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Abstract In this paper we prove the existence of quasiperiodic rhombic substitution
tilingswith 2n-fold rotational symmetry, for anyn. The tilings are edge-to-edge anduse
� n
2 � rhombic prototiles with unit length sides. We explicitly describe the substitution

rule for the edges of the rhombuses, and prove the existence of the corresponding tile
substitutions by proving that the interior can be tiled consistently with the given edge
substitutions.

Keywords Substitution tiling · Quasiperiodic · Rotation symmetry · Rhombic tiling

1 Introduction

A tiling is a covering of the infinite plane using copies of a finite number of different
prototiles, without leaving gaps or letting the tiles overlap. In this paper we consider
edge-to-edge substitution tilings of the plane with rhombuses whose edges are of
unit length. The edge-to-edge condition means that two tiles in the tiling are either
disjoint, have one common vertex or have one common edge. A substitution rule tells
how to replace enlarged tiles by patches of tiles. By iterating the process of inflating
the tiles and substituting the corresponding patches, one obtains a sequence whose
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limit is a tiling of the infinite plane. Such substitutions are a popular way to produce
non-periodic tilings. The Penrose tilings [4,9] are the best known examples of this
effect.

We say that a tiling has n-fold rotational symmetry (with center P) if the tiling
is invariant under the rotation around P by the angle 2π

n . Note that this requires a
perfect global symmetry of the entire tiling. There may exist an infinite number of
centers of rotation for n-fold rotations only if n = 2, 3, 4 or 6. For all other values
there can be at most one central point of rotational symmetry. This fact is known as
the crystallographic restriction.

All our tilings are by rhombic prototiles with unit length sides. As usual we shall
define the substitution process in two steps. A tile is first enlarged by a constant called
the scaling factor. The enlarged tile is then replaced by a patch of prototiles that cover
the same area as the enlarged tile does. This second step is called the substitution rule.
The boundaries of this new replaced tile do not have to go along the boundaries of the
merely enlarged tile but their areas have to be equal. If there are some kind of “dips”
inwards in the perimeter of the replaced tile also corresponding “dips” outwards have
to exist and in the right places, so that no overlapping occurs along the edge of two
neighbouring enlarged tiles. This condition can be guaranteed by an associated edge
substitution rule.

Starting with any tile, the substitution process may be iterated to obtain higher order
images. The substitution is primitive if there exists k such that the k’th order image
of every tile contains a copy of every prototile. All our substitutions will be primitive
with k = 1, so that each tile appears in the image of each tile.

A substitution tiling is any non-overlapping covering of the plane by the tiles such
that every finite patch of tiles present in the tiling appears in some higher order image
of some tile. Such patches are called legal. In practice, we generate tilings by iterating
the substitution from an initial patch of tiles, positioning the obtained patches so that
each generation properly contains the previous one in its interior, and take the limit of
the process. If the initial patch is such that it appears in a higher order image of some
tile then the obtained limit is clearly a substitution tiling.

A tiling is recurrent if every finite patch of tiles that appears in the tiling appears
infinitely many times in it. It is uniformly recurrent (or quasiperiodic, or repetitive [1])
if every finite patch that appears somewhere in the tiling appears within distance D of
every point of the plane, for some D. The value D may depend on the patch. If D can
be bounded by a linear function of the diameter of the patch then the tiling is linearly
recurrent, or linearly repetitive [1]. Tilings generated by primitive substitutions are
automatically uniformly recurrent. Indeed, any finite patch that appears in a tiling is
legal, i.e., appears in some higher order image of some tile, and by primitivity then,
in the m’th order image of every tile, for some m. Radius D can be taken to be the
maximum diameter of the m’th order images of the tiles. A more careful analysis
reveals that our tilings are even linearly recurrent.

In this paper we are considering the problem of finding a primitive substitution that
generates a tiling with n-fold rotational symmetry. Values n = 2, 3, 4 and 6 are trivial,
and there are even periodic solutions: The regular square tiling for n = 4 and the case
n = 6 are considered below as the first member of the Sub Rosa family. The famous
Penrose rhombuses provide a solution to the case n = 5 [4,5,9], and the Ammann–
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Beenker tiling for n = 8 [2]. Recently, in [3] a computer algorithm was described
to search for solutions for arbitrary n. Many substitution rules were discovered for
n = 5 and n = 7, but the computational complexity of the problem was reported to
be prohibitive already in the case n = 11.

We are not aware of known solutions for general n. In [6] primitive rhombic substi-
tutions were provided for all n that can be iterated on an n-fold rotationally symmetric
initial patch to obtain in the limit a tiling with n-fold symmetry. However, the initial
patch does not appear in any higher order image of any tile, so the obtained tiling is
“singular” and not a substitution tiling according to the stricter definition of the present
paper. Moreover, the tiling is not recurrent, since the initial patch only appears once
in the tiling. In [6] the term non-singular substitution tiling was used to describe the
type of substitution tilings used in the present paper.

The main result is the following theorem.

Theorem 1 For every n, there exists a quasiperiodic rhombic substitution tiling with
2n-fold rotational symmetry.

We start by setting the notations in Sect. 2. The discussion is then divided in two
parts, depending on whether n is odd or even. In Sect. 3 we show, as examples, our
substitutions for small odd n, and discuss the scaling factors and the edge substitution
rules for arbitrary odd n. Section 4 provides the analogous discussion for even n. In
Sect. 5 we provide the main proof. We explicitly describe the edge substitution rule,
and express the boundary of the enlarged rhombus as a circular word of unit vectors.
In Sect. 5.1 we develop a rewrite system on the boundary word to check the tileability
of the interior. In Sect. 5.2 the notation is set up for the complete case analysis that we
do in Sect. 5.3.

2 Notations

We use only rhombic tiles. Let n ≥ 2 be a fixed integer. For any positive integers x
and y that satisfy x + y = n, we denote by pair (x, y) the rhombus with unit length
edges, and angles xπ

n and yπ
n . Pairs (x, y) and (y, x) are the same shape. These � n

2 �
unit rhombuses are used in our 2n-fold symmetric solutions. We label the corners of
the (x, y) rhombus by x and y. In a valid edge-to-edge tiling then, the labels of the
corners meeting at a vertex have to sum up to 2n. The patch of tiles that is an image
of a rhombus under our substitution is called a super-rhombus.

The system described here utilizes a rotational and reflection symmetric simple
arrangement of rhombuses around a single point. We present here two such patterns:
The first one has n-fold rotational symmetry, the second one 2n-fold symmetry.

First we construct the smaller pattern where we assume n ≥ 3.We place n copies of
(2, n − 2)-rhombuses around a point with their 2π

n vertices meeting at the point. This
pattern is surrounded by a ring of n copies of (4, n − 4)-rhombuses. These properly
match at the corners since (n − 2) + (n − 2) + 4 equals 2n. This pattern is in turn
surrounded by a ring of (6, n−6) rhombuses, then by (8, n−8) rhombuses, and so on.
This procedure is repeated until the outmost ring of (n−1, 1) or (n−2, 2) is reached,
depending on whether n is odd or even. On each step, the angles add up properly at
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Fig. 1 Rose R1 for n = 3, 4, 5, 6, 7, 8

Fig. 2 Rose R1
2 for n = 2, 3, 4, 5, 6, 7

each vertex: on the k’th round the four meeting angles have labels 2(k − 1), n − 2k,
n − 2k and 2(k + 1), and these add up to 2n. Note that this analysis also holds on
the first round k = 1, with the interpretation that the process is initialized with n zero
rhombuses, i.e., mere edges.

The boundary of the obtained pattern is a regular 2n-polygon with edges of length
1, if n is odd, and a regular n-polygon with edges of length 2 when n is even. The
patterns for n = 3, 4, . . . , 8 are shown in Fig. 1.

Secondly we construct the larger pattern. Here n ≥ 2. We place 2n copies of
(1, n − 1)-rhombuses around a point with their π

n vertices meeting at the point. This
pattern is surrounded by a ring of 2n copies of (2, n− 2)-rhombuses. Which in turn is
surrounded by a ring of 2n copies of (3, n−3)-rhombuses. This procedure is repeated
until we construct the outmost ring using (n− 1, 1) rhombuses. The result is a regular
2n-polygon with edges of length 2. Again, it is straightforward to verify that the angles
add up properly at each vertex. Also here we can imagine the zeroth round to consist
of 2n zero rhombuses (= unit edges) around the central point.

Frequently we leave out a number of outer rings. For example, Fig. 2 shows patterns
for n = 2, 3, . . . , 7 where the last ring of (n − 1, 1)-rhombuses is omitted. Note that
in the case n = 2 the omission of the last ring leaves only the degenerate zeroth round.

These patterns greatly resemble a flower with its petals and therefore we call them
roses and denote them by Rb

a , where a ∈ {1, 2} denotes the type of the rose, and b ∈ N

denotes number ofmissing rings. That is, the patterns shown in Fig. 1 are R0
1, or simply

R1, and patterns in Fig. 2 are R1
2. Roses Rb

1 have n-fold rotational symmetry while
roses Rb

2 have 2n-fold rotational symmetry. Note that R1 for even n only uses tiles
(x, y) with even x and y. In fact, R2 for any n is identical to R1 for 2n. For n ≥ 6 it is
possible to construct even larger, a third type of rose-pattern with 2n-fold rotational
symmetry. Examples of such larger type are in Figs. 6 and 8, and if completed, the
result is a regular 2n-polygon with edges of length 4. However, this, or R1, or any
another possible new type of rose is not necessary to prove our main theorem. Instead,
roses R1

2 play a central role in the constructions.
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Fig. 3 Substitution rule for n = 3, and the rose R1
2 for n = 3 after one substitution

The tilings discussed in this paper use substitutions and rose like patterns, the system
is hence called Sub Rosa. We first consider separately the cases of odd n and even
n, starting with the odd cases.

3 Scaling Factors and Substitution Rules for Odd n

For n ∈ N \ {0} we define S(n) to be the scaling factor of the substitution. For odd n,

S(n) = cos
( π

2n

)
/ sin2

( π

2n

)
. (1)

3.1 Substitution Rule for n = 3

For n = 3 the Sub Rosa tiling is periodic. For the sake of completeness we will
first examine the tiling for value n = 3 before moving to the non-periodic tilings
starting with n = 5. For n = 3 there is only one rhombus in the tile set, namely (1, 2).
The substitution rule is shown on the left in Fig. 3. The enlarged rhombus is depicted
with thick edges and is replaced by 12 rhombuses (1, 2). The edges of the enlarged
rhombus bisect two unit rhombuses out of which one is counted in while the other one
is counted out. The resulting tiling after one step of substitution on the starting pattern
R1
2 is seen on the right in Fig. 3.
The following aspects are easy to see in the case n = 3, but they also hold for the

larger values of odd n.

– The edge substitution rule All edges of enlarged rhombuses bisect an identical
sequence of unit rhombuses. The sequence has even length and it is mirror sym-
metric. If we represent each bisected unit rhombus as the label of its bisected
angle, the edge substitution rule can be written down as the sequence �(n) of
these labels. For example, the edge substitution rule for the case n = 3 is repre-
sented by the sequence �(3) = 1, 1 since the edge of an enlarged rhombus cuts
two unit rhombuses along their long diagonals, bisecting their angles of label 1.
The edge substitution rules for larger values of odd n are shown in Table 1.

– The edge substitution rule above guarantees that the super-rhombuses match each
other without gaps or overlaps, so that tile substitutions are consistent. We simply
include in the super-rhombus half of the unit rhombuses that are bisected by its
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edge. More precisely, when following the edges of the enlarged rhombus clock-
wise, we count in the first half of the bisected unit tiles of each edge and count out
the second half. In this way each unit rhombus gets included exactly once since
each orientation of an edge between two rhombuses is clockwise for one of the
incident rhombuses and counterclockwise for the other.

– In an edge-to-edge tiling by super-rhombuses there are roses R1
2 centered at all

corners of the super-rhombuses. In other words, a super-rhombus has a sector of
R1
2 centered at each corner, and these four sectors together form the full R1

2 rose.
Combined with the fact that there is at least one unit rhombus vertex completely
in the interior of each super-rhombus, this implies that the second order image of
each tile contains pattern R1

2. Also, since R1
2 contains a copy of every prototile in

our system, the patch substituted for each tile contains a copy of every prototile
and the substitution is then primitive.

– We iterate the substitution from the starting pattern R1
2. By the point above, the

image of R1
2 has R1

2 at its center, so we can align the centers of consecutive
generations and take the limit to obtain a substitution tiling, Sub Rosa. Strictly
speaking, for odd n, the central rose R1

2 quarter turns in each generation. The
roses at even generations and odd generations properly align with each other, but
between consecutive generations a quarter turn is required. The generated tiling is
a fixed point of the second iterate of the substitution.

– In all our drawings the depicted unit rhombuses, in fact, come with an isometry ϕ

that maps a rhombic prototile T into the given position. Because the rhombuses
have the dihedral D2 symmetry group (D4 in the case of a square), the image ϕ(T )

alone does not contain the full information aboutϕ. To identifyϕ uniquely, onemay
consider the unit rhombuses in our illustrations oriented. All tiles are positively
oriented, i.e., they come with an even isometry. The orientations in the starting
pattern R1

2 are invariant under the 2n-fold rotational symmetry of the pattern, and
the sectors of R1

2 at the corners of super-rhombuses are oriented correspondingly
to guarantee the proper orientations in the roses R1

2 that are formed around the
vertices of the super-rhombuses.
Note that the orientation of tiles becomes irrelevant if the super-rhombuses have the
same symmetries as the corresponding unit rhombus: in this case the substitution
is deterministic even without knowing the orientations. We argue in Remark 2 in
Sect. 5.1 that our substitutions can always be made with the necessary symmetries.

– We always iterate Sub Rosa from the start pattern R1
2. As patch R1

2 has 2n-
fold rotational symmetry, the obtained tiling has that symmetry as well. As the
substitution is primitive and the start pattern R1

2 appears in the second order image
of each tile, the tiling is uniformly recurrent.

3.2 Substitution Rules for n = 5

For n = 5 the tile set consists of two rhombuses, (1, 4) and (2, 3). The substitution
rule is shown in Fig. 4. In the figure each integer label represents a multiple of π

5 . It
is easy to see that each meeting point of vertices sums up to 10 or in other words, is a
full circle 2π . All six points listed above for n = 3 apply also here, as they do for all
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Fig. 4 Substitution rule for n = 5

odd n. Figure 5 shows the first image of rose R1
2. Note, again, roses R

1
2 centered at all

corners of the super-rhombuses.

3.3 Substitution Rules for n = 7

The substitution rule for n = 7 is shown in the Fig. 6. Similarly to case of n = 5, it is
easy to verify that at each intersection of rhombuses, the sum of the angles is 2π .

3.4 Compositions of Super-Rhombus’ Edges

Every Sub Rosa tiling is formed in such a way that the edge of the super-rhombus
bisects all unit rhombuses along it. The length of this edge is S(n), the scaling factor
of the substitution.

Recall that we identify the edge substitution rule by the sequence�(n) of the labels
of the angles the edge bisects. In Table 1 is depicted the sequence �(n) for small odd
n, where symbol | denotes the middle point of the edge. The underlined values in the
table represent rhombuses which are inside roses R1

2 centered at the corners of the
super-rhombus. There is a simple rule to form �(n): The first half of �(n) consists
of the (underlined) sequence 1, 3, 5, . . . , (n − 2), followed by the mirror images of
the underlined parts of �(3),�(5), . . . , �(n − 2), that is, by 1, 31, 531, etc. The
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Fig. 5 Rose R1
2 for n = 5 after one substitution

Fig. 6 Super-rhombuses of substitution rule for n = 7

123



980 Discrete Comput Geom (2016) 55:972–996

Table 1 Composition of super-rhombus’ edges for first n given in unit rhombuses

�(3) 1 | 1
�(5) 1-3-1 | 1-3-1
�(7) 1-3-5-1-3-1 | 1-3-1-5-3-1
�(9) 1-3-5-7-1-3-1-5-3-1 | 1-3-5-1-3-1-7-5-3-1
�(11) 1-3-5-7-9-1-3-1-5-3-1-7-5-3-1 | 1-3-5-7-1-3-5-1-3-1-9-7-5-3-1

second half of �(n) is the mirror image of its first half. This blueprint provides the
edge substitution rule for all odd n.

We choose all the rhombuses on the left side of the midpoint to be counted in and
all rhombuses on the right side of midpoint to be counted out from the super-rhombus.
Any other partition would work as well, as long as it is mirror symmetric.

Diagonal measure is the length of the diagonal of a unit rhombus (k, n − k) that
bisects k, and is denoted by dn(k). The diagonal measure is given by the formula

dn(k) = 2 cos
(
k

π

2n

)
. (2)

From �(n) we can read the scaling factor S(n) as a sum of diagonal measures
dn(k). For example, from �(7) = 1, 3, 5, 1, 3, 1, 1, 3, 1, 5, 3, 1 we obtain that

S(7) = 2(d7(1) + d7(3) + d7(5) + d7(1) + d7(3) + d7(1)).

From the proposed general structure of �(n) for all odd n, we get

S(n) = (n − 1)dn(1) + (n − 3)dn(3) + · · · + 2dn(n − 2).

The scaling factor in (1) was inferred from this relation to diagonal measures (2).

4 Substitution Rules for Even n

In this section we consider briefly Sub Rosa tilings for even values of n. Now the
scaling factor is different

S(n) = 2

1 − cos
(

π
n

) . (3)

The smallest case n = 2 has scaling factor 2: it is the square substitution where
the square is replaced by four squares. The resulting tiling is the regular square tiling,
which is also the only edge-to-edge rhombic tiling in this case.

Consider an arbitrary even n ≥ 2.

– The edge substitution rule The edges of enlarged rhombuses bisect some unit
rhombuses and coincide with the edges of some unit rhombuses. In the latter case
we say the edge bisects a zero rhombus, and indicate such situation by label 0 in
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Table 2 Composition of super-rhombus’ edges for first even n

�(2) 0|0
�(4) 0-2-0|0-2-0
�(6) 0-2-4-0-2-0|0-2-0-4-2-0
�(8) 0-2-4-6-0-2-0-4-2-0|0-2-4-0-2-0-6-4-2-0
�(10) 0-2-4-6-8-0-2-0-4-2-0-6-4-2-0|0-2 4-6-0-2-4-0-2-0-8-6-4-2-0
�(12) 0-2-4-6-8-10-0-2-0-4-2-0-6-4-2-0-8-6-4-2-0|0-2-4-6-8-0-2-4-6-0-2-4-0-2-0-10-8-6-4-2-0

�(n). The sequence�(n) is mirror symmetric and of even length. This means that,
as in the odd case, the super-rhombuses match each other without gaps or overlaps
if we count in the super-rhombus the bisected tiles in the first half of �(n), and
count out the bisected tiles in the second half of �(n). The edge substitution rules
for small even n are shown in Table 2.

– The starting pattern is again R1
2. All super-rhombuses have a sector of R1

2 at each
vertex, but now the sector is aligned so that the first label of�(n) is 0 rather than 1.
This means that the image of R1

2 contains at its center R
1
2 in its original orientation.

In other words, no quarter rotation is needed to match consecutive generations,
and the final tiling is a fixed point of the substitution.

– The general structure of �(n) for even n is analogous to the odd case: The first
half of �(n) consists of the (underlined) sequence 0, 2, 4, . . . , (n − 2), followed
by the mirror images of the underlined parts of �(2), �(4), . . . , �(n − 2), that
is, by 0, 20, 420, etc. The second half of �(n) is the reversal of the first half. The
obtained word is a palindrome of even length.

Rose R1
2 for n = 4 after one substitution can be seen in Fig. 7. For n = 6 the

substitution rule is shown in the Fig. 8.

5 General Case

Wehave shown substitution rules for small values ofn. In the followingwedemonstrate
that analogous substitutions exist for all values of n, thus proving Theorem 1. We use
the explicit description of super-rhombuses’ boundaries as in Tables 1 and 2. Then we
use the method in [7,8] to prove that the interior can be tiled with the unit rhombuses.

We first set our notations. Let n be fixed. All angles will be expressed in units π
n .

Number 2n is the full circle so that angles are considered modulo 2n. Direction 0 is
drawn horizontally to the right, so that directions n

2 , n and − n
2 refer to up, left and

down, respectively. For each direction x , the antiparallel direction x +n is denoted by
�

x . Hence
�

�

x = x .
In Tables 1 and 2 the structure of super-rhombuses’ edges is given in terms of the

unit rhombuses along edges. In the following it is more convenient to consider the
sequence of unit vectors that enclose the interior that needs to be tiled. Each unit
vector is represented by its direction, so the boundary word of the super-rhombus
is the sequence of directions of the unit vectors on the boundary. This sequence is
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Fig. 7 Rose R1
2 for n = 4 after one substitution

Fig. 8 Super-rhombuses of the substitution rule for n = 6
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Fig. 9 The boundary of the
region to be tiled with unit
rhombuses, in the case n = 5
and super-rhombus (2, 3). Lines
connect the matching pairs of
unit vectors along the boundary.
Each crossing of the lines
corresponds to a unit rhombus in
the interior. In this case, each
crossing provides a properly
oriented rhombus which means
that the crossing condition is
satisfied

a cyclic word so that conjugate words uv and vu denote the same boundary, just
with a different starting point. We read the boundary word counterclockwise. The unit
rhombuses bisected by the super-edge are not included in interior to be tiled. This
means that a unit rhombus (a, n − a) on a super-edge of direction k contributes in the
boundary word two unit vectors in directions k + a

2 and k − a
2 , in this order.

In fact, we want to show that the interior can be tiled in such a way that sectors
of rose R1

2 appear centered at all four corners of the super-rhombus. The underlined
symbols in Tables 1 and 2 are inside these roses so they get replaced by the boundary
of the rose sector. As an example, Fig. 9 shows the boundary of the region to be tiled
in the case of the (2, 3) super-rhombus. Note how the boundary traces the sectors of
the R1

2 roses at the corners.
We use the standard notations on words. If u and v are two words then uv is

their concatenation. A concatenation of k copies of word u is denoted as uk . Though
individual letters a are directions, and hence numbers modulo n, the power notation ak

represents the word aa . . . a of length k (rather than number a to power k). We denote
by uR the reversal of word u, that is, the word obtained by writing the letters of u in
the reverse order. Word u is a palindrome if uR = u. The empty word is denoted as
ε. It has length zero. Sometimes, for clarity, we write words with commas separating
the letters. So aabab and a, a, b, a, b denote the same word of length five.

For any direction x , we define the operation σx on words that increments each letter
by constant x . This corresponds to turning the entire path by angle x . In particular, σn
orients the path in the opposite direction. We extend the notation of antiparallelism to
words so that

�

u = σn(u) denotes the path antiparallel to u, that is, half turned u.
Since the same palindromic edge substitution is used on all four edges of a super-

rhombus, it easily follows that the contributions on the boundary word by opposite
super-edges are antiparallel to each other, and the same holds for the contributions by
the rose sectors at opposite corners of the super-rhombus. Hence the boundary word is
of the form u

�

u where u is the word through half of the boundary. It follows from this
symmetry that, in each direction a, the boundary contains equally many unit vectors
in directions a and

�

a . This is the balance condition in [7].
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It is also easy to see that the boundary does not cross itself. Only in the case of the
(1, n − 1) super-rhombus for odd n the roses at the opposite n − 1 corners touch in
the middle, but without crossing each other. In the terminology of [7] the boundary is
simple.

Based on [7], to prove that the interior can be tiled with the unit rhombuses it only
remains to show that the boundary vectors can bematched in an appropriate way. Each
letter a on the boundary word must be matched with an occurrence of the antiparallel

letter
�

a . A crossing is formed by two matched pairs a �
�

a and b �
�

b if they

occur in the circular boundary word in the interleaved order . . . a . . . b . . .
�

a . . .
�

b . . . .

For each such crossing, it is required that the path ab
�

a
�

b forms a rhombus in the
counterclockwise direction, that is, a < b < a + n (mod 2n). This is the crossing
condition.

The convex crossing condition used in [7] is slightly weaker as it also allows cross-
ings between matched pairs a �

�

a and a �
�

a with the same labels. We prefer to
forbid this because we then get unique matchings: In our setup, all occurrences of a
and

�

a are in the opposite halves of the boundary word. This implies that there is a
unique way of matching the occurrences of a and

�

a with each other without cross-
ings. Indeed, the i’th occurrence of a must be paired with the i’th last occurrence of
�

a .
What needs to be checked is that this unique matching respects the crossing con-

dition for all distinct directions a and b. This in mind, for any a and b we define the
projection function πa,b that erases from a boundary word all letters except a, b,

�

a and
�

b. The crossing condition of the boundary word u can be expressed equivalently as
the requirement that all projections πa,b(u) satisfy the crossing condition. This turns
out to be equivalent in our setup to the property that πa,b(u) defines a non-crossing
cycle in the counterclockwise direction.

Example 1 Consider the boundary word of the (2, 3) rhombus in Fig. 9. Keeping the
orientation of the figure, the directions of the unit vectors are from Z + 1

2 .
Reading counterclockwise, starting where the leftmost rose segment ends, the

boundary word is

−1
2 , −3

2 , −1
2 , −3

2
1
2 ,

3
2 ,

−1
2 , 1

2 ,
−3
2 , −1

2
3
2 ,

1
2 ,

3
2 ,

1
2

5
2 ,

7
2 ,

3
2 ,

5
2

9
2 ,

7
2 ,

9
2 ,

7
2

−9
2 , −7

2 , 9
2 ,

−9
2 , 7

2 ,
9
2

−7
2 , −9

2 , −7
2 , −9

2
−5
2 , −3

2 , −7
2 , −5

2

Vertical lines indicate the changes between the four rose segments and the four edge
segments of the boundary. There are five different directions (when antiparallel direc-
tions are not counted separately), so there are

(5
2

) = 10 different pairs of directions
that define projections πa,b. For example, for a = 3

2 and b = 5
2 , keeping in mind that

�

a = −7
2 and

�

b = −5
2 , the projection by πa,b is

a a a b a b
�

a
�

a
�

a
�

b
�

a
�

b.
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Fig. 10 All projections in pairs of distinct directions of the boundary of the (2, 3) super-rhombus. All paths
are nonintersecting and counterclockwise, so the crossing condition is satisfied

This word defines a non-crossing boundary in the counterclockwise direction. Analo-
gously we can determine the projections for all pairs a and b. The corresponding paths
are shown in Fig. 10. The crossing condition is satisfied. ��

The results in [7,8] guarantee that a region surrounded by a simple boundary that
satisfies the balance condition and whose (unique) matching satisfies the crossing
condition has a tiling by parallelograms ([7, Thm. 2]). In our setup the only non-
trivial aspect to check is the crossing condition. In the following section we develop
a convenient rewrite system to check this condition.

Remark 1 While [7] guarantees a tiling by parallelograms, it is easy to see that the
proof in [7] provides a tiling by unit rhombuses if the boundary consists of unit length
segments.

5.1 Rewrite System to Check the Crossing Condition

Our standing assumption in the following is that a and b are directions such that

a < b < a + n (mod 2n) so that ab
�

a
�

b is a proper rhombus in the counterclockwise

direction. Let u, v be words over the alphabet {a, b,
�

a,
�

b}. Consider the following
eight rewrite rules:

ab −→ ba, b
�

a −→ �

ab,
�

a
�

b −→ �

b
�

a,
�

ba −→ a
�

b,

a
�

a −→ ε,
�

aa −→ ε, b
�

b −→ ε,
�

bb −→ ε,
(4)

An application of rule x −→ y on word u means that we replace an occurrence of
subword x in u by y. More precisely, if u = u1xu2 and v = v1yv2 and x −→ y is a
rewrite rule then u derives v and we write u → v. We denote the transitive, reflexive
closure of → by →∗, so that u →∗ v means that u can be turned into v by a sequence
of rewrites. Iterating rule ab −→ ba, for example, allows us to move b’s any number
of positions to the left on a word containing only a’s and b’s, or to move a’s to the
right on such a word. In other words, au →∗ ua and ub →∗ bu for any word u that
only contains letters a and b.
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The top four rewrite rules in (4) correspond to snapping two consecutive edges of

the rhombus ab
�

a
�

b in reverse order. The last four rules allow eliminating a letter and
its reversal that are next to each other.

Suppose u → v using the first rewrite rule ab −→ ba. If v satisfies the crossing
condition, so does u with the same matchings. Indeed, the only new crossing in u,

not present in v, connects pairs a �
�

a and b �
�

b of symbols that appear in u in the

(circular) order . . . ab . . .
�

a . . .
�

b . . . . Such order is allowed by the crossing condition.
The same argument applies to all four rewrite rules that reverse the order of two
symbols.

Suppose then that u → v using the eliminating rewrite rule a
�

a −→ ε. If v satisfies
the crossing condition, so does u when we connect the two letters in the eliminated
pair a

�

a with each other, and match all other letters in the same way as they were
matched in v. In this way u has exactly the same crossings as v. The same argument
applies to any other eliminating rewrite rule.

We have seen that if u →∗ v and if v satisfies the crossing condition then also u
satisfies the crossing condition. In particular, u →∗ ε guarantees that u satisfies the
crossing condition. In fact, it is not difficult to see that this condition is also necessary:

Lemma 1 Let u be a word over the alphabet {a, b,
�

a,
�

b}. Then u has a matching that
satisfies the crossing condition if and only if u →∗ ε.

Proof We have seen above that u →∗ ε implies that there is matching in u that
satisfies the crossing condition. Let us prove the converse direction. Define a partial
order among words with matchings: u < v if u is shorter than v, or if u and v have
the same lengths but u has fewer crossings than v.

Let u be a non-empty word with a matching that satisfies the crossing condition.We
want to prove that u → v for some v < u that also satisfies the matching condition.

Assume first that u contains two consecutive letters that are matched with each
other. Hence the letters are antiparallel to each other, and can be eliminated by a
rewrite rule. This produces a shorter word v, so v < u. The remaining letters in v can
be matched exactly as in u, satisfying the crossing condition.

Assume next that u contains two consecutive letters xy whose connections cross
each other. By the crossing condition, xy

�

x
�

y must be a proper rhombus in the counter-
clockwise direction, so xy −→ yx is a valid rewrite rule. When we apply it to u, and
keep letter matchings unchanged, we obtain v that has the same length but one less
crossing than u. Hence u → v and v < u. Clearly v satisfies the crossing condition
since we obtained it from u by only untangling one crossing.

Finally, assume that u has no consecutive letters that are connected to each other
or whose connections would cross each other. Let x and y be two letters in u that are
either connected to each other or whose connections cross, and assume their (cyclic)
distance d is as short as possible. The letters are not next to each other so there is a
letter z between them. But z cannot be connected to another letter

�

z between x and y
because then the distance from z to

�

z would be shorter than d, contradicting the choice
of x and y. Hence the connection of z necessarily crosses the x, y pair, and hence it
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crosses either the connection of x or the connection of y. But the distance from z to
both x and y is shorter than d, which again contradicts the minimality of d.

We have proved the claim that u → v for some v < u that also satisfies thematching
condition. Now, if v 
= ε the argument can inductively applied on v. By iterating the
argument we obtain a sequence u → v → . . . . The partial order < does not admit
infinite decreasing chains so ε must be eventually reached. ��
Remark 2 In our setup the boundary u of the tileable region has all the symmetries
of the enlarged rhombus: dihedral group D4 or D2 if the rhombus is or is not a
square, respectively. The unique matching also respects these symmetries, and so
do all projections πa,b(u). Shrinking the remaining tileable region by adding a unit
rhombus tile with two edges on the boundary corresponds to the application of a
rewrite rule on some πa,b(u). The analogous rewrite can be done on all symmetric
positions, thus reducing the tileable region while keeping its symmetries. By iterating
this process we obtain a tiling of the interior of the enlarged rhombus that has all the
symmetries of the initial rhombus.

A detail to observe in this process is that each symmetry of the boundary takes any
pair of consecutive edges to a disjoint pair, or to the identical pair of consecutive edges,
but never to a pair that shares exactly one edge with the original pair. For this reason
all symmetric positions can be rewritten independently of each other. In contrast, the
readermay consider, for example, tiling the regular octagon of unit sides: the reflection
symmetries prevent a fully symmetric tiling of the interior by unit rhombuses.

Notice that u →∗ v implies that
�

u →∗ �

v . This is because for each rewrite rule
x −→ y there is also the rewrite rule

�

x −→ �

y in our toolbox (4). This also implies
that if u →∗ v and u →∗ vR for some word v then u

�

u satisfies the crossing condition.
Indeed, u

�

u →∗ vR�

v →∗ ε, where the last steps use elimination rewrites. In particular,
if a palindrome can be derived from u then u

�

u satisfies the crossing condition.

Example 2 Let u = aaabab so that u
�

u is the boundary word from Example 1. Since

aaabab →∗ baaaab we have that u
�

u →∗ baaaab
�

b
�

a
�

a
�

a
�

a
�

b →∗ ε. Analogously, all
ten projections shown in Fig. 10 can be reduced into words of the form p

�

p for some
palindromes p, and hence into the empty word ε. ��
We are interested in the matching condition on boundary words that are of the type
u

�

u , by performing rewrites on the half word u. As we work with the half boundary,
there is yet another useful operation on the words: If u = xy is a concatenation of
two words then we may swap the order of x and y while changing x into

�

x . We write
xy � y

�

x . When such operation is performed on both halves of u
�

u , the (circular)
word remains unchanged, that is, if u � v then u

�

u and v
�

v are the same (circular)
words. Indeed, u

�

u = xy
�

x
�

y and v
�

v = y
�

x
�

yx for v = y
�

x .
We denote u ⇒ v if u → v or u � v, and by⇒∗ we denote the reflexive transitive

closure of ⇒.

Lemma 2 If u ⇒∗ v →∗ vR for some v then u
�

u satisfies the crossing condition.

Proof As v
�

v →∗ vR�

v →∗ ε, by Lemma 1 we know that v
�

v satisfies the crossing
condition. For any x ⇒ y, if y

�

y satisfies the crossing condition so does x
�

x . Namely,
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if x → y then x
�

x → y
�

y , and if x � y then x
�

x and y
�

y are the same circular word.
Hence, u ⇒∗ v implies that u

�

u satisfies the crossing condition because v
�

v does. ��
All our proofs of tileability use Lemma 2. We start with a half u of the boundary

word u
�

u , and derive from u a newword v using operations→ and�. Then we operate
on v using only rewrite operations → to reach its reversal vR . Of course we could
always work on the full boundary u

�

u but working on u reduces the size of expressions
and the number of operations by half. We frequently use

xyx R ⇒∗ yx R
�

x ⇒∗ y,

and simply cancel a prefix and a suffix from u if they are reversals of each other.
The following particular case will be usedmultiple times, so we state it as a separate

lemma.

Lemma 3 Assume our usual hypothesis that ab
�

a
�

b is a rhombus in the counterclock-
wise orientation. If u = (ba)i (b

�

a) j where j ≥ 1 then u ⇒∗ v →∗ vR for some v. In
particular, u

�

u satisfies the crossing condition.

Proof We apply the rewrite rules in (4) that move a to the right and
�

a to the left over
b’s, and cancel a and

�

a as they meet.
If i < j then

(ba)i (b
�

a) j ⇒∗ biai
�

a
i
bi (b

�

a) j−i ⇒∗ b2i (b
�

a) j−i →∗ (
�

ab) j−i b2i ,

and the last two words are reverses of each other. In the last steps we moved 2i + 1
letters b from the beginning of the word to the end. If i ≥ j ≥ 1,

(ba)i (b
�

a) j ⇒∗ (ba)i− j b j a j �

a
j
b j ⇒∗ (ba)i− j b2 j →∗ b2 j (ab)i− j ,

where the last steps of the derivation move 2 j − 1 copies of b from the end of the
word to the beginning. Also here the last words are reverses of each other. Lemma 2
confirms that u

�

u satisfies the crossing condition. ��

5.2 Boundary Words of Super-Rhombuses

Let us fix k ∈ {1, 2, . . . , n − 1} and consider the super-rhombus S of type (k, n − k).
Let us orient S on the plane with its bottom edge horizontal and corner k at the left end
of the base. Super-rhombuses (k, n − k) and (n − k, k) are identical, so it is sufficient
to consider only one of them for each k. We name the rose and edge segments of the
boundary of S by letters A through H , as shown in Fig. 11. Segments A,C, E and
G are edge segments and B, D, F and H are rose segments. In the counterclockwise
orientation, the directions of edges A and C are 0 and k, respectively.

Recall that, for odd n, the edge segments bisect the sequence

τ(n) = 1 31 531 . . . (n − 4)(n − 6) . . . 31 13 . . . (n − 6)(n − 4) . . .

135 13 1
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Fig. 11 The eight segments of
the boundary

A

B

C

D
E

F

G

H
k

k

n-k

n-k

of unit rhombuses, where shape (m, n − m) is represented simply as m, and the
vertical lines are added to emphasize the structure of the sequence. When n is even,
the sequence of bisected unit rhombuses is

τ(n) = 0 20 420 . . . (n − 4)(n − 6) . . . 20 02 . . . (n − 6)(n − 4)

. . . 024 02 0

where 0 denotes a single unit edge along the edge segment. The sequences are the
non-underlined parts of �(n), as shown in Tables 1 and 2. Remark that the sequences
are palindromes, and that all numbers m in the sequences have the same parity as n.
Let

f (m) = n − m

2
− 1,

so that m appears f (m) times in both halves of τ(n).
Observe the following structure of τ(n): let k,m ∈ {1, 3, . . . , n − 2} or k,m ∈

{0, 2, . . . , n − 2} when n is odd or even, respectively, and k < m. Then the projected
sequence obtained by erasing all other numbers from τ(n) has the form

ki (mk) j (km) j ki , where i = f (k) − f (m) ≥ 1 and j = f (m) ≥ 0. (5)

On the horizontal segment A, each occurrence of m in τ(n) contributes symbols
m
2 , −m

2 on the boundary word, when m 
= 0. This is because A is in direction 0, so
that each m represents a unit rhombus (m, n − m) whose edges are in directions m

2
and −m

2 . Each occurrence of m = 0 contributes a single 0 on the boundary word.
When n is even, all symbols on the boundary word are integers; when n is odd they are
from the set Z+ 1

2 . This is easily seen to be the case on all eight segments in Fig. 11,
including both the edge and the rose segments. We have that in the case of odd n the
directions of the unit vectors present on the boundary are not parallel to any edge of
S. In contrast, on even n, each occurrence of 0 in τ(n) yields a unit vector parallel to
an edge. In both even and odd cases, directions ±n

2 perpendicular to A are possible.
For any direction x , where x ∈ Z or x ∈ Z+ 1

2 if n is even or odd, respectively, we
introduce the notation�x = m if the unit rhombus (m, n−m) on segment A contributes
direction x on the boundary word. More precisely, �x = m for all directions x such
that ±2x ≡ m (mod 2n), and 0 ≤ m ≤ n. We also define
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x̄ =
{ x, if ±2x ≡ �x (mod 4n),

�

x , if ±2x ≡ �x + 2n (mod 4n),

so that, among the two orientations x and
�

x , the actual contribution by rhombus
(�x , n − �x ) on the boundary word along segment A is x̄ .

Let us discuss next briefly the rose segments. The four segments combined in the
order H, F, D, B form the full rose R1

2 in the clockwise orientation. Each unit vector
direction appears twice in the rose. In R2 the directions would appear perfectly ordered
in the increasing order, but omitting the outermost ring in R1

2 swaps consecutive pairs
of directions. In segment B, directions n

2 and k − n
2 both appear once (as the second,

and the second last direction, respectively), while the directions x in the interval
k − n

2 < x < n
2 appear twice in B.

Let a, b ∈ Z (even n) or a, b ∈ Z + 1
2 (odd n) be two distinct directions of unit

vectors on the boundary word. We denote by α(a, b), β(a, b), γ (a, b) and δ(a, b) the
πa,b projections of the boundary word segments on A, B, C and D, respectively. We
denote their concatenation by u:

u = α(a, b)β(a, b)γ (a, b)δ(a, b).

The πa,b projection of the entire boundary is u
�

u .
It is easy to see that α(a, b) depends on the directions a and b as follows:

– If 2a ≡ n (mod 2n) so that a is orthogonal to segment A, then direction a does
not appear in α(a, b) and hence

α(a, b) = b̄i ,

where i = 2 f (�b) = n − �b − 2. Analogously, if 2b ≡ n (mod 2n) then α(a, b)
does not contain direction b.

– Otherwise �a,�b < n, so we can infer α(a, b) from (5). If �a < �b then

α(a, b) = ā f (�a)− f (�b)(b̄ā) f (�b)(āb̄) f (�b)ā f (�a)− f (�b).

Notice that this word is a palindrome. Analogously, if �b < �a then

α(a, b) = b̄ f (�b)− f (�a)(āb̄) f (�a)(b̄ā) f (�a)b̄ f (�b)− f (�a).

The last possibility is �a = �b. Now

α(a, b) = (āb̄)2 f (�a) or α(a, b) = (b̄ā)2 f (�a).

The word γ (a, b) along segment C is similar. Because the direction of C is k,
directions a and b are oriented with respect to C in the same way as a − k and b − k
are oriented with respect to A. We then have

γ (a, b) = σk(α(a − k, b − k)).
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5.3 Case Analysis

We are interested to analyze the word u = α(a, b)β(a, b)γ (a, b)δ(a, b) which is the
first half of the projection of the boundary word on directions a and b, and to show that
u

�

u satisfies the crossing condition. There are a number of cases to analyze depending
on the relationship between directions a, b and k.

Note that we can reduce the number of cases due to symmetries. Because a and
�

a ,

and b and
�

b define the same projections, we only need to consider one choice of each.
We can also swap a and b if needed. We can therefore assume that

−n

2
< a < b ≤ n

2
.

With this choice, ab
�

a
�

b is a proper rhombus oriented counterclockwise, and the rewrite
rules in (4) can be used.

Case 1: a or b is perpendicular to a side of super-rhombus S

By suitably orienting S, and possibly replacing b by
�

b or a by
�

a , we can assume
that b = n

2 and − n
2 < a < n

2 . We can further assume that k ≤ n
2 . (If not, we flip

the rhombus and consider n − k instead of k.) In this case we have α(a, b) = ai for
some i.

(a) Assume a > k − n
2 . Now β(a, b) ∈ {baa, aba} and δ(a, b) = b. In any case

β(a, b) →∗ baa. Word γ (a, b) is either some palindrome p containing only letters a
and b (if �a−k 
= �b−k), or γ (a, b) = (ba) j for some j (if �a−k = �b−k). In the first
case

u ⇒∗ ai baa p b ⇒∗ b ai+2 p b →∗ b p ai+2 b.

The last two words are reversals of each other, so by Lemma 2 we know that the
boundary word u

�

u satisfies the crossing condition. In the second case,

u ⇒∗ ai baa (ba) j b ⇒∗ b ai+1 a(ba) j b →∗ b a(ba) j ai+1 b.

Again, the last two derived words are reversals of each other.

(b) Next we assume that a = k − n
2 . Now β(a, b) = ba, γ (a, b) = b j for some j ,

and δ(a, b) = �

ab, so that

u = ai ba b j �

ab ⇒∗ ai b j+1 a
�

a b ⇒ aib j+2 →∗ b j+2ai .

The last two words are reversals of each other.

(c) If− n
2 < a < k− n

2 then β(a, b) = b and δ(a, b) ∈ {�

a
�

ab,
�

ab
�

a}. As �a−k 
= �b−k ,
we know that γ (a, b) is some palindrome p that contains letters

�

a and b only.

u ⇒∗ ai b p
�

a
�

ab ⇒∗ b ai p
�

a
�

ab ⇒∗ ai p
�

a
�

a ⇒∗ p
�

a
i+2 →∗ �

a
i+2

p.
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Also here, the last two words are reversals of each other.
In the remaining cases we can now assume that a and b are not perpendicular to the
sides of S.

Case 2: �a = �b
Let us now assume that directions a and b are from the same unit rhombus on some

edge segment. In a suitable orientation of S this means that a = −b. By symmetries,
we can also assume that 0 < b < n

2 and k ≤ n
2 . Now α(a, b) = (ba)i for i =

2 f (�b) = n − 2b − 2.

(a) Assume a > k − n
2 . We have β(a, b) ∈ {bbaa, baba} and δ(a, b) = ε, the empty

word. Because �a−k = 2|a − k| = 2k + 2b and �b−k = 2|b − k|, it follows that
�a−k − �b−k is 4b or 4k, depending on whether b < k or b > k, respectively. In any
case, �a−k > �b−k , so we have from (5) that γ (a, b) = bs(ab)t (ba)t bs for some s, t .
In fact, s = 1

2 (�a−k − �b−k) = min{2b, 2k}.
If s ≥ 2 then

u ⇒∗ (ba)i bbaa bs(ab)t (ba)t bs

⇒∗ bs(ab)i+2 (ab)t (ba)t bs

⇒∗ (ab)i+2

→∗ (ba)i+2.

In the third step we eliminated bs(ab)t and its reversal from the prefix and the suffix of
the word, respectively. The last words are reversals of each other so Lemma 2 applies.

Suppose then s < 2. Because s = min{2b, 2k}, we see that s < 2 happens if and
only if b = 1

2 , a = − 1
2 . But in this case, the rose segment B contains a unit vector in

direction a between two unit vectors in direction b, so that β(a, b) = baba. (This is,
interestingly, the reason why the rose segments come from the rose R1

2 instead of the
full rose R2: in the full rose R2 we would have bbaa instead of baba, which would
make the crossing condition fail in the case b = 1

2 , a = − 1
2 .) Now we have s = 1 and

u = (ba)i baba b(ab)t (ba)t b

= (ba)i+t+2 bb (ab)t

⇒∗ (ba)i+2 bb

→∗ bb (ab)i+2,

where the last two derived words are reverses of each other.

(b) The other possibility is that − n
2 < a < k − n

2 . (Note that the case a = k − n
2 is

covered by Case 1 because then a is perpendicular to segmentC of S.) Now β(a, b) =
bb and δ(a, b) = �

a
�

a . Also we can calculate �a−k = 2(a − k + n) = 2(n − k − b)
and �b−k = 2|b − k| so that �a−k − �b−k = 2min{n − 2b, n − 2k} ≥ 0.

Assume first that k = n
2 so that �a−k = �b−k . We have γ (a, b) = (

�

ab) j for some
j , so
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u = (ba)i bb (
�

ab) j
�

a
�

a

⇒∗ (ba)i (b
�

a) j+2

The obtained word is of the form covered by Lemma 3.
Assume then that k < n

2 so that �a−k > �b−k . Then γ (a, b) = bs(
�

ab)t (b
�

a)t bs for
some s, t . We derive

u = (ba)i bb bs(
�

ab)t (b
�

a)t bs
�

a
�

a

⇒∗ bs (ba)i bb (
�

ab)t (b
�

a)t
�

a
�

a bs

⇒∗ (ba)i (b
�

a)2t+2.

Lemma 3 applies to the derived word.
From now on we can assume that neither Case 1 nor Case 2 applies.

Case 3: Directions a and b appear in the same rose segment B

Now k − n
2 < a < b < n

2 and 0 < k < n. (Note that we allow k > n
2 so that we do

not assume the angle between segments A and B to be obtuse.) We can also assume
that b > 0 because otherwise we can reflect the super-rhombus to swap segments A
and C .

In this setup we have β(a, b) ∈ {bbaa, baba} and δ(a, b) = ε. Moreover, α(a, b)
and γ (a, b) are palindromes containing only letters a and b, and �a = 2|a|, �b =
2|b| = 2b, �a−k = 2|a − k| and �b−k = 2|b− k|. Because Case 2 does not apply, we
have �a 
= �b and �a−k 
= �b−k .

(a) Assume first that �a > �b. Then |a| > b > 0 but a < b, which clearly implies
that a < 0. Then also

�a−k = 2|a − k| = 2(|a| + k) > 2(b + k) ≥ 2|b − k| = �b−k .

Now α(a, b) = bi (ab) j (ba) j bi , and γ (a, b) = bs(ab)t (ba)t bs for some i, s ≥ 1 and
j, t ≥ 0. More precisely,

s = f (�b−k) − f (�a−k) = |a − k| − |b − k| = k − a − |b − k|,
i = f (�b) − f (�a) = |a| − |b| = −a − b.

In particular, s − i = k + b − |b − k| > 0 so that s > i ≥ 1. Also, because
�a−k = −2(a − k) > −2a = �a , we have that t < j . We derive

u ⇒∗ bi (ab) j (ba) j bi bbaa bs(ab)t (ba)t bs

⇒∗ (ab) j (ba) j bi+2 abab bs−2(ab)t (ba)t bs−i

⇒∗ (ab) j (ba) j b2s abab (ab)t (ba)t

⇒∗ (ab) j−t (ba) j b2s (ab)t+2

⇒∗ (ba)2 j−t b2s (ab)t+2
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⇒∗ (ba)2 j−2t−2b2s

→∗ b2s(ab)2 j−2t−2.

The last two words are reversals of each other.

(b)Assumenext that�a < �b and�a−k < �b−k . Then k−b < k−a ≤ |k−a| < |k−b|
so that k − b < 0, that is, b > k.

Now α(a, b) = ai (ba) j (ab) j ai , for i = f (�a) − f (�b) and j = f (�b), and
γ (a, b) = as(ba)t (ab)t as , for s = f (�a−k) − f (�b−k) and t = f (�b−k). We have

t − j = |b| − |b − k| = b − (b − k) = k > 0, and

i − s = |b| − |a| − (|b − k| − |a − k|)
= b − (b − k) + |a − k| − |a| ≥ k + (|a| − k) − |a| = 0,

so that t > j and i ≥ s ≥ 1.
Assume first that i ≥ 2. Then

u ⇒∗ ai (ba) j (ab) j ai bbaa as(ba)t (ab)t as

⇒∗ ai−s(ba) j (ab) j ai bbaa as(ba)t (ab)t

⇒∗ (ba) j (ab) j a2i−s bbaa as(ba)t (ab)t

⇒∗ (ab) j+2 a2i (ba)t (ab)t− j

⇒∗ (ab) j+2 a2i (ba)2t− j

⇒∗ a2i (ba)2t−2 j−2

→∗ (ab)2t−2 j−2a2i .

Note that we used the fact that 2i − s ≥ 2 on the fourth derivation line to change
aabb into abab. The last two words are reversals of each other.

Consider then the case i = 1, so that also s = 1. But i = b − |a| = 1 and
s = b − k − |a − k| = 1 happen simultaneously only if b = a + 1. In this case,
β(a, b) = baba as the path follows rose R1

2 instead of rose R2. We derive

u = a(ba) j (ab) j a baba a(ba)t (ab)t a

⇒∗ (ab) j+2 aa (ba)t (ab)t− j

⇒∗ (ab) j+2 aa (ba)2t− j

⇒∗ aa (ba)2t−2 j−2

→∗ (ba)2t−2 j−2 aa,

obtaining a word and its reversal. Note that also here it was essential that rose R1
2 was

used instead of rose R2.

(c) The last possibility is that �b > �a and �b−k < �a−k . Then α(a, b) =
ai (ba) j (ab) j ai and γ (a, b) = bs(ab)t (ba)t bs for some i, s ≥ 1 and j, t ≥ 0. We
have
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u ⇒∗ ai (ba) j (ab) j ai bbaa bs(ab)t (ba)t bs

⇒∗ ai−1(ab)2 j ai−1 aa bbaa bbbs−1(ab)2t bs−1

⇒∗ ai−1bs−1(ab)2 j aba baba b(ab)2t bs−1ai−1

⇒∗ (ab)2 j+2t+4

→∗ (ba)2 j+2t+4.

The last two words are reversals of each other.

Case 4: None of the cases 1–3 apply

Because Case 3 does not apply, directions a and b do not appear on the same rose
segment; becauseCase 1 does not apply the directions appear on unique rose segments,
with the antiparallel directions then appearing on the opposite rose segments. We
can orient rhombus S so that b appears in segment B and

�

a in segment D. Then
β(a, b) = bb and δ(a, b) = �

a
�

a . Now α(a, b) and γ (a, b) are palindromes containing
only letters a and b, and only letters

�

a and b, respectively. Then

w = bb γ (a, b)
�

a
�

a = β(a, b)γ (a, b)δ(a, b)

contains only letters
�

a and b.
Depending on whether �a > �b or �a < �b we have either α(a, b) =

bi (ab) j (ba) j bi or α(a, b) = ai (ba) j (ab) j ai , for some i ≥ 1 and j ≥ 0. In the
first case,

u = bi (ab) j (ba) j bi w

⇒∗ bi (ba)2 j w bi

⇒∗ (ba)2 j w,

and also in the second case

u = ai (ba) j (ab) j ai w

⇒∗ (ba)2 j ai w
�

a
i

⇒∗ (ba)2 j ai
�

a
i
w

⇒∗ (ba)2 j w.

We see that in any case, u ⇒∗ (ba)2 j bb γ (a, b)
�

a
�

a .
Analogously, depending on whether �a−k > �b−k or �a−k < �b−k we have either

γ (a, b) = bs(
�

ab)t (b
�

a)t bs or γ (a, b) = �

a
s
(b

�

a)t (
�

ab)t
�

a
s
, for some s ≥ 1 and t ≥ 0.

In the first case,

u ⇒∗ (ba)2 j bb bs(
�

ab)t (b
�

a)t bs
�

a
�

a

⇒∗ bs (ba)2 j (b
�

a)2t+2 bs

⇒∗ (ba)2 j (b
�

a)2t+2.
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According to Lemma 3, the crossing condition is satisfied. In the second case,

u ⇒∗ (ba)2 j bb
�

a
s
(b

�

a)t (
�

ab)t
�

a
s �

a
�

a

⇒∗ (ba)2 j
�

a
s
(b

�

a)2t+2 �

a
s

⇒∗ as (ba)2 j
�

a
s
(b

�

a)2t+2

⇒∗ (ba)2 j as
�

a
s
(b

�

a)2t+2

⇒∗ (ba)2 j (b
�

a)2t+2,

so again Lemma 3 applies.
This completes the case analysis. All possible cases were covered, and the crossing

condition was confirmed in each case. This completes the proof of Theorem 1. ��

6 Conclusions

We have demonstrated primitive substitutions on unit rhombuses that generate sub-
stitution tilings with 2n-fold rotational symmetry for all n. The obtained tilings are
uniformly recurrent, i.e., quasiperiodic. The proof was based on a rewrite system on
the proposed boundaries of the enlarged rhombuses to check that the interior can be
properly tiled.
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