
Discrete Comput Geom (2016) 56:860–865
DOI 10.1007/s00454-016-9785-3

A Simpler Linear-Time Algorithm for Intersecting Two
Convex Polyhedra in Three Dimensions

Timothy M. Chan1

Received: 22 July 2015 / Revised: 23 March 2016 / Accepted: 13 April 2016 /
Published online: 25 April 2016
© Springer Science+Business Media New York 2016

Abstract Chazelle [SIAM J Comput 21(4):671–696, 1992] gave a linear-time algo-
rithm to compute the intersection of two convex polyhedra in three dimensions. We
present a simpler algorithm to do the same.

Keywords Convex polyhedra · Intersection · Dobkin–Kirkpatrick hierarchy

1 Introduction

This note concerns the following problem: given two convex polyhedra of size O(n)

in 3-D, compute their intersection. Equivalently, the dual problem is to compute the
convex hull of the two convex polyhedra, i.e., merge two convex hulls.

This is one of the most basic computational problems about convex polyhedra.
Algorithms for the problem have been used as subroutines to solve many other prob-
lems in computational geometry (see [2] for just one example).

In the 1970s, Preparata and Hong [13] observed that two linearly separated convex
hulls in 3-D can be merged in linear time. (Earlier Shamos and Hoey [14] observed
the same for the special case of two linearly separated Delaunay triangulations in 2-D,
and later Kirkpatrick [9] showed how to merge two arbitrary Delaunay triangulations

Editor in Charge: János Pach

A preliminary version of this work appeared in the Proceedings of the 31st International Symposium on
Computational Geometry, 2015. Part of this work was done during the author’s visit to the Hong Kong
University of Science and Technology.

Timothy M. Chan
tmchan@uwaterloo.ca

1 Cheriton School of Computer Science, University of Waterloo, Waterloo, ON N2L 3G1, Canada

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00454-016-9785-3&domain=pdf

Discrete Comput Geom (2016) 56:860–865 861

in 2-D in linear time.) The general problem was eventually settled a decade later when
Chazelle [4] announced a linear-time algorithm for intersecting/merging two arbitrary
convex polyhedra in 3-D.

Chazelle’s algorithm, like many of his other works, is a tour de force. It started with
a standard construction of the Dobkin–Kirkpatrick (DK) hierarchies [6,7] of the input
polyhedra in both primal and dual space, but incorporated pages of intricate ideas and
details. To give a flavor of the overall plan, we only mention that the running time
satisfies a recurrence of the form T (n) = 4 T (δn) + O(n), which indeed solves to
T (n) = O(n) for a sufficiently small positive constant δ < 1/4.

A thesis by Martin [11] described a simplification of Chazelle’s algorithm that
avoided switching back and forth with duality, but needed to navigate simultaneously
in the DK hierarchies of the insides and outsides of the polyhedra. The details were
still lengthy, and the recurrence was “improved” to T (n) = 2 T (δn) + O(n).

Chazelle’s work dated back to a time when the unifying techniques of randomized
geometric divide-and-conquer [5,12] were just starting to flourish. This prompts the
question of whether more modern concepts like sampling, conflict lists, etc. might
give a simpler explanation for why the problem can be solved in linear time. After
all, at a gut level, this textbook problem shouldn’t be that hard to solve (although one
could say the same for the problem of triangulating a simple polygon [1,3]!).

In this note, we show that there is indeed a simpler linear-time algorithm for inter-
secting two convex polyhedra. Our solution ends up not requiring random sampling,
but falls back to the DK hierarchy. We only need to navigate in the hierarchies of
the outsides, and we don’t need to switch between primal and dual space. Further-
more, we get a more usual recurrence T (n) = T (δn) + O(n)—in other words, a
more conventional way of using DK hierarchies turns out to work after all! There are
concrete advantages to having the better recurrence when considering other computa-
tional models; for example, the algorithm is more efficiently parallelizable. However,
we believe the simplicity of the solution is what is the most valuable aspect of the
work.

2 Preliminaries

We begin by computing a point o in the intersection of the two convex polyhedra; this
can be done in linear time by 3-D linear programming [8] (known randomized algo-
rithms are particularly simple), or in polylogarithmic time using DK hierarchies [6,7].
By translation, we may make o the origin. It suffices to compute the part of the inter-
section in {z > 0}. By a projective transformation (x, y, z) �→ (x/z, y/z,−1/z),
we can move o to (0, 0,−∞) and thus assume that both input polyhedra are
unbounded from below, i.e., they are (the regions underneath) lower envelopes of
planes. We assume that the planes are in general position, by standard perturbation
techniques.

Given a set H of planes, letP(H) denote the region underneath its lower envelope.
We say that H is nonredundant if all planes of H participate in the boundary of
P(H). Given P = P(H), let T (P) denote a triangulation of P . More precisely, we
triangulate each face of P , and for each triangle v1v2v3 we take the region underneath

123

862 Discrete Comput Geom (2016) 56:860–865

v1v2v3 (a prism unbounded from below) as a cell of T (P). For any region �, the
conflict list H|� is the subset of all planes of H intersecting �.

A standard approach to computing the lower envelope of H is to pick a random
sample H ′ of H , construct the lower envelope of the conflict list H|� inside � for
each cell � ∈ T (P(H ′)), and then glue the results together. Although we will not use
randomization, we will adapt similar ideas.

Given P(H1) and P(H2) for two nonredundant sets H1 and H2 of planes, our
problem is to compute P = P(H1) ∩ P(H2) (i.e., P = P(H1 ∪ H2)). In order to
allow for a recursive algorithm, we need to strengthen the output requirement and
require further information to be reported for each vertex v of P . Our key idea is this.
Since v is in the intersection, we know that v is on or belowP(Hj) for each j ∈ {1, 2}.
Thus, there exist three vertices w1, w2, w3 of P(Hj) that “witness” this fact, i.e., that
have v below1 	w1w2w3. We will require the algorithm to output one such triple for
each v and j . It is important that we do not insist w1w2w3 be a face of (a triangulated)
P(Hj). Otherwise, one can show that finding such witnesses may require Ω(n log n)

comparisons in the worst case! Witnesses will make the generation of conflict lists
easy; on the other hand, extra work will be required to find witnesses.

To summarize, we will solve the following stronger problem:

Problem:GivenP(H1) andP(H2) for two nonredundant sets H1 and H2 of n planes,
compute P = P(H1)∩P(H2), and for each vertex v of P and each j ∈ {1, 2}, report
some vertices w1, w2, w3 of P(Hj), called the j-witnesses of v, such that v is below
	w1w2w3.

3 The Algorithm

We are now ready to give the algorithm outline to solve the problem:

Intersect(P(H1),P(H2)):
0. if H1 and H2 have size below a constant then return answer directly
1. for j ∈ {1, 2}:
2. choose an independent set of faces of P(Hj)

3. let I j be the planes defining these faces, and let H ′
j = Hj \ I j

4. obtain P(H ′
j) from P(Hj)

5. P ′ = Intersect(P(H ′
1),P(H ′

2))
// now compute the intersection P of P(H1) and P(H2)

6. for each � ∈ T (P ′):
7. for j ∈ {1, 2}:
8. find the conflict list Hj |� by searching in the candidate list

C j,� := { h ∈ Hj : h lies below a j-witness of a vertex of � }
9. compute the intersection of P(H1 |�) and P(H2 |�) inside �

10. glue all the polyhedra from line 9 to get P
// now compute new witnesses for P
11. for each � ∈ T (P ′):

1 Throughout the paper, “below” means “below or is incident to” unless preceded by “strictly”.

123

Discrete Comput Geom (2016) 56:860–865 863

12. for j ∈ {1, 2}:
13. for each vertex v of P inside �:
14. find j-witnesses of v by searching in the candidate witness list

W j,� := { vertices w of P(Hj):
w is a j-witness of a vertex of � or
w is on a plane in I j ∩ C j,� }

15. return P with all its witnesses

We explain the algorithm in more detail. In line 2, independence means that the
chosen faces do not share any edges. By applying a standard linear-time greedy algo-
rithm to a planar graph in the dual, we can always choose an independent set of at
least αn faces each with at most c vertices, for some constants α and c; for example,
see Kirkpatrick’s original paper [10], which has α = 1/24 and c = 11.

Line 4 takes linear time: The difference of twopolyhedraP(Hj) andP(H ′
j) consists

of disjoint constant-size regions (caps), since we are removing an independent set of
constant-size faces (and the input planes are assumed to be nonredundant). Each cap is
delimited by a face f in the independent set I j , and the lower envelope of the at most
c planes defining the faces adjacent to f , constructible in constant time. We can set up
pointers fromeach vertex ofP(H ′

j) to the cap it belongs to. (The hierarchy of polyhedra
produced from the recursion is called the Dobkin–Kirkpatrick hierarchy [6,7].)

Line 5 contains the main recursive call, where the number of planes in either input
set drops to at most (1 − α)n.

In line 8, we use witnesses for P ′ to help generate conflict lists. Any plane h in the
conflict list Hj |� must lie below one u of the three vertices of �. Since u (a vertex of
P ′) lies below 	w′

1w
′
2w

′
3 for its j-witnesses w′

1, w
′
2, w

′
3, it follows that h lies below

some w′
i and must indeed be in the candidate list C j,�.

There are at most nine j-witnesses for the three vertices of �. Each j-witness w′
i

(a vertex of P(H ′
j)) has at most O(1) planes of Hj below it: namely, its three defining

planes, and at most one plane from I j strictly below it (which we can identify from the
cap it belongs to). Thus, the candidate list C j,� has constant size, and so each conflict
list Hj |� can be generated in constant time.

Line 9 takes constant time even by a brute-force algorithm. Line 10 then takes linear
total time (using a graph search to generate the edge skeleton).

We show, with a slightly subtle proof, that in line 14, we can indeed always find
j-witnesses from the candidate witness list W j,�:

Lemma 1 For a vertex v of P inside �, there exist w1, w2, w3 ∈ W j,� such that v

lies below 	w1w2w3.

Proof Let W ′ be the at most nine j-witnesses of the three vertices of �. Then v lies
below the upper hull of W ′ and is thus below the upper hull of some three points
w′
1, w

′
2, w

′
3 ∈ W ′ (which are vertices of P(H ′

j)). Let Γ be the region underneath
	w′

1w
′
2w

′
3.

Since v is in P(Hj) ∩ Γ , there exist three vertices u1, u2, u3 of P(Hj) ∩ Γ such
that v is below 	u1u2u3. (Note that each ui may not necessarily be a vertex of P(Hj)

as it could lie on the boundary of Γ .) For each i ∈ {1, 2, 3}, we claim that ui is below
the upper hull of W j,�:

123

864 Discrete Comput Geom (2016) 56:860–865

Case 1: ui is a vertex of Γ , i.e., ui ∈ {w′
1, w

′
2, w

′
3}. Then ui is a vertex of P(H ′

j).
Since ui is in P(Hj), it follows that ui is a vertex of P(Hj). Thus, ui is in
W j,� by definition of W j,�, and the claim is trivially true.

Case 2: ui is not a vertex of Γ . Then ui must be defined by at least one plane h ∈ Hj

that intersects the interior of Γ . This plane h is strictly below at least one of
w′
1, w

′
2, w

′
3 and so must be a member of I j and also a member of C j,�. Now,

ui lies in the face of P(Hj) defined by h; all the vertices of this face are in
W j,� by definition of W j,�, and the claim is again true.

Since v is below 	u1u2u3, it follows that v is below the upper hull of W j,� and is
thus below 	w1w2w3 for some three vertices w1, w2, w3 ∈ W j,�.
�

The candidate witness list W j,� has constant size, since there are at most nine
j-witnesses for the three vertices of �, each plane in I j contains at most c vertices,
and there are O(1) planes in C j,�. So, line 13 can be done in constant time by brute
force. The entire loop in lines 11–14 then takes linear total time.

The overall running time of the algorithm satisfies the recurrence T (n) =
T ((1 − α)n) + O(n), which solves to T (n) = O(n).

4 Remarks

An alternative, slightly slower algorithm. There is a more “standard” algorithm based
on sampling, without using witnesses, that gives almost linear n2O(log∗ n) expected
time. For the readers who are familiar with randomization techniques [5,12] and enjoy
comparisons of different approaches, we briefly sketch the alternative:

First consider a multiset version of Hj where the multiplicityw j (h) (the weight) of
each plane h ∈ Hj is the size of the face of P(Hj) defined by h. The multiset still has
O(n) size. We draw a random sample H ′

j of the multiset of size r = O(n/ log n). We
construct P(H ′

1), P(H ′
2), and their intersection P ′ by an O(r log r)-time algorithm,

which takes O(n) time.
For each vertex v of P(H ′

j), we can construct its conflict list Hj |v (the list of all
planes of Hj below v) as follows: first find an initial plane of Hj below v by a point
location query in the xy-projection of P(Hj); then find all planes of Hj below v

by a graph search over the faces of P(Hj). This works because the planes below v

correspond to the faces visible to v, which are connected in the boundary of P(Hj)

(assuming that Hj is nonredundant).We can preprocess in linear time for point location
in O(log n) time [10], so the O(r) point location queries cost O(n) total time. The
graph search takes time proportional to the weight of Hj |v . The total time over all v

is O(r · n/r) = O(n) in expectation, by Clarkson and Shor’s analysis [5].
Next, for each vertex v of P ′, we can compute its conflict list Hj |v as follows: first

find a cell � ∈ T (P(H ′
j)) containing v by a point location query in the xy-projection

of T (P(H ′
j)); then search in the conflict lists of the three vertices of � (which are

vertices of P(H ′
j)) found in the preceding paragraph. The O(r) point location queries

again cost O(n) total time. So, this step again takes O(n) expected total time.
For each cell � ∈ T (P ′), we can now generate the conflict list Hj |� from the

conflict lists of the three vertices of� (which are vertices of P ′) found in the preceding

123

Discrete Comput Geom (2016) 56:860–865 865

paragraph. We then recursively compute the intersection of P(H1 |�) and P(H2 |�)

inside �, and glue the polyhedra together.
By Clarkson and Shor’s analysis [5], the total expected running time satisfies the

recurrence T (n) = ∑
i T (ni) + O(n) where maxi ni = O((n/r) log n) = O(log2 n)

withhighprobability and
∑

i ni has expectedvalue O(r ·n/r) = O(n).With O(log∗ n)

iterations, this yields an expected time bound of n2O(log∗ n).

An open problem. An interesting question is whether we can similarly merge lower
envelopes of pseudo-planes in 3-D in linear time, under an appropriate definition of
pseudo-planes where three pseudo-planes may intersect in at most one point. This
would have applications to merging two additively weighted Voronoi diagrams in
2-D, for instance. Our concept of witnesses is not immediately generalizable, although
the alternative n2O(log∗ n)-time randomized algorithm could still work, at least for the
case of 2-D additively weighted Voronoi diagrams. Another similar open question is
whether two intersections of unit balls in 3-D can be merged in linear time.

Acknowledgments The author thanks Stefan Langerman for discussion on these problems.

References

1. Amato, N.M., Goodrich, M.T., Ramos, E.A.: A randomized algorithm for triangulating a simple poly-
gon in linear time. Discrete Comput. Geom. 26(2), 245–265 (2001)

2. Chan, T.M.: Deterministic algorithms for 2-D convex programming and 3-D online linear program-
ming. J. Algorithms 27(1), 147–166 (1998)

3. Chazelle, B.: Triangulating a simple polygon in linear time. Discrete Comput. Geom. 6, 485–524
(1991)

4. Chazelle, B.: An optimal algorithm for intersecting three-dimensional convex polyhedra. SIAM J.
Comput. 21(4), 671–696 (1992)

5. Clarkson, K.L., Shor, P.W.: Application of random sampling in computational geometry. II. Discrete
Comput. Geom. 4, 387–421 (1989)

6. Dobkin,D.P., Kirkpatrick,D.G.:A linear algorithm for determining the separation of convex polyhedra.
J. Algorithms 6(3), 381–392 (1985)

7. Dobkin, D.P., Kirkpatrick, D.G.: Determining the separation of preprocessed polyhedra—A unified
approach. In: Proceedings of the 17th International Colloquium on Automata, Languages and Pro-
gramming, pp. 400–413 (1990)

8. Dyer, M., Megiddo, N., Welzl, E.: Linear programming. In: Goodman, J.E., O’Rourke, J. (eds.) Hand-
book of Discrete and Computational Geometry, Chapter 45, 2nd edn. CRC Press, New York (2004)

9. Kirkpatrick, D.G.: Efficient computation of continuous skeletons. In: Proceedings of the 20th Annual
Symposium on Foundations of Computer Science, pp. 18–27 (1979)

10. Kirkpatrick, D.G.: Optimal search in planar subdivisions. SIAM J. Comput. 12(1), 28–35 (1983)
11. Martin, A.K.: A simple primal algorithm for intersecting 3-polyhedra in linear time. Master’s thesis,

Department of Computer Science, University of British Columbia. https://circle.ubc.ca/handle/2429/
30114 or http://www.cs.ubc.ca/cgi-bin/tr/1991/TR-91-16 (1991)

12. Mulmuley, K.: Computational Geometry: An Introduction Through Randomized Algorithms. Prentice
Hall, Englewood Cliffs (1993)

13. Preparata, F.P., Hong, S.J.: Convex hulls of finite sets of points in two and three dimensions. Commun.
ACM 20(2), 87–93 (1977)

14. Shamos M.I., Hoey D.: Closest-point problems. In: Proceedings of the 16th Annual Symposium on
Foundations of Computer Science, pp. 151–162 (1975)

123

https://circle.ubc.ca/handle/2429/30114
https://circle.ubc.ca/handle/2429/30114
http://www.cs.ubc.ca/cgi-bin/tr/1991/TR-91-16

	A Simpler Linear-Time Algorithm for Intersecting Two Convex Polyhedra in Three Dimensions
	Abstract
	1 Introduction
	2 Preliminaries
	3 The Algorithm
	4 Remarks
	Acknowledgments
	References

