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Abstract We define the bisector energy E(P) of a set P in R
2 to be the number of

quadruples (a, b, c, d) ∈ P4 such that a, b determine the same perpendicular bisector
as c, d. Equivalently, E(P) is the number of isosceles trapezoids determined by P .
We prove that for any ε > 0, if an n-point setP has no M(n) points on a line or circle,
then we have

E(P) = O
(
M(n)

2
5 n

12
5 +ε + M(n)n2

)
.

We derive the lower bound E(P) = �(M(n)n2), matching our upper bound when
M(n) is large. We use our upper bound on E(P) to obtain two rather different
results:

(i) If P determines O(n/
√
log n) distinct distances, then for any 0 < α ≤ 1/4,

there exists a line or circle that contains at least nα points of P , or there exist
�(n8/5−12α/5−ε) distinct lines that contain �(

√
log n) points of P . This result
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provides new information towards a conjecture of Erdős (Discrete Math 60:147–
153, 1986) regarding the structure of point sets with few distinct distances.

(ii) If no line or circle containsM(n) points ofP , the number of distinct perpendicular
bisectors determined by P is �

(
min

{
M(n)−2/5n8/5−ε, M(n)−1n2

})
.

Keywords Discrete geometry · Incidence geometry · Polynomial method · Distinct
distances · Perpendicular bisectors

1 Introduction

Guth and Katz [13] proved that every set of n points inR2 determines�(n/ log n) dis-
tinct distances. This almost completely settled a conjecture of Erdős [7], who observed
that the

√
n × √

n integer lattice determines �(n/
√
log n) distances, and conjectured

that every set of n points determines at least this number of distances. Beyond the
remaining

√
log n gap, this leaves open the question of which point sets determine few

distances. Erdős [9] asked whether every set that determines O(n/
√
log n) distances

“has lattice structure”. He thenwrote:The first stepwould be to decide if there always is
a line which contains cn1/2 of the points (and in fact nε would already be interesting).’

Embarrassingly, almost three decades later the bound nε seems as distant as it ever
was. The following bound is a consequence of an argument of Szemerédi, presented
by Erdős [8].

Theorem 1.1 (Szemerédi) If a set P of n points in R
2 determines O(n/

√
log n) dis-

tances, then there exists a line containing �(
√
log n) points of P .

Recently, it was noticed that this bound can be slightly improved to�(log n) points
on a line (see [21]). Assuming that no line contains an asymptotically larger number of
points, one can deduce the existence of�(n/ log n) distinct lines that contain�(log n)

points of P . By inspecting Szemerédi’s proof, it is also apparent that these lines are
perpendicular bisectors of pairs of points of P .

This problemwas recently approached from the other direction in [17,18,22]. Com-
bining the results of these three papers implies the following. If an n-point setP ⊂ R

2

determines o(n) distances, then no line contains �(n43/52+ε) points of P , no cir-
cle contains �(n5/6) points, and no other constant-degree irreducible algebraic curve
contains �(n3/4) points.

In the current paper we study a different aspect of sets with few distinct distances.
Our main tool is a bound on the bisector energy of the point set (see below for a formal
definition). Using this tool, we prove that if a point set P determines O(n/

√
log n)

distinct distances, then there exists a line or a circle with many points of P , or the
number of lines containing�(

√
log n) points must be significantly larger than implied

by Theorem 1.1. As another application of bisector energy, we prove that if no line
or circle contains many points of a point set P , then P determines a large number
of distinct perpendicular bisectors. We will provide more background to both results
after we have properly stated them.

123



Discrete Comput Geom (2016) 56:337–356 339

2 Results

2.1 Bisector Energy

Given two distinct points a, b ∈ R
2, we denote byB(a, b) their perpendicular bisector

(i.e., the line consisting of all points that are equidistant from a and b); for brevity, we
usually refer to it as the bisector of a and b. We define the bisector energy of P as

E(P) = ∣∣{(a, b, c, d) ∈ P4 : a �= b, c �= d, and B(a, b) = B(c, d)
}∣∣.

Equivalently, E(P) is the number of isosceles trapezoids determined by P (not count-
ing isosceles triangles). Note that if each distinct pair of points of P determines a
distinct bisector, then E(P) = 2n(n − 1), since quadruples of the form (a, b, a, b),
(a, b, b, a), (b, a, a, b), and (b, a, b, a) are counted for each of the

(n
2

)
choices for

distinct a, b ∈ P . In Sect. 3, we prove the following upper bound on this quantity.

Theorem 2.1 Let M(n) be an arbitrary function with positive values. For any n-point
set P ⊂ R

2, such that no line or circle contains M(n) points of P , we have1

E(P) = O
(
M(n)

2
5 n

12
5 +ε + M(n)n2

)
.

We note that one important ingredient of our proof is the result of Guth and Katz
[13]; without it, we would obtain a weaker (although nontrivial) bound on the bisector
energy (see the remark at the end of Sect. 3.3).

In Sect. 4, we present a construction that implies a lower bound for the maximum
bisector energy. It shows that Theorem 2.1 is tight when its second term dominates,
i.e., when M(n) = �(n2/3+ε′

).

Theorem 2.2 For any n and M(n), there exists a set P of n points in R2 such that no
line or circle contains M(n) points of P , and E(P) = �(M(n)n2).

We conjecture that E(P) = O(M(n)n2) is true for all M(n).
LetP be a

√
n×√

n section of the integer lattice. It is well known thatP determines
�(n/

√
log n) distinct distances (see [7]). It can be easily verified that no line or circle

contains more than
√
n points of P (a more involved argument shows that no circle

contains nε points of P , for any ε > 0). In this case we have E(P) = O(n5/2), which
fits our conjectured bound E(P) = O(M(n)n2).

In concurrent work, Hanson et al. [14] proved a finite field analogue of Theorem
2.1. They showed that for anyP ⊂ F

2
q we have |E(P)| = O(|P|4q−2+q|P|2), where

E(P) is analogously defined, and q is an odd prime power.

2.2 Few Distinct Distances

Pach and Tardos [16] proved that an n-point set P ⊂ R
2 determines O(n2.137) isosce-

les triangles. They also observed that this bound implies that P contains a point

1 Throughout this paper, when we state a bound involving an ε, we mean that this bound holds for every
ε > 0, with the multiplicative constant of the O()-notation depending on ε.
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from which there are �(n0.863) distinct distances (a result obtained earlier in [26]
and improved slightly in [15]). Similarly, our upper bound on the number of isosce-
les trapezoids determined by a point set P has implications concerning the distinct
distances that are determined by P .

We deduce the following theorem from Theorem 2.1. More precisely, it follows
from the slightly more general Theorem 5.1 that we prove in Sect. 5.

Theorem 2.3 Let P ⊂ R
2 be a set of n points that spans O(n/

√
log n) distinct

distances. For any 0 < α ≤ 1/4, at least one of the following holds (with constants
independent of α).

(i) There exists a line or a circle containing �(nα) points of P .

(ii) There are �(n
8
5− 12α

5 −ε) lines that contain �(
√
log n) points of P .

If our conjecture that E(P) = O(M(n)n2) is true, alternative (ii) in the conclusion of
Theorem 2.3 improves to �(n2−3α log n) lines that contain �(

√
log n) points of P .

Webelieve that Theorem2.3 is a step towardsErdős’s lattice conjecture.Wemention
several recent results and conjectures that together paint an interesting picture.

Green and Tao [12] proved that, given an n-point set in R
2 such that more than

n2/6− O(n) lines contain at least three of the points, most of the points must lie on a
cubic curve (an algebraic curve of degree three, which need not be irreducible). Elekes
and Szabó [6] stated the stronger conjecture that if an n-point set determines �(n2)
collinear triples, then many of the points lie on a cubic curve; unfortunately, at this
point it is not even known whether there must be a cubic that contains ten points of
the set. Erdős and Purdy [10] conjectured that if n points determine �(n2) collinear
quadruples, then there must be five points on a line. If the point set is already known
to lie on a low-degree algebraic curve, then both conjectures hold [6,20]. On the other
hand, Solymosi and Stojaković [23] proved that for any constant k, there are point sets
with �(n2−ε) lines containing exactly k points, but no line with k + 1 points.

The philosophy of these statements is that if there are many lines containing many
points, thenmost pointsmust lie on some low-degree algebraic curve. Our result shows
that for an n-point set with few distinct distances, there is a line or circle with very
many points, or else there are many lines with many points. In particular, in the second
case there would be many collinear triples (although not quite as many as �(n2)), and
many lines with very many points (more than a constant number). This suggests that
few distinct distances should imply some algebraic structure. Let us pose a specific
question in this direction: Are there constants 0 < β, β ′ < 1 such that if n points
determine �(n1+β) lines with �(

√
log n) points, then �(nβ ′

) points lie on a constant
degree algebraic curve?

2.3 Distinct Bisectors

LetB(P) be the set of those lines that are (distinct) perpendicular bisectors ofP . Since
any point of P determines n − 1 distinct bisectors with the other points of P , we have
a trivial lower bound |B(P)| ≥ n−1. IfP is a set of equally spaced points on a circle,
then |B(P)| = n. Similarly, if P is a set of n equally spaced points on a line, then

123



Discrete Comput Geom (2016) 56:337–356 341

|B(P)| = 2n − 3. As we now show, forbidding many points on a line or circle forces
|B(P)| to be significantly larger.

Theorem 2.4 If an n-point set P ⊂ R
2 has no M(n) points on a line or circle, then

|B(P)| = �
(
min

{
M(n)−

2
5 n

8
5−ε, M(n)−1n2

})
.

Proof For any line � ⊂ R
2, set E� = {(a, b) ∈ P2 : a �= b, B(a, b) = �}. By the

Cauchy–Schwarz inequality, we have

E(P) =
∑

�∈B(P)

|E�|2 ≥ 1

|B(P)|
( ∑

�∈B(P)

|E�|
)2 = �

( n4

|B(P)|
)
.

Combining this with the bound of Theorem 2.1 immediately implies the theorem. 	

Note that, as in Theorem 2.1, the minimum is the first expression as long asM(n) =

O(n2/3+ε′
). We are not aware of any previous bound on the minimum number of

distinct bisectors determined by a point set inR2. As a consequence of their bound on
the bisector energy, Hanson et al. [14] proved that a set of at least q3/2 points in F

2
q

(where q is an odd prime power) determines �(q2) distinct perpendicular bisectors.
We are not aware of any point set that determines o(n2) distinct bisectors without

having the vast majority of the points on a single line or circle. We conjecture that for
any c < 1, if a setP of n points inR2 has the property that no line or circle contains cn
points of P , then the number of distinct bisectors that are determined by P is �(n2).
We note that while Theorem 2.1 is tight for M(n) = �(n2/3+ε), applying it in the
proof of Theorem 2.4 leads to a bound that seems not to be tight (excluding the trivial
case of M(n) = n − O(1)).

Theorem 2.4 is related to a series of results initiated by Elekes and Rónyai [4],
studying the expansion properties of polynomials and rational functions. For instance,
in [19] it is proved that a polynomial function F : R × R → R takes �(n4/3) values
on the n2 pairs from a finite set in R of size n, unless F has a special form. Elekes and
Szabó [5] derived, among other things, the following two-dimensional generalization
(rephrased for our convenience, and omitting some details). If F : R2 × R

2 → R
2

is a rational function that is not of a special form, and P ⊂ R
2 is an n-point set such

that no low-degree curve contains more than a constant number of points of P , then
F takes �(n1+ε) values on P × P . Note that the condition on avoiding low-degree
curves is very restrictive.

Theorem 2.4 proves a better bound for the function B, with a less restrictive con-
dition on P . If we view a line y = sx + t as a point (s, t) ∈ R

2, then (see the proof
of Lemma 3.1)

B(ax , ay, bx , by) =
(

− ax − bx
ay − by

,
(a2x + a2y) − (b2x + b2y)

2(ay − by)

)

is a rational function R
2 × R

2 → R
2. Theorem 2.4 says that B takes many distinct

values on P × P if P has few points on a line or circle. So we have replaced the
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broad condition of [5] that not too many points lie on a low-degree curve, with the
very specific condition that not too many points lie on a line or circle.

2.4 An Incidence Bound

One of the tools we use to prove Theorem 2.1 is the incidence bound below, which is
a refined version of a theorem of Fox et al. [11].

Given a set P ⊂ R
d of points and a set S ⊂ R

d of varieties, the incidence graph
is a bipartite graph with vertex sets P and S, such that (p, S) ∈ P × S is an edge
in the graph if p ∈ S. We write I (P,S) for the number of edges of this graph, or in
other words, for the number of incidences between P and S. We denote the complete
bipartite graph on s and t vertices by Ks,t (in the incidence graph, such a subgraph
corresponds to s points that are contained in t varieties). For the definitions of the
algebraic terms in this statement we refer to [11].

Theorem 2.5 Let S be a set of n constant-degree varieties and let P be a set of m
points, both in R

d , such that the incidence graph of P × S contains no copy of Ks,t

(where s is a constant, but t may depend on m, n). Moreover, suppose that P ⊂ V ,
where V is an irreducible constant-degree variety of dimension e. Then

I (P,S) = O
(
m

s(e−1)
es−1 +εn

e(s−1)
es−1 t

e−1
es−1 + tm + n

)
.

The main difference between Theorem 2.5 and the corresponding theorem in Fox
et al. [11] is that Theorem 2.5 shows the dependence of the bound on t , which was left
implicit in [11]. The proof that we give in Sect. 6 is a slight modification of the proof
in [11].

3 Proof of Theorem 2.1

In this section we prove Theorem 2.1 by relating the bisector energy to an incidence
problem between points and algebraic surfaces in R

4. In Sect. 3.1 we define the
surfaces, in Sect. 3.2 we analyze their intersection properties, and in Sect. 3.3 we
apply the incidence bound of Theorem 2.5 to prove Theorem 2.1.

Throughout this sectionwe assume thatwe have rotatedP so that no two points have
the same x- or y-coordinate; in particular, we assume that no perpendicular bisector
is horizontal or vertical.

3.1 Bisector Surfaces

Recall that in Theorem 2.1 we consider an n-point set P ⊂ R
2. We define

P2∗ = {(a, c) ∈ P2 : a �= c},
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and we view it as a point set in R4. Similarly, we define

P4∗ = {(a, b, c, d) ∈ P4 : a �= b, c �= d; a �= c, b �= d}.

Also recall that for distinct a, b ∈ P , we denote by B(a, b) the perpendicular bisector
of a and b. We define the bisector surface of a pair (a, c) ∈ P2∗ as

Sac = {(b, d) ∈ R
2 × R

2 : a �= b, c �= d, and B(a, b) = B(c, d)},

and we set S = {Sac : (a, c) ∈ P2∗}. The surface Sac is not an algebraic variety (so we
are using the word “surface” loosely), but the lemma below shows that Sac is “close
to” a variety Sac. That Sac is contained in a constant-degree two-dimensional2 variety
is no surprise (one can take the Zariski closure), but we need to analyze this variety
in detail to establish the exact relationship.

We will work mostly with the surface Sac in the rest of this proof, rather than with
the variety Sac, because its definition is easier to handle. Then, when we apply our
incidence bound, which holds only for varieties, we will switch to Sac. Fortunately,
the following lemma shows that it is easy to characterize the points of P2∗ that are in
Sac but not in Sac.

Lemma 3.1 For distinct a, c ∈ P , there exists a two-dimensional constant-degree
algebraic variety Sac such that Sac ⊂ Sac. Moreover, if (b, d) ∈ (Sac\Sac) ∩ P2∗,
then b = a or d = c.

Proof Consider a point (b, d) ∈ Sac. Write the equation defining the perpendicular
bisector B(a, b) = B(c, d) as y = sx + t . The slope s satisfies

s = −ax − bx
ay − by

= −cx − dx
cy − dy

. (1)

By definition B(a, b) passes through the midpoint ((ax + bx )/2, (ay + by)/2) of a
and b, as well as through the midpoint

(
(cx + dx )/2, (cy + dy)/2

)
of c and d. We thus

have
ay + by

2
− s

ax + bx
2

= t = cy + dy
2

− s
cx + dx

2
. (2)

By combining (1) and (2) we obtain

(ay − by)(c
2
x + c2y − d2x − d2y ) = (cy − dy)(a

2
x + a2y − b2x − b2y). (3)

From (1) and (3) we see that (b, d) = (x1, x2, x3, x4) satisfies

fac(x1, x2, x3, x4) = (ax − x1)(cy − x4) − (ay − x2)(cx − x3) = 0,

gac(x1, x2, x3, x4) = (ay − x2)(c
2
x + c2y − x23 − x24 )

−(cy − x4)(a
2
x + a2y − x21 − x22 ) = 0.

2 We define the dimension of a real algebraic variety as in [3, Sect. 2.8].
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Since any point (b, d) ∈ Sac satisfies these two equations, we have

Sac ⊂ Z( fac, gac) = Sac.

Consider a point (b, d) ∈ (Sac\Sac)∩P2∗. By reexamining the above analysis, we
see that for this to happen we must have ay = by or cy = dy (since then (1) is not
well defined). By the assumption that no two points of P have the same y-coordinate,
this implies a = b or c = d.

It remains to prove that Sac is a constant-degree two-dimensional variety. The
constant degree is immediate from fac and gac being polynomials of degree at most
three. As just observed, a point (b, d) ∈ Sac\Sac satisfies ay = by or cy = dy . If
ay = by , then for fac(b, d) = gac(b, d) = 0 to hold, we must have ax = bx or
cy = dy . Similarly, if cy = dy , then cx = dx or ay = by . We see that in each case we
get two independent linear equations, which define a plane, so Sac\Sac is the union of
three two-dimensional planes. Thus, it suffices to prove that Sac is two-dimensional.
For this, we simply show that for any valid value of b there is at most one valid value
of d. Let Cac ⊂ R

2 denote the circle that is centered at c and incident to a (here we
use a �= c). It is impossible for b to lie on Cac, since this would imply that the bisector
B(a, b) contains c, and thus that B(a, b) �= B(c, d). For any choice of b /∈ Cac, the
bisector B(a, b) is well-defined and is not incident to c, so there is a unique d ∈ R

2

with B(a, b) = B(c, d) (i.e., so that (b, d) ∈ Sac). 	


Remark Note that the variety Sac is not the Zariski closure of Sac. For example, Sac
also contains the two-dimensional plane that is defined by x2 = ay and x4 = cy .

3.2 Intersections of Bisector Surfaces

Wedenote byRab the reflection ofR2 across the lineB(a, b). Observe that ifB(a, b) =
B(c, d), thenRab = Rcd , and this reflection maps a to b and c to d; this in turn implies
that |ac| = |bd|. That is, (b, d) ∈ Sac implies |ac| = |bd|. It follows that if |ac| = δ,
then the surface Sac is contained in the hypersurface

Hδ = {(b, d) ∈ R
2 × R

2 : |bd| = δ}.

Wecan thus partitionS into classes corresponding to the distances δ that are determined
by pairs of points of P . Each class consists of the surfaces Sac with |ac| = δ, all of
which are fully contained in Hδ .

We now study the intersection of two surfaces contained in a hypersurface Hδ .

Lemma 3.2 Let (a, c) �= (a′, c′), |ac| = |a′c′| = δ �= 0, and Sa,c ∩ Sa,c′ �= ∅. Then
there exist curves C1,C2 ⊂ R

2, which are either two concentric circles or two parallel
lines, such that a, a′ ∈ C1, c, c′ ∈ C2, and Sac ∩ Sa′c′ is contained in the set

Hδ ∩ (C1 × C2) = {(b, d) ∈ R
2 × R

2 : b ∈ C1, d ∈ C2, |bd| = δ}.
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Case (i) Case (ii ) Case (iii )
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c

a
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aa
o

Fig. 1 The three cases in the analysis of Lemma 3.2

Proof We first consider the case where a = a′, and let (b, d) ∈ Sa,c ∩ Sa,c′ . That
is, we have B(c, d) = B(a, b) = B(c′, d), which in turn implies c = c′. Since this
contradicts an assumption of the lemma, we may assume that a �= a′. By a symmetric
argument we may assume that c �= c′.

We split the analysis into three cases: (i) |B(a, a′) ∩ B(c, c′)| = 1, (ii) B(a, a′) =
B(c, c′), and (iii) B(a, a′) ∩ B(c, c′) = ∅. The three cases are depicted in Fig. 1.

Case (i) Let o = B(a, a′) ∩ B(c, c′). Then there exist two (not necessarily distinct)
circles C1,C2 around o such that a, a′ ∈ C1 and c, c′ ∈ C2 . If (b, d) ∈ Sac ∩ Sa′c′ ,
then the reflection Rab maps a to b and c to d, and similarly, Ra′b maps b to a′ and d
to c′. We set T = Ra′b ◦ Rab, and notice that this is a rotation whose center o∗ is the
intersection point of B(a, b) = B(c, d) and B(a′, b) = B(c′, d). Note that T(a) = a′
and T(c) = c′, so o∗ lies on both B(a, a′) and B(c, c′). Since o = B(a, a′)∩B(c, c′),
we obtain that o = o∗. Since B(a, b) passes through o, we have that b is incident to
C1. Similarly, since B(c, d) passes through o, we have that d is incident to C2. This
implies that (b, d) lies in Hδ ∩ (C1 × C2).

Case (ii) Let � be the line B(a, a′) = B(c, c′). The line segment ac is a reflection
across � of the line segment a′c′. Thus, the intersection point o of the lines that contains
these two segments is incident to �. Let C1 be the circle centered at o that contains a
and a′, and let C2 be the circle centered at o that contains c and c′. With this definition
of o,C1, andC2, we can repeat the analysis of case (i), obtaining the same conclusion.

Case (iii) In this case B(a, a′) and B(c, c′) are parallel. The analysis of this case is
similar to that in case (i), but with lines instead of circles.

Let C1 be the line that is incident to a and a′, and let C2 be the line that is incident
to c and c′. Note that C1 and C2 are parallel lines, each perpendicular to B(a, a′) and
B(c, c′). If (b, d) ∈ Sac ∩ Sa′c′ , then, as before, Rab maps a to b and c to d, and Ra′b
maps b to a′ and d to c′. SinceT = Ra′b ◦Rab maps a to a′ and c to c′, it is a translation
in the direction parallel to the lines C1 and C2; hence, Ra′b and Rab are reflections
over lines that are perpendicular to C1 and C2. This implies that b ∈ C1 and d ∈ C2,
which completes the analysis of this case. 	


In Sect. 3.3, we will use Theorem 2.5 to bound the number of incidences between
the point set P2∗ = {(b, d) ∈ P2 : b �= d} and the set of surfaces S. For this we
need to show that the incidence graph contains no complete bipartite graph K2,M ; that
is, that for any two points of P2∗ there is a bounded number of surfaces of S that
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contain both points. In the following lemma we prove the more general statement that
the incidence graph contains no K2,M and no KM,2, although we will only make use
of the fact that there is no K2,M .

Corollary 3.3 If no line or circle contains M points of P , then the incidence graph
of P2∗ × S contains neither a copy of K2,M nor a copy of KM,2.

Proof As mentioned above, (b, d) ∈ Sac implies |ac| = |bd|. Hence, it suffices to
consider pairs of surfaces Sac, Sa′c′ with |ac| = |a′c′|.

Consider two distinct surfaces Sac, Sa′c′ ∈ S with |ac| = |a′c′| = δ. Lemma 3.2
implies that there exist two lines or circles C1,C2 such that (b, d) ∈ Sac ∩ Sa′c′ only
if b ∈ C1 and d ∈ C2. Since no line or circle contains M points of P , we have
|C1 ∩ P| < M . Given b ∈ (C1 ∩ P)\{a}, there is at most one d ∈ P such that
B(a, b) = B(c, d), and thus at most one point (b, d) ∈ Sac. (Notice that no points of
the form (a, d) ∈ P2∗ are in Sac.) Thus

|(Sac ∩ Sa′c′) ∩ P2∗| < M.

That is, the incidence graph contains no copy of KM,2.
We now define “dual” surfaces for pairs (b, d) ∈ P2∗ by

S∗
bd = {(a, c) ∈ R

2 × R
2 : a �= b, c �= d, and B(a, b) = B(c, d)},

and set S∗ = {S∗
bd : (b, d) ∈ P2∗}. By a symmetric argument, we get

|(S∗
bd ∩ S∗

b′d ′) ∩ P2∗| < M

for all (b, d) �= (b′, d ′). Observe that (a, c) ∈ S∗
bd if and only if (b, d) ∈ Sac. Hence,

having fewer than M points (a, c) ∈ (S∗
bd ∩ S∗

b′d ′)∩P2∗ is equivalent to having fewer
than M surfaces Sac that contain both (b, d) and (b′, d ′); i.e., the incidence graph
contains no K2,M . 	

Remark Set S = {Sac : (a, c) ∈ P2∗}. Because the surfaces in S are not varieties, and
our incidence bound applies only to varieties, we will actually apply it to S. This leads
to the following complication, which will be dealt with below. The incidence graph
of P2∗ × S does contain large complete bipartite graphs. Indeed, for fixed a ∈ P we
have (a, d) ∈ Sac for all d, c not equal to a, which gives a copy of Kn−1,n−1 in the
incidence graph.

3.3 Applying the Incidence Bound

For simplicity, we write M = M(n) throughout this proof. We set

Q = {(a, b, c, d) ∈ P4∗ : B(a, b) = B(c, d)},
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and note that |Q|+n(n−1) = E(P), where the term n(n−1) accounts for the quadru-
ples of the form (a, b, a, b). As we saw in Sect. 3.2, every quadruple (a, b, c, d) ∈ Q
satisfies |ac| = |bd|.

Let δ1, . . . , δD denote the distinct distances that are determined by pairs of distinct
points in P . We partition P2∗ into the disjoint subsets 	1, . . . ,	D , where

	i = {(u, v) ∈ P2∗ : |uv| = δi }.

We also partition S into disjoint subsets S1, . . . ,SD , defined by

Si = {Sac ∈ S : |ac| = δi }.

Similarly, we set S i = {Sac ∈ S : |ac| = δi }. Let mi be the number of (a, c) ∈ P2∗
such that |ac| = δi . Note that |	i | = |Si | = mi and

∑
mi = n(n − 1).

A quadruple (a, b, c, d) ∈ P4∗ is in Q if and only if the point (b, d) is incident to
Sac. Moreover, there exists a unique 1 ≤ i ≤ D such that (b, d) ∈ 	i and Sac ∈ Si .
Therefore, it suffices to study each 	i and Si separately. That is, we have

|Q| =
D∑

i=1

I (	i ,Si ).

We have I (	i ,Si ) ≤ I (	i ,S i ), and we will use Theorem 2.5 to bound I (	i ,S i )

for each i . By Corollary 3.3, the incidence graph of P2∗ ×S contains no K2,M , hence
neither does the incidence graph of 	i × Si . As observed after Corollary 3.3, the
incidence graph of P2∗ ×S does contain large complete bipartite graphs. Fortunately,
this is not the case for 	i × S i , as we now argue.

Consider a point (b, d) ∈ 	i and a surface Sac ∈ S i such that (b, d) ∈ Sac\Sac;
we have |ac| = δi = |bd|. By Lemma 3.1, we have b = a or d = c. If b = a, then
c lies on the circle around b of radius δi , while if d = c, then a lies on the circle
around d of radius δi . By assumption, no circle contains M points of P , so there are
less than M points c for which (b, d) ∈ Sbc\Sbc, and less than M points a for which
(b, d) ∈ Sad\Sad . This means that the incidence graph of 	i × S i has at most 2M
more edges incident with (a, d) than the incidence graph of 	i × Si . It follows that
the incidence graph of 	i × S i contains no K2,3M .

Observe that 	i ⊂ Hδi . The hypersurface Hδi is irreducible, three-dimensional,
and of a constant degree, since it is defined by the irreducible polynomial (x1− x3)2+
(x2 − x4)2 − δi . Thus we can apply Theorem 2.5 to the incidence graph of 	i × S i ,
with m = n = mi , V = Hδi , d = 4, e = 3, s = 2, and t = 3M . This implies that

I (	i ,Si ) ≤ I (	i ,S i ) = O
(
M

2
5m

7
5+ε

i + Mmi
)
. (4)
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Let J be the set of indices 1 ≤ j ≤ D for which the bound in (4) is dominated by
the term M2/5m7/5+ε

j . By recalling that
∑D

j=1m j = n(n − 1), we get

∑

j /∈J

I (	 j ,S j ) = O(Mn2).

Next we consider
∑

j∈J I (	 j ,S j ) = O(
∑

j∈J M
2/5m7/5+ε

j ). By [13, Prop. 2.2], we
have

∑
m2

j = O(n3 log n).

This implies that the number of m j for which m j ≥ x is O(n3 log n/x2). By using a
dyadic decomposition, we obtain

M− 2
5 n−ε

∑

j∈J

I (	 j ,S j ) = O
( ∑

m j≤


m
7
5
j +

∑

k≥1

∑

2k−1
<m j≤2k


m
7
5
j

)

= O
(



7
5 · n

2



+

∑

k≥1

(2k
)
7
5 · n3 log n

(2k−1
)2

)

= O
(



2
5 n2 + n3 log n



3
5

)
.

By setting 
 = n log n, we have

∑

j∈J

I (	 j ,S j ) = O(M
2
5 n

12
5 +ε log

2
5 n) = O(M

2
5 n

12
5 +ε′

).

In conclusion,

E(P) ≤ |Q| + n2 =
∑

j∈J

I (	 j ,S j ) +
∑

j /∈J

I (	 j ,S j ) + n2 = O(M
2
5 n

12
5 +ε′ + Mn2),

which completes the proof of Theorem 2.1.

3.4 Remark About the Incidence Bound

Instead of partitioning the problem into D separate incidence problems, one can apply
an incidence bound directly to the point set P2∗ and the surface set S. Roughly
speaking, the best known bounds for incidences with two-dimensional surfaces in
R
4, whose incidence graph contains no K2,M , are of the form |P2∗|2/3|S|2/3. Rely-

ing on such an incidence bound (and not using [13]) would yield a bound |Q| =
O(M1/3n8/3+Mn2) = O(M1/3n8/3), which is nontrivial but weaker than our bound.
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Fig. 2 The lower bound construction

4 A Lower Bound for E(P)

In this section we prove Theorem 2.2. In particular, for any n and M(n) ≥ 32, we
show that there exists a set P of n points in R

2 such that any line or circle contains
at most M(n) points of P , and E(P) = �

(
M(n)n2

)
. Note that we can suppose

M(n) ≥ 32 without loss of generality since, if M(n) < 32, an arbitrary point set has
E(P) = �(n2) = �(M(n)n2).

For simplicity, we assume that M(n) is a multiple of 8, and that n is divisible by
M(n). It is straightforward to extend the construction to values that do not satisfy these
conditions.

Let C be an ellipse that is centered at the origin, has a major axis of length 2 that is
parallel to the y-axis, and a minor axis of length 1 that is parallel to the x-axis. LetP+
be an arbitrary set of 4n/M(n) points onC , each having a strictly positive x-coordinate.
Let P− be the reflection of P+ over the y-axis, and set P ′ = P+ ∪ P−. We denote
by P ′

j the translate of P ′ by (4 j, 0). Finally, we take P = P ′
0 ∪P ′

1 ∪ · · · ∪P ′
M(n)/8−1.

An example is depicted in Fig. 2.
Note thatP lies on the union ofM(n)/8 ellipses. Since a line can intersect an ellipse

in at most two points, and a circle can intersect an ellipse in at most four points, we
indeed have that a line or circle contains at most M(n) points of P .

It remains to prove that E(P) = �(M(n)n2). For every integer M(n)/32 ≤ j ≤
M(n)/16, we denote by � j the vertical line x = 4 j . For every such j , there are �(n)

points ofP that are to the left � j , and such that the reflection of every such point across
� j is another point of P . That is, for every M(n)/32 ≤ j ≤ M(n)/16, the line � j is
the perpendicular bisector of �(n) pairs of points of P . The assertion of the theorem
follows, since there are �(M(n)) such lines, each contributing �(n2) to E(P).

5 Proof of Theorem 2.3

In this section we prove that Theorem 2.3 follows from Theorem 2.1. In fact, we prove
the following more general version of Theorem 2.3.

Theorem 5.1 Let K (n) and M(n) be two functions satisfying K (n) = O(log n) and
M(n) = O(n1/4). If an n-point setP ⊂ R

2 spans D = O(n/K (n)) distinct distances,
then at least one of the following holds.

(i) There exists a line or a circle containing M(n) points of P .

(ii) There are �(M(n)− 12
5 n

8
5−ε) lines that contain �(K (n)) points of P .

123



350 Discrete Comput Geom (2016) 56:337–356

Since Guth and Katz [13] proved that any n-point set spans �(n/ log n) distinct
distances, the assumption that K = O(log n) is not a real restriction. The original
formulation of Theorem 2.3 is immediately obtained by setting K (n) = √

log n and
M(n) = nα .

Proof For simplicity, we use the notation K = K (n) and M = M(n) throughout this
proof. Beck [1] proved that if a set of n points inR2 does not contain δn collinear points
then the points span �(n2) lines. This result is stronger than the assertion of Theorem
5.1 when K = O(1). We may thus assume that K is at least some large constant.

We assume that (i) does not hold, and prove that (ii) holds in this case. Given a
point set P ⊂ R

2, we denote by B∗(P) the multiset of bisectors that are spanned by
ordered pairs of P2∗. Recall that B(P) is the set of distinct lines of B∗(P). For every
line � ∈ B(P), we denote by μ(�) its multiplicity in B∗(P) (i.e., the number of times
it occurs in the multiset), and set ρ(�) = |� ∩ P|. We define

I (P,B∗(P)) =
∑

�∈B(P)

μ(�)ρ(�);

that is, I (P,B∗(P)) is the number of incidences counted with multiplicities.
We derive a lower bound on I (P,B∗(P)) by using an argument that is similar to

the one in Szemerédi’s proof of Theorem 1.1. Let T ⊂ P3 be the set of triples (p, q, r)
of distinct points of P such that |pq| = |pr |. Note that a triple (p, q, r) is in T if and
only if p is incident to B(q, r). That is,

I (P,B∗(P)) = |T |.

Denote the distances that are determined by pairs of P2∗ as δ1, . . . , δD . For every
point p ∈ P and 1 ≤ i ≤ D, let 
i,p denote the number of points of P that have
distance δi from p. Let Tp ⊂ T denote the set of triples of T in which the first element
is p. Applying the Cauchy–Schwarz inequality yields

|Tp| = �
( D∑

i=1


2
i,p − 
i,p

)
= �

( 1

D

( D∑

i=1


i,p

)2 − (n − 1)
)

= �
(n2

D

)
,

where the last transition comes from the assumption that K is at least some large
constant.

The above implies

I (P,B∗(P)) = |T | =
∑

p∈P
|Tp| = �

(n3

D

)
= �(Kn2). (5)

We remark that by the Szemerédi–Trotter theorem [25], the number of incidences
between n points and n2 distinct lines is O(n2). This does not contradict (5) since
the lines in the multiset B∗(P) need not be distinct. A priori, it might be that B∗(P)
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consists of �(n) distinct lines, each with multiplicity �(n) and incident to �(K )

points. However, our bound on the bisector energy excludes such cases.
Let ct be the constant implicit in the lower bound on |T |; we have

|T | ≥ ct Kn2.

Let L+ be the subset of lines in B(P) that are each incident to at least ct K/2 points.
Then

ct Kn2 ≤
∑

�∈B(P)

μ(�)ρ(�)

=
∑

�∈L+
μ(�)ρ(�) +

∑

�∈B(P)\L+
μ(�)ρ(�)

≤
∑

�∈L+
μ(�)ρ(�) + ct Kn2/2,

where we use the fact that each ordered pair of points has a unique bisector, and hence
contributes to

∑
�∈B(P) μ(�) exactly once. Applying Cauchy–Schwarz, we get

c2t K
2n4/4 ≤

∑

�∈L+
μ(�)2

∑

�∈L+
ρ(�)2.

Note that
∑

�∈B(P) μ(�)2 = �(E(P)). Since M = O(n1/4) = O(n2/3−ε), The-

orem 2.1 implies
∑

�∈B(P) μ(�)2 = O(M2/5n12/5+ε). We can bound
∑

ρ(�)2 using
the assumption that no line contains more than M points, so

K 2n4 = O(M
2
5 n

12
5 +ε · M2|L+|),

and hence

|L+| = �(K 2n
8
5−εM− 12

5 ).

Since K = O(log n), the factor K can be absorbed into the factor n−ε in the final
bound. 	

Remark Notice that the proof of Theorem 5.1 also applies when M(n) = �(n1/4).
However, this would lead to a bound for the number of lines in (ii) that is weaker than
the bound that is implied by Theorem 1.1.

6 Proof of Theorem 2.5

We now present the proof of the incidence bound that we use. As mentioned in the
introduction, this proof is essentially from [11]; we reproduce it here to determine
the dependence on the parameter t . We refer to [11] for the definitions used here. We
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prove a more general version than we need, since it seems to come at no extra cost,
and may be useful elsewhere.

The proof uses the Kővári–Sós–Turán theorem (see for example [2, Thm. IV.9]).

Lemma 6.1 (Kővári–Sós–Turán) Let G be a bipartite graph with vertex set A ∪ B.
Let s ≤ t . Suppose that G contains no Ks,t ; that is, for any s vertices in A, at most
t − 1 vertices in B are connected to each of the s vertices. Then

|E(G)| = O(t
1
s |A||B| s−1

s + |B|).

We amplify the weak bound of Lemma 6.1 by using polynomial partitioning. Given
a polynomial f ∈ R[x1, . . . , xd ], we write Z( f ) = {p ∈ R

d : f (p) = 0}. We say
that f ∈ R[x1, . . . , xd ] is an r -partitioning polynomial for a finite set P ⊂ R

d if
no connected component of Rd\Z( f ) contains more than |P|/r points of P (notice
that there is no restriction on the number of points of P that are in Z( f )). Guth and
Katz [13] introduced this notion and proved that for every P ⊂ R

d and 1 ≤ r ≤ |P|,
there exists an r -partitioning polynomial of degree O(r1/d). In [11], the following
generalization was proved.

Theorem 6.2 (Partitioning on a variety) Let V be an irreducible variety in R
d of

dimension e and degree D. Then for every finite P ⊂ V there exists an r-partitioning
polynomial f of degree O(r1/e) such that V �⊂ Z( f ). The implicit constant depends
only on d and D.

We are now ready to prove our incidence bound. For the convenience of the reader,
we first repeat the statement of the theorem.

Theorem 2.5. Let S be a set of n constant-degree varieties and let P be a set of m
points, both in R

d , such that the incidence graph of P × S contains no copy of Ks,t

(where s is a constant, but t may depend on m, n). Moreover, suppose that P ⊂ V ,
where V is an irreducible constant-degree variety of dimension e. Then

I (P,S) = O
(
m

s(e−1)
es−1 +εn

e(s−1)
es−1 t

e−1
es−1 + tm + n

)
.

Proof Note that we may assume that no variety in S contains V . Indeed, we can
assume that V contains at least s points (otherwise the bound in the theorem is trivial),
so the fact that the incidence graph contains no Ks,t implies that there are at most t −1
varieties in S that contain V . These at most t − 1 varieties give altogether less than
tm incidences, so they are accounted for in the bound.

We use induction on e and m, with the induction claim being that for P,S, V as in
the theorem, with the added condition that no variety in S contains V , we have

I (P,S) ≤ α1,em
s(e−1)
es−1 +εn

e(s−1)
es−1 t

e−1
es−1 + α2,e(tm + n), (6)

for constants α1,e, α2,e depending only on d, e, s, ε, the degree of V , and the degrees
of the varieties in S. The base cases for the induction are simple. If m is sufficiently
small, then (6) follows immediately by choosing sufficiently large values for α1,e and
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α2,e. Similarly, when e = 0, we again obtain (6) when α1,e and α2,e are sufficiently
large (as a function of d and the degree of V ).

The constants d, e, s, ε are given and thus fixed, as are the degree of V and the
degrees of the varieties inS. The other constants are to be chosen, and the dependencies
between them are

Cweak,Cpart,Cinter � Ccells � CHöld � r � Ccomps � α2,e � α1,e,

where C � C ′ means that C ′ is to be chosen sufficiently large compared to C ; in
particular,C should be chosen beforeC ′. Furthermore, the constants α1,e, α2,e depend
on α1,e−1, α2,e−1.

By Lemma 6.1, there exists a constant Cweak depending on d, s such that

I (P,S) ≤ Cweak
(
mn1−

1
s t

1
s + n

)
.

When m ≤ (n/t)1/s , and α2,e is sufficiently large, we have I (P,S) ≤ α2,en. There-
fore, in the remainder of the proof we can assume that n < mst , which implies

n = n
e−1
es−1 n

e(s−1)
es−1 ≤ m

s(e−1)
es−1 n

e(s−1)
es−1 t

(e−1)
es−1 . (7)

Partitioning By Theorem 6.2, there exists an r -partitioning polynomial f with
respect to V of degree at most Cpart · r1/e, for a constant Cpart. Denote the cells of
V \Z( f ) as �1, . . . , �N . Since we are working over the reals, there exists a constant-
degree polynomial g such that Z(g) = V . Then, by [24, Theorem A.2], the number
of cells is bounded by C · deg( f )dim V = Ccells · r , for some constant Ccells depending
on Cpart.

We partition I (P,S) into the following three subsets:

• I1 consists of the incidences (p, S) ∈ P × S such that p ∈ V ∩ Z( f ), and some
irreducible component of V ∩ Z( f ) contains p and is fully contained in S.

• I2 consists of the incidences (p, S) ∈ P × S such that p ∈ V ∩ Z( f ), and no
irreducible component of V ∩ Z( f ) that contains p is contained in S.

• I3 = I (P,S)\(I1 ∪ I2), the set of incidences (p, S) ∈ P × S such that p is not
contained in V ∩ Z( f ).

Note that we indeed have I (P,S) = |I1| + |I2| + |I3|.
Bounding |I1| The points of P ⊂ R

d that participate in incidences of I1 are all
contained in the variety V0 = V ∩ Z( f ). Set P0 = P ∩ V0 and m0 = |P0|. Since V
is an irreducible variety and V �⊂ Z( f ), V0 is a variety of dimension at most e − 1
and of degree that depends on r . By [24, Lem. 4.3], the intersection V0 is a union
of Ccomps irreducible components, where Ccomps is a constant depending on r and
d.3 The degrees of these components also depend only on these values (for a proper
definition of degrees and further discussion, see for instance [11]).

3 This lemma only applies to complex varieties. However, we can take the complexification of the real
variety and apply the lemma to it (for the definition of a complexification, see for example [27, Sect. 10]).
The number of irreducible components of the complexification cannot be smaller than number of irreducible
components of the real variety (see for instance [27, Lem. 7]).
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Consider an irreducible component W of V0. If W contains at most s − 1 points
of P0, it yields at most (s − 1)n incidences. Otherwise, since the incidence graph
contains no Ks,t , there are at most t − 1 varieties of S that fully contain W , yielding
at most (t − 1)m0 incidences. By summing up, choosing sufficiently large α1,e, α2,e,
and applying (7), we have

|I1| ≤ Ccomps (sn + tm0) <
α2,e

2
(n + tm0) <

α1,e

4
m

s(e−1)
es−1 n

e(s−1)
es−1 t

(e−1)
es−1 + α2,e

2
tm0.

(8)
Bounding |I2|Thepoints that participate in I2 lie inV0 = V∩Z( f ), and the varieties

that participate do not contain any component of V0. Because V0 has dimension atmost
e − 1, we can apply the induction claim on each irreducible component W of V0, for
the point set P ∩ W and the set of varieties in S that do not contain W . Since V0 has
Ccomps irreducible components, we get

|I2| ≤ Ccompsα1,e−1m
s(e−2)

(e−1)s−1+ε

0 n
(e−1)(s−1)
(e−1)s−1 t

e−2
(e−1)s−1 + α2,e−1(tm0 + n),

with α1,e−1 and α2,e−1 depending on the degree of the irreducible component of V0,
which in turn depends on r . Recalling that we may assume n < mst , we obtain

m
s(e−2)

(e−1)s−1+εn
(e−1)(s−1)
(e−1)s−1 t

e−2
(e−1)s−1 = m

s(e−2)
(e−1)s−1+εn

e(s−1)
es−1 n

s−1
(es−s−1)(es−1) t

e−2
(e−1)s−1

< m
s(e−1)
es−1 +εn

e(s−1)
es−1 t

e−1
es−1 .

By applying (7) to remove the term α2,e−1n, and by choosing α1,e and α2,e sufficiently
large as a function of Ccomps, α1,e−1, α2,e−1, we obtain

|I2| ≤ α1,e

4
m

s(e−1)
es−1 +εn

e(s−1)
es−1 t

e−1
es−1 + α2,e

2
tm0. (9)

Bounding |I3| For every 1 ≤ i ≤ N , we set Pi = P ∩ �i and denote by Si the set
of varieties of S that intersect the cell �i . We also set mi = |Pi | and ni = |Si |. Then
we have mi ≤ m/r and

∑N
i=1 mi = m − m0.

Let S ∈ S. By the assumption made at the beginning of the proof, S does not
contain V , so S ∩ V is a subvariety of V of dimension at most e − 1. By [24, Thm.
A.2], there exists a constant Cinter such that the number of cells intersected by S ∩ V
is at most C · deg( f )dim(S∩V ) = Cinter · r (e−1)/e. This implies that

N∑

i=1

ni ≤ Cinter · r e−1
e · n.

By Hölder’s inequality we have

N∑

i=1

n
e(s−1)
es−1
i ≤

( N∑

i=1

ni
) e(s−1)

es−1
( N∑

i=1

1
) e−1

es−1
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≤ (
Cinterr

(e−1)/en
) e(s−1)

es−1 (Ccellsr)
e−1
es−1

≤ CHöldr
(e−1)s
es−1 n

e(s−1)
es−1 ,

where CHöld depends on Cinter,Ccells. Using the induction claim for each i with the
point set Pi , the set of varieties Si , and the same variety V , we obtain

N∑

i=1

I (Pi ,Si ) ≤
N∑

i=1

(
α1,em

(e−1)s
es−1 +ε

i n
e(s−1)
es−1
i t

(e−1)
es−1 + α2,e(tmi + ni )

)

≤ α1,e
m

(e−1)s
es−1 +εt

(e−1)
es−1

r
(e−1)s
es−1 +ε

N∑

i=1

n
e(s−1)
es−1
i +

N∑

i=1

α2,e(tmi + ni )

≤ α1,eCHöld
m

(e−1)s
es−1 +εn

e(s−1)
es−1 t

(e−1)
es−1

rε
+ α2,e

(
t (m − m0) + Cinterr

e−1
e n

)
.

By choosing α1,e sufficiently large with respect to Cinter, r, α2,e, and using (7), we get

N∑

i=1

I (Pi ,Si ) ≤ 2α1,eCHöld
m

(e−1)s
es−1 +εn

e(s−1)
es−1 s

(e−1)
es−1

rε
+ α2,et (m − m0).

Finally, choosing r sufficiently large with respect to CHöld gives

|I3| =
N∑

i=1

I (Pi ,Si ) ≤ α1,e

2
m

(e−1)s
es−1 +εn

e(s−1)
es−1 t

(e−1)
es−1 + α2,et (m − m0). (10)

Summing Up By combining I (P,S) = |I1|+ |I2|+ |I3| with (8), (9), and (10), we
obtain

I (P,S) ≤ α1,em
s(e−1)
es−1 +εn

e(s−1)
es−1 t

(e−1)
es−1 + α2,e(tm + n),

which completes the induction step and the proof of the theorem. 	
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