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Abstract We present optimal deterministic algorithms for constructing shallow cut-
tings in an arrangement of lines in two dimensions or planes in three dimensions. Our
results improve the deterministic polynomial-time algorithm of Matoušek (Comput
Geom 2(3):169–186, 1992) and the optimal but randomized algorithm of Ramos (Pro-
ceedings of the Fifteenth Annual Symposium on Computational Geometry, SoCG’99,
1999). This leads to efficient derandomization of previous algorithms for numerous
well-studied problems in computational geometry, including halfspace range reporting
in 2-d and 3-d, k nearest neighbors search in 2-d, (≤k)-levels in 3-d, order-k Voronoi
diagrams in 2-d, linear programming with k violations in 2-d, dynamic convex hulls
in 3-d, dynamic nearest neighbor search in 2-d, convex layers (onion peeling) in 3-d,
ε-nets for halfspace ranges in 3-d, and more. As a side product we also describe
an optimal deterministic algorithm for constructing standard (non-shallow) cuttings
in two dimensions, which is arguably simpler than the known optimal algorithms
by Matoušek (Discrete Comput Geom 6(1):385–406, 1991) and Chazelle (Discrete
Comput Geom 9(1):145–158, 1993).
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1 Introduction

Shallow cuttings were introduced by Matoušek [27] as a tool for range search-
ing, specifically, halfspace range reporting. They have since found applications to
numerous other central problems in computational geometry, including (≤k)-levels in
arrangements of hyperplanes, order-k Voronoi diagrams, linear programming with k
violations, dynamic convex hulls, and dynamic nearest neighbor search (see Sect. 1.4
for more information). At SoCG’99, Ramos [31] presented an optimal randomized
algorithm for constructing shallow cuttings in two and three dimensions. A nagging
question that has remained open is whether there is an equally efficient determinis-
tic algorithm. The main result of this paper is a positive resolution to this question.
Although the question is mainly about theoretical understanding, and derandomiza-
tion isn’t the most “fashionable” topic in computational geometry, we believe that in
this case the fundamental nature of the problem and its wide-ranging consequences
make the problem important to study.

We would like to dedicate this work to Jiří Matoušek in memoriam.

1.1 Standard Cuttings

Definition 1 Let H be a set of n hyperplanes in Rd . Given a parameter r ∈ [1, n] and
a region L ⊆ R

d , a 1
r -cutting for H covering L is a set of interior-disjoint simplices

(cells) such that

(i) the interior of every cell intersects at most n
r hyperplanes of H , and

(ii) the union of the cells covers L .

The conflict list H� of a cell� is the set of (at most n
r ) hyperplanes of H that intersect

�. The size of the cutting is the number of its cells.

Cuttings are a fundamental tool in geometric divide-and-conquer. In the default
“standard” setting, a cutting covers all of Rd , i.e., L = R

d .
Random sampling techniques by Clarkson [18] and Haussler and Welzl [23] imply

the existence of (standard) 1
r -cuttings of size O((r log r)d). Chazelle and Fried-

man [17] refined the bound to O(rd), which is optimal. (In the 2-d case, there is
a simple alternative proof based on levels by Matoušek [25].)

Considerable effort was spent in finding efficient deterministic algorithms to con-
struct such an optimal-size cutting. Even the 2-d case turned out to be a challenge.
At SoCG’89, Matoušek [25] presented an O(nr2 log r)-time algorithm for d = 2.
At the same conference, Agarwal [4] (see also his PhD thesis [5]) presented an
O(nr log n log3.33 r)-time algorithm for d = 2. In a subsequent paper, Matoušek [26]
improved the deterministic time bound to O(nr) for d = 2, which is optimal if the
algorithm is required to output the conflict lists of all the cells (since theworst-case total
size of the conflict lists isΘ(r2 · nr ) = Θ(nr)). Matoušek’s later paper also described a
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deterministic O(nrd−1)-time algorithm for any constant dimension d, which is again
optimal if we need to output all conflict lists, but this result holds under the restriction
that r is not too big, i.e., r < n1−δ for some constant δ > 0. Finally, Chazelle [16]
obtained a deterministic O(nrd−1)-time algorithm without any restriction on r for all
constant dimensions d. All of these deterministic algorithms are complicated and/or
make use of advanced derandomization techniques such as ε-approximations [23].

1.2 Shallow Cuttings

Given a point p ∈ R
d , the level of p in H is the number of hyperplanes of H that

are below p. We define L≤k(H) to be the (≤k)-level, i.e., the region of all points
with level in H at most k. A shallow cutting is a variant of the standard cutting that is
required to cover only points that are “shallow”, i.e., have small levels.

Definition 2 Given parameters k, r ∈ [1, n], a k-shallow 1
r -cutting is a 1

r -cutting for
H covering L≤k(H).

We concentrate on the most important case of k = Θ( nr ), which is sufficient for
all of the applications encountered; in fact, shallow cuttings for any value of k can be
reduced to this case—see the remark at the end of Sect. 4. Matoušek [27] proved the
existence of a Θ( nr )-shallow 1

r -cutting of size O(r �d/2�), which is smaller than the
O(rd) bound for standard 1

r -cuttings and is optimal in the worst case. In particular,
for d ∈ {2, 3}, the size is O(r).

In the same paper, Matoušek presented a deterministic algorithm that can construct
such a shallow cutting in polynomial time; the running time improves to O(n log r) but
only when r is small, i.e., r < nδ for a sufficiently small constant δ. Later, Ramos [31]
presented a complicated randomized algorithm for d = 3 (and hence d = 2 as well)
withO(n log n) expected running time to construct not just a single shallow cutting, but
a hierarchy of O(log n) such shallow cuttings for all r ’s forming a geometric sequence
from 1 to n. (Such a hierarchy is useful in certain applications.) Recently, at SODA’14,
Afshani andTsakalidis [3]managed to achieve the samebound deterministically, albeit
only for an orthogonal variant of the problem where the input objects are orthants in
R
3 (which nonetheless has applications in orthogonal range searching); subsequently,

Afshani et al. [2] improved the time bound for a single shallow cutting toO(n log log n)

in the word RAMmodel. The case of orthants is indeed a special case, as orthants can
be mapped to halfspaces via a certain transformation [13].

1.3 Our Contributions

We present deterministic algorithms to construct a Θ( nr )-shallow 1
r -cutting of size

O(r) for d ∈ {2, 3} in O(n log r) time, which is optimal in a comparison-based
model (the default model in this paper). Like Ramos’ randomized algorithm [31],
our algorithms can in fact construct a hierarchy of such shallow cuttings for all r ’s
in a geometric sequence, along with the conflict lists of all cells, in O(n log n) total
time. (Note that for our 3-d algorithm, we do not insist the cutting in one layer of the
hierarchy be nested inside the cutting in the next layer.)
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Considering how involved known deterministic algorithms for standard cuttings
are, we are happy to report that the new results are not complicated to derive. All the
needed background is provided in Sect. 2; no advanced derandomization techniques
are used. The main algorithms are describable in a few lines, as seen in Sects. 3 and 4,
although their analyses are not trivial.

Like in Chazelle’s cutting algorithm [16], we will construct the hierarchy layer by
layer, refining the shallow cutting in the previous layer to obtain the shallow cutting in
the next layer. A naive implementation would cause an amplification of the constant
factor in the cutting size bound, which may “blow up” after logarithmically many iter-
ations. Chazelle used ε-approximations and sparse ε-nets to refine the cutting in each
cell, and controlled the blow-up by charging cost to some easily summable quantity
(namely, the number of vertices inside the cell). We replace ε-approximations and
sparse ε-nets with the more elementary techniques by Megiddo and Dyer [19,30]. We
use a brute-force search to find the bestway to refine the cutting in each cell, and control
the blow-up by bounding cost in terms of the cost of an optimal cutting—this strategy
is reminiscent of the analysis of approximation algorithms or PTASes (although we do
not explicitly design an approximation algorithm to find the minimum-size cutting).

The strategy works beautifully in 2-d, but the constant-factor blow-up becomes
tougher to deal with in 3-d, because cost of substructures along the cell boundaries
becomes non-negligible. To tackle this issue, we borrow an idea from a different paper
by Ramos [32], of using planar graph separators to group cells into regions, which we
call “supercells”, so that the total size of the boundaries of the supercells is reduced.
(Ramos originally applied this idea to obtain an optimal deterministic algorithm for the
3-d diameter problem and for computing lower envelopes of certain bivariate surfaces
in 3-d, but did not consider shallow cuttings in that paper. Also, the details of his
algorithms appear more complicated, using ε-nets and supercells of size nδ , whereas
we use only supercells of constant size.)

In Sect. 5, we show that our ideas can also lead to a new presentation of a determin-
istic O(nr)-time algorithm for constructing standard 1

r -cuttings in 2-d. This may be of
independent pedagogical interest, considering the long line of previous complicated
algorithms.

1.4 Applications

As mentioned, shallow cuttings are important because of their numerous applications.
Below we list some of the specific implications of our new 2-d and 3-d deterministic
algorithms.

1. The first optimal deterministic O(n log n)-time algorithm to preprocess a set of n
points in R3 into an O(n)-space data structure, so that we can answer a halfspace
range reporting query (i.e., report all k points that lie within any given halfspace)
in O(log n + k) time. This result follows from the work of Afshani and Chan [1],
which was almost deterministic except for the invocation of Ramos’ algorithm to
construct a hierarchy of 3-d shallow cuttings during preprocessing.
By a standard lifting transformation, the same result holds for circular range
reporting in R

2 (reporting all k points that lie inside any given circle) and k
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nearest neighbors search in R2 (reporting all k nearest neighbors to a given point,
in arbitrary order, under the Euclidean metric).

2. The first optimal deterministic O(n log n + nk2)-time algorithm to construct the
(≤k)-level of an arrangement of n planes in R3. This result follows from the work
of Chan [9], which previously required randomization.

3. The currently fastest deterministic O(n log n + nk · t (k))-time algorithm for con-
structing the kth order Voronoi diagram of n points in R

2. Here, t (·) denotes the
(amortized) update and query time complexity for the 2-d dynamic convex hull
problem (under gift-wrapping queries). We have t (k) = O(log k log log k) [7], or
better still, t (k) = O(log k) [8] if one has confidence in the over-100-page proof
in the latter paper. This result again follows from the work of Chan [9]. Compare
the result with Ramos’ randomized O(n log n+nk2O(log∗ k))-time algorithm [31].

4. A deterministic O((n+k2) log k)-time algorithm for 2-d linear programming with
at most k violations (i.e., given a set of n halfspaces, find the point that lies inside
all but k of the halfspaces and is extreme along a given direction).
This result follows from another work of Chan [10], which was almost determin-
istic except for the construction of a 2-d shallow cutting in one step.

5. The first deterministic data structure for dynamic 3-d convex hull with polyloga-
rithmic amortized update and query time, namely, O(log3 n) amortized insertion
time, O(log6 n) amortized deletion time, and O(log2 n) time for a gift-wrapping
query. This result follows from another work of Chan [11], which was almost
deterministic except for the construction of multiple 3-d shallow cuttings during
certain update operations.
This result itself spawns countless additional consequences [11], for example,
to dynamic 2-d smallest enclosing circle, dynamic 2-d bichromatic closest pair,
dynamic 2-d diameter, dynamic 2-d Euclidean minimum spanning tree, 3-d convex
layers (onion peeling), output-sensitive construction of 3-d k-levels, and so on.

6. A deterministic data structure for dynamic 2-d halfspace range reporting with
O(log6+ε n) amortized update time and O(log n+k) query time for any fixed ε >

0. In 3-d, the query time increases to O(log2 n/ log log n + k). This result follows
from yet another work of Chan [12], which was almost deterministic except for
the construction of multiple 2-d shallow cuttings during certain update operations.

7. A deterministic O(n log r)-time algorithm to construct a 1
r -net of size O(r) for n

points in R
3 with respect to halfspace ranges (i.e., a subset of n

r points such that
any halfspace range contains at least one of the points). This application actually
appeared in Matoušek’s original paper on shallow cuttings [27]. There, he was
interested in proving existence of O(r)-size nets, but with our shallow cutting
algorithm, the deterministic time bound follows. (Roughly speaking, in the dual,
we construct a n

r -shallow O( 1r )-cutting, construct an ε-cutting within each cell for
a sufficiently small constant ε, and output an arbitrary plane passing below each
subcell.) Of course, ε-nets are well known and central to combinatorial and com-
putational geometry. Previously, there were deterministic nrO(1)-time algorithms
(e.g., see a recent note [22]), and an O(n log r)-time algorithm but only when r is
small, i.e., r < nδ for some constant δ [27]. By a standard lifting transformation,
the same result holds for ε-nets for points inR2 with respect to circular disk ranges.
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2 Preliminaries

It will bemore convenient to workwith the parameter K := n
r instead of r . For brevity,

a k-shallow K
n -cutting will be referred to as a (k, K )-shallow cutting. It satisfies the

properties that (i) each cell intersects at most K hyperplanes, and (ii) the cells cover
L≤k(H). Our goal is to compute a (k,Θ(k))-shallow cutting of size O( nk ).

For a set V of points in Rd , we denote by UH(V ) the region underneath the upper
hull of V .We define the vertical decompositionVD(V ) to be the set of interior-disjoint
cells covering UH(V ), such that each cell is bounded from above by a different face
of UH(V ), is bounded from the sides by vertical walls, and is unbounded from below.
For example, in 2-d, the boundary of UH(V ) is a concave chain; a cell in VD(V ) is
bounded by an edge of UH(V ) and two walls (downward vertical rays). In 3-d, the
boundary of UH(V ) is a concave polygonal surface with triangular faces; a cell in
VD(V ) is bounded by a triangle and three walls (trapezoids that are unbounded from
below). See Fig. 1.

In the studied dimensions d ∈ {2, 3}, we find it simpler to work with the following
equivalent form of shallow cuttings:

Definition 3 Given parameters k, K ∈ [1, n], a (k, K )-shallow cutting for H in vertex
form is a set V of points such that

(i) every point in V has level at most K , and
(ii) UH(V ) covers L≤k(H).

The conflict list of a point v ∈ V is the set of (at most K ) hyperplanes in H that are
below v.

A (k, K )-shallow cutting under the original definition (a k-shallow K -cutting by
Definition 2) can be transformed into a (k, k + K )-shallow cutting in vertex form
simply by letting V be the set of vertices of the cells (after pruning cells that do not
intersect L≤k(H)). In the reverse direction, a (k, K )-shallow cutting V in vertex form
can be transformed to a (k, dK )-shallow cutting under the original definition simply
by taking VD(V ), since the conflict list H� of a cell � is contained in the union of

(a) (b)

Fig. 1 Illustration of definitions. a The grey vertical trapezoid is a 2-d cell bounded above by an edge of
the upper hull (bold line) and aside by two walls (dashed vertical semi-lines). b The grey vertical trapezoid
is a 3-d wall bounded above by an edge of a triangular face (bold triangle) of the upper hull (dashed
triangulation) and aside by vertical semi-lines
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the conflict lists of the d vertices of �, and thus |H�| ≤ dK . In 2-d and 3-d, the size
of VD(V ) is O(|V |), and computing VD(V ) takes O(|V | log |V |) time by an optimal
convex hull algorithm.

From now on, all considered shallow cuttings will be in vertex form by default.
Our algorithms do not require any advanced derandomization techniques at all.

Only three facts are needed (the third is used only for the 3-d case):

Fact 1 (Constant-Size Cuttings) Given a set of n lines in R
2 or planes in R

3 and
any constant ε > 0, a (standard) ε-cutting of constant size can be computed in O(n)

worst-case time.

Fact 2 (Existence of O( nk )-Size Shallow Cuttings) Given a set of n lines in R
2 or

planes in R
3 and a parameter k ∈ [1, n], there exists a (k, c0k)-shallow cutting (in

vertex form) of maximum size c′
0
n
k , for some universal constants c0, c

′
0.

Fact 3 (Planar Graph Separators) Given a triangulated planar graph with n vertices
and a parameter t ∈ [1, n], we can group the triangles into at most a0

n
t connected

regions where each region contains at most t triangles, and the total number of edges
along the boundaries of the regions is at most a′

0
n√
t
, for some universal constants

a0, a′
0. Such regions can be computed in O(n log n) time.

Fact 1 was known in the 1980s even before the term “cutting” was coined. In
deriving their linear-time algorithm for 3-d linear programming, Megiddo [29] and
Dyer [19] implicitly gave a linear-time construction of a 7

8 -cutting of size 4 in 2-d.
Megiddo [30] subsequently generalized the construction to d dimensions, yielding a
(1−1/22

d−1)-cutting of size 22
d−1

in linear time. (The cells may not be simplices, but
we can triangulate them and the size remains bounded by a constant.) Although these
constructions give ε-cuttings for one specific constant ε > 0, iterating a constant
number of times automatically yields ε-cuttings for any given constant ε > 0 in
linear time. The size of such a cutting may be suboptimal, but for our purposes,
any constant size bound will be sufficient. More powerful techniques based on ε-
approximations and ε-nets [17,23] can yield better bounds, but a virtue of Megiddo
and Dyer’s constructions is that they are completely elementary, relying on linear-time
median finding as the only subroutine.

Fact 2 was proved by Matoušek [27] by using Chazelle and Friedman’s random
sampling techniques [17]. In the 2-d case, there is a simpler alternative proof using
levels, similar to [25] and implicit in one of the proofs in [6]. For our purposes, we do
not actually need to know how Fact 2 is proved and do not care about the construction
time—we just need the existence of O( nk )-size shallow cuttings, not for our algorithms
themselves but for their analyses.

Fact 3 is a multiple-regions version [20] of the well-known planar graph separator
theorem [24], as applied to the dual of the given graph. The multiple-regions version
follows from the standard version by recursion. The running time O(n log n) can
actually be reduced to O(n) [21], althoughwe do not need this improvement. A version
by Frederickson [20] can further guarantee that each region has O(

√
t) boundary edges

(Fact 3 guarantees the same bound but on average only); again, we do not need such
an improvement.
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3 A 2-d Shallow Cutting Algorithm

We begin in 2-d and prove the following theorem, from which our main result will
follow as a corollary:

Theorem 4 There exist constants B, C, C′, such that for a set H of n lines in R
2 and

a parameter k ∈ [1, n], given a (Bk, CBk)-shallow cutting Vin (in vertex form) for H
of size at most C′ n

Bk along with its conflict lists, we can compute a (k, Ck)-shallow
cutting Vout (in vertex form) for H of size at most C′ n

k along with its conflict lists in
O(n + n

k log
n
k ) deterministic time.

Proof Let ε be a constant to be set later. Our algorithm is conceptually simple:

1. For each cell � ∈ VD(Vin):
1.1. Compute by Fact 1 an ε-cutting Γ� for H� of O(1) size, where the cells are

clipped (and re-triangulated) to lie within �. Let Λ� be the set of vertices
that define the cells of Γ�.

1.2. Compute by brute force the smallest subset V� ⊆ Λ� such that
(i) every vertex in V� has level in H� at most Ck, and
(ii) UH(V�) covers all vertices in Λ� that are in L≤2k(H�).

2. Return Vout := ⋃
�∈VD(Vin)V� and all its conflict lists.

Complexity In Line 1, computing VD(Vin) takes O( nk log
n
k ) time by an optimal con-

vex hull algorithm, since |Vin| ≤ C′ n
Bk = O( nk ). Line 1.1 takes time linear in |H�| by

Fact 1, for a total of
∑

�∈VD(Vin) O(|H�|) = O(C′ n
Bk · 2CBk) = O(n) time. For Line

1.2, first we determine the level in H� of every vertex in Λ� by a linear scan over
H�, and then we probe all possible subsets of Λ�. Since Γ� and Λ� have O(1) size,
there are “only” O(1) subsets to test (although the constant is exponentially bigger)
and each subset can be tested for the two stated conditions in O(1) time. Thus, the
whole step takes time linear in |H�|, which again totals to O(n). In Line 2, computing
Vout takes time linear in the output size. The conflict list of every output vertex in V�

can be computed by a linear scan over H�, again in O(n) total time.

Correctness To show that Vout is a correct (k, Ck)-shallow cutting for H , we just
check that UH(Vout) covers L≤k(H). This follows since for any point inside a cell
of Γ� with level at most k, the three vertices of the cell in Γ� have levels at most
k + ε|H�| ≤ k + ε(2CBk) = 2k by setting the constant ε := 1

2CB , and are thus
covered by UH(V�).

To bound the size of Vout, we compare it against a (2k, 2c0k)-shallow cutting V ∗
of size c′

0
n
2k provided by Fact 2. Note that V ∗ is covered by VD(Vin) by picking a

constantB ≥ 2c0, since every vertex in V ∗ has level at most 2c0k, and VD(Vin) covers
L≤Bk(H).

We render V ∗ comparable to Vout by modifying V ∗ in two steps (we emphasize
that these steps are not part of the algorithm but are for the correctness proof only):

– First, we chopUH(V ∗) at the walls of the cells of VD(Vin). A new vertex is formed
at each wall; we create two copies of each such vertex (one assigned to each of
the two incident cells of VD(Vin)) and add them to V ∗. (See Fig. 2.) For each cell
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Fig. 2 Modifying V ∗ by
chopping (adding points marked
by black squares) and snapping
(replacing a point with three
points indicated by white
arrows). The cutting Γ� is
shown in dashed lines, and its
vertices Λ� are marked by
crosses

V D(VIN )

UH (V )

Δ

*

� ∈ VD(Vin), let V ∗
� := V ∗ ∩�. Then (i) every vertex in V ∗

� (including the extra
vertices added) has level at most 4c0k, and (ii) UH(V ∗

�) is exactly UH(V ∗)∩� and
thus covers L≤2k(H) ∩ �. The number of extra vertices added is at most 2C′ n

Bk ,

so the size of V ∗ is now at most (
c′
0
2 + 2C′

B ) nk .
– Next, for every cell � ∈ VD(Vin), we snap the vertices in V ∗

� to the vertices of
Γ�, i.e., we replace every vertex v ∈ V ∗

� with the three vertices of the cell in Γ�

containing v. (See Fig. 2.) This makes V ∗
� ⊆ Λ�. Then (i) every vertex in V ∗

� now
has level at most 4c0k+ε|H�| ≤ 4c0k+ε(2CBk) = (4c0 +1)k, and (ii) UH(V ∗

�)

can only increase in its coverage. The size of V ∗ triples to at most ( 32c
′
0 + 6C′

B ) nk .

Then Line 1.2 guarantees that |V�| ≤ |V ∗
�| by setting the constant C := 4c0 + 1,

since the subset V ∗
� ⊆ Λ� satisfies the two stated conditions and V� is the smallest

such subset. Therefore, totalling over all cells in VD(Vin), we have |Vout| ≤ |V ∗| ≤
( 32c

′
0 + 6C′

B ) nk ≤ C′ n
k as desired, by setting the constant C′ := 3

2 c
′
0

1− 6
B

and picking any

constant B > 6. �
Corollary 1 There exist constants B, C, C′, such that for a set H of n lines in R2 and
a parameter k ∈ [1, n], we can compute a (Bi k, CBi k)-shallow cutting of size at most
C′ n

Bi k
, along with its conflict lists, for all i = 0, 1, . . . , logB n

k in O(n log n
k ) total

deterministic time. In particular, we can compute a (k, Ck)-shallow cutting of size
O( nk ) in the stated time.

Proof By Theorem 4, the running time T (n, k) satisfies the recurrence

T (n, k) = T (n,Bk) + O
(
n + n

k
log

n

k

)
,

with the trivial base case T (n, n) = O(n). The recurrence solves to T (n, k) =
O(n logB n

k ) + O( nk log
n
k )

∑logB n
k

i=0
1
Bi = O(n log n

k ). �

4 A 3-d Shallow Cutting Algorithm

We now extend the approach from the previous section to 3-d. We need to incorporate
planar separators in the algorithm and further new ideas in the analysis.
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Fig. 3 Replacing the concave
chain UH(Sw) with the sparser
concave chain UH(S′

w) of a
planar shallow cutting S′

w for all
input planes intersecting the slab
σw that delimits a wall w of a
supercell of VD(Vin)

w

σw

VD (VIN )

UH (S'w)

UH (Sw)

Theorem 5 There exist constants B, C, C′, such that for a set H of n planes in R
3

and a parameter k ∈ [1, n], given a (Bk, CBk)-shallow cutting Vin for H of size at
most C′ n

Bk along with its conflict lists, we can compute a (k, Ck)-shallow cutting Vout
for H of size at most C′ n

k along with its conflict lists in O(n + n
k log

n
k ) deterministic

time.

Proof Let ε and t be constants to be set later. Our algorithm requires one extra step
with respect to the 2-d algorithm of Sect. 3.

0. Group the faces of UH(Vin) into regions by applying Fact 3 with parameter t . The
union of the cells of VD(Vin) defined by the triangles in a region will be called a
supercell of VD(Vin).

1. For each supercell � of VD(Vin):
1.1. Do as in Line 1.1 of the algorithm in Sect. 3.
1.2. Do as in Line 1.2 of the algorithm in Sect. 3.

2. Do as in Line 2 of the algorithm in Sect. 3.

Complexity Line 0 takes O( nk log
n
k ) time by Fact 3, since |Vin| ≤ C ′ n

Bk = O( nk ).
Lines 1.1, 1.2, and 2 take O(n + n

k log
n
k ) time by an analysis similar to Sect. 3,

since each supercell still has O(1) complexity for t constant.

Correctness By the same argument as in Sect. 3, we see that Vout is a correct (k, Ck)-
shallow cutting for H , this time by setting the constant ε := 1

3tCB , since |H�| ≤ 3tCBk
for each supercell � of VD(Vin).

As in Sect. 3, we bound the size of Vout by comparing it against a (2k, 2c0k)-
shallow cutting V ∗ of size c′

0
n
2k provided by Fact 2. As before, V ∗ is covered by

VD(Vin), this time by picking a constant B ≥ 6c0.
We render V ∗ comparable to Vout by modifying V ∗ in three steps, the second of

which is new (again these steps are not part of the algorithm but are for the correctness
proof only):

– First, we chop UH(V ∗) at the walls of the supercells of VD(Vin). A new planar
concave chain of vertices is formed at each wall; we create two copies of the chain
(one assigned to each of the two incident cells of VD(Vin)) and add their vertices
to V ∗. For each supercell � of VD(Vin), let V ∗

� := V ∗ ∩ �. Then (i) every vertex
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in V ∗
� has level at most 6c0k, and (ii) UH(V ∗

�) ∩ � is exactly UH(V ∗) ∩ � and
thus covers L≤2k(H) ∩ �. Unfortunately we do not have good enough bounds on
the number of extra vertices added to V ∗.

– To reduce the size of V ∗, we replace the chain Sw of vertices at every wall w of
a supercell with a sparser set S′

w of vertices defined as follows. (See Fig. 3.) Let
Hw be the set of planes in H intersecting w, and let S′

w be a planar (6c0k, 6c20k)-
shallow cutting provided by Fact 2 for the intersection of Hw with the vertical
plane through w (a set of lines). Let σw be the slab delimited by the two vertical
lines through the two subwalls of w. We clip UH(S′

w) to σw, add the two new
vertices to S′

w, and remove any vertices outside σw. Observe that S′
w is covered by

w (and thus by VD(Vin)) by picking a constant B ≥ 12c20, because every vertex
in S′

w (including the two extra vertices added) has level in Hw at most 12c20k, and
w covers L≤Bk(H) ∩ σw = L≤Bk(Hw) ∩ σw.
Then (i) every vertex inV ∗

� nowhas level (in H ) atmost 12c20k, and (ii)UH(V ∗
�) can

only increase in its coverage, because each old set Sw is contained in L≤6c0k(H)∩
σw and the new concave chain UH(S′

w) covers L≤6c0k(H) ∩ σw.

For each wall w, the size of S′
w is at most c′

0
|Hw |
6c0k

≤ c′
0
2CBk
6c0k

= c′
0CB
3c0

. The number

of walls of the supercells is at most a′
0

|Vin|√
t

≤ a′
0C′

B√
t
n
k . Thus, the total number of

extra vertices added to V ∗ (two copies included) is at most
2a′

0c
′
0CC′

3c0
√
t

n
k , and the size

of V ∗ is now at most (
c′
0
2 + 2a′

0c
′
0CC

′
3c0

√
t

) nk .

– For every supercell � of VD(Vin), we snap the vertices in V ∗
� to vertices of Γ�

i.e., we replace every vertex v ∈ V ∗
� with the four vertices of the cell in Γ�

containing v. This makes V ∗
� ⊆ Λ�. Then (i) every vertex in V ∗

� now has level at
most 12c20k+ε|H�| ≤ 12c20k+ε(3tCBk) = (12c20+1)k, and (ii)UH(V ∗

�) can only

increase in its coverage. The size of V ∗ quadruples to at most (2c′
0 + 8a′

0c
′
0CC′

3c0
√
t

) nk .

Then Line 1.2 guarantees that |V�| ≤ |V ∗
�| by setting the constant C := 12c20 + 1.

Therefore, totalling over all cells in VD(Vin), we have

|Vout| ≤ |V ∗| ≤
(

2c′
0 + 8a′

0c
′
0CC′

3c0
√
t

)
n

k
≤ C′ n

k
(1)

as desired, by setting the constant

C′ := 2c′
0

1 − 8a′
0c

′
0C

3c0
√
t

(2)

and picking any constant t > (
8a′

0c
′
0C

3c0
)2. �

As in Sect. 3, it follows that:

Corollary 2 There exist constants B, C, C′, such that for a set H of n planes in R
3

and a parameter k ∈ [1, n], we can compute a (Bi k, CBi k)-shallow cutting of size
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at most C′ n
Bi k

, along with its conflict lists, for all i = 0, 1, . . . , logB n
k in O(n log n

k )

total deterministic time. In particular, we can compute a (k, Ck)-shallow cutting of
size O( nk ) in the stated time.

Remark 1 We remark that concentrating on the k = Θ( nr ) case is indeed without
loss of generality—our algorithms can be easily applied to construct k-shallow 1

r -
cuttings for any k and r . Matoušek [27] proved the existence of such cuttings of size
O(r �d/2�( krn + 1)�d/2�). We can construct cuttings of this size with the following time
bounds for d ∈ {2, 3}, which are optimal if we are required to output all conflict lists
(since the worst-case total size is Θ(r �d/2�( krn + 1)�d/2� n

r )):

Corollary 3 For a set H of n lines in R
2 and parameters k, r ∈ [1, n], we can

compute a k-shallow 1
r -shallow cutting of size O(r( krn + 1)) along with its conflict

lists, in O(n log r + r( krn + 1) nr ) deterministic time.
For a set H of n planes in R

3 and parameters k, r ∈ [1, n], we can compute a
k-shallow 1

r -shallow cutting of size O(r( krn + 1)2) along with its conflict lists, in

O(n log r + r( krn + 1)2 nr ) deterministic time.

Proof If k ≤ n
cr for a suitable constant c, then we can just apply our algorithm to

compute a n
cr -shallow

1
r -cutting of size O(r) in O(n log r) deterministic time.

So assume k > n
cr . We first apply our algorithm to compute a k-shallow ck

n -cutting
of size O( nk ) in O(n log n

k ) = O(n log r) deterministic time. Inside each cell� of this

cutting, the conflict list H� has size at most ck and we compute a standard n/r
ck -cutting

of H� of size O(( k
n/r )

d) in deterministic O(k( k
n/r )

d−1) time by known results (e.g.,
Chazelle’s algorithm [16], or in the d = 2 case, our algorithm fromSect. 5). This yields
a k-shallow 1

r -cutting of H of total size O( nk ·( k
n/r )

d) in total O(n log r+ n
k ·k( k

n/r )
d−1)

time. The size and time bounds are exactly as stated. �

5 A 2-d Standard Cutting Algorithm

In this section we describe how our ideas can be used to rederive known results by
Matoušek [26] and Chazelle [16] for standard cuttings in 2-d.

As before, it will be more convenient to work with the parameter K := n
r instead

of r . The target O(nr) time bound becomes O( n
2

K ). Our cuttings will be the verti-
cal decompositions of noncrossing line segments. Given a set S of noncrossing line
segments inside a cell �, we define the vertical decomposition VD(S) to be the sub-
division into trapezoids, obtained by drawing a vertical upward/downward ray at each
vertex till the ray hits another segment. We define VD�(S) to be VD(S) clipped inside
a given cell �.

Theorem 6 There exist constants B, C, such that for a set H of n lines in R
2 and a

parameter K ∈ [1, n], given a BK
n -cutting Tin for H of size at most C( n

BK )2 along

with its conflict lists, we can compute a K
n -cutting Tout for H of size at most C( n

K )2

along with its conflict lists in O( n
2

K ) deterministic time.
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Fig. 4 Simplifying a level

Proof Let ε be a constant to be set later. Our algorithm resembles the 2-d algorithm
of Sect. 3.

1. For each cell � ∈ Tin:
1.1. Compute by Fact 1 an ε-cutting Γ� for H� of O(1) size, where the cells are

clipped (and re-triangulated) to lie within �. Further refine the cells of Γ�

by drawing a vertical line at every vertex of Γ�. Let Λ� be the set of vertices
that define the cells of (the refined) Γ�.

1.2. Compute by brute force the smallest set of noncrossing line segments S�,
whose endpoints are from Λ�, such that each trapezoid in VD�(S�) inter-
sects at most K lines of H�.

2. Return Tout := ⋃
�∈Tin VD�(S�) and all its conflict lists.

Complexity Line 1.1 takes time linear in |H�| by Fact 1, for a total of
∑

�∈Tin O(|H�|) = O(C( n
BK )2 · BK ) = O( n

2

K ) time. For Line 1.2, we probe all
possible sets S� of line segments with endpoints from Λ�. Since Γ� and Λ� have
O(1) size, there are “only” O(1) sets to test and each set can be tested in O(|H�|)
time. Thus, the whole step takes time linear in |H�|, which again totals to O( n

2

K ).

Correctness Clearly Tout is a
K
n -cutting for H . To bound the size of Tout, we compare

it against some optimal K
n -cutting for H of size O(( n

K )2), specifically, the cutting
produced by Matoušek’s construction [25] using levels. (We would have preferred a
cleaner proof that compares Tout against an arbitrary optimal-size cutting, like in our
earlier proofs, but were unable to make the details work.) We adapt his construction
to incorporate our earlier ideas of chopping and snapping.

– We first pick a random index j0 ∈ [1, 0.5K ]. For each j ≡ j0 (mod 0.5K ),
consider the j-level (the set of points on the arrangement with level j), which is an
x-monotone chain. Since the arrangement has O(n2) vertices in total, the expected
total number of vertices in these chains is O( n

2

K ).
– We chop these chains into subchains at the boundaries of the cells of Tin. Since the
total number of vertices along cell boundaries is O(C( n

BK )2 · BK ) = O( CB
n2
K ),

the expected total number of subchains created is O( CB
n2

K 2 ).
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– We simplify each subchain by selecting every 0.1K -th vertex from the subchain
and forming a shorter x-monotone chain through these vertices, while keeping the
start and end vertex. (See Fig. 4.) Note that the levels of points on a simplified
subchain can deviate from the original level by at most ±0.1K . Let S∗ be the set
of the edges of the simplified subchains. Since the size of a simplified subchain is
at most one plus 1

0.1K -th the original size of the subchain, the expected size of S∗

is O((1 + C
B )( n

K )2). We pick a j0 so that the size of S∗ is at most its expectation.
For each boundary edge of the cells of Tin, we subdivide it by selecting every
0.1K -th vertex of the arrangement lying on the edge. We add two copies of the
resulting edges to S∗ (one assigned to each of the two incident cells). Since the
number of extra edges added is O(C( n

BK )2 · BK
0.1K ) = O( CB ( n

K )2), the size of S∗

remains O((1 + C
B )( n

K )2).
Let S∗

� := S∗ ∩ �. We claim that each trapezoid in VD�(S∗
�) intersects at most

0.9K lines. This follows because the left side of the trapezoid intersects at most
0.5K + 0.1K + 0.1K lines, and the top or bottom side intersects at most 0.1K
lines.

– For every cell� ∈ Tin, we snap the endpoints of the segments in S∗
� to the vertices

of Γ�, i.e., we replace each such endpoint v with the rightmost vertex of the cell
in Γ� containing v. For each endpoint v that lie on a boundary edge of �, we snap
it to a vertex of Γ� on that edge.
Note that the x-order of the vertices in S∗

� is preserved after snapping, because
we have refined Γ� with extra vertical lines. Thus, the simplified subchains inside
� of a common chain remain x-monotone and noncrossing. Furthermore, two
simplified subchains of two different chains remain noncrossing for a sufficiently
small ε, since the two chains have levels at least 0.5K apart, simplification changes
levels by at most 0.1K , and snapping changes levels by at most O(εBK ). Thus,
S∗
� remains noncrossing.

By modifying the previous argument, we see that each trapezoid in VD�(S∗
�)

intersects at most 0.9K + O(εBK ) lines; the number can be made at most K for
a sufficiently small constant ε.

Then Line 1.2 guarantees that |S�| ≤ |S∗
�|. Therefore,

|Tout| ≤ O(|S∗|) ≤ O
((

1 + C
B

)( n

K

)2)
, (3)

which can be made at most C( n
K )2 as desired, by choosing a sufficiently large con-

stant B. (Note that in the entire correctness proof, constants hidden in the O notation
are universal constants.) �
Corollary 4 There exist constants B, C, such that for a set H of n lines in R

2 and a

parameter K ∈ [1, n], we can compute a Bi K
n -cutting of size at most C( n

Bi K
)2 for all

i = 0, 1, . . . , logB n
K , along with its conflict lists, in O( n

2

K ) total deterministic time.
In particular, we can compute a 1

r -cutting of size O(r2) in O(nr) deterministic time.
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Proof The recurrence T (n, K ) = T (n,BK ) + O(( n
K )2), with the trivial base case

T (n, n) = O(n), solves to T (n, K ) = O(
∑logB n

K
i=0 ( n

Bi K
)2) = O(( n

K )2). �
Our above algorithm can be viewed as a reinterpretation of Chazelle’s algo-

rithm [16], where ε-approximations and sparse ε-nets are replaced by a brute-force
component that is more self-contained to describe. Our analysis only works in 2-d,
however; Chazelle’s approach is still more powerful.

6 Final Remarks

Despite their conceptual simplicity, our algorithmsmay not be practical in their present
form, because of the large hidden constant factors stemming from brute-force subrou-
tines (Line 1.2) and depending on unknown universal constants (Facts 2, 3).

Our approach of incorporating brute-force search and comparing the cost of our
solution to that of an optimal solution was inspired by approximation algorithms. An
interesting problem is to actually find PTASes to compute the minimum-size (shallow
or standard) cutting, or compute cuttings with constant factors approaching the worst-
case optimum [28], with comparable running time.

The optimality of the O(n log r) time bound assumes a comparison-based model,
but it remains to be seen if there are faster algorithms to compute a single shallow
cutting in the word RAM model for integer input [14].

Generalization of our shallow cutting algorithms to higher dimensions is also open;
odd dimensions appear particularly challenging.
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