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Abstract We introduce a partial order on the set of all normal polytopes in R
d . This

poset NPol(d) is a natural discrete counterpart of the continuum of convex compact
sets in R

d , ordered by inclusion, and exhibits a remarkably rich combinatorial struc-
ture. We derive various arithmetic bounds on elementary relations in NPol(d), called
quantum jumps. The existence of extremal objects inNPol(d) is a challenge of number
theoretical flavor, leading to interesting classes of normal polytopes: minimal, maxi-
mal, spherical. Minimal elements in NPol(5) have played a critical role in disproving
various covering conjectures for normal polytopes in the 1990s. Here we report on the
first examples of maximal elements in NPol(4) and NPol(5), found by a combination
of the developed theory, random generation, and extensive computer search.
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1 Introduction

Normal polytopes are popular objects in combinatorial commutative algebra and
toric algebraic geometry: they define the normal homogeneous monoid algebras
[5, Chap. 2], [15, Chap. 7] and the projectively normal toric embeddings [5, Chap. 10],
[10, Chap. 2.4]. Themotivation for normal polytopes in thiswork is the followingmore
basic observation: these lattice polytopes are natural discrete analogues of (continuous)
convex polytopes and, more generally, convex compact sets in R

d .
Attempts to understand the normality property of lattice polytopes in more intuitive

geometric or integer programming terms date back from the late 1980s and 1990s;
see Sect. 3.2. The counterexamples in [2,3,6] to several conjectures in that direction
implicitly used a certain poset NPol(d) of the normal polytopes in R

d . We explicitly
introduce this poset in Sect. 3.2. If normal polytopes or, rather, the sets of their lattice
points are the discrete counterparts of convex compact sets in R

d , then the poset
NPol(d) is the corresponding discrete analogue of the continuum of all such convex
compact sets, ordered by inclusion. Put another way, NPol(d) provides a formalism
for the ‘discrete vs. continuous’ dichotomy in the context of convex geometry.

In this article we focus on the discrete structure of the poset NPol(d), in particular
the existence ofmaximal elements. In future studieswe plan to examine the topological
and finer geometric properties of the underlying order complex.One of ourmotivations
is to study global properties of the family of normal polytopes, in analogy to moduli
spaces—not only properties of particular polytopes. The present article follows a
program that was sketched in [11].

Another aim is to set up a formalism for the search of special normal polytopes
(or, equivalently, projective toric varieties) by a random walk on NPol(d). Motivated
from physics, one can consider various measures on the smallest possible changes of
the polytope as analogs of potential. Such directed search proved useful in finding
maximal polytopes in NPol(4) and NPol(5). As it turns out, random search can also
hit maximal polytopes, notably in NPol(4).

A pair (P, Q) of normal polytopes of equal dimension is called a quantum jump
if P ⊂ Q and Q has exactly one more lattice point than P . Here the word quantum
refers to the smallest possible discrete change of a normal polytope and also points to
random walks on NPol(d): among all possible quantum jumps one chooses the ones
according to an adopted strategy.

Quantum jumps define a partial order on the set of normal polytopes in which
P < Q if and only if there exists an ascending chain of quantum jumps that leads
from P to Q. We consider the relation < as the discrete analogue of the set theoretic
inclusion between convex compact subsets of R

d .
The extent of distortion of the continuum in the suggested discretization process is

encoded in extremal elements of NPol(d) and potential topological complexity of the
geometric realization of NPol(d): local and global properties of NPol(d), respectively.
It is not a priori clear that NPol(d) exhibits any of these irregularities at all.

Explicit nontrivial (i.e., different from unimodular simplices) minimal elements,
which were called tight polytopes in [3], have been known for quite a while. They exist
in all dimensions ≥4 and special instances were crucial in disproving the unimodular
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covering of normal polytopes or the integral Carathéodory property. The existence of
nontrivial minimal elements in NPol(3) is open.

Finding maximal elements is much more difficult but, as mentioned above, we have
been successful in dimensions 4 and 5. There seems to be no way to construct higher
dimensional maximal polytopes from a given one, but there is little doubt that maximal
polytopes exist in all dimensions ≥4. However, the existence in dimension 3 remains
open.

Sections 2 and 3 recall basic notions and results for the study of normal polytopes.
In Sect. 4 we study the height of a lattice point z over a polytope P that, roughly

speaking, counts the number of lattice layers between z and the facets of P that are
visible from z. It is the natural measure for distance based on the lattice structure.
We show that there is no bound on the height of quantum jumps that depends only
on dimension. A very precise characterization of quantum jumps in dimension 3 is
obtained at the end of Sect. 4.

Section 5 contains a sharp bound for quantum jumps in all dimensions. It is roughly
proportional to the product of dimension and the lattice diameter of P that we call
width. It shows that there are only finitely many jumps (P, Q) for fixed P and allows
us to find them efficiently.

Section 6 is devoted to special normal polytopes defined by spheres and, more
generally, ellipsoids. In particular we prove that all quantum jumps are infinitesimally
close to the initial polytope relative to the size of the latterwhen the shape approximates
a sphere with sufficient precision. The question on normality of the convex hulls of
all lattice points in ellipsoids naturally arises. In dimension 3 we always have the
normality, and our experiments did not lead to counterexamples in dimensions 4 and 5.

The final Sect. 7 describes our experimental approach to the existence of maximal
polytopes. The main difficulty was to find a criterion that lets us choose terminat-
ing ascending chains with some positive probability. The maximal polytopes were
eventually found by a combination of random generation and directed search. The
computational power of Normaliz [7] has been proved invaluable for these experi-
ments.

2 Basic Notions

The sets of nonnegative integer and real numbers are denoted, respectively, by Z+
and R+. The Euclidean norm of a vector v ∈ R

d is ‖v‖. We write e1, . . . , ed for the
standard basis vectors of R

d . A point configuration is a finite subset X ⊂ Z
d . For a

subset X ⊂ R
d we set L(X) = X ∩ Z

d .
For a more detailed account and the proofs for the statements in this section we

refer the reader to [5, Chaps. 1 and 2].

2.1 Polytopes

An affine subspace of a Euclidean space is a shifted linear subspace. An affine map
between two affine spaces is amap that respects barycentric coordinates. Equivalently,
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an affine map is the restriction of a linear map between the ambient vector spaces
followed by a parallel translation.

Two subsets X,Y ⊂ R
d are called unimodularly equivalent if there is an integral-

affine isomorphism X → Y , i.e., there is an affine isomorphism f : R
d → R

d ,
mapping Z

d bijectively to itself, such that f (X) = Y .
A closed affine half-space H+ ⊂ R

d is a subset of the form

{x ∈ R
d : h(x) ≥ 0} ⊂ R

d ,

where h : R
d → R is a non-zero affine map and H = h−1(0) is the bounding

hyperplane. When h is a linear map, the half-space H+ and the hyperplane H will be
called linear or homogeneous.

An affine subspace A is rational if it is spanned by points in Q
d . The bounding

hyperplane H of a rational half-space H+ is given in the form

H = {x ∈ R
d : α1x1 + · · · + αd xd + β ≥ 0} (1)

with a rational number β and coprime integers α1, . . . , αd ∈ Z.
The affine hull Aff(X) of a subset X ⊂ R

d is the smallest affine subspace of R
d

containing X . The convex hull of X will be denoted by conv(X).
All considered polytopes are assumed to be convex, i.e., a polytope is the convex

hull of a finite subset X ⊂ R
d . Equivalently, a polytope P is a bounded intersection of

finitely many closed affine half-spaces: P = ⋂n
i=1 H

+
i . The faces of P are the inter-

sections of the form P ∩ H where H+ ⊂ R
d is a closed affine half-space containing

P . Also P is a face of itself. The vertices of P are the 0-dimensional faces of P , and
the (d − 1)-dimensional faces of P are called the facets. The vertex set of P will be
denoted by vert(P). A simplex is a polytope whose number of vertices exceeds the
dimension of the polytope by one.

A full-dimensional polytope P ⊂ R
d admits a unique representation P =⋂n

i=1 H
+
i , where the H+

i ⊂ R
d are closed affine half-spaces and dim(P∩Hi ) = d−1,

i = 1, . . . , n. We call this representation the irreducible representation of P .
For every polytope P ⊂ R

d , its interior and the boundary with respect to Aff(P)

will be denoted, respectively, by int(P) and ∂P = P \ int(P).
A lattice polytope P ⊂ R

d is a polytope whose vertices are lattice points, i.e.,
elements of Z

d . A rational polytope has its vertices in Q
d .

A lattice simplex is called unimodular if the edge vectors at some (equivalently,
any) vertex define a part of a basis of Z

d .
Let X be a subset of R

d such that Aff(X) = Aff(L(Aff(X))), for example a lattice
polytope. Thenwe can assign to X a normalized volume: it is themeasure onAff(X) in
which a unimodular simplex in Aff(X) has volume 1. If Aff(X) = R

d , the normalized
volume equals d! times the Euclidean d-volume and will be denoted by vold . Note
that the normalized volume is invariant under integral-affine transformations, but not
under Euclidean isometries of R

d if dim Aff(X) < d.
For a full-dimensional lattice polytope P ⊂ R

d , the normalized volume vold(P)

is a natural number. Moreover, P is a unimodular simplex if and only if vold(P) = 1.
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Let P ⊂ R
d and Q ⊂ R

e be two lattice polytopes. A (d + e + 1)-dimensional
lattice polytope R is a join of P and Q if it is unimodularly equivalent to the standard
join, defined by

join(P, Q) = conv((P, 0, . . . , 0
︸ ︷︷ ︸

e+1

), (0, . . . , 0
︸ ︷︷ ︸

d

, 1, Q)) ⊂ R
d+e+1.

Thus unimodular simplices are joins of lattice points.
A d-dimensional polytope will be called a d-polytope. For a lattice d-polytope

P ⊂ R
d and a facet F ⊂ P , there exists a unique affine map, the facet-height

function, htF : R
d → R such that htF (Zd) = Z, htF (F) = 0, and htF (P) ⊂ R+. If

Aff(F) bounds the half-space H+, then with the notation introduced in (1),

htF (x) = h(x) = α1x1 + · · · + αd xd + β.

A lattice polytope P ⊂ R
d is a unimodular pyramid over Q if P is a join of the

polytope Q and a lattice point. The polytope Q serves as the base and the additional
point serves as the apex of the pyramid P . If dim P = d, then P is a unimodular
pyramid over Q if Q is a facet of P and L(P) \ L(Q) is a single point that has height
1 over Q.

2.2 Cones and Hilbert Bases

A conical set C ⊂ R
d is a subset of R

d for which λx + μy ∈ C whenever x, y ∈ C
and λ,μ ∈ R+. A cone means a finitely generated, rational, and pointed conical set.
That is, a cone C ⊂ R

d is a subset such that C = R+x1 + · · · + R+xn for some
x1, . . . , xn ∈ Z

d and there is no nonzero element x ∈ C with −x ∈ C .
For a cone C , the additive submonoid L(C) ⊂ Z

d has a unique minimal generating
set, which is the set of indecomposable elements of the (additive) submonoid L(C) ⊂
Z
d . This set is called the Hilbert basis of the cone C and denoted by Hilb(C).
A cone C is called unimodular if Hilb(C) is a part of a basis of Z

d . Equivalently,
C is unimodular if Hilb(C) is a linearly independent set.

The faces of a cone C ⊂ R
d are the intersections of type H ∩C for a homogeneous

half-space H+ ⊂ R
d , containing C . Also C is a face of C . Among the faces of C we

have the extremal rays and facets.
A non-zero lattice vector x ∈ Z

d , x �= 0, is called primitive if it is the generator of
the monoid L(R+v) ∼= Z+. This holds if and only if the coordinates of x are coprime.
The primitive lattice vectors in the extremal rays of a cone C are called the extremal
generators of C . They belong to Hilb(C).

Assume d > 0. For a facet F of a d-cone C ⊂ R
d there is a unique linear map,

the facet-height function, htF : R
d → R such that htF (F) = 0, htF (Zd) = Z, and

htF (C) = R+. The last two equalities are equivalent to the condition that htF (L(C)) =
Z+.

Every lattice polytope P ⊂ R
d defines the cone C(P) ⊂ R

d+1 as follows. One
embeds P into R

d+1 by identifying x ∈ P with the point (x, 1) ∈ P × {1} and
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chooses C(P) as the union of the rays originating from 0 and passing through a point
of P × {1}. Then C(P) is generated by the vectors (x, 1), x ∈ vert(P), and these
vectors are the extremal generators of C(P).

We call the process of attaching the (d + 1)st coordinate 1 the homogenization of
coordinates. In order to facilitate it, we set x ′ = (x, 1) for x ∈ R

d . For y ∈ R
d+1 the

(d + 1)st coordinate is called its degree.

2.3 Simplicial Cones and Simplices

A cone of dimension d is simplicial if it has exactly d extremal rays, or, equivalently,
its extremal generators are linearly independent.

Let v1, . . . , vd ∈ Z
d be linearly independent and let C = R+v1 + · · · + R+vd

be the simplicial cone spanned by them. Moreover, let U = Zv1 + · · · + Zvd be the
sublattice and M = Z+v1+· · ·+Z+vd be the affine monoid generated by v1, . . . , vd .
The group U acts on R

d by translations, and a fundamental domain of this action is

par(v1, . . . , vd) = {a1v1 + · · · + advd : 0 ≤ ai < 1, i = 1, . . . , d}.

The set

Lpar(v1, . . . , vd) = par(v1, . . . , vd) ∩ Z
d

of the lattice points represents the orbits of U in Z
d , or, in other words, the residue

classes ofZ
d moduloU . Based on these observations one easily proves [5, Prop. 2.43]:

Proposition 2.1 With the notation just introduced, the following hold:

(a) E = Lpar(v1, . . . , vd) is a system of generators of the M-module L(C) (in the
self-explanatory terminology);

(b) (x + M) ∩ (y + M) = ∅ for x, y ∈ E, x �= y;
(c) #E = [Zd : U ];
(d) Hilb(C) ⊂ {v1, . . . , vd} ∪ E.

Sincewe are usually interested in the coneC spanned by v1, . . . , vd , we can andwill
assume that v1, . . . , vd are the extremal generators of C . The semi-open parallelotope
par(v1, . . . , vd) is called the basic parallelotope of C , and we call

μ(C) = [Zd : U ]

the multiplicity of C . One has μ(C) = vol(S) where S is the basic simplex with
vertices 0, v1, . . . , vd .

Let F be a facet of C and let v be the extremal generator opposite to F . Then we
have

μ(C) = htF (v)μ(F);

see [5, Prop. 3.9]. This formula reflects a stratification of Lpar(v1, . . . , vd):
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Proposition 2.2 Lpar(v1, . . . , vd) contains exactly μ(F) lattice points of height j
over F, j = 0, . . . , htF (v) − 1.

Proof Let m = htF (v). The group homomorphism

p : Z
d → Z/mZ, p(x) = htF (x) (mod mZ),

factors through Z
d/U . Thus each class in Z

d/U decomposes into μ(C)/m classes
that have the same height over F modulom. For each j = 0, . . . ,m−1 we must have
μ(F) such classes. ��

Let � be a lattice d-simplex. Then C(�) is a simplicial cone, and we may write
par(�) for the basic parallelotope of C(�) and Lpar(�) for its lattice points. Note
that

μ(C(�)) = vold(�).

The nonzero points in Lpar(�) are stratified into layers of constant degree. Clearly
the maximum degree in Lpar(�) is at most d and the minimum nonzero degree is at
least 1. There seems to be no complete description of this stratification, but in special
cases one has more information.

We are particularly interested in the case in which� is empty: the only lattice points
of � are its vertices. In this case one can say a little more:

Lemma 2.3 Suppose � is an empty simplex. Then Lpar(�) has no points in degrees
1 and d. In particular, if dim� = 3, then the nonzero elements of Lpar(�) live in
degree 2.

Proof That there are no points in degree 1 is the definition of ‘empty’, and that there
are no points of degree d follows if one applies the point reflection ρ : R

d → R
d at

the midpoint of par(�)

ρ(x) = (v′
1 + · · · + v′

d+1) − x,

where v1, . . . , vd+1 are the vertices of �. ��

3 Normal Polytopes

In this sectionwe introduce the class of normal polytopes, recall basic facts and several
explicit families. We also define an order structure on the set of normal polytopes in
R
d .

3.1 Normal polytopes

Definition 3.1 A polytope P ⊂ R
d is normal if, for all c ∈ N, one has

L(cP) = {x1 + · · · + xc : x1, . . . , xc ∈ L(P)}.
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The continuous version of Definition 3.1 is the equality

cX = X + · · · + X︸ ︷︷ ︸
c

, c ∈ N,

satisfied for any convex subset X ⊂ R
d , where the left hand side is the c-th dilation

and the right hand side the Minkowski sum of c copies of X .
This version of ‘normal’ is used in many sources. It is called ‘integrally closed’ in

[5, Chap. 2] where ‘normal’ was used for a weaker property, namely the normality
of the monoid M(P) defined below. Further, in [9, p. 4] the authors distinguish the
Integral Decomposition Property (IDP) from normality. The first one is referring to the
ambient lattice, aswedo, the secondone to the lattice generated by integral points of the
polytope. In this paper we prefer the more succinct ‘normal’ to the more algebraically
oriented ‘integrally closed’.

By Pick’s 19th century theorem [5, Cor. 2.54] all lattice polygons are normal. But
in high dimensions, starting with 3, the normal polytopes form a small portion of all
lattice polytopes.

The next theorem encapsulates some basic facts about normal polytopes, the parts
(a), (b), (c) and (d) being direct consequences of Definition 3.1 and the parts (e), (f),
(g), (h) and (i) being proved in [3, 3.1], [5, 2.81, 2.57], [12], and [16], respectively.

Theorem 3.2 (a) A lattice polytope that is unimodularly equivalent to a normal poly-
tope, is normal.

(b) If P is a union of normal polytopes then P is normal.
(c) If P is normal then every face of P is normal.
(d) Cartesian products and joins of normal polytopes are normal. Unimodular pyra-

mids over normal polytopes are normal; in particular, unimodular simplices are
normal.

(e) If P is normal then for every complete flag of faces

F : F0 ⊂ F1 ⊂ · · · ⊂ Fd−1 ⊂ P, d = dim P,

there exists an F-incident unimodular d-dimensional simplex � ⊂ P, i.e.,

dim(� ∩ Fi ) = i, i = 1, . . . , d − 1.

(f) For any lattice polytope P, the dilated polytopes cP are normal as soon as c ≥
dim P − 1.

(g) Lattice parallelotopes (not necessarily rectangular) of any dimension are normal.
(h) A full dimensional lattice polytope P ⊂ R

d is normal if the primitive normal vec-
tors to the facets of P form a subset of a root system, whose irreducible summands
are of type A, B, C, or D.

(i) A lattice polytope P is normal if each of its edges contains at least 4d(d + 1) + 1
lattice points.When P is a lattice simplex this bound can be lowered to d(d+1)+1.

Call a lattice polytope P ⊂ R
d smooth if the primitive edge vectors at every vertex

v ∈ P form a part of a basis of Z
d . The terminology is explained by the observation
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that the projective toric variety of a lattice polytope is smooth if and only if P is
smooth; see [5, p. 371]. Oda’s question asks whether smooth lattice polytopes are
normal; see, for instance, [13] and the references therein.

The recent extensive treatment [14] of unimodular triangulatons for various classes
of normal polytopes presents the state of the art in the field.

For every lattice polytope R the set L(R)′ = {x ′ = (x, 1) : x ∈ L(P)} generates
an affine submonoid M(R) of Z

d+1, and the normality of R (as used in this paper) is
equivalent to Hilb(C(R)) = L(R)′, or, in other words, to the equality

∑

x∈L(R)

Z+(x, 1) = L(C(R)) (⊂ Z
d+1),

of graded affine monoids, where the degree is chosen as introduced in Sect. 2.2. We
set M(R) = L(C(R)). In algebraic terms, it is the integral closure of M(R) in Z

d+1

(and in general is larger than the normalization of M(R), the integral closure in the
sublattice generated by M(R)). See [5, Chap. 2] for an extensive discussion. The k-th
degree components of the monoids just introduced will be denoted by M(R)k and
M(R)k , respectively.

As a consequence of Lemma 2.3 one can show (see [5, Thm. 2.52]):

Lemma 3.3 Let P be a lattice polytope. Then all elements of Hilb(P) have degree
≤ d − 1.

3.2 The poset NPol(d)

Definition 3.4 The partially ordered set NPol(d) is the set of normal polytopes in R
d ,

ordered as follows: P < Q if and only if there exists a finite sequence of normal
polytopes of the form

P = P0 ⊂ · · · ⊂ Pn−1 ⊂ Pn = Q,

#L(Pi ) = #L(Pi−1) + 1, i = 1, . . . , n.
(2)

One easily observes that, in the sequence above, if dim(Pi ) = dim(Pi−1) + 1 then
Pi is a unimodular pyramid over Pi−1.

The importance of the posetNPol(d) is explained as follows. In the late 1980s, in an
attempt to give amore succinct characterization of the normal point configurations, the
following two distinguished conjectures were proposed in [17], of which the second
one had been already asked as a question in [8]:
Unimodular cover (UC) A lattice polytope P is normal if and only if P is the union
of unimodular simplices.

Integral carathéodory property (ICP) A lattice polytope P ⊂ R
d is normal if and only

if for an arbitrary natural number c ∈ N and an arbitrary integer point z ∈ L(cP) there
exist integer points x1, . . . , xd+1 ∈ L(P) and integer numbers a1, . . . , ad+1 ∈ Z+
with z = a1x1 + · · · + ad+1xd+1 and a1 + · · · + ad+1 = c.
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Informally, (UC) says that the continuity, modeled by normal polytopes, is piece-
wise by nature, resulting from the constituent unimodular simplices. The (ICP) is
an arithmetic version of (UC). (The original conjectures were formulated for general
conesC that are not necessarily of the formC(P) for normal P , using Hilb(C) instead
of L(P).)

The first indication of the relevance of the poset NPol(d) was the following obser-
vation in [3], without introducing the poset structure in NPol(d) explicitly: for both
conjectures (UC) and (ICP) it is critical to check their validity on theminimal elements
of the poset NPol(d). Minimal polytopes are called tight polytopes in [3]. The very
existence of tight polytopes is not quite intuitive: computational evidence shows that
many descending sequences of the type (2) reversed lead to complete erasure of the
initial normal polytope. However, tight polytopes have popped up in dimensions 4 and
higher, and the larger the dimension themore frequently so. A counterexample to (UC)
was finally found in [3]. In [6] it was shown that the example also disproves (ICP).
That (ICP) is strictly weaker than (UC) was shown in [2], where the same strategy
of shrinking normal polytope was used with the following important refinement: if a
shrinking process halts at a minimal counterexample to (UC) then chances are that,
somewhere along the descent path, the stronger property (UC) is lost before (ICP).
This can be viewed as the second indication of the relevance of the poset NPol(d) in
understanding the normality property.

Every normal 3-dimensional polytope that is comparablewith a unimodular simplex
within NPol(3), is covered by unimodular simplices, as follows immediately from
[3,Lem. 2.2]. In particular, the lack of nontrivialminimal elements, if true,would imply
that (UC) holds for normal polytopes of dimension 3. (UC) is open in dimension 4 as
well, but there are nontrivial minimal elements in NPol(4) so that the same argument
cannot work.

One easily generates infinitely many higher dimensional minimal normal polytopes
from a single one. In fact, for any minimal element P ∈ NPol(d) and any element
Q ∈ NPol(e) the product polytope P×Q is aminimal element ofNPol(d+e).However,
as this paper shows, the situation is very different for maximal normal polytopes – so
far we have been able to find only a handful (up to unimodular equivalence) maximal
normal polytopes in NPol(4) and NPol(5).

4 Lattice Stratifications and Quantum Jumps

In this section we single out the elementary relations in the poset NPol(d) between
two full dimensional polytopes as the main object of our study and show that, already
in dimension 3, their arithmetic picture is quite involved.

4.1 Large Empty Layers Around Polytopes

In the following it will be very convenient to say that a facet F of a d-polytope P ⊂ R
d

is visible from x ∈ R
d \ P if for every y ∈ F the line segment [x, y] intersects P

exactly in y. Note that htF (x) < 0 if and only if F is visible from x because the points
in P have nonnegative height by convention.
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Definition 4.1 Let P ⊂ R
d be a full-dimensional lattice polytope.

(a) For a point z ∈ Z
d \ P the height htP (z) of z over P is defined by

htP (z) = max(− htF (z) : F ⊂ P a facet, visible from z).

The points in P have height 0 over P .
(b) For j ∈ Z+, the polytope P− j is defined by

P− j = {x : htP (x) ≤ j}.

(c) The lattice stratum of height j around P is the subset ∂P− j ∩ Z
d .

(d) The width of P with respect to a facet F ⊂ P and the absolute width are defined
as follows

widthF P = max(htF (x) : x ∈ P),

width P = max(widthF P : F ⊂ P a facet).

The term ‘stratum’ above is justified: one has the stratification

Z
d \ P =

∞⋃

j=1

(L(∂P− j )). (3)

Informally, L(∂P− j ) consists of lattice points outside of the polytope P on ‘lattice
distance’ j from P . The polytopes P− j are rational polytopes, but usually not lattice
polytopes. In fact, as we will see below, L(∂P− j ) can very well be empty.

Remark 4.2 If P is a normal polytope then it defines a normal projective toric vari-
ety X together with a very ample line bundle L providing a projectively normal
embedding. The points L(P) correspond to a basis of global sections H0(X,L )

[5, Chap. 10.B][10, Chap. 4.3]. Let K be the canonical (Weil) divisor on X . Points
of L(P− j ) correspond to a basis of global sections H0(X,L − j K ). In particular, if
some strata are empty this is equivalent to the fact that by adding the (effective) divisor
−K we do not obtain any new global sections.

Many of our results may be interpreted in this language. For example, Theorem 4.3
below implies that there is no lower bound on j , even for normal toric threefolds X with
a very ample line bundleL , guaranteeing the inequality h0(X,L ) < h0(X,L − j K ).

Two easy observations:

(i) If a point z ∈ Z
d \ P is at the smallest possible positive height above P , then

L(conv(P, z)) = L(P) ∪ {z}.

(ii) widthF P is always attained at a vertex of P not in F . It is positive since P �= F .

123



192 Discrete Comput Geom (2016) 56:181–215

x1

x2

x3

Fig. 1 The polytope of Theorem 4.3

Without any constraints on the lattice point z and the lattice polytope P , except
the requirement L(conv(P, z)) = L(P) ∪ {z}, there is no upper bound for the heights
htP (z), not even for normal 3-polytopes P . The simplest such example is the unit
tetrahedron P = conv(0, e1, e2,−e3) and the points zk = e1 + e2 + ke3: we have
htP (zk) = k. Although one should note that none of the lattice strata around a uni-
modular simplex of any dimension is empty.

Our next result shows that there is no dimensionally uniform upper bound for the
height of the lowest lattice points above lattice polytopes, not even in the class of
normal polytopes, and not even in dimension 3.

Theorem 4.3 There is a sequence of normal 3-polytopes Pk ⊂ R
3 and lattice points

zk ∈ Z
d \ Pk, k ∈ N, such that for every index k we have:

(a) width Pk = 2k(k + 1)(k2 + k + 1),

(b) the lattice strata around Pk up to height k − 1 (≈ 4
√

1
2 width Pk as k → ∞) are

all empty.
(c) htP (zk) = k and conv(Pk, zk) ∈ NPol(d).

As mentioned in observation (i) above, in part (c) we also have L(conv(Pk, zk)\Pk)
= {zk}.
Proof Consider the cross-polytopes (Fig. 1)

Pk = conv(±ke1,±(k + 1)e2,±(k2 + k + 1)e3) ⊂ R
3, k ∈ N.

Each Pk is the union of eight congruent copies of the rectangular tetrahedron

�k = conv(0, ke1, (k + 1)e2, (k2 + k + 1)e3) ⊂ R
3.
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For every k the tetrahedron

conv(0, ke1, (k + 1)e2, e3), k ∈ N,

is a unimodular pyramid over the right triangle conv(0, ke1, (k+1)e2) and so is normal.
Therefore, by [4, Thm. 1.6], the tetrahedra

�k = conv(0, ke1, (k + 1)e2, (k(k + 1) + 1)e3)

are normal for all k ∈ N. By Theorem 3.2(a), the cross-polytopes Pk are normal for
all k ∈ N.

To complete the proof of (b), because of reasons of symmetry between the coordi-
nate orthants in R

3, it is enough to show that

min(− htFk (z) : z ∈ Z
d+ \ �k) ≥ k, k ∈ N, (4)

where Fk is the facet of �k opposite to 0. The corresponding height function htFk :
Z
3 → Z is given by

(ξ1, ξ2, ξ3) �→ −(k + 1)(k2 + k + 1)ξ1 − k(k2 + k + 1)ξ2

− k(k + 1)ξ3 + k(k + 1)(k2 + k + 1).

The lattice point zk = (k − 1, 1, 1) belongs to �k and satisfies htFk (zk) = 1.
Because (1,−1,−1) = ke1 − zk and ke1 ∈ vert(�k), the parallel translates

( j,− j,− j) + Fk ⊂ R
3, j ∈ N,

of the triangle Fk live in the planes that are defined correspondingly by htFk (−) = − j .
Since these are unimodular triangles, we have

(( j,− j,− j) + Aff(Fk)) ∩ Z
3

= (k + j,− j,− j) + Z(−k, k + 1, 0) + Z(−k, 0, k2 + k + 1).

Therefore, for every natural number k, the inequality (4) is equivalent to the system
of equalities

((k + j,− j,− j) + Z(−k, k + 1, 0) + Z(−k, 0, k2 + k + 1)) ∩ R
3+ = ∅,

j = 1, . . . , k − 1.
(5)

For the mentioned range of j , if the components of the triple

(k + j,− j,− j) + a(−k, k + 1, 0) + b(−k, 0, k2 + k + 1)

are positive for some a, b ∈ Z then − j < 0 implies a, b > 0 and k + j ≤ 2k − 1
implies a + b < 2. This contradiction proves (5) and, hence, (b).
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Because we know the height functions of the facets, (a) follows easily.
To prove (c), we put zk = (0, 1, k2 + 1). One can immediately check that zk has

height k and that only the facets in the orthants of R
3 with sign patterns + + + and

− + + are visible from zk . By symmetry it is enough to prove that conv(�k, zk) is
normal.

According to Theorem 4.11 below, it is enough to exhibit lattice points in �k that
have heights 1, . . . , k − 1 over F : y j = (k − j, j, j), j = 1, . . . , k − 1, is in �k and
has height j over F . ��

While there is no upper bound on the number of strata around P that do not contain
lattice points, we have the following uniform bound depending only on width P .

Proposition 4.4 For all natural numbers d and every lattice polytope P ⊂ R
d there

is a lattice point z /∈ P such that htP (z) ≤ width P. In particular, there is a point
z /∈ P such that L(conv(P, z)) = L(P) ∪ {z} and htP (z) ≤ width P.

Proof Choose an edge of P and consider its two endpoints u, v. Then z = u+2(v−u)

/∈ P since it lies on the straight line through u and v and does not belong to the edge.
For any face F of P one has

htF (z) = htF (2v − u) = 2 htF (v) − htF (u) ≥ − htF (u) ≥ −widthF P.

(Note that the coefficients in 2v − u sum to 1.) ��

4.2 Quantum Jumps

Definition 4.5 (a) A minimal (resp. maximal) polytope is a minimal (resp. maximal)
element of NPol(d).

(b) A pair of d-polytopes (P, Q) in NPol(d) with P < Q and #L(Q) = #L(P) + 1
will be called a quantum jump from P , or simply a jump (of dimension d). If z is
the additional lattice point in Q, we will say that z is a quantum jump over P .

(c) The height of a jump (P, Q) is defined to be the height over P of the only lattice
point in Q \ P; we denote this number by ht(P, Q).

Remark 4.6 There are several natural measures one can associate to a jump (P, Q), of
which the height is one. Examples include the volume v(P, Q), equal to vold(Q \ P),
and the base b(P, Q), equal to the sum of (d − 1)-volumes of the facets F ⊂ P ,
visible from the vertex of Q outside P , normalized correspondingly with respect to
the lattices Z

d ∩Aff(F). Both these measures are natural numbers. If z = vert(Q)\ P
then the equality

v(P, Q) = b(P, Q) ht(P, Q)

is equivalent to the condition that z is on same height with respect to any facet F ⊂ P ,
visible from z.

The chains in NPol(d), consisting of jumps that maximize the volumes at each
step, lead to normal polytopes in which the lattice points are relatively rarefied. One
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may think that such ascending chains have potential to lead to maximal elements in
NPol(d): after all, the lattice points in a normal polytope are meant to be regularly
distributed. The reality is not as simple though; see Sect. 7.

Example 4.7 (Dark vertices of polygons) The order in NPol(2) coincides with the
inclusion order on the lattice polygons in R

d and, consequently, the order complex
of NPol(2) is topologically trivial, i.e., contractible. In fact, all lattice polygons are
normal (Theorem 3.2(f)) and if P � Q in NPol(2) and v is a vertex of Q, not in P ,
then (Q1, Q) is a jump, where Q1 = conv(L(Q \ {v}). Iterating the process, we find
a finite descending sequence

Q = Q0 ⊃ Q1 ⊃ · · · ⊃ Qn = P,

(Qi+1, Qi ) a jump for every i,

n = #L(Q) − #L(P).

Although no polygon can be maximal, constructing jumps from a given polygon is
not quite straightforward. Let us say that a vertex v of P is dark if there is no jump z
over P such that v is visible (or ‘illuminated’) from z. The origin is a dark vertex of
the polygon with vertices

(0, 0), (0, 1), (1, 0), (5, 1), (1, 5).

In fact, every jump z from which (0, 0) is visible must have one coordinate equal to
−1. But each of these points has height > 1 over one of the other facets. See Fig. 2;
the dashed lines are the lines of height −1 over the facets parallel to them.

If we add (20, 5) as a further vertex, then (0, 0) and (1, 0) will become dark. This
construction can be continued an arbitrary number of steps: if v−2, v−1, v0, . . . , vn+2

Fig. 2 A polygon with a dark
vertex
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have been constructed such that v0, . . . , vn are dark, choose the next vertex vn+3 at
height 5 over [vn, vn+1] and height 1 over [vn+1, vn+2]. This will lead to a polygon
with an arbitrary number of adjacent dark vertices at which the corner cones are
unimodular. By the standard technique of toric desingularization [10, Chap. 11], we
can change the polygon to a smooth one keeping the adjacent dark vertices untouched
and still dark.

If the construction is continued infinitely many times, it yields an unbounded poly-
gon P with all dark vertices and unimodular corner cones. Equivalently, all lattice
points outside P have infinite height over it.

Example 4.8 (The poset NPol(3)) As shown above, the order in NPol(2) is simply the
inclusion order. Although it is open whether extreme elements apart from unimodular
simplices exist in NPol(3), the example below, found by computer search, shows that
the inclusion order is finer than the one induced by jumps.

Consider the 3-polytope P with vertices:

(0, 0, 2), (0, 0, 1), (0, 1, 3), (1, 0, 0), (2, 1, 2), (1, 2, 1).

It is a normal lattice polytope with two additional lattice points: (1, 1, 2), (1, 1, 1).
Removing either the first or the second vertex and taking the convex hull of the

other lattice points in P yields a nonnormal polytope. However, if Q is the convex
hull of all lattice points in P apart from the first and the second vertex, then Q is a
normal polytope. Clearly Q is inside P , but Q �< P . More examples similar to the
one above can be found.

Example 4.9 (Unimodular simplices) Any two unimodular d-simplices in R
d belong

to same connected component of NPol(d). In fact, let �1 and �2 ⊂ R
d be two

unimodular simplices and v ∈ �1 andw ∈ �2 be vertices. Choose a lattice broken line
[v1, v2, . . . , vk] inR

d , where v = v1,w = vk , and v j+1−v j ∈ Z
d is a primitive vector

for every j = 1, . . . , k−1.Thenwehave v < �1,w < �2, andv j , v j+1 < [v j , v j+1].
If, in addition, dim�1 = dim�2 = d, then the two simplices canbe even connected

by quantum jumps. To this end,wefirst reduce the general case to the casewhen�1 and
�2 share a vertex. Let [v1, . . . , vk] be a broken line as above. There exist unimodular
d-simlices T1, . . . , Tk−1 such that v j , v j+1 ∈ vert(Tj ) for every j = 1, . . . , k − 1.
In particular, it is enough to connect by quantum jumps the simplices in each of the
doublets

{�1, T1}, {T1, T2}, . . . , {Tk−1,�2}.

But the simplices in each of these pairs share a vertex. At this point without loss of
generality we can assume that 0 is a vertex of �1 and �2. Let x1, . . . , xd ∈ �1 and
y1, . . . , yd ∈ �2 be the other vertices.Consider the following twomatrices inGLd(Z):
A = [x1 . . . xd ] and B = [y1 . . . yd ]. By an appropriate enumeration of the nonzero
vertices, we can further assume det A = det B = 1. Then, because Z is a Euclidean
domain, every integer matrix with determinant 1 is a product of elementary matrices:
SLd(Z) = Ed(Z). Equivalently, we can transform {x1, . . . , xd} into {y1, . . . , yd} by
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a series of successive elementary transformations of the following two types:

{z1, . . . , z p, . . . , zq , . . . , zd} −→ {z1 . . . , z p, . . . , zq + z p, . . . , zd},
{z1, . . . , z p, . . . , zq , . . . , zd} −→ {z1 . . . , z p, . . . , zq − z p, . . . , zd}.

In particular, it is enough to show that, for a basis {z1 . . . , zd} ⊂ Z
d and two natural

numbers 1 ≤ p �= q ≤ d, the unimodular simplices in each of the pairs

{conv(0, z1, . . . , zd), conv(0, z1 . . . , z p, . . . , zq + z p, . . . , zd)},
{conv(0, z1, . . . , zd), conv(0, z1 . . . , z p, . . . , zq − z p, . . . , zd)}

can be connected by quantum jumps. For simplicity of notation we can assume p = 1
and q = 2. Now the desired jumps are provided by:

conv(0, z1, z2, . . . , zd ) < conv(0, z1, z1 + z2, z2, . . . , zd ) > conv(0, z1, z1 + z2, . . . , zd ),

conv(0, z1, z2, . . . , zd ) < conv(0, z1, z1 − z2, z2, . . . , zd ) > conv(0, z1, z1 − z2, . . . , zd ),

where the middle polytopes are normal, each being the union of two unimodular
simplices:

conv(0, z1, z1 + z2, z2, . . . , zd)

= conv(0, z1, z2, . . . , zd) ∪ conv(z1, z1 + z2, z2 . . . , zd),

conv(0, z1, z1 − z2, z2, . . . , zd)

= conv(0, z1, z2, . . . , zd) ∪ conv(0, z2 − z1, z2, . . . , zd).

Below, in Theorems 4.11, 5.1, and 6.1, we will give useful criteria for a pair of
lattice polytopes to be a quantum jump. In dimension 2 the situation is very simple.

Proposition 4.10 Let P be a normal polytope.

(a) If z is a height 1 lattice point over P, it is a quantum jump. In particular, the first
lattice stratum around any maximal polytope is empty.

(b) If dim P ≤ 2 then every quantum jump over P has height 1.

Proof (a) Clearly there are no additional lattice points in Q = conv(P, z). Let F be a
facet of P that is visible from z. Then F is normal by Theorem 3.2(c), and conv(F, z),
being a unimodular pyramid over F , is normal by Theorem 3.2(d). Thus Q is normal
by Theorem 3.2(b).

(b) This is obvious in dimension 1. In dimension 2, let F be a facet of P that is
visible from z, and let � be a unimodular line segment in F . Then conv(�, x) is an
empty triangle and therefore unimodular. But this implies htF (z) = −1. ��

4.3 Quantum Jumps in Dimension 3

In dimension 3we have a rather precise description of quantum jumps (P, conv(P, z)),
which uses the subdivision of P according to the rays emerging from z and passing
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Fig. 3 The subdivision of P by
facets visible from z

z
P

Pz,F

Pz,G

F

G

through a facet F visible from z: we set

Pz,F = {x ∈ P : [x, z] ∩ F �= ∅};

see Fig. 3.

Theorem 4.11 Let P ⊂ Q be lattice 3-polytopes such that P is normal and #L(Q) =
#L(P)+1. Let z be the additional lattice point in Q. Then the following are equivalent:

(a) z is a quantum jump over P.
(b) For each facet F of P that is visible from z, the polytope Pz,F contains

at least (equivalently: exactly) μ(F) lattice points y such that htF (y) = j ,
j = 1, . . . , htF (z) − 1.

Proof Let F be a facet of P that is visible from z. Since F has dimension 2 it has a
unimodular triangulation 	. Let � be a triangle in 	. For (b) �⇒ (a) it is enough to
show that all degree 2 lattice points in C(Q) \ C(P) are reducible (Lemma 3.3).

Let y be such a point. Since the tetrahedra conv(�, z) form a triangulation of
conv(F, z) there are two possibilities for y:

(i) y is in the boundary of one (or more) cones C(�, z);
(ii) y is in the interior of exactly one such cone.

In case (i) y is reducible since the facets of conv(�, z) are unimodular: they are empty
triangles. Thus the Hilbert basis of such a facet lives in degree 1, and the degree 1
lattice points different from z′ are of the form x ′ with x ∈ P .

In case (ii) we have y ∈ Lpar(�, z). Observe that there is exactly one point in
Lpar(�, z) that has height j , j = 1, . . . ,m − 1, over the facet � ⊂ conv(�, z),
where m = htF (z) (Proposition 2.2). We want to show that y = u′ + z′ for a lattice
point u of height m − j in Pz,F .

It is enough to show that

⋃

	

Lpar(�, z) = {w′ + z′ : w a lattice point of height m − j in Pz,F }. (6)
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Equality (6) follows if we show that every point w′ + z′, where w′ is as in (6), is in
the interior of par(�, z) for one of the triangles �.

Clearly w′ + z′ is outside C(P) since it has negative height over F (considered as
a facet of P). But it is in C(Q). So one of the alternatives (i) or (ii) applies. Since
the lattice points satisfying (i) are sums v′ + z′ with v a vertex of � for some � and
w /∈ F , the alternative (i) is excluded. So (ii) applies, and we get indeed the desired
μ(F) points — one in each Lpar(�, z).

Similarly, for (a) �⇒ (b), for each � we consider the point of height j and degree
2 in Lpar(�, z). As Q is normal, each such point must be a sum of two homogenized
points in L(Q), one of which has to be equal to z′. All the other pointsmust be different,
belong to Pz,F , and have height m − j over F . ��
Remark 4.12 Theorem 4.11 can of course be used to analyze the jumps over specific
polytopes. For example, let P = 2�pq where �pq is the empty 3-simplex spanned
by 0, e1, e3, qe1 + pe2 + e3, 1 ≤ q ≤ p − 1, p, q coprime. Then P has facets of
multiplicity 4, but for each facet F only a single lattice point of height 1 over F . Thus
a quantum jump over P must have height 1 (and such exists). It is an old result of
White [18] that all empty 3-simplices are unimodularly equivalent to the �pq .

Remark 4.13 All normal 3-polytopes P that have been encountered in our experi-
ments, millions of them, have the following remarkable property: every point in the
lowest nonempty stratum over P is a jump. On the other hand, the jumps in NPol(3)
need not be confined to the lowest nonempty stratum.

This changes completely in dimension 4. There exist 4-polytopes over which there
is no jump at all (see Sect. 7), but there are examples where jumps exist and none of
them belongs to the lowest nonempty stratum.

Despite all the information on NPol(3) at hand, we do not know whether there are
maximal normal 3-polytopes (or nontrivial minimal elements). In one special case we
can provide the answer.

Proposition 4.14 There are no simplices that are maximal elements of NPol(3).

Proof Let S ∈ NPol(3) be a simplex with vertices v0, v1, v2, v3 and F =
conv(v1, v2, v3). Among the lattice points not in S, from which the only visible facet
is F , let z minimize | htF (z)|. Say htF (z) = −k. We claim that z is a quantum jump.
We have L(conv(S, z)) = L(S) ∪ {z}. Because F is the only visible facet, we have
Sz,F = S, using notation as in Theorem 4.11. Hence, by the mentioned theorem,
we only have to check that S contains μ(F) lattice points of height j over F for
j = 1, . . . , k − 1.
Note that there are no lattice points in Swith height htF (v0)−1, . . . , htF (v0)−k+1.

Indeed, if such a point existed, we could consider the ray starting at v0 passing through
that point. The first point on that ray outside S would contradict the choice of z. In
particular htF (v0) ≥ k. Moreover, in view of the inversion map

Lpar(S) → Z
4, m → v′

0 + v′
1 + v′

2 + v′
3 − m,

this implies that there are no points of degree three and of height j over F for j =
1, . . . , k−1 in Lpar(S). Hence, all height j points must appear in degree two and one.
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However, if such a point q of degree two existed, then the only facet visible from the
point

w = v′
1 + v′

2 + v′
3 − q = (v′

1 + v′
2 + v′

3 + v′
0 − q) − v′

0

would be F , and htF (w) = − j , which would contradict the choice of z. We thus
conclude that the height j points must appear in degree one. But there are exactly
μ(F) such points by Proposition 2.2. ��
As it turns out, already in dimension 4 there are maximal normal simplices, see Sect. 7.

5 Bounding Quantum Jumps in NPol(d)

In this section we derive a bound for the heights of quantum jumps in all dimensions
and show that this bound is sharp.

We begin with a criterion for a quantum jump.

Theorem 5.1 Let P ⊂ Q be lattice d-polytopes such that P is normal. Suppose
that L(Q) = L(P) ∪ {z}. For every facet F of P that is visible from z, let 	F be a
triangulation of F. Then the following are equivalent:

(a) Q is normal.
(b) For each facet F of P that is visible from z and every (d − 1)-simplex � ∈ 	F

one has

y − z′ ∈ C(P)

for every y ∈ Lpar(�, z) with htF (y) < 0.

Proof Suppose that Q is normal and let y be one of the points as in (b). Then y ∈
C(Q) \C(P). On the other hand, the Hilbert basis of C(Q) is given by the vectors x ′,
x ∈ L(P), and z′. So z′ must appear in a representation of y as a sum of Hilbert basis
elements. The ray from z′ towards y leaves the simplicial cone C(�, z) through the
facet C(�) and thus passes through C(F). Since y − z′ ∈ C(Q) lies on this ray and
has positive height over F , it must be in C(P).

For the converse we observe that the simplices conv(�, z), � ∈ 	F , are a trian-
gulation of conv(F, z). Then the union of Hilb(C(P)), z′ and the Lpar(�, z) \C(P),
where � ranges over the (d − 1)-simplices in 	F , contains a generating set of the
monoid L(C(Q)). But (b) implies that all the lattice points in Lpar(�, z) \ C(P) are
reducible. ��

The bound on all quantum jumps over a polytope P ∈ NPol(d) in Theorem 5.3
below can be also derived from Theorem 5.1. However, we present an independent
proof which uses a weaker condition than normality, related to the s.c. very ampleness
of lattice polytopes.

Definition 5.2 A lattice polytope R ⊂ R
d is very ample if Hilb(R+(R−v)) ⊂ R−v

for every vertex v of R.
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Normality implies very ampleness but not conversely; very ample polytopes define
the normal projective toric varieties and very ample line bundles on them, which
also explains the name; a lattice polytope R ⊂ R

d is very ample if and only if the
complement M(R) \ M(R) for the monoids introduced in Sect. 3.1 is finite. For these
and other generalities see [1, Sect. 2].

We have already seen in Theorem 4.3 that the situation drastically changes from
dimension 2 to 3: there is no uniform limit on the number of empty strata for all
P ∈ NPol(3). For fixed dimension and width there is however such a bound (even
after relaxing the normality condition).

Theorem 5.3 Let P ⊂ R
d be a (not necessarily very ample) lattice d-polytope and

let z be a point in Z
d outside P. If Hilb(R+(P − z)) ⊂ P − z then

| htF (z)| ≤ 1 + (d − 2)widthF P (7)

for every facet F of P that is visible from z. In particular, if the polytope conv(P, z)
is very ample and L(conv(P, z)) = L(P) ∪ {z}, then | htF (z)| satisfies the bound (7).

Proof By applying the parallel translation by −z, we can assume z = 0. Set R =
conv(P, 0). Let F be a facet of P , visible from 0. By Theorem 3.2(f), the dilated
polytope (d − 1) conv(F, 0) is normal. Hence, by Theorem 3.2(e), there exists a
lattice point x ∈ (d − 1) conv(F, 0) on lattice height 1 above the facet (d − 1)F ⊂
(d − 1) conv(F, 0).

Because Hilb(R+P) ⊂ P , the point x is a positive integral linear combination of
lattice points of P . However, x cannot be the sum of (d − 1) or more such points
because the htF -value of the sum will be at least (d − 2)| htF (0)|, whereas htF (x) =
(d − 2) htF (0) − 1.

In particular, x is the sum of at most (d−2) points from L(P). The largest htF -value
of such a sum is widthF P + (d − 3)(widthF P + | htF (0)|), forcing

htF (x) = (d − 2)| htF (0)| − 1 ≤ widthF P + (d − 3)(widthF P + | htF (0)|)
�⇒ | htF (0)| ≤ 1 + (d − 2)widthF P.

��
Remark 5.4 One should note that in the special case when (P, conv(P, z)) is a jump,
Theorem 5.1 contains information beyond the bound in Theorem 5.3: the multiplicity
of F also plays an essential role. We have already observed this in Remark 4.12.
Furthermore, if conv(P, z) is normal but P is not, then one can showbased onTheorem
5.1 that the bound in Theorem 5.3 can be improved to | htF (z)| ≤ (d − 2)widthF P .

We will see below that the bound in Theorem 5.3 cannot be improved, not even for
quantum jumps of any dimension d.

As a consequence the number of lattice points that are candidates for quantum jumps
over a polytope P is bounded, and the set of candidates can be efficiently described:
the candidates are contained in the set

L
(
P−1−(d−2)width P) \ P.
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Fig. 4 The polytope of
Theorem 5.5 for d = 3, w = 1

x1

x2

x3
z

This is the basis of our experiments with quantum jumps that helped us to findmaximal
elements in NPol(d) for d = 4 and d = 5.

Our next theorem shows that the bound in Theorem 5.3 is sharp even for normal
polytopes (Fig. 4).

Theorem 5.5 For every natural number d ≥ 2 and w ≥ 1 there exists a jump (P, Q)

of dimension d satisfying the following conditions:

(a) The vertex of Q, not in P, is visible from exactly one facet F ⊂ P ,
(b) widthF P = w,
(c) ht(P, Q) = (d − 2)w + 1.

Proof There is nothing to show for d = 2. Therefore we assume d ≥ 3.
We choose the polytope P to be spanned by the vertices 0, e1, . . . , ed−1 and−wed .

It is the top element of the unique chain of length w − 1 in NPol(d), starting with the
unimodular simplex conv(0, e1, . . . , ed−1,−ed) and finishing with P . In particular,
P is normal. Over the ‘horizontal’ facet F spanned by 0 and the ei , i ≤ d − 1, it has
width w.

Let

z = (1, . . . , 1, (d − 2)w + 1) = e1 + · · · + ed−1 + ((d − 2)w + 1)ed .

It is easy to check that z is the only additional lattice point in Q = conv(P, z), that
it has height (d − 2)w + 1 over F , and that F is the only facet of P that is visible
from F .

The critical issue is the normality of Q. For the application of Theorem 5.1 it is
advisable to use homogenized coordinates in R

d+1, as usual indicated by ′.
We claim that the nonzero points in Lpar(F, z) are given by

yk = u(e′
1 + · · · + e′

d−1) + vz′ + t0′,
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where

v = k

w(d − 2) + 1
, k = 1, . . . , w(d − 2),

u = 1 − v,

t = �s� − s, s = (d − 1)u + v.

In fact, since F is unimodular and vold(conv(F, z)) = (d − 2)w + 1, there are
exactly w(d − 2) points in Lpar(F, z), one on height k above C(F) for each k =
1, . . . , w(d − 2) (Proposition 2.2). Hence the indicated values of v are as above. The
sum u + v must be integer and 0 ≤ u < 1, which motivates the value of u. The last
coordinates of the points yk are integers and, simultaneously, 0 ≤ t < 1, yielding the
indicated values for t .

We have

yk = (1, . . . , 1, k, hk), k = 1, . . . , (d − 2)w.

For the difference y(d−2)w+1−k − z′ one obtains

(0, ..., 0,−k, 1), k = 1, ..., w,

(0, ..., 0,−k, 2), k = w + 1, ..., 2w,

...

(0, ...0,−k, d − 2), k = (d − 3)w + 1, ..., (d − 2)w,

where the (d + 1)-st coordinates on the left are computed by the formula

hk − 1 = �s� − 1 =
⌈

(d − 2)(w + k) + 1

(d − 2)w + 1

⌉

− 1.

All these points lie in C(P), i.e., after dehomogenization with respect to the last
coordinate we get points in P . ��
Remark 5.6 Theorems 4.11 and 5.5 rely on the exact knowledge of the distribution of
the numbers htF (x) in the critical areas relative to deg x .

In the proof of Theorem 5.5 there is only a single facet F visible from z and all
facets of conv(F, z) are not only empty, but even unimodular. This follows from the
fact that all nonzero elements of Lpar(F, z) are in the interior. But even under these
‘optimal’ conditions it seems difficult to find a transparent generalization of Theorem
4.11 to higher dimensions.

It is instructive to compute the heights of the elements of Lpar(F, z) over the other
facets of conv(F, z) from the proof of Theorem 5.5 for d = 4, w = 2. Over F the
degree 2 elements have heights 3 and 4, and the degree 3 elements have heights 1 and
2 (and the height 1 element lets us reach the upper bound). Over the other facets the
height distributions are 1, 2 in degree 2, vs. 3, 4 in degree 3 (three facets) and 3, 1 in
degree 2 vs. 2, 4 in degree 3.
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This example shows that one cannot predict a priori the distribution of heights over
a facet of an empty 4-simplex, not even if all facets are unimodular.

6 Spherical Polytopes

Throughout this section we fix a natural number d ≥ 2.
Under certain constrains on the shapes of the normal polytopes we can derive more

stringent bounds on the heights of quantum jumps than inTheorem5.3.More precisely,
in this section we show that for asymptotically spherical polytopes the heights of
jumps become infinitesimally small compared to the widths. This also naturally leads
to interesting number theoretical questions.

6.1 Asymptotically Infinitesimal Jumps

Below we will need the following criterion for quantum jumps, which is reminiscent
of a dehomogenized version of Theorem 5.1:

Theorem 6.1 Let P ∈ NPol(d) with 0 /∈ P and Q = conv(P, 0). Then the following
conditions are equivalent:

(a) (P, Q) is a jump,
(b) L(kQ \ ((k − 1)Q ∪ kP)) = ∅ for all k ∈ N,
(c) L(kQ \ ((k − 1)Q ∪ kP)) = ∅ for k = 1, . . . , d − 1.

Proof In the following we use the monoids M(Q) and M(Q) and their k-th degree
components M(Q)k and M(Q)k , introduced in Section 3.1.

(a) �⇒ (b) Consider x ∈ L(kQ). By normality, x = ∑k
i=1 qi for qi ∈ L(Q). If

there exists qi = 0, we may omit it in the sum, hence x ∈ L((k − 1)Q). Otherwise all
qi ∈ L(P), hence x ∈ L(kP).

(b) �⇒ (c) is obvious.
(c) �⇒ (a) Assume (P, Q) is not a jump. Let k be the smallest natural number for

which M(Q)k � M(Q)k (notation as above). Since P is normal and k ≥ 2, we must
have

L(kQ \ (
(k − 1)Q ∪ kP) �= ∅.

Therefore, (c) implies that the monoids M(Q) andM(Q) coincide up to degrees d−1.
But then, in view of Lemma 3.3, the two monoids are equal—a contradiction. ��

The closed d-ball in R
d with radius r and centered at z ∈ R

d will be denoted by
B(z, r).

Theorem 6.2 Let Pi ∈ NPol(d), zi ∈ R
d , and ri , εi be positive real numbers, where

i ∈ N. Assume limi→∞ ri = ∞ andB(zi , ri −εi ) ⊂ Pi ⊂ B(zi , ri +εi ) for all i � 0.

(a) If limi→∞ εi
ri

= 0 then

lim
i→∞max

(ht(Pi , Q)

width Pi
: (Pi , Q) a jump

)
= 0.
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(b) If ε = ε1 = ε2 = · · · then for all i � 0 and all jumps (Pi , Q) we have

min(‖v − x‖ : x ∈ Pi ) < 47ε + 12,

where Q = conv(Pi , v).

Remark 6.3 Theorem 6.2(a) and its proof straightforwardly extend to the more gen-
eral families of polytopes when instead of spheres one uses ellipsoids – with fixed
eccentricities in a family. We present the argument only in the spherical case in order
to avoid cumbersome notation. Ellipsoids will appear explicitly in the next subsection
in a more number theoretical context. Also, the proof below uses the following weaker
condition than normality: the lattice points in the 2nd multiples of the polytopes in
question are the sums of pairs of lattice points in the original polytopes.

Remark 6.4 The strong metric bound in Theorem 6.2(b) does not necessarily translate
into a strong bound for the corresponding heights. In fact, as i gets larger, some facets of
Pi get increasingly sloped, i.e., the ratio of the lattice and metric widths with respect to
facets of Pi can be made arbitrarily small as i → ∞. In fact, the normal unit vectors to
the facets of Pi define increasingly dense subsets of the unit sphere Sd−1 as i → ∞. In
particular, any neighborhood of any integer nonzero pointw ∈ Z

d meets a hyperplane
of the form Aff(F) − v for some F ∈ F(Pi ) and v ∈ vert(F) when i � 0, depending
on the neighborhood, so that w is not in the hyperplane. Actually, the same argument
shows that, when i → ∞, the absolute majority of the facets of Pi get increasingly
sloped.

Proof of Theorem 6.2 (a) First we observe that the claim follows from the following
equality

lim
i→∞max

v

(‖zi − v‖
ri

: (Pi , conv(Pi , v)) a jump
)

= 1, i ∈ N. (8)

In fact, the equality (8) is equivalent to the claim that the ratios

‖zi − v‖ − ri
ri

,

where (Pi , conv(Pi , v)) is a jump, can be made arbitrarily close to 0 by choosing i
sufficiently large. For an index i and a jump (Pi , conv(Pi , v)) pick a facet Fi ⊂ Pi ,
visible from v and such that

ht(Pi , conv(Pi , v)) = htPi (v) = − htFi (v).

For all i � 0 and all jumps (Pi , conv(Pi , v)) we have the inequalities

ht(Pi , conv(Pi , v))

width Pi
≤ htPi (v)

widthFi Pi

≤ infAff(Fi ) ‖Aff(Fi ) − v‖
2(ri − εi )

≤
∣
∣
∣
∣
‖zi − v‖ − ri + εi

2(ri − εi )

∣
∣
∣
∣ .
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So Theorem (6.2)(a) follows from (8).
Next we prove (8). Assume to the contrary that the considered limit is not 1. This

means that infinitely many of the considered ratios exceed 1 by some real number
θ > 0. After picking the corresponding subsequence and re-indexing, we can assume
that there are jumps Qi = (Pi , conv(Pi , vi )) such that

θi := ‖zi − vi‖ − ri
ri

≥ θ, i ∈ N. (9)

Applying the parallel translations by the vectors −vi , we can further assume that
vi = 0 for all i . By Theorem 6.1, we have

L(2Qi \ (Qi ∪ 2Pi )) = ∅, i ∈ N. (10)

As i → ∞, the subsets

Ti := conv(B((2 + 2θi )e1, 2) ∪ {0})\
(conv(B((1 + θi )e1, 1) ∪ {0}) ∪ B((2 + 2θi )e1, 2)) ⊂ R

d

become approximately congruent with increased precision to the rescaled subsets

1

ri
(2Qi \ (Qi ∪ 2Pi )) ⊂ R

d .

The following can be said on the geometry of the closure T̄i ⊂ R
d of Ti in theEuclidean

topology:

(i) T̄i is homeomorphic to a d-torus;
(ii) T̄i is invariant under rotation of R

d about the axis Re1.

These properties, together with the inequalities (9), imply the existence of a real
number ρ > 0 such that for every index i the set T̄i contains a ball B′

i of radius ρ. The
easiest way to see this is by induction over d: the case d = 2 is obvious and every such
ball Bd ′ of radius ρ′ in dimension d ′ < d gives rise by revolution about the axis R+e1
to a torus of dimension d ′ + 1, which in its turn contains a (d ′ + 1)-ball of radius ρ

only depends on the radius of Bd ′ ; see Fig. 5. (It is an exercise to show that, actually,
we can take ρ′ = ρ.)

We see that, for any real number 0 < κ < 1, the subsets

2Qi \ (Qi ∪ 2Pi ) ⊂ R
d

contain balls of radius κρri whenever i � 0. But this contradicts (10) because κρri →
∞ as i → ∞.
(b) Pick a sequence of jumps (Pi , Qi ), i ∈ N. Without loss of generality we can
assume L(Qi ) \ Pi = {0}. By Theorem 6.1, we have the same equality (10) as in the
proof of the part (a).
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Fig. 5 Generating a d-torus in
T̄i by revolving a (d − 1)-ball

For simplicity of notation, put Bi = B(zi , ri ). Consider the subset

Ri = conv(2Bi ∪{0}) \ (conv(Bi ∪{0}) ∪ 2Bi ) ⊂ R
d

and consider the closure R̄i ⊂ R
d of Ri in the Euclidean topology. The set R̄i is

homeomorphic to a d-torus, invariant under rotation of R
d about the axis Rzi .

Let Ci ⊂ R
d be the cone R+ Bi . Then the boundary ∂Ci is tangent to the ball Bi .

Let δi denote the distance from 0 to any point Bi ∩ ∂Ci .
First we observe that the part (a) implies

lim
i→∞

δi

ri
= 0. (11)

For every index i , the set of farthest points of R̄i from ∂Ci , which can be connected
to ∂Ci by segments perpendicular to ∂Ci and entirely inside R̄i , forms a circle Si with
center in the line R+zi . Assume the distance from Si to ∂Ci is hi . Then

δi =
√
4r2i − (2ri − hi )2 +

√
r2i − (ri − hi )2, (12)

as follows fromFig. 6, representing a section by any 2-dimensional plane inR
d through

0 and zi .
For every index i , pick a point xi ∈ Si and let [xi , yi ] be the segment inside R̄i ,

perpendicular to ∂Ci and with yi ∈ ∂Ci . (In particular, ‖xi − yi‖ = hi ). Because ri →
∞ and (11), the boundary ∂ R̄i close to the point xi and yi becomes increasingly close
to the two (d − 1)-dimensional affine hyperplanes through xi and yi , perpendicular
to [xi , yi ]. In fact, ri → ∞ implies that the cones Ci become increasingly obtuse,
flattening ∂ R̄i close to yi as i → ∞, and (11) implies that the balls Bi and 2Bi have
increasingly large radii but they stay close to each other relative to the radii, flattening
∂ R̄i close to xi as i → ∞. Consequently, as i → ∞, the tori R̄i contain right cylinders
of arbitrarily large radius around the axes xi +R(yi − xi )with heights arbitrarily close
to hi . Fix a system of such cylinders �i ⊂ R̄i . We can assume that the heights of the
�i are more than 1

2hi .
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Fig. 6 Planar cross section

0

zi

ri

2ri

2zi

xi

yi

δi δi

hi

We have
2Qi \ (Qi ∪ 2Pi ) ⊃ conv(B

(
2zi , 2ri − 2ε) ∪ {0})\

(conv(Bi (zi , ri + ε) ∪ {0}) ∪ 2Bi (2zi , 2zi + 2ε)).
(13)

Using the same flatness of ∂ R̄i close to xi and yi , one concludes that the intersection
of �i with the right side of (13) contains a coaxial right sub-cylinder of height >

(the height of �i − 4ε) > 1
2hi − 4ε and the same radius as �i , provided i � 0.

If 1
2hi − 4ε > 1 for infinitely many indices i then the mentioned cylinders contain

lattice points for i � 0, contradicting (10) in view of the containments (13).
Since the functions fi (x) = 4r2i − (2ri − x)2 and gi (x) = rir − (ri − x)2 are

increasing over the segment [0, ri ], limi→∞ ri = ∞, and 1
2hi − 4ε ≤ 1 for i � 0, the

equalities (12) imply

δi ≤
√
4r2i − (2ri − 2 − 8ε)2 +

√
r2i − (ri − 2 − 8ε)2 <

√
ri (2 + √

2)
√
2 + 8ε,

provided i � 0.
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Finally, for all i � 0 we have

min(‖x‖ : x ∈ Pi ) ≤ ‖zi‖ − ri + ε

=
√
r2i + δ2i − ri + ε

= δ2i√
r2i + δ2i + ri

+ ε

<
ri (2 + √

2)2(2 + 8ε)

2ri
+ ε < 47ε + 12.

��
A more careful choice in the cylinders inside R̄i in the argument above leads to a

better estimate in Theorem 6.2(b), but in view of Remark 6.4 such an improvement is
not worth pursuing.

6.2 Convex Hulls of All Lattice Points in Spheres

There is a ubiquity of sequences {Pi }i∈N, satisfying the stronger condition in Theorem
6.2(b), which one could call rapidly spherical families. Here is one recipe for deriving
such a sequence. Choose any divergent series of real numbers 0 < r ′

1 < r ′
2 < · · · and

put P ′
i = conv(L(B(r ′

i , 0)). Because every unit d-cube in R
d contains a lattice point

and every d-ball B ⊂ R
d of radius

√
d
2 contains a unit cube, we have

vert(P ′
i ) ⊂ B(0, r ′

i ) \ B(0, r ′
i − √

d/2), i ∈ N.

Fix an arbitrary real number θ > 0. The inclusions above imply

B(0, r ′
i − (1 + θ)

√
d/2) ⊂ P ′

i ⊂ B(0, r ′
i ), i � 0.

By Theorem 3.2(f), the polytopes Pi = (d − 1)P ′
i are normal for all i and we also

have

B(0, ri − ε) ⊂ Pi ⊂ B(0, ri + ε), i � 0,

where

ri = (d − 1)(r ′
i − (1 + θ)

√
d/4) and ε = (d − 1)(1 + θ)

√
d/4.

Similar examples can be derived when instead of balls one uses ellipsoids of fixed
eccentricities per a family, not necessarily centered at 0.

Dilated lattice polytopes usually have non-empty first lattice strata around them.
In particular the proposed recipe for deriving rapidly ellipsoidal families are unlikely
to represent maximal elements in NPol(d). This observation motivates the interest in
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studying the normality of the convex hulls of all lattice points in spheres or, more
generally, ellipsoids. We have the following partial result.

Theorem 6.5 Let l1, . . . , ld be linearly independent real linear d-forms and (z1, . . . ,
zd) ∈ R

d . Consider the ellipsoid

E = {
ξ = (ξ1, . . . , ξd) : (l1(ξ) − z1)

2 + · · · + (ld(ξ) − zd)
2 ≤ 1

} ⊂ R
d ,

and the polytope P = conv(L(E)).

(a) For any integer k ≥ 2 and any point y ∈ kP there exists a point w ∈ L(P) such
that y − w ∈ (k − 1)E.

(b) For any y ∈ L(2P) there exist w1, w2 ∈ L(P) such that y = w1 + w2.
(c) If d = 3 then P is a normal polytope.

Proof (a) For simplicity of notation, put
∑ = ∑d

i=1. Consider the (potentially 0)
linear form

l(ξ) =
∑

li (ξ)(li (y) − kzi ).

As y/k ∈ P there must exist a vertex w ∈ P such that l(w) ≥ l(y/k), i.e.,

∑
li (w)(li (y) − kzi ) ≥

∑ li (y)

k
(li (y) − kzi ).

This is equivalent to

∑
(li (w) − zi )(li (y) − kzi ) ≥

∑( li (y)

k
− zi

)
(li (y) − kzi )

and, therefore, to

∑
2(li (y) − kzi )(li (w)) − zi ) ≥ 2

k

∑
(li (y) − kzi )

2. (14)

We have

∑
(li (y − w) − (k − 1)zi )

2 =
∑

((li (y) − kzi ) − (li (w) − zi ))
2

=
∑

((li (y) − kzi )
2 − 2(li (y) − kzi )(li (w) − zi ) + (li (w) − zi )

2),

which, in view of (14), implies
∑

(li (y − w) − (k − 1)zi )
2 ≤ k − 2

k

∑
(li (y) − kzi )

2 +
∑

(li (w) − zi )
2.

As y ∈ kE and w ∈ E we obtain:
∑

(li (y − w) − (k − 1)zi )
2 ≤ k − 2

k
· k2 + 1 = (k − 1)2,
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i.e., y − w ∈ (k − 1)E .
(b) We choose w as in (a). Then y − w ∈ L(E) = L(P).
(c) Follows from (b) because of Lemma 3.3. ��
Remark 6.6 (a) We have tested several dozens of polytopes defined by ellipsoids with
axes parallel to the coordinate axes in dimensions four and five, all of which turned
out to be normal.

(b) The standard three dimensional balls B(0, r), r = 1, 2, . . . , 21, define nonmax-
imal polytopes: all of them have height 1 jumps. The maximal height of jumps over
them varies in an irregular manner: the smallest is 2 for r = 2, the largest is 11 for
r = 13, and for r = 21 it is 9. Despite of its irregular behavior, the maximal height of
jumps seems to grow slowly with r .

7 Explicit maximal polytopes

We have found maximal polytopes of dimension 4 and 5. This leaves little doubt that
there exist maximal polytopes of any dimension ≥4, but dimension 3 remains open.
The experiments described in this section are based on a computer program written in
C++ that makes heavy use of the library interface of Normaliz [7].

Wewant to emphasize that the experiments described below have not only produced
maximal polytopes, but have also motivated several central results of the preceding
sections.

7.1 The extension approach

The basic search strategy for finding maximal elements by successive extension is
very simple:

(1) Choose a normal start polytope P .
(2) If #L(P) exceeds a preset bound, go to (1).
(3) Find a jump Q over P .
(4) If none exists, stop and save the maximal polytope P .
(5) Replace P by Q and go to (2).

In addition to special constructions, like the cross-polytopes, we have implemented
two methods for finding a start polytope:

(U) Take the unimodular d-simplex and extend it by a random number of random
height 1 jumps. The polytope thus reached is considered the start polytope.

(S) We start from a lattice parallelotope and ‘shrink’ it successively by removing a
vertex and taking the convex hull of the remaining vertices until no vertex can be
removed without losing normality or the full dimension. The reached polytope
serves as the starting point for subsequent extensions.

When we say ‘random’, we mean the choice of a random integer or vector within
a certain range that can be modified via parameters of the search program.

At first glance, the shrinking technique (S) seems paradoxical:we shrink a parallelo-
tope and then extend the shrunk polytope in order to reach a maximal one. However,
(S) has proved very successful. Also (U) has led to maximal polytopes.
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We can apply various strategies for finding quantum jumps over P . There are two
major variants:

(1) Choose a height 1 jump at random, provided such exists.
(P) Choose a jump which maximizes a certain parameter, meant to lead to some sort

of irregular normal polytopes.

If (1) is applied, one needs to compute only the points in the first stratum around
the given polytope, and this is usually quite fast. Moreover, there is no need to test if
the candidates are really jumps. For (P) we compute all candidate points according to
Theorem 5.3 in dimension 3, but use a lower bound in dimensions ≥ 4 for the search
phase, applying the full bound in the verification phase only.

The polytopes containing the candidates are highly rational. Nevertheless their
lattice points can be computed very fast via the approximation algorithm of Normaliz.

It might seem most promising to always apply strategy (P), for example with the
volume of the jump. But in pure form it has two drawbacks: (i) it tends to create
successive jumps along straight lines that are not limited, and (ii) it is rather time
consuming to test all candidate points in decreasing order of volume.

The following mixed strategy for step (3) of the basic algorithm has led us to the
maximal polytopes P4 and P5 described below (and many others):

(3a) Extend P according to (1) if a height 1 jump exists.
(3b) Otherwise apply (P).

The two parameters for (P) that have proved successful are

(V) the volume of the jump, see Remark 4.6;
(A) the average multiplicity (or normalized (d − 1)-volume) of the facets of Q.

In fact, the larger the multiplicity of a facet F , the more lattice points of low height
over F in P, . . . , (d − 2)P are necessary to guarantee normality of the extension; see
Theorem 5.1. It is not surprising that the facet multiplicities of the maximal polytopes
are quite large; see Table 2.

7.2 The Random Generation Approach

In this approach we

(1) Choose a normal polytope at random and
(2) Check it for maximality.

Creating a normal polytope by randomly choosing vertices becomes more and more
difficult with growing dimension and number of vertices. According to our experience
it works very well in dimension 4 if we limit ourselves to simplices.

The main advantage of this brute force approach is the enormous number of can-
didate polytopes that can be scanned if one gives up the idea of successive extension,
and one can say that even in mathematics mass production may beat sophistication.

The random generation approach has produced the simplex P ′
4 below, many others

in NPol(4) and two in NPol(5), of which one has only 21 lattice points.
The frequency of hitting maximal elements of NPol(d) in our computations so far

has been more or less the same for the two methods.
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7.3 Some Maximal Polytopes

Table 1 contains the vertices of somemaximal polytopes. The numbers of lattice points
are 41 in P4, 42 in P5 and only 22 in P ′

4. Note that P
′
4 is a simplexwith 22 lattice points.

These numbers are small in relation to the widths of the polytopes over their facets
that we have listed in Table 2 together with the multiplicities of the facets. Although
we have no analogue of Theorem 4.11 in higher dimensions, one can expect that a
maximal polytope has few lattice points relative to its facet widths and multiplicities.

By now, more than 40 maximal polytopes have emerged in dimension 4 and 6 in
dimension 5. Despite of millions of attempts with varying strategies, our search has
been futile in dimension 3.

For the three maximal polytopes the second lattice stratum is nonempty. In other
words there exist height 2 points over P4, P5 and P ′

5. There also exist maximal poly-
topes whose first two strata are empty.

We add a few data of the computations for P4 and P5. The number of lattice points
satisfying the height bound of Theorem 5.3 are 196, 697 for P4 and 13, 525, 003 for
P5. The computation of these candidate points takes <2 s for P4 and <7 min for P5.

In order to verify that a candidate point is not a quantum jump, we first check
whether #L(conv(P, z)) = #L(P) + 1. Only few candidates survive, namely 84 for
P4 and 980 for P5. For these we compute the Hilbert bases of the extended polytope
and look for Hilbert basis elements of degree >1. The computation times for the
verifications are <2 min for P4 and <2.5 h for P5. The verifications are documented
in log files that list every candidate together with a ‘witness’, namely an extra element
of Hilb(conv(P, z)). (The computations were done on a system with an Intel Xeon

Table 1 Vertices of maximal
polytopes in dimensions 4 and 5 P4: (0,0,0,0) P5: ( 4–13,−2,−1,1) P

′
4: (0,3,2,0)

(3,0,2,0) ( 4,12,13,4,−2) (1,1,3,2)

(−2,−3,3,−1) (−2,0,−8,−2,1) (2,3,0,4)

(10,3,−3,−1) ( 0,−2,0,0,0) (4,0,0,2)

(0,−3,1,−2) (27–26 −15,−6,3) (4,4,4,2)

(2,−2,0,−2) (10,−1 −11,−4,1)

(−9,4,10,4) (10–13,−2,−1,1)

Table 2 Widths and facet multiplicities of maximal polytopes

P4 Width 29 180 66 8 20 116 40 91 32 80 160

Mult 4 1 4 10 4 1 2 4 10 4 2

P5 Width 27 105 24 24 105 105 48 105 27 105

Mult 18 9 18 18 9 9 9 9 18 9

P ′
4 Width 24 48 48 48 48

Mult 8 4 4 4 4
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CPU E5-2660 0 at 2.20 GHz in strictly serial mode, the data available on request from
the authors.)

Remark 7.1 (a) We have checked that the 4-dimensional maximal polytopes P4 and
P ′
4 remain maximal if we consider very ample polytopes instead of normal ones.
(b) It is obvious that our findings rely crucially on the correctness of Normaliz. In

order to enhance our confidence we have verified the maximality of P4 with the dual
algorithm of Normaliz. It takes considerable more time than the primal algorithm.

(c) P5 and P ′
4 have nontrivial symmetries: their automorphism groups are isomor-

phic to Z2 × Z2 and Z2, respectively.

The techniques employed in our experiments, apart of random generation, follow
descending and ascending chains in NPol(d). They can hardly find polytopes that are
simultaneously minimal and maximal.

We end with the following question to which we were naturally led in this paper
and which seems very difficult at present.

Question 7.2 (a) DoesNPol(3) havemaximal elements? Does it have nontrivial min-
imal elements?

(b) Is the convex hull of all lattice points in every ellipsoid normal?
(c) Does there exist a normal polytope that is both a minimal and maximal element

of the poset NPol(d)?
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