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Abstract We consider tessellations of the Euclidean (d — 1)-sphere by (d — 2)-
dimensional great subspheres or, equivalently, tessellations of Euclidean d-space by
hyperplanes through the origin; these we call conical tessellations. For random poly-
hedral cones defined as typical cones in a conical tessellation by random hyperplanes,
and for random cones which are dual to these in distribution, we study expectations
for a general class of geometric functionals. They include combinatorial quantities,
such as face numbers, as well as, for example, conical intrinsic volumes. For isotropic
conical tessellations (those generated by random hyperplanes with spherically sym-
metric distribution), we determine the complete covariance structure of the random
vector whose components are the k-face contents of the induced spherical random
polytopes. This result can be considered as a spherical counterpart of a classical result
due to Roger Miles.

Keywords Conical tessellation - Spherical tessellation - Random polyhedral cones -
Conical quermassintegrals - Conical intrinsic volumes - Number of k-faces - First and
second order moments

Editor in Charge: Giinter M. Ziegler

Daniel Hug
daniel.hug @kit.edu

Rolf Schneider
rolf.schneider @math.uni-freiburg.de

Department of Mathematics, Karlsruhe Institute of Technology, 76128 Karlsruhe, Germany

Mathematisches Institut, Albert-Ludwigs-Universitit, 79104 Freiburg i. Br., Germany

@ Springer


http://crossmark.crossref.org/dialog/?doi=10.1007/s00454-016-9788-0&domain=pdf
http://orcid.org/0000-0002-4039-5217

396 Discrete Comput Geom (2016) 56:395-426

Mathematics Subject Classification 60D05 - 52A22 - Secondary 52A55 - 52C35 -
52B05

1 Introduction

A major theme of stochastic geometry, since the seminal work of Rényi and Sulanke in
1963/64, has always been the investigation of geometric functionals of random convex
polytopes. The survey articles [19,33,39] give an impressive picture of the progress
in recent years. They also reveal that, as far as expectations and higher moments, a
prerequisite for the study of limit theorems, are concerned, one generally has to be
satisfied with asymptotic results and estimates, whereas explicit results are very rare.

Most of the random polytopes studied so far live in Euclidean spaces. In other
spaces of constant curvature, several results may have parallel versions, but also new
phenomena are to be expected, in particular in spherical space due to its compactness. A
recent study [7] of spherically convex hulls of random points in SY~! already exhibited
some phenomena which cannot be observed in Euclidean spaces. The present paper
is devoted to random polytopes in the unit sphere S*~! of Euclidean space R?. For
basic classes of random convex polytopes in S?~!, we find explicit formulas for the
first and mixed second moments of a series of quite general geometric functionals.
The spherically convex polytopes in SY~! are in one-to-one correspondence with their
positive hulls, which are convex polyhedral cones in RY. Thus, the study of random
polytopes in the sphere is equivalent to the study of random polyhedral convex cones
in Euclidean space. The geometry of polyhedral cones has recently found increased
interest, due to applications in convex optimization and compressed sensing (see, e.g.,
[2,3,5,11,16,24]).

Let us first describe the random polytopes in S?~! and the geometric functionals of
them that we consider. First, take n > d independent, identically distributed random
points in SY~!. Their distribution need only satisfy some mild requirements, besides
evenness they guarantee general position with probability one. The spherically convex
hull of the random points, under the condition that it is not the whole sphere, defines
a random polytope. It was first studied by Cover and Efron [9]. Therefore, we call
its positive hull a Cover—Efron cone. In distribution, this random cone is dual to the
random Schléfli cone, which we define as follows. To the given random vectors in the
unit sphere, we consider the orthogonal hyperplanes through the origin. They induce
a random tessellation of R? into convex cones. Among its d-dimensional cones, we
choose one at random, with equal chances. This defines what we call arandom Schlifli
cone. Its intersection with SY~! yields the second type of spherical random polytope
that we consider, again following Cover and Efron.

For a spherical polytope P, contained in an open hemisphere, the jth quermass-
integral U;(P) is, up to a normalizing factor, the total invariant measure of the set
of (n — j)-flats through the origin that meet P. Then, we define Y} ;(P) as the sum
of U;(F) over all (k — 1)-faces F of P (or correspondingly for polyhedral cones).
These general functionals comprise combinatorial functionals, such as numbers of
k-faces, as well as metric functionals, such as total k-face contents, and they allow to
express the kth conical intrinsic volume. These conical, or spherical, intrinsic volumes
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appeared first, with different terminology, in Santalé’s work on integral geometry and
the Gauss—Bonnet formula in spherical spaces, for example, in [34,35]. To the linear
relations between the spherical intrinsic volumes listed in [34], McMullen [25] later
found, in the case of polyhedral cones, a new combinatorial approach. For later appear-
ances of the spherical intrinsic volumes in spherical geometry, we refer to [14,15], [40,
Sect. 6.5], [13]. More recently, the conical intrinsic volumes, and also their integral
geometry, have found very interesting applications in convex optimization and com-
pressed sensing. We refer to [2,5,16,24]. As a sequel to this, new approaches to, and
new perspectives on, conical intrinsic volumes of polyhedral cones came forward, with
relations to combinatorial aspects being in the foreground; see [1,4]. We emphasize,
however, that the following is meant as a contribution to stochastic geometry, where
first and higher moments of geometric random variables are in the focus of interest,
often as a first step towards more sophisticated distribution and limit results.

In the following, after introducing the announced random cones and geometric
functionals and some of their properties, we first extend the work of Cover and Efron
by determining the expectations of the functionals Y} ; for random Schlifli cones. By
specialization, this yields the results of Cover and Efron on face numbers, and also new
results, such as for the conical intrinsic volumes. By dualization, corresponding results
for the Cover—Efron cones are obtained. The major part of this paper is devoted to the
functionals Ay = Y;x_1 of a polyhedral cone. For a spherical polytope P ¢ S9!,
the value Ay (pos P) is the fotal k-face content, that is, the sum of the k-dimensional
normalized Lebesgue measures of the k-faces of P, in other words, the k-dimensional
normalized Hausdorff measure of its k-skeleton. As examples, fork = 0, 1,d—2,d—1
we get, respectively, the vertex number and, up to constant factors, the total edge length,
the surface area and the volume of P. Thus, these functionals interpolate, in a natural
way, between vertex number and volume. Recently, Amelunxen ([1], with different
notation) has proved kinematic formulas for these functionals in the case of polyhedral
cones. The expectations of the A, for a random Schléfli cone are special cases of our
results mentioned above.

Our main result is the determination of the complete covariance structure of the
sequence Ap(S), ..., Ag(S) for an isotropic random Schlifli cone S. This is a conical
counterpart to a result of Miles, who in [26] considered the typical cell of a stationary,
isotropic Poisson hyperplane mosaic in R and determined all mixed moments of its
total face contents. Miles presented his result also in [30, Formula (63)]. As remarked
in [38], the proof given by Miles in [26] makes heavy use of ergodic theory and is
not explicitly carried out in all details. A simpler proof was given in [38], where the
result of Miles was extended to the non-isotropic case and to typical faces of lower
dimensions. Our proof in the following carries over an idea of Miles to the conical
case, but is essentially different in the details.

Since our random Schléfli cones are induced by random hyperplanes through the
origin, this paper is also a contribution to random conical tessellations (which explains
the title), or equivalently to tessellations of the sphere by random great subspheres,
yielding special spherical mosaics. Random mosaics in Euclidean spaces are an inten-
sively studied topic of stochastic geometry. We refer the reader to Chapter 10 in the
book [40] and to the more recent survey articles [8,19,32,41]. A much investigated
particular class, besides the Voronoi tessellations, are hyperplane tessellations, in par-
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ticular those generated by stationary Poisson processes of hyperplanes, initiated by the
seminal work of Miles [26-30] and Matheron [22,23]. Relatively little has been done
on random tessellations of spaces other than the Euclidean. Tessellations of the sphere
of arbitrary dimension by great subspheres (of codimension 1) were briefly considered
by Cover and Efron [9], and those of the two-dimensional sphere in more detail by
Miles [31]; see in particular Theorem 6.3 on some mixed second moments, which
is widely generalized by our result. Relations between various densities of random
mosaics in spherical spaces were studied by Arbeiter and Zihle [6].

In Sect. 2 we introduce the geometric functionals of polyhedral cones that will be
studied, and in Sect. 3 the two types of random cones for which we investigate first
and second moments of these functionals. Expectation results for the functionals Yy ;,
which extend formulas of Cover and Efron, are derived in Sect. 4. Sections 5, 6 and
7 are then preparatory to our main result on mixed second moments, which is finally
obtained in Sect. 8. Hints to the proof strategy are given at the beginning of Sects. 6
and 8.

2 Geometric Functionals of Convex Cones

We work in d-dimensional Euclidean space R4 (d > 2), with scalar product (-, -),
and denote by S~ its unit sphere. Let ¢,,, m € Ny, be the m-dimensional spherical
Lebesgue measure (i.e., the m-dimensional Hausdorff measure) on m-dimensional
great subspheres of S?~!. For n € N we put

27'["/2
r'(n/2)

wy =0y (8" =

Let C¢ denote the set of (nonempty) closed convex cones in R?, which includes
k-dimensional linear subspaces, k € {0,...,d}. We equip C? with the topology
induced by the Fell topology (see [40, Sect. 12.2]), or equivalently, with the topology
induced by the Euclidean Hausdorff distance restricted to the intersections of the cones
in C? with the unit ball centered at the origin. A cone C € C¢ is called pointed if it
does not contain a line. We write PC for the set of polyhedral cones in C?. This set
is a Borel subset of C¢. For C € PC? and for k € {0, ..., d}, we denote by F;(C) the
set of k-dimensional faces of C.

For C € C¢, the dual cone is defined by

C°:={yeR?: (y,x) <Oforallx € C}.

This is again a cone in C¢, and C*° := (C°)° = C.If C is pointed and d-dimensional,
then C° has the same properties. If C € PC% and F € Fi(C) fork € {0, ..., d}, then
the normal cone N (C, F) of C at F is a (d — k)-face of the polyhedral cone C°, also
called the conjugate face (of F with respect to C) and denoted by fc. If fc = G,
then Gco =F.

The following fact is occasionally useful. We give a proof for convenience.
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Lemma 2.1 Suppose that C € C? is pointed, and let L C R? be a linear subspace.
Then

LNC #1{0} & L NintC° = .

Proof Suppose that L N C # {0}. Choose v € L N C, v # 0. Suppose there exists
y € LT NintC°. Since y € L+, we have (y, v) = 0. Since y € int C°, the points
¥’ in some neighbourhood of y belong to C° and hence satisfy (y’, v) < 0. But since
(¥, v) = 0and v # 0, this is impossible.

Suppose that L+ N int C° = @. The disjoint convex sets L* and int C° can be
separated by a hyperplane, hence there is a vector v # 0 with (v, y) < 0 for all
y e€intC® and (v,z) > Oforall z € L+t the latter implies (v, z) =0 forz € L+ and
thus v € L. Since C does not contain a line, int C° # @, hence (v, y) < 0 holds for
all y € C°. Therefore, v € C°° = C. Thus,v € LNC. |

A set M C S is spherically convex if pos M is convex; here pos denotes the
positive hull. To include some degenerate cases in the following, we define pos ¥ :=
{0}.If C € C?, the set K = C NS¢ ! is called a convex body in S9-1 and we have
C = pos K. In particular, the empty set and k-dimensional great subspheres, that is,
intersections of (k4 1)-dimensional linear subspaces with S fork {0,...,d—1}
(and thus including S9=1), are convex bodies in S?~!. The set of convex bodies in ¢!
is denoted by /s (this notation, as well as the term ‘convex body’, differs from the
usage in [40, Sect. 6.5], where the empty set is excluded). For K € I, the dual convex
body K ° is defined by

K°:={yeS¥:(y,x) <Oforallx € K} = (pos K)° NS¢

To introduce the conical quermassintegrals and the conical intrinsic volumes, we
make use of the correspondence between convex cones in R? and spherically convex
sets in SY~!. For the latter, the functionals to be considered were already introduced
by Santald, see [36, Part IV], with different notation. We follow here the approach of
Glasauer [14] and refer to [40, Sect. 6.5] for further details.

Let G(d, k) denote the Grassmannian of k-dimensional linear subspaces of RY, and
let v be its normalized Haar measure (the unique rotation invariant Borel probability
measure on G(d, k)),k =0, ...,d.For K € Ky, the spherical quermassintegrals are
defined by

Uj(K) :=%/ X(KNL)vg—;@dL), j=0,....d, (1
G(d,d—j)

where x denotes the Euler characteristic. (Of course, Uy (K) = %X (K)andUy(K) =0,
but this is included for formal reasons). These are, essentially, the ‘Grassmann angles’
of Griinbaum [18], who derived for them various polyhedral relations. We recall from
[40, p. 262] that if K is a convex body in S9-1 and not a great subsphere, then
x(KNL)=1KNL # @} forvg_; almostall L € G(d,d — j). Hence, in this case
2 U(K) is the total invariant probability measure of the set of all (d — j)-dimensional
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linear subspaces hitting K. Since x (S¥) = 1 + (—1)* for a great subsphere S* of
dimension k € {0, ...,d — 1}, we have

ek [ 1 if k — j > 0 and even,
U](S)_{O if k — j < 0orodd.

For cones C € C4, we now define
U;(C):=U;(Cns'h. 2)

If C € C? is not a linear subspace, then
G =1 [ HCNLA O @D, j=0d O
G(d.d—j)

If L* ¢ R? is a linear subspace of dimension k, then

X 1 ifk—j > 0and odd,
Uj(L)_{O if k — j <0 oreven. )
Let0 < j<m<d-1,let M C R“ be an m-dimensional linear subspace
and C € C? a cone with C C M. The image measure of vy_ ;j under the map L +—
LN M from G(d,d — j) to the Grassmannian of (m — j)-subspaces in M is the
normalized Haar measure on the latter space. Here (and subsequently) we tacitly use
the fact that vy ;({L € G(d,d — j) : LN M ¢ G(d,m — j)}) = 0; see [40, Lem.
13.2.1]. Therefore, it follows from (1), (2) that U;(C) does not depend on whether it
is computed in R or in M.
In particular, for C € C%andm € {1,...,d}, we have

om—1(C NS

W

dmC <m = U,_1(C) =

If C € C? is not a linear subspace, the duality relation
Uj(C) +Ua—j(C°) = 3 5)

holds for j = 0,...,d. If C is pointed and d-dimensional, this follows from (3)
and Lemma 2.1. If C € C? is not a subspace, the assertion can be obtained from the
previous case by approximation, using easily established continuity properties. If C
is a subspace, duality is of little interest, in view of (4).

We now recall the spherical intrinsic volumes and refer to [40, Sect. 6.5] for
details. Let d; be the spherical distance on S9-1. thus, for x, y € S9-1d(x, y) =
arccos (x, y). For K € K, \ {#} and x e S?! the distance of x from K is
dy(K, x) = min{d;(y,x) : y € K}. For 0 < ¢ < m/2, the (outer) parallel set
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of K at distance ¢ is defined by
M.(K):={xeS"!:0<dy(K,x) <e}.
By the spherical Steiner formula, the measure of this set can be written in the form
d-2
0a-1(Mc(K)) = D" gam(&)vm(K)
m=0

with
¢ d 2
gd,m(g) = a)m+1wd—m—1/ COSm(PSin - pdy
0

for 0 < ¢ < m/2. This defines the numbers vo(K), ..., vg—2(K) uniquely. The
definition is supplemented by setting v, (¥) := 0,

04-1(K)
wqg

vg—1(K) =
and

v_1(K) = vg-1(K°).
Note that v, (S"1) = 0form = 0,...,d — 2 and vz (S¢~!) = 1. The numbers
v; (K) are the spherical intrinsic volumes of K. In particular, for K € K and m =

0,....,d -1,

K
dmK <m = vy(K) = &
Wm+1

For spherical polytopes, the spherical intrinsic volumes have representations in terms
of angles, similar as in the Euclidean case. For a spherical polytope P and for k €
{0,...,d — 2}, we denote by Fi(P) the set of k-faces of P. Let P be a spherical
polytope and F' € Fi(P). The external angle y (F, P) of P at F is defined by

04—k—2(N(pos P, pos F) NS4~ 1)
Wd—k—1 )

y(F, P) = y(pos F, pos P) :=

With these notations, we have

1

Wm+1

U (P) =

> ow(F)y(F.P), m=0,....d—2.
FeF,(P)
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For cones C € C?, the conical intrinsic volumes are now defined by
Vi (C) i= v (CNS™N,  m=0,...,d.

The shift in the index has the advantage that the highest occurring index is equal to the
maximal possible dimension of C. Since C is a cone, there is no danger of confusion
with the intrinsic volumes of compact convex bodies.

For a cone C € C¢ with dim C = k, the internal angle of C at 0 is defined by

ox—1(C NS4~y
[0)% ’

B, C) =
Then, for an arbitrary polyhedral cone C € PC? and form = 1,...,d — 1, we have

Vu(C)= > B, F)y(F,C).
FeFnu(C)

In particular, if dim C = m, then V,,(C) = (0, C).

In contrast to the quermassintegrals and intrinsic volumes of convex bodies in
Euclidean space, which differ only by their normalizations, the conical quermassin-
tegrals and conical intrinsic volumes are essentially different functionals. However,

they are closely related. A spherical integral-geometric formula of Crofton type (see
[40, (6.63)]) implies that

=

Uj(C)= D" Vj1241(C) (6)
k=0

for C € ¢4 and j=0,...,d — 1. From (6) it follows that

Vj :U.j—l_Uj—H forj=1,...,d -2,
Vi1 =Us-2, N
Va =Us1.

The duality relation
Vi (C) = Vg (C%), m=0,...,d, (8)

holds for C € C?. For m € {0, d} it holds by definition. For m € {1,...,d — 1}, it
follows from (5) and (7) if C is not a subspace, and from

V(L") =8 ©)

(Kronecker symbol) if C = LK is a k-dimensional subspace; here (9) follows from (4)
and (7).
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As did Miles [26, Sect. 5.8] for convex polytopes in R?, we use the conical quer-
massintegrals to define a more general series of functionals for polyhedral cones,
which comprises the geometrically most interesting functionals as special cases. For
CePClk=1,....,dand j=0,... . k—1,let

Ye (€)= D Uj(F). (10)

FeFi(C)

Then, in particular,
Ydiimc,j(C) = U;(C).

According to (7), also the conical intrinsic volumes can be expressed in terms of
suitable functions Yy ;.
If C € PCY is such that the k-faces of C are not linear subspaces, then

Yi0(C) = 1 fi(C), (11)

where fi(C) denotes the number of k-faces of C.

We see that for a d-dimensional pointed polyhedral cone both, the combinatorial
functionals given by the face numbers and the metric functionals given by the conical
intrinsic volumes, can be expressed in terms of suitable functionals Yy ;.

Further, for C € PC dand k € {1, ..., d}, we define the functional Ay by

A(C) == D Vi(F). (12)

FeFir(C)

As explained in the introduction, Ay can be considered as the total k-face content, also
for a polyhedral cone, if ‘content’ is interpreted properly. Since the conical intrinsic
volumes and the conical quermassintegrals are intrinsically defined, it follows from
(7) that

Yik—1(C) = Ap(C).

3 Conical Tessellations and the Cover-Efron Model

In this section, we introduce random conical tessellations and the two basic types of
random polyhedral cones that they induce. These random cones were first considered
by Cover and Efron [9]. We slightly modify and formalize the approach of [9], to meet
our later requirements.

Recall that G(d, d — 1) denotes the Grassmannian of (d — 1)-dimensional linear
subspaces of R?. We say that hyperplanes Hy, ..., H, € G(d,d — 1) are in general
position if any k < d of them have an intersection of dimension d — k. For a vector
x € R\ {0}, let

xt={yeR:(y,x)=0}), x ={yeR?:(y,x) <O
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We shall repeatedly make use of the duality
n n °
(postxr, .o x ) = (7. postr,.oox) = ([ x7) (13)
i=l =1

1

forxi,...,x, € R4,
Vectors x1,...,x, € R4 are said to be in general position if any d or fewer of these
vectors are linearly independent. Thus, the hyperplanes le, ceey x,f are in general

position if and only if x1, ..., x, are in general position. If this is the case, then
n n
pos{xl,...,xn}#Rd & ﬂxi_yé{O} & dimﬂxi_:d, (14)
i=1 i=1

where the last implication = follows from general position. In fact, suppose that
C =N, x; satisfies 0 < k = dim C < d. Let Ly = linC. Choose p € relint C

anddefine I :={i e {1,...,n}:p exl.l},hencep S intx; for j e {l,...,n}\I.
Then C C (;¢; x;* implies that Ly C ();o; - C (Nics X; - Since p € intx; for
Jjefl,....,n}\ I, wealsohave [);c; x; C L, and thus Ly = ﬂielxil = (Nier X;

and L,ﬁ = pos{x; : i € I}, by (13). But then necessarily |/| > d — k. The assumption
of general position implies that |/| = d — k, which is a contradiction to L,ﬂ- = pos{x; :
iel}.

Suppose that Hy, ..., H, € G(d,d — 1) are in general position. Then the hyper-
planes Hy, ..., H, induce a tessellation 7 of R4 into d-dimensional polyhedral cones.
We call 7 a conical tessellation of R?. For k € {1, ..., d}, the set of k-faces of 7 is
defined as the union of the sets of k-faces of these polyhedral cones (the d-dimensional
cones are the d-faces). We write F;(Hy, ..., H,) for the set of k-faces of the tessel-
lation 7. Later, we shall often abbreviate (Hi, ..., H,) =: n, and then write Fy (1,,)
for Fi(Hy, ..., Hy,). By fir(7) we denote the number of k-faces of the tessellation 7.

The spherical polytopes C N S?~!, where C is a cone of 7, form a tessellation of
the sphere S?~!, or spherical tessellation. In the following, it will be more convenient
to work with convex cones than with their intersections with S~

If we denote by H™ one of the two closed halfspaces bounded by the hyperplane
H , then it follows from (14) that the d-dimensional cones of the tessellation 7 induced
by Hi, ..., Hy, are precisely the cones different from {0} of the form

n
(eH . & ==l
i=1

We call these cones the Schldfli cones induced by Hy, ..., H,,n > 1, because Schlifli
(generalizing a result of Steiner) has shown that there are exactly

d—1 n—1
C(n,d) :=2Z( . ) (15)
r=0
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of them (the simple inductive proof is reproduced in [40, Lem. 8.2.1]; also references
are found there). We consistently define C(0, d) := 1 (where the only cone is R4
itself) and C(n, d) := 0 forn < 0.

Each choice of d — k indices 1 <i| < --- < ig_r < n determines a k-dimensional
subspace L = H;; N---N H;, ,.Fori e {1,...,n}\ {i1,...,iq—}, the intersec-
tions of L with the hyperplanes H; are in general position in L and hence determine
C(n — d + k, k) Schlifli cones with respect to L. Each of these is a k-face of the
tessellation 7, and each k-face of 7 is obtained in this way. Thus, the total number of
k-faces is given by

F(T) = (d’ik)C(n—d—i—k, k) =: C(n,d, k) (16)

fork =1,...,d.Inparticular, fy(7) =1ifn =d —kand f4(7)=0ifn <d —k.

Now we turn to random cones. The random vectors appearing in the following can
be assumed as unit vectors, since only their spanned rays are relevant. All measures
on S~ or G(d, d — 1) appearing in the following are Borel measures. Generally, we
denote by B(T) the o -algebra of Borel sets of a given topological space T. Let ¢ be a
probability measure on S?~! which is symmetric with respect to 0 (also called even)
and assigns measure zero to each (d —2)-dimensional great subsphere. Let X1, ..., X,
be independent random points in S¢~! with distribution ¢. With probability 1, they are
in general position. In the following, we denote probabilities by P and expectations
by E.

From Schlifli’s result (15), Wendel has deduced that

C(n,d)

P = PposiX1. ... X,) #R) = =

a7

(see [40, Thm. 8.2.1]). This result, having an essentially geometric core, does not
depend on the choice of the distribution ¢, as long as the latter has the specified
properties.

Cover and Efron [9] have considered the spherically convex hull of X1, ..., X,,
under the condition that this convex hull is different from the whole sphere. We talk of
the Cover—Efron model if a spherically convex random polytope or its spanned cone
is generated in this way.

Definition 3.1 Let ¢ be as above. Let n € N and let Xy, ..., X,, be independent
random points with distribution ¢. The

(¢, n)-Cover—Efron cone C,

is the random cone defined as the positive hull of X1, ..., X, under the condition that
this is different from R9.

Thus, C), is a random convex cone with distribution given by P(C,, = R4 ) = 0and

1
P(Cy € B) = — 1g(pos{xi, ..., x, ) ¢"(d(x1, ..., x0))  (18)
pr(ld) (Sdfl)n
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for B € B(PCY), where PC, := PC?\ {R?}. Hence, C € B C PCY implies C # RY.

By duality, the Cover—Efron model is connected to random conical tessellations, as
we now explain.

Let ¢* be the image measure of ¢ under the mapping x + x- from the sphere
S9=1 to the Grassmannian G (d, d — 1). Every probability measure ¢™ on G(d, d — 1)
that assigns measure zero to each set of hyperplanes in G(d, d — 1) containing a fixed
line is obtained in this way. Let Hy, ..., H, be independent random hyperplanes in
G(d, d — 1) with distribution ¢*. With probability 1, they are in general position.

Definition 3.2 Let ¢* be as above. Let n € N and let Hy, ..., H, be independent
random hyperplanes with distribution ¢*. The

(¢*, n)-Schlafli cone S,

is obtained by picking at random (with equal chances) one of the Schlifli cones induced
by Hi, ..., Hp.

Since consecutive random constructions, of which this is an example, will also
appear later, we indicate, once and for all, how such a procedure can be formalized.
Let 21 := G(d, d —1)/; be the set of n-tuples of (d — 1)-subspaces in general position.
The probability measure P, on £2 is defined by P, := ¢*" L £2{ (where L denotes
the restriction of a measure). We interpret the choice described in Definition 3.2 as a
two-step experiment and define a kernel Kzl 127 x B(PCd) — [0, 1] by

1

K, B) = 15(C

200, B) 2= o CEme 5(C)
d\TMn

forn, € £2{ and B € B(PC%). Then (following, e.g., [12, Satz 1.8.10]), we define a
probability measure P, X K21 on B(2}) ® B(PC?) by

(Py x K3)(A) =/

G(d,d-1)"

1
= 14(nn, C) @™ (dny)
/G(d,d—l)" C(n,d) Ce;d%’?n) ! !

/ 1A (s @2) KL (. deo) 6™ ()
pcd

for A € B(£2}) ® B(PC?). Now S, is defined as the random cone whose distribution
is equal to (P, X Kzl)(.Q{’ x ). Thus,

1
P(S, € B) = / > 15(0)¢"[A(H. ... Hy) (19)

Gd.d—1y C(n,d) CeFott )

for B € B(PCY).

@ Springer



Discrete Comput Geom (2016) 56:395-426 407

To relate S, and C,,, we rewrite Eq. (18), using the symmetry of ¢ and then (17)
and (13). For B € B(PC%), we obtain

1 1
P(Cy € B) = W/(S > 1g(posierxi. ..., eaxn}) " (d(x1, ..., x4))

= Es;zil
1 n Ny L,
- /(Sd—l)n C(n,d) s,él lB((lQ Ei%i ) )d’ (dCxr, .. o5 xn))
1 N
N /(Sdl)n C(n,d) Z 15(C°) ¢"(d(x1, ..., xn))

Ce]:d(xl{.“,xni)

1
N /G(d d—1yn C(n,d) z 15(C°) ¢™ (d(Hy, ..., Hy))

=P(S° € B),

where (19) was used in the last step. Since also P(S, = R?) = P(S, = #) = 0, we
can formulate the following.

Theorem 3.1 Let ¢ be an even probability measure on S*~ which assigns measure
zero to each (d — 2)-dimensional great subsphere, let n € N. Then the (¢, n)-
Cover—Efron cone C,, and the dual of the (¢*, n)-Schldfli cone, Sy, are stochastically
equivalent,

Cn, =S, indistribution. (20)

4 Expectations for Random Schlifli and Cover-Efron Cones

In this section, ¢* is a probability measure on the Grassmannian G (d, d — 1) with the
property that it is zero on each set of hyperplanes containing a fixed line through 0. For
n € N, we consider the (¢*, n)-Schléfli cone and want to compute the expectations of
the geometric functionals Yy ;, defined by (10), for this random cone.

In his study of Poisson hyperplane tessellations in Euclidean spaces, Miles
[26, Chap. 11] has employed the idea of defining, by means of combinatorial selection
procedures, different weighted random polytopes, which could then be combined to
give results about first and second moments. In this and subsequent sections, we adapt
this approach to conical tessellations.

First we describe a combinatorial random choice. Let Hy, ..., H, € G(d,d — 1)
be hyperplanes in general position, and let L € G(d, k), for k € {1,...,d}, be a
k-dimensional linear subspace in general position with respect to Hi, ..., H,, which
means that Hi N L, ..., H, N L are (k — 1)-dimensional subspaces of L which are
in general position in L. Let j € {1,...,k}. The tessellation 7; induced in L by
HiNL,...,H, N L has C(n,k, j) faces of dimension j, by (16). If n < k — j,
then clearly C(n, k, j) = 0. The following is an immediate consequence of general
position.
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Lemma 4.1 Let j > 1. To each j-face F; of I, there is a unique (d — k + j)-face
F of the tessellation T induced by H1, ..., H,, such that Fi=FNL.
Conversely, if F € Fy_4;j(T) and F N L # (0}, then F N\ L is a j-face of ..

In the following, we assume that n > k — j. We choose one of the j-faces of
71, at random (with equal chances) and denote it by F;. Then F; = L N F with
a unique face F € Fy_y4 (7). The face F; is contained in 2k=Jj Schlifli cones of
77 and thus in 2K~/ Schlifli cones of 7. These are precisely the Schlifli cones of
7T that contain F. We select one of these at random (with equal chances) and call it
C&kil(Hy, ..., Hy, L).

LetHy, ..., H, beindependent random hyperplanes with distribution ¢*. We apply
the described procedure to these hyperplanes and to arandom k-dimensional subspace.
This random subspace will here be chosen as explained below, and in a different way
in Sect. 6.

Let £ € G(d, k) be a random subspace with distribution v, which is independent

of Hi, ..., Hy; fork = d, L = R? is deterministic. We may assume, since this
happens with probability 1, that Hy, ..., H, and £ are in general position. Then we
define _

= R I\(Hy, L H, £). Q1)

More formally, C kol

[k.j1 s
P(C / /
" G(d.d—1)" JG(d k) C(n k, j) Z k=,

is a random polyhedral cone with distribution given by

\.

FeFy— k+j (ﬂn
FNL#{0}
> 15(C) w(dL) ¢*" (dny) (22)
CeFq(nn)
CDOF

for B € B(PC%)andn > k— j (recall that n,, is a shorthand notation for (Hy, . .., Hy)).

Ifn > k— j, then almost surely ' € Fy_k4 j(n,) is not a linear subspace. Thus, (3)
implies that the inner integral in (22), up to the combinatorial factors, can be written
as

/ > HFNL#{0)} D LF CCHp(C)w(dL)
G0 FeFq—t+j(m) CeFq(m)
> 13 > IFcC C}/ 1{F N L # {0}} ve(dL)
CeFatnm) FeFairj(m) Gk
2. O > UFCCRUsk(F)
CeFi(m) FeFi—+j(m)
=2 > 13(O)Yaitjai(O),
CeFy(nn)

@ Springer



Discrete Comput Geom (2016) 56:395-426 409

according to (10). Therefore, we obtain

2

[k, /]
P(C By=—1————
(Cy eB) Zk_-/C(n, k, )

> 18O Ya it ja—k(C) ™ (dnn).
Gd.d=1" o 7
(23)
From (19) and (23) (both formulated for expectations) we get, for every nonnegative,
measurable function g on PC? and n > k — j, the equation

2C(n, d)

k.jly _
BT = 3 ek )

E(gYa—k+j.a—i)(Sn). (24)

Choosing g = 1 in (24), we obtain the following theorem.

Theorem 4.1 The expected size functionals EY; ; of the (¢*, n)-Schldfli cone S,, are
given by

2K=iC(n, k, j)
EYypridi(Sy) = ————227 25
d—k+j,d—k (Sn) 3Cn.d) (25)

forl <j<k<dandn>k—j.
As a consequence, we can also write

E (gYa—k+j.d—k)(Sn)

[k, 7]
Eg(C =
8(Cn™") EYs ttjd—x(Sn)

Thus, the distribution of C,[lk"i I'is obtained from the distribution of S, by weighting
it with the function Yy_jy; 4—x. This is the conical counterpart to [26, Sect. 11.3,
Lemma]. In analogy to [26, Sect. 11.3], we point out some special cases.

If k = j = 1, the procedure described above is equivalent to choosing a uniform
random point in sa-1 independent of Hy, ..., H,, and taking for C,[ll’l] the Schléfli
cone containing it. The weight function satisfies Y4 4—1(C) = V4(C).

If k = d, the procedure is equivalent to choosing a j-face of the tessellation 7 at
random (with equal chances) and then choosing at random (with equal chances) one

of the Schlifli cones containing it, which gives C,Ed’j ! The weight function satisfies
Yio(C) = %fj(C), since the assumption n > d — j implies that the j-faces of C

are not linear subspaces. In particular, for j = d it is constant, and C,[ld’d] = S, in
distribution.
By specialization, Eq. (25) includes the following results, which were obtained by

Cover and Efron [9].

Corollary 4.1 Fork =1, ...,d,

207K (" )C(n—d + k, k)

Efi(Sp) = Cord) ; (26)

@ Springer



410 Discrete Comput Geom (2016) 56:395-426

andfork =0,...,d — 1,

26 C(n—k,d —k)

Efi(Cy) = Cod)

27)

Equation (26) is formula (3.1) in [9], after correction of misprints. This equation is
obtained from (25) by choosing k = d and then replacing j by k (and observing (11)
and (16)),if n > d — k. For n = d — k, both sides are equal to 1, and forn < d — k
both sides are zero. The duality (20) gives (27), which is formula (3.3) in [9].

The following expectations do not appear in [9].

Corollary 4.2 The expected conical quermassintegrals of the (¢p*, n)-Schlifli cone
Sp and the (¢, n)-Cover—Efron cone C,, are given by

_C(n,d—k)
E Ui (Sy) = 2Cmd) (28)
fork=0,...,d — 1, and by
EUL(C,) = Cn,d)—C(n, k) (29)

2C(n,d)
fork=1,...,d —1.

Equation (28) is obtained by replacing k and j in (25) both by d — k. Note that
if n < d — k, then both sides of the equation are equal to 1/2. Since C, is almost
surely pointed, the dualities (5) and (20) yield (29), where both sides of the equation
are equal to O if n < k.

We can now apply (7) for j = 1,...,d together with (28), and (8) for j = 0
together with (20) and (29), to obtain (30) below. The duality relations (8) and (20)
then yield (31).

Corollary 4.3
(dn .)C(n’d)_l’ ] = lv“-,d,
BVi(So =1/, _ { (30)
Cn,d)™', j=0
(d_l) (n,d)~", j=0,
and
(”.)cm,d)l, J=0....d—1,
EVi(C) =1} 31)

"“Neway . j=d
d—1 " =
Remark. After a first version of this manuscript had been posted in the arXiv,

Martin Lotz kindly pointed out to the authors that relation (30) can also be deduced
from a result of Klivans and Swartz [21], for which he sketched a simpler proof.
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Let A be an arrangement of n hyperplanes through 0 in R¢. The main result of [21]
connects the polynomial ZZ:O > Vi(C )tk where the inner sum extends over the
d-cones of the tessellation induced by A, with the characteristic polynomial of .4 and
thus with the Mobius function of the intersection poset of 4. Under our assumption
of general position, this Mobius function is easily determined, therefore the result
of [21] yields (30) (though with a less direct proof). Meanwhile, a short proof of
the Klivans—Swartz formula has independently been given by Kabluchko et al. in
[20, Thm. 4.1], and Amelunxen and Lotz [4, Thm. 6.1] have generalized that formula
to faces of all dimensions.

In the summary of their paper [9], Cover and Efron also announced results on the
‘expected natural measure of the set of k-faces’. As such a natural measure one can
consider the total k-face content Ay defined by (12) for polyhedral cones (or its natural
analogue in the case of spherical polytopes). The following can be stated.

Proposition 4.1 For the functionals defined by Ai(C) = > pc Fo) Vi(F), the
expectations for random Schliifli cones are given by

24,
E Ap(S,) = ——4K 32
k(Sn) Cn, d) (32)
fork =1, ...,d, and for Cover—Efron cones by
()C(n —k,d —k)
E Ap(Cy) = (33)

C(n, d)
fork=1,....d —1.

In contrast to (33), relation (32) holds also for k = d, by (25). Cover and Efron did
not formulate these results; however, some arguments leading to them are contained
in the proofs of their Theorems 2 and 4. We note that (32) is the special case of (25)
which is obtained by replacing k by d — k 4 1 and setting j = 1. Here we use that
for n > d — k, the k-faces of S,, are not in G(d, k). For n < d — k, the equation is
apparently true as well.

For (33), we extend and complete the arguments given in [9]. For the proof, we can
assume thatn > k. Letk € {1,...,d — 1}. By (19) and (20),

E Ar(Cn) = E Ar(S;) =/ :

A (C®) ™ (dny,).
Gd.d—1y Cn,d) Z K(C7) ™" (dnn)

CeFy(nm)

Letn, = (Hy, ..., H,), where Hy, ..., H, € G(d,d — 1) are in general position.
Let F € F4_;(ny). Then there are indices 1 < ij; < --- < iy < n such that

T ik::Hi,ﬂ---ﬂHik.
Let Cr be the set of Schlifli cones C € F4(n,) with F C C. Let u; be a unit normal

vector of H; i j=1,..., k. Thenthe cones C € Cr are in one-to-one correspondence
with the choices ¢1, ..., & € {—1, 1} such that
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k
C C ﬂ Eju;.
j=1

The face of C° conjugate to F (with respect to C) is then given by
FC = pos{ejuy, ..., exug}.

It follows that the faces fc, C € Cp, form a tiling of Li and therefore

g

> UF CcCWVi(Fe) = 1. (34)
CeFa(nm)

The faces F' € Fy_x(n,) with ' C L;, . ;, are the Schlifli cones of the tessellation
inducedin L;, _ ; ,hence there are precisely C(n —k, d — k) of them. Now we obtain,
using (34) and the latter remark,

o= > D> G = > > ViFo)

CeFa(nn) CeFa(nn) GeFr(C°) CeFy(m) FeFa-i(C)

> 2. UFcCCViFo)

FeFg—k(m) CeFq(m)

Z Z I{F C Li1 ,,,,, ik}

I<ij<--<ix=n FeFa_r(n)

x> IF C CYVi(Fe)
CeFam)

(Z)C(n —k.d—k),
which yields (33).

We point out that the results obtained so far hold for general distributions ¢*, as
specified at the beginning of this section (which exhibits their essentially combinatorial
character).

5 Some First and Second Order Moments

We have defined the random Schléfli cone by picking at random, with equal chances,
one of the d-cones generated by a finite number of i.i.d. random hyperplanes through 0
(with a suitable distribution). A different model of a random cone is obtained by taking
the (almost surely unique) cone that contains a fixed given ray. This is in analogy to
the Euclidean case, where, for a stationary random mosaic, the typical cell and the
zero cell (containing the origin) are classical examples of random polytopes. In that
case, it is known (e.g., [40, Thm. 10.4.1]) that the distribution of the zero cell is, up
to translations, the volume-weighted distribution of the typical cell. In this section,
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we derive an analogous statement for conical tessellations generated by hyperplanes
with rotation invariant distribution (Lemma 5.2), and also some expectation results in
analogy to the Euclidean case. While this is of independent interest, our main goal is
to derive from this, together with the expectation (39), the mixed second moment (41),
because this is an essential prerequisite for the proof of our main result, Theorem 8.1.

Recall that vy_1 denotes the unique rotation invariant probability measure on the
Grassmannian G(d, d — 1). The subsequent results require this special distribution
for the considered random hyperplanes, instead of the general distribution ¢* of the
previous sections.

First we formulate a simple lemma.

Lemma 5.1 IfA € BS* Yandk e {1,...,d — 1}, then
k Wd—k
/ od—k—1(ANHN---NH) v, _(d(H], ..., Hy)) = ——04-1(A). (35)
G(d.d—1¥ wg

Proof As afunction of A, the left-hand side of (35) is a finite measure, which, due to
the rotation invariance of v;_; and of o4_;_1, must be invariant under rotations. Up
to a constant factor, there is only one such measure on B (Sd_l), namely o4_1. The
choice A = S?~! then reveals the factor. O

Now let Hj, ..., H, be independent random hyperplanes through 0 with distribu-
tion vy_1. Before treating the (vy—1, n)-Schléfli cone, we consider a different random
cone, which corresponds to the zero cell in the theory of Euclidean tessellations.
Let ¢ € S?7! be a fixed vector. With probability 1, the vector e is contained in
a unique Schléfli cone induced by Hj, ..., H,, and we denote this cone by Sy. If
e ¢ H e G(d,d— 1), we denote by H¢ the closed halfspace bounded by H that
contains e.

Letk € {0, ...,d — 1}. Almost surely, each (d — k)-face of S, is the intersection
of S¢ with exactly k of the hyperplanes H, ..., H,. Conversely, each intersection of
k distinct hyperplanes from Hy, ..., H, a.s. intersects Sy, either in a (d — k)-face or
in {0}. Observing this, we compute

EAg(S)=E > Vai(SENHiy N NH,,)

I<ij<--<ip<n

> EVax(H{N- NHENHy N0 H,)

I<ij<-<ip<n

(Z)Evd,k(Hi+lﬂ”-ﬂ'HZﬂ'Hlﬂn-ﬂ'Hk)

n
=()/ / Vack(Hi N~ N HY N H N - N Hy)
k) JG@,a-1y—* JGa,a—1y

x v (d(Hy, .. HO) VN (d(His 1, - -5 H)).

If n = k, the outer integration does not appear, and Hy N --- N H} has to be
interpreted as R?. For n < k, both sides of the equation are zero.
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By Lemma 5.1, the inner integral is equal to

widad_l(H,fH N---NH NS,
hence we obtain
E Ag1(8%) = (Z)E Va(SS_) (36)
fork =0,...,d — 1. Here both sides of the equation are zero if n < k, and they are

equal to 1 forn = k.
We next derive a similar formula for E f;_x(S¢) (in analogy to [37, Sect. 5]). Let
ke{0,...,d —1}and n > k. As above, we obtain

Efai(S)=E > SEnH;, N NH; # {0}

I<ij<--<ip<n

=(")/ / WHE O A HENH O -0 Hy # {0))
k) JGw@,a-1y—* JG,a—1y

x vh_ (d(Hy, .. HO) VN (d(Higts - Hy)).
Let Gd,d — l)i denote the set of all k-tuples of (d — 1)-dimensional linear sub-
spaces with linearly independent normal vectors. The image measure of vs_l under

the mapping (Hy, ..., Hy) — HiN---N Hy from G(d, d — 1)’; to G(d,d —k) is the
invariant measure v, hence

/ {CNH NN H # {0} vh_ (d(H), ... Hp) = 2U(C)
G(d,d—1)k

forC = H,  N---NHE € C?and v~} almostall (Hi1, ..., Hy) € G(d, d—1)"F.
We conclude that

E fa-x(S;) = 2(’2)1@ Uk (S5 )

fork € {0,...,d—1}andn > k. If n = k, then E f;_;(S¢) = 1, and the expectation
is zero for n < k.

To compute E V;(S;), let P C S?~! be a closed spherically convex set containing
e. Writing u € S?~! in the form u = re + +/1 — 12 with @ € e N S?~!, we have

1 —
Ga1(P) = / / (1= )7 dt og_s(din) 37
etnSd=1 Jcos p(P,u)

with
p(P,u) =max{p € [0, 7] : (cosp)e + (sinp)u € P}, uce et nsil,
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Let Z¢ := S¢NS?~!. For fixed # € e NS?~!, the distribution function of the random
variable p(Z¢, u) is given by

Fx)=P(p(Z5w) <x)=1—(1-%)",
since p(Z;, u) > x holds if and only if none of the hyperplanes H, . .., H, intersects
the great circular arc connecting e and (cos x)e + (sinx)u. Let
1 i3 X
G(x) := / 1—>)7 dr = / sin?ada forx € [0, 7].
cos X 0

From (37) we have G (r) = wq/wq—1. Since the distribution of the random variable

p(Z,,, u) does not depend on u, we obtain

1 p—
Eoy_1(Z¢) =E / / (1 — )T dt o4 (dRD)
eLnSd=1 Jeos p(Z¢,u)

= w4 1EG(p(Z5, )

= wg_1 /n G(x)F'(x)dx
0
- a)d_l[G(n) —/ G'(x)F(x) dx]
0
= a)d_l[ @d _/0 sind_zx(l —(1- %)")dx]

Wd—1

/” Xyn . d-2
= wg_1 (1 — —) sin“ ™~ x dx.
0 T

After using the binomial theorem, the integral can be evaluated by using recursion
formulas and known definite integrals; e.g., see [17, p. 117]. (The evaluation of the
integral for d = 3 in [31, (6.16)] is corrected in [10].)

Defining the constant 6 (n, d) by

O(n, d) = 24!

T
/ (1- %)" sin2xdx, forn e Ny, (38)
0

wq
and by 6(n,d) := 0 for n < 0, and recalling that V;(S;) = 04—1(Z;)/wa, We can

write the result as
E V4(S;) =6(n, d). 39)

Note that 6(0, d) = 1. As a corollary, we obtain from (36) that

E Ag_i(50) = (Z)@(n — k. d) (40)

for k € {0,...,d — 1}. For n = k both sides are equal to 1, and they are zero for
n <k.
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The following lemma relates the distribution of Sy, to that of the random (v4—_1, n)-
Schlifli cone S),.

Lemma 5.2 Let ‘Hy, ..., H, be independent random hyperplanes with distribution
Vq—1, and let S, be the induced Schlcifli cone containing the fixed given vectore € S,

Let f be a nonnegative measurable function on PC? which is invariant under
rotations. Then

E f(S) =Cn, d)E (fVa)(Sy).

Proof Inthe following, we denote by v the invariant probability measure on the rotation
group SO(d), and we make use of the fact that

1
/ gWe)v(dv) = —/ g(u) og—1(du)
SO(d) wq Jgd-1

for every nonnegative measurable function g on S~!. Using the rotation invariance of
the function f and of the probability distribution v;_1, we obtain, with % € SO(d),

Ef(S¢) =E > F(Olincle)
CeFis(Hy,.... Hn)

=E > [(Olinc@e)
CeFis(Hy,.... Hn)

-k [ S FOlwce) vdd)
SO(d) CeFi(Hi,.... Hn)

1
_lg / ST O @) o (du)
wq d—1

CeFy(Hi.... Hn)

—1E Y f©@ecnsth

@d CEfd(Hl,nan)
= C(n, d)E(fVa)(Sn)

by (19) (with ¢* = vy_1). O
From Lemma 5.2 and (40) we get

(M0 — k, d)

(Ag—1 V) (Sn) Cond) 41D
fork =0,...,d — 1. The case k = O reads
O(n,d)
EV3(S,) = ——=.
aGn) = Cana)

Equation (41) is a conical counterpart to Miles [26, Thm. 11.1.1]. The special case
d = 3 of (41) is contained in Miles [31, Thm. 6.3].
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6 Another Selection Procedure

In this section, we begin with the proof of our main result, Theorem 8.1, which will
yield all the mixed moments E (A A,)(S,). Before that, we sketch the proof strategy.
The principal idea can already be seen from the way the mixed second moment (41)
for the random Schlifli cone S, was obtained. We had defined another random cone,
S¢, with the property (expressed in Lemma 5.2) that its distribution is the V;-weighted
distribution of §),. Since the expectation of E A4 (S7) (see (40)) could be determined
by a direct geometric argument, we thus obtained the expectation E (Agz—x V) (Sy).
A more sophisticated version of this argument will finally allow us to determine
explicitly the mixed moments [E (As A, )(Sy,). In the present section, we use successive
random choices to define a random cone D,[f’] ], for which we show in (43) that
its distribution is the Yy ¢4 j a—k-weighted distribution of S,,_44«. The expectation

E A, (D,[,k’j ]) is expressed in (48) in terms of expectations for certain Schlifli cones.
To obtain this, a geometric decomposition argument is needed, which is provided in
Sect. 7. Bothresults together yield the expectation IE (A, Yy g+ j,a—k) (Su—a+«), which
we can specialize and simplify to obtain E (A3 A;)(S,).

In Sect. 4, we have used a selection procedure to define a random cone C ,[Zk’j ]. This
selection procedure will now be modified. The assumptions are the same as in Sect.
5:'H1, ..., Hy are independent random hyperplanes through 0, each with distribution
v4—1, the rotation invariant probability measure on G(d,d — 1).

The second selection procedure is equivalent to a conical analogue of the one in
[26, Sect. 11.4], though we describe it in a different way. We assume again that 1 <
j<k<dandn >d— j (thatis,n — (d —k) > k— j). Now a subspace L € G(d, k)
is chosen at random (with equal chances) from the k-dimensional intersections of the
hyperplanes Hj, ..., H,. (If k = d, then £ = R? is deterministic. Corresponding
adjustments can be made below.) There are indices iy, ..., iz—x € {1, ..., n}suchthat

L=HyN--NHip,,

sincen > d — j > d — k. In the following, if n, = (Hy,..., H,), we denote
by n,({i1,...,iq—k) the (n — d + k)-tuple that remains when H;,, ..., H;, , have
been removed from (Hi,..., H,). Similarly, H, (i1, ...,ij—x) is obtained from

H, = (H1, ..., H,). Then, employing the definition (21), we define
k,j i . .
DY = CMIH, iy, ai). £).

(Note that the indices iy, ..., igj—k are determined by E.)_
Let B € B(PCY). According to the definition of D,[lk’] ], we have

(k.1 1 1
P(D € B) =/ E -
" GWd,d—1)" ( n ) C(n —d + k, k, ])

d—k) 1<ij<--<ig_g<n
1
x > 77 > 13(C) vy (dnp).
FeFa—i+jn it ia—k)) CeFanlit,-ia—k))
FﬂH,'lﬂmﬂHid_k#{O} CDF
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For k = d, the condition F N H;; N---N H;, , # {0} is empty and can be deleted.
Moreover, if n =d — k,then j =k, F = C = RY and D,[f’” = Dc[ik_’i] = R4 almost
surely. After interchanging the integration and the first summation, the summands of
the sum >’ _; _.._; <, are all the same. Therefore, we obtain

P(DY/! ¢ B)
B 1
T2k iC(n—d 4k, k, )

x 15(C) vj_; (da)
Sosar o, 2 - n

d—k+j M (L,..od=k))  CeFa(n(l.....d—k))

FNHiN---NHy—; #{0} COF
= e / >
2k—jC(n —d+k,k,j) G(d,d—1)y—d+k JG(d,d—1)d—*k FeFuie) Hasrrn Ho)
FNHiN---NHy—; #{0}
x > 15(C) vy { (d(H, ... Hy)) V= (d(Hy g1 - ., Hy)).
CeFa(Hig—k+1--Hp)
CDOF

(42)

If n = d — k, then the outer integration is omitted and F = C = R?. We have split
the n-fold integration, since the image measure of the measure vt‘ii:f under the map
(Hy,...,H;_ 1)~ HN---NHy_ fromG(d,d— l)f,f_k to G(d, k) is (for reasons
of rotation invariance) the Haar probability measure v; on G(d, k). Therefore, for the
inner integral we obtain

/ > S O EAH . He)
G, d—1y= FeFqktjHi—gs1.-, Hy) CeFq(Hg—kq1,-... Hy)
FNHN---NHg_; #{0} CDF
= / > HFNL#Q) > 15O wL).
G@K) Fery 1 j(Hatirrm Hy) CeFa(Ha—is1,m Hy)
CDF

Assume now that n > d — j. Then, arguing as in the derivation of (23), we see that
the latter is equal to

> 2U4-k(F) > 1{C > F)}1(C)
FeFi—vj(Ha—k+1,-.. Hy) CeFu(Ha—k+1,-Hn)
= > > HC > FJ2Us—k(F)15(C)
CeFy(Hy—ks1.-Hp) FeFq_iqj(Ha—jy1.e-s Hy)
=2 > Ya ikt j.d—k(C)15(C).

CeFy(Hg—k+15--Hn)
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We conclude that
; 2
P(DY' € B) = —— :
28=1C(n —d + k, k, j) G(d,d—1)n—d+k

x> 1RO ik jak(C) V(AN an)-
CeFa(n—d+k)

Together with (19) (for ¢* = v,_1) this yields the following.

Lemma 6.1 For every nonnegative, measurable function g on Pc? and forn >d—j,

[k, ] 2C(n—d+k,d)
Eg(D = . E(gYig—k+j,d—k)(Sn— . 43
8(Dp") FIC—dtk k) (8Ya—rk+j,d—i) (Sp—d+k) (43)

As a consequence, we have

E(gYd—k+j.d—i)(Sn—d+i)

[k, /]
Eg(Dy ") =
" EYs ttjd—rk(Sn—di)

This is the conical counterpart to [26, Thm. 11.5.1] (but in contrast to that, we have
no equivalence here: n on the left side and n — d + k on the right side).
For later application, we note the special case k = j. From (42) and (43) we obtain

/ > g(C)Vj_ (d(H., ..., Hy))
Gd.d=1r CeFy(Hy—js1,.s Hn)
CNHN--NHg—j#{0}

=C(n—d+j, j)Eg(DY')
=2C(n —d+ j,d)E(gUa_)(Su—as)) (44)

forn >d—j.

7 A Geometric Identity

To draw conclusions from the previous results, we need a geometric identity, given
by (46), in analogy to [26, Sect. 11.6]. Letn, = (Hi, ..., H,) € G(d,d — 1), let
jefl,...,d—1},n>d— jand

Li:=HN---NHy_j.

Let F; € F;j(n,) be a j-face such that F; C L;. Letk € {j,...,d}. We delete
the hyperplanes Hy_ i1, ..., Hy—;. From the tessellation induced by the remaining
hyperplanes, we collect the d-cones containing F; and then classify their r-faces for

fixed r. Thus, we define

Fa(u, Fi k) :=1{C € Fauatk— j+1,....,d — j)): Fj C C}.
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Letre{l,...,d}.Forp e Nwithr < p <dandd — p <k — j, let

Frpi={F € Fo(C): C € Fy(u. F;. k). F C H;
for precisely d — p indices i €{1,....k — j}}.

We recall that A, (C), defined for C € pcd by (12), is the normalized spherical
(r — 1)-volume of the (r — 1)-skeleton of C N S?~!, that is,

Z O’,.,](FﬁSd_l)

@y

A(C)= D Vu(F)=
FeF,(C) FeF(C)

We have

> 4O= X D>, Vi)

CeFa(m.Fj.k) CeFa(m.Fj.k) FeF (C)
d

> 2 Y v,

p=max{r,d—k+j} FEfnp

since each F' € F,. , belongs to precisely 24P cones C € Fa(n, Fj, k).
Let Q be the unique cone in Fy(n,(1,...,d — j)) with F; C Q, and define
Cp={0NH,N---NH;,_, :1<ij<-<igp=<k—j}
Thus, C, is a set of p-dimensional cones, and C; = {Q}. Each r-face F € F,,
satisfies F C G € F;(D) for aunique D € C, and a unique G € F,(D). Conversely,
for D € Cp and G € F, (D), the r-face G is the union of r-faces from 7, ,, which
pairwise have no relatively interior points in common. It follows that

D V=2 D> Vb

FeFrp DeC, FeF,(D)
We conclude that
d
2. AO= > 2P > V)
CeFy(nn,Fj.k) p=max{r,d—k+j} DeCp, FeF,(D)
d
- Z 2d=»p Z A, (D). (45)
p=max{r,d—k+j} DeC,

Relation (45) was derived for any F; € F;(n,) with F; C L;. We sum over all
such j-faces and note that C € Fy(n,(k — j + 1,...,d — j)) satisfies F; C C for
some j-face F; € F;(n,) with F; C L; if and only if C N L; # {0}. (Recall that
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Nnli1s ..., iq—k) was defined early in Sect. 6.) Concerning the set C,, appearing on the
right-hand side of (45), we note that Q € F;(n, (1, ...,d — j)) satisfies F; C Q for
some j-face F; € F(n,) with F; C L; if and only if Q N L; # {0}. Therefore, we
obtain the geometric identity

A (C)
CeFa(nmik—j+1,...d—j))
CNL;#{0)
d
= Z 2d=p Z Z A(QNH;y NN Hyy ),
p=max{rd—k+j}  1sir<e<ig_p<k=j Q€Fq(m(l,..d=]))

0NL;#{0)
(46)

which will be required in Sect. 8. (For k = j, the middle sum on the right-hand
side has to be deleted, and the equation becomes a tautology.) This holds for 1, =
(Hy,...,H,) e Gd,d-1)}, jel{l,...,.d—1},with L; := H N---NHy_j,
r=1,...,d,ke{j,...,d}andforn >d — j.

8 A Covariance Matrix

We are now in a position to combine the preceding results, in order to finish the proof
of Theorem 8.1. The crucial task is to compute the expectation E A, (D,[lk’j ]) (Formula
(48)). To do this, we use the explicit representation (42) of the distribution of D,[,k’] ]
and employ the geometric decomposition result (46) obtained in Sect. 7, together with
properties of invariant measures.

We use (42), extended to expectations and then applied to the expectation of A,
for given r € {1, ..., d}. However, it will be convenient to replace the index tuple
1,...,d=k)by(k—j+1,...,d—j),forgivenj € {1,...,d—1}andk € {j, ..., d}.
As before we assume that n > d — j. Then we have (splitting the multiple integral
appropriately)

y
E A, (DY)

: [
S 2iC(n —d + k. k, ) Jowa—1y-a+i Jewa.a—1yi-i Jd.a—1)dk

x z Z A (C)

FeF i jQmk—j+1,...d=j)) CeFgutk—j+1,...d—j))

FNHg—j+1N--NHg—j7#{0} COF
— k—i
X VAN A(Hy—js1, - Ha— ) vy 1 (d(H, ..., Hi—}))
_d 7
x V)V (A(Hazj1, - -0 Hy)). (47)

(Recall that, for k = d, the condition ' N Hy_j4+1 N--- N Hy_j # {0} is empty and
can be deleted.) If k > j, we split the first sum above in the form
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FeFg—t+jOmlk—j+1,...d=j)) I<ij<--<ig—j=<n FeFq—t+jOmk—j+1,....d=j))
FNHy—j1N--NHy— j #{0} ilseensik—jElk—j+1,....d—j} FOHg_jy1N--NHy—j#{0}, FCH N---NH;

k—j

Then, after interchanging in (47) the first summation on the right side and integra-
tion, the outer sum has (" k‘”") equal terms, hence we obtain (again regrouping the

integrals)

("

2k=iC(n —d +k, k, j) JG@a.a—1y—i /G(d,d—l)"k*/

x > > a0
FeFq it jQnk—j+1,....d=]j)) CeFa(nlk—j+1,....d=j))
FCH{N--NHp—j, FNHp—j41N--NHg—;j7#{0} CDOF

—k k—j
X VI A(Hy— jy1s - Hy) v d(H, - Hy))).

y
E A, (D) =

(If k = j, the condition ' C Hy N---N Hi_; is empty and can be deleted.) For fixed

subspaces Hj, ..., Hi_;j, we consider the inner integral
pef o > > 40
—_1\n—k+
G@d-Dr FeFair O lk—j+1,.d—)) CeFa(nulk—j+1.ccnd—j))
FCH\N---NH—j, FNHg—j+1N--NHg—;#{0} CDOF

< vy A(H . Hy)).

Acone C € Fy(nulk — j+1,...,d — j)) hasaface F € Fy 4tk — j +
1,...,d — j)) satisfying

FCcHN---NH_; and FNH_jy N---NHy_; #{0}
if and only if
CNHN---NHg ; #{0},
and it can have at most one such face. Using this and (46), we obtain

k+j
I =/ Ar(C) vy (d(Hk— 11, - .5 Hn))
G(d,d—l)”’kJrj z d J "

CeFa(nlk—j+1,....d—j))
CNHN--NHy_; #{0)

> o /
. G(d,d—1)r—k+i

p=max{r,d—k+j} 1<ij<- <ld

x > A,(QﬂHil NN Hi )y A(Hi a1 Hy)).

QeFy(Ha—j+1.-- Hy)
ONHN--NHg—j#{0}
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We conclude that

.
E A, (DY)
(n7d+k) d
- e > vy
= :
27 Cn—d+k k. ) p=max{r,d—k+j} 1<ij<-<ig—p<k—j
x / > Ar(QN Hyy NN Hyy )Vi_((d(Hy, ..., Hy))
G

(d,d—1)" QeFa(Ha—js1,-.., Hy)
ONHIN--NHg—j#(0}

(n;i;rk) d

2k=iC(n —d +k, k, j) d—p) Jow@,d-1yd-r

p=max{r,d—k+j}

x / » > A(QNH N---NHy_p)
Gd,d=1n=rp Q€Fy(Hi—j+1,--sHn)
ONH{ NN Hy_ j#(0)

—d+ d—
X V;,1 p(d(Hd—p-Hs <o Hy)) Vd,{)(d(Hls oo Hy—p)).
To evaluate the inner integral above, we fix Hy, ..., Hy_p in general position and

write Hy N --- N Hy_, =: L,. The image measure of vy_1 under the (vy—; almost
everywhere well defined) map H — H N L, from G(d, d — 1) to the Grassmannian
G(Lp, p — 1) of (p — 1)-dimensional subspaces of L is the invariant probability
measure (4,—1 on G(L,, p — 1). Therefore, the inner integral can be written as

—d
[ Y AL W e )
G(d,d—1)"—d+p

QeFy(Hy—j+1,-- Hy)
ONHN--NHy— j#{0}

—d

= / » > Ay T g pirs - ).

G(Lp,p—1)n—d+p CeF ot rtoon)
CNhgpy10-Nhg— j#(0}

Note that p > j. If p = j, then the second condition under the last sum is empty and
can be deleted. Here ), (hq—j+1, ..., h,) denotes the set of Schlifli cones in L, that
are generated by the (p — 1)-planes hg— 11, ..., h, in L. Identifying L, with R”,
we can apply (44) in L ,. For this, we replace d by p, the number n by n —d + p, and
raise the indices of the integration variables in (44) by d — p. Then (44), with g = A,,
reads

—d

[ > AOE T e )

G(Lp,p—1)r=a+p CeFyhiyetomn)
COlg_ps101-0hg_#(0)

=2Cn—d+j,p) ]E(Arup—j)(sr(zli)dJrj)’
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where S,(,,p ) denotes the (i1, m)-Schlifli cone in L ,. We conclude that

k,j z(n;d{rk) d k—j
E A, (D) = Fica—dtiEy >~ 27 (d - )
K p=max{r,d—k+j} p
x Cn—d+ j. p)E(A U, )(SP, ). (48)

Comparing (43) and (48), and recalling that n > d — j, we arrive at

E(A Ya—k+j.d—k) (Sn—da+k)
(n;dfk) d k ]
LS 2‘“’( B )C(n—d+j,p>
Cin—d+kd) p=max({r,d—k-+j} d—p

x E(A,U,?_j)(s,ifi’dﬂ).
Here we substitute d — k + j = s and d — k = t. Then we replace n by n + ¢ and
assume that n > d — s. The result is

E(Ys,: Ar)(Sn)

_ (dnfs) - d—p d—s »
~ C(n,d) 2, 2 (d _ p)C(” —d+5, P)EWUp—s+1A:)(S, 24 )-

p=max{r,s}

This is the conical (or spherical) counterpart to [26, Thm. 11.7.1]. (The result is also
true for n < d — s, since then both sides of the equation are zero.)

We specialize the latter to ¢t = s — 1. We have Y ;1 = Ajy. Further, Up_;1; =
Up—1 =V, in a space of dimension p. The value of E(VpAr)(S,(fi)dH) is seen from
(41). In this way, we obtain the following result.

Theorem 8.1 The face contents of the (vq—1, n)-Schldfli cone S, satisfy

E(AsA)(Sn)
_ ) i 2d—1’<d_s)(”_d+s)e( —d—p+r+s.p (49
T Cn,d) ) d—p p—r " prrTsp

forr,s =1,...,d, where 0 is defined by (38).
An alternative formulation of (49), which exhibits the symmetry in » and s, is given

E(AsAr)(Sn)

_C(n,d)pEN d—p)\p—s,p—r,n—d—p+r+s

xOm—d—p+r+s,p). (50)
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Theorem 8.1 is the conical counterpart to [26, Corollary to Thm. 11.7.1]. It holds
foralln € N.Infact,if n <d —r (orn < d — s), then both sides of (49) are zero.
Forn =d —r (orn = d — s5) Eq. (49) is equivalent to (32). Also note that (41) is
obtained as the special case s = d — k and r = d of (49).

Since the expectations EA, (S,,) are known by (32), Theorem 8.1 allows us to write
down the complete covariance matrix for the random vector (A1(S,), ..., Ag(Sp)).

For the Cover—Efron cone C,,, there is only one second moment that we can obtain
from Theorem 8.1 by dualization, namely Ef7 | (C,) = Ef7(S,) = 4EA¥(S,) for
n>d.
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