G(d,d−1)d−p

×
∫

G(d,d−1)n−d+p

∑

Q∈Fd (Hd− j+1,...,Hn)

Q∩H1∩···∩Hd− j 
={0}

Λr (Q ∩ H1 ∩ · · · ∩ Hd−p)

× ν
n−d+p
d−1 (d(Hd−p+1, . . . , Hn)) ν

d−p
d−1 (d(H1, . . . , Hd−p)).

To evaluate the inner integral above, we fix H1, . . . , Hd−p in general position and
write H1 ∩ · · · ∩ Hd−p =: L p. The image measure of νd−1 under the (νd−1 almost
everywhere well defined) map H �→ H ∩ L p from G(d, d − 1) to the Grassmannian
G(L p, p − 1) of (p − 1)-dimensional subspaces of L p is the invariant probability
measure μp−1 on G(L p, p − 1). Therefore, the inner integral can be written as

∫

G(d,d−1)n−d+p

∑

Q∈Fd (Hd− j+1,...,Hn)

Q∩H1∩···∩Hd− j 
={0}

Λr (Q ∩ L p) ν
n−d+p
d−1 (d(Hd−p+1, . . . , Hn))

=
∫

G(L p,p−1)n−d+p

∑

C∈Fp(hd− j+1,...,hn)

C∩hd−p+1∩···∩hd− j 
={0}

Λr (C) μ
n−d+p
p−1 (d(hd−p+1, . . . , hn)).

Note that p ≥ j . If p = j , then the second condition under the last sum is empty and
can be deleted. Here Fp(hd− j+1, . . . , hn) denotes the set of Schläfli cones in L p that
are generated by the (p − 1)-planes hd− j+1, . . . , hn in L p. Identifying L p with R

p,
we can apply (44) in L p. For this, we replace d by p, the number n by n − d + p, and
raise the indices of the integration variables in (44) by d − p. Then (44), with g = Λr ,
reads

∫

G(L p,p−1)n−d+p

∑

C∈Fp(hd− j+1,...,hn)

C∩hd−p+1∩···∩hd− j 
={0}

Λr (C) μ
n−d+p
p−1 (d(hd−p+1, . . . , hn))

= 2C(n − d + j, p)E(Λr Up− j )(S(p)
n−d+ j ),
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where S(p)
m denotes the (μp−1, m)-Schläfli cone in L p. We conclude that

EΛr (D[k, j]
n ) = 2

(n−d+k
k− j

)

2k− j C(n − d + k, k, j)

d
∑

p=max{r,d−k+ j}
2d−p

(

k − j

d − p

)

× C(n − d + j, p)E(Λr Up− j )(S(p)
n−d+ j ). (48)

Comparing (43) and (48), and recalling that n > d − j , we arrive at

E(Λr Yd−k+ j,d−k)(Sn−d+k)

=
(n−d+k

k− j

)

C(n − d + k, d)

d
∑

p=max{r,d−k+ j}
2d−p

(

k − j

d − p

)

C(n − d + j, p)

×E(Λr Up− j )(S(p)
n−d+ j ).

Here we substitute d − k + j = s and d − k = t . Then we replace n by n + t and
assume that n > d − s. The result is

E(Ys,tΛr )(Sn)

=
( n

d−s

)

C(n, d)

d
∑

p=max{r,s}
2d−p

(

d − s

d − p

)

C(n − d + s, p)E(Up−s+tΛr )(S(p)
n−d+s).

This is the conical (or spherical) counterpart to [26, Thm. 11.7.1]. (The result is also
true for n < d − s, since then both sides of the equation are zero.)

We specialize the latter to t = s − 1. We have Ys,s−1 = Λs . Further, Up−s+t =
Up−1 = Vp in a space of dimension p. The value of E(VpΛr )(S(p)

n−d+s) is seen from
(41). In this way, we obtain the following result.

Theorem 8.1 The face contents of the (νd−1, n)-Schläfli cone Sn satisfy

E(ΛsΛr )(Sn)

=
( n

d−s

)

C(n, d)

d
∑

p=max{r,s}
2d−p

(

d − s

d − p

)(

n − d + s

p − r

)

θ(n − d − p + r + s, p) (49)

for r, s = 1, . . . , d, where θ is defined by (38).

An alternative formulation of (49), which exhibits the symmetry in r and s, is given
by

E(ΛsΛr )(Sn)

= 1

C(n, d)

∑

p∈N
2d−p

(

n

d − p

)(

n − d + p

p − s, p − r, n − d − p + r + s

)

× θ(n − d − p + r + s, p). (50)
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Theorem 8.1 is the conical counterpart to [26, Corollary to Thm. 11.7.1]. It holds
for all n ∈ N. In fact, if n < d − r (or n < d − s), then both sides of (49) are zero.
For n = d − r (or n = d − s) Eq. (49) is equivalent to (32). Also note that (41) is
obtained as the special case s = d − k and r = d of (49).

Since the expectations EΛr (Sn) are known by (32), Theorem 8.1 allows us to write
down the complete covariance matrix for the random vector (Λ1(Sn), . . . , Λd(Sn)).

For the Cover–Efron cone Cn , there is only one second moment that we can obtain
from Theorem 8.1 by dualization, namely E f 2d−1(Cn) = E f 21 (Sn) = 4EΛ2

1(Sn) for
n ≥ d.
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