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Abstract Bárány, Katchalski and Pach (Proc Am Math Soc 86(1):109–114, 1982)
(see also Bárány et al., Am Math Mon 91(6):362–365, 1984) proved the following
quantitative form of Helly’s theorem. If the intersection of a family of convex sets in
R
d is of volume one, then the intersection of some subfamily of at most 2d members

is of volume at most some constant v(d). In Bárány et al. (Am Math Mon 91(6):362–
365, 1984), the bound v(d) ≤ d2d

2
was proved and v(d) ≤ dcd was conjectured. We

confirm it.
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1 Introduction and Preliminaries

Theorem 1.1 Let F be a family of convex sets in R
d such that the volume of its

intersection is vol (∩F) > 0. Then there is a subfamily G of F with |G| ≤ 2d and

vol (∩G) ≤ ed+1d2d+ 1
2 vol (∩F).

We recall the note from [2] (see also [3]) that the number 2d is optimal, as shown
by the 2d half-spaces supporting the facets of the cube.
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The order of magnitude dcd in the Theorem (and in the conjecture in [2]) is sharp
as shown in Sect. 3.

Recently, other quantitative Helly type results have been obtained by De Loera et
al. [5].

We introduce notations and tools that we will use in the proof. We denote the closed
unit ball centered at the origin o in the d-dimensional Euclidean space Rd by B. For
the scalar product of u, v ∈ R

d , we use 〈u, v〉, and the length of u is |u| = √〈u, u〉.
The tensor product u ⊗ u is the rank one linear operator that maps any x ∈ R

d to
the vector (u ⊗ u)x = 〈u, x〉 u ∈ R

d . For a set A ⊂ R
d , we denote its polar by

A∗ = {y ∈ R
d : 〈x, y〉 ≤ 1 for all x ∈ A}. The volume of a set is denoted by vol (·).

Definition 1.2 We say that a set of vectors w1, . . . , wm ∈ R
d with weights

c1, . . . , cm > 0 form a John’s decomposition of the identity, if

m∑

i=1

ciwi = o and
m∑

i=1

ciwi ⊗ wi = I, (1)

where I is the identity operator on Rd .

A convex body is a compact convex set in R
d with non-empty interior. We recall

John’s theorem [8] (see also [1]).

Lemma 1.3 (John’s theorem)For any convex body K inRd , there is a unique ellipsoid
of maximal volume in K . Furthermore, this ellipsoid is B if, and only if, there are
points w1, . . . , wm ∈ bdB ∩ bd K (called contact points) and corresponding weights
c1, . . . , cm > 0 that form a John’s decomposition of the identity.

It is not difficult to see that if w1, . . . , wm ∈ bd B and corresponding weights
c1, . . . , cm > 0 form a John’s decomposition of the identity, then {w1, . . . , wm}∗ ⊂
dB, cf. [1] or [7, Thm. 5.1].Bypolarity,we also obtain that 1d B ⊂ conv({w1, . . . , wm}).

One can verify that if � is a regular simplex inRd such that the ball B is the largest
volume ellipsoid in �, then

vol (�) = dd/2(d + 1)(d+1)/2

d! . (2)

We will use the following form of the Dvoretzky–Rogers lemma [6].

Lemma 1.4 (Dvoretzky–Rogers lemma) Assume that w1, . . . , wm ∈ bd B and
c1, . . . , cm > 0 form a John’s decomposition of the identity. Then there is an ortho-
normal basis z1, . . . , zd of Rd , and a subset {v1, . . . , vd} of {w1, . . . , wm} such that

vi ∈ span{z1, . . . , zi } and

√
d − i + 1

d
≤ 〈vi , zi 〉 ≤ 1 for all i = 1, . . . , d.

(3)

This lemma is usually stated in the setting of John’s theorem, that is, when the vectors
are contact points of a convex body K with its maximal volume ellipsoid, which is B.
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And often, it is assumed in the statement that K is symmetric about the origin, see for
example [4]. Since we make no such assumption (in fact, we make no reference to K
in the statement of Lemma 1.4), we give a proof in Sect. 4.

2 Proof of Theorem 1.1

Without loss of generality, we may assume that F consists of closed half-spaces,
and also that vol (∩F) < ∞, that is, ∩F is a convex body in R

d . As shown in [3],
by continuity, we may also assume that F is a finite family, that is P = ∩F is a
d-dimensional polyhedron.

The problem is clearly affine invariant, so we may assume that B ⊂ P is the
ellipsoid of maximal volume in P .

By Lemma 1.3, there are contact points w1, . . . , wm ∈ bdB ∩ bd P (and weights
c1, . . . , cm > 0) that form a John’s decomposition of the identity. We denote their
convex hull by Q = conv{w1. . . . , wm}. Lemma 1.4 yields that there is an orthonormal
basis z1, . . . , zd of Rd , and a subset {v1, . . . , vd} of the contact points {w1, . . . , wm}
such that (3) holds.

Let S1 = conv{o, v1, v2, . . . , vd} be the simplex spanned by these contact points,
and let E1 be the largest volume ellipsoid contained in S1. We denote the center of
E1 by u. Let � be the ray emanating from the origin in the direction of the vector −u.
Clearly, the origin is in the interior of Q. In fact, by the remark following Lemma 1.3,
1
d B ⊂ Q. Let w be the point of intersection of the ray � with bd Q. Then |w| ≥ 1/d.
Let S2 denote the simplex S2 = conv{w, v1, v2, . . . , vd}. See Fig. 1.

We apply a contraction with center w and ratio λ = |w|
|w−u| on E1 to obtain the

ellipsoid E2. Clearly, E2 is centered at the origin and is contained in S2. Furthermore,

λ = |w|
|u| + |w| ≥ |w|

1 + |w| ≥ 1

d + 1
. (4)

Since w is on bd Q, by Caratheodory’s theorem, w is in the convex hull of some
set of at most d vertices of Q. By re-indexing the vertices, we may assume that
w ∈ conv{w1, . . . , wk} with k ≤ d. Now,
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Fig. 1 Finding the ellipsoid E2
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E2 ⊂ S2 ⊂ conv{w1, . . . , wk, v1, . . . , vd}. (5)

Let X = {w1, . . . , wk, v1, . . . , vd} be the set of these unit vectors, and let G denote
the family of those half-spaces which support B at the points of X . Clearly, |G| ≤ 2d.
Since the points of X are contact points of P and B, we have that G ⊆ F . By (5),

∩ G = X∗ ⊂ E∗
2 . (6)

By (3),

vol (S1) ≥ 1

d! ·
√
d!

dd/2 = 1√
d!dd/2

. (7)

Since B ⊂ ∩F , by (6) and (4), (2), (7) we have

vol (∩G)

vol (∩F)
≤ vol

(
E∗
2

)

vol (B)
= vol (B)

vol (E2)
≤ (d + 1)d

vol (B)

vol (E1)
= (d + 1)d

vol (�)

vol (S1)

= dd/2(d + 1)(3d+1)/2

d! vol (S1) = ddd3d/2e3/2(d + 1)1/2

(d!)1/2 ≤ ed+1d2d+ 1
2 , (8)

where � is as defined above (2). This completes the proof of Theorem 1.1.

Remark 2.1 In the proof, in place of the Dvoretzky–Rogers lemma, we could select
the d vectors v1, . . . , vd from the contact points randomly: pickingwi with probability
ci/d for i = 1, . . . ,m, and repeating this picking independently d times. Pivovarov
proved (cf. [9, Lem. 3]) that the expected volume of the random simplex S1 obtained
this way is the same as the right hand side in (7).

3 A Simple Lower Bound for v(d)

We outline a simple proof that one cannot hope a better bound in Theorem 1.1 than
dd/2 in place of d2d+1/2. Indeed, consider the Euclidean ball B, and a family F of
(very many) supporting closed half space of B whose intersection is very close to B.
Suppose that G is a subfamily of F of 2d members. Denote by σ the Haar probability

measure on the sphere RSd−1, where R = (d/(2 ln d))
1
2 . Let H ∈ G be one of the

half spaces. Then

σ(RSd−1 \ H) ≤ exp

( −d

2R2

)
≤ 1/(4d).

It follows that

vol (∩G) ≥ Rd vol (B) σ (RSd−1 \ (∪G)) ≥ 1

2
Rd vol (B) ≥ d

d
2 −ε vol (∩F)

for any ε > 0 if d is large enough.
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4 Proof of Lemma 1.4

We follow the proof in [4].

Claim 4.1 Assume that w1, . . . , wm ∈ bdB and c1, . . . , cm > 0 form a John’s
decomposition of the identity. Then for any linear map T : R

d → R
d there is an

� ∈ {1, . . . ,m} such that

〈w�, Tw�〉 ≥ tr T

d
, (9)

where tr T denotes the trace of T .

For matrices A, B ∈ R
d×d we use 〈A, B〉 = tr

(
ABT

)
to denote their Frobenius

product.
To prove the claim, we observe that

tr T

d
= 1

d
〈T, I 〉 = 1

d

m∑

i=1

ci 〈T, wi ⊗ wi 〉 = 1

d

m∑

i=1

ci 〈Twi , wi 〉 .

Since
∑m

i=1 ci = d, the right hand side is a weighted average of the values
〈Twi , wi 〉. Clearly, some value is at least the average, yielding Claim 4.1.

We define zi and vi inductively. First, let z1 = v1 = w1. Assume that, for some
k < d, we have found zi and vi for all i = 1, . . . , k. Let F = span{z1, . . . , zk}, and
let T be the orthogonal projection onto the orthogonal complement F⊥ of F . Clearly,
tr T = dim F⊥ = d − k. By Claim 4.1, for some � ∈ {1, . . . ,m} we have

|Tw�|2 = 〈Tw�,w�〉 ≥ d − k

d
.

Let vk+1 = w� and zk+1 = Tw�|Tw�| . Clearly, vk+1 ∈ span{z1, . . . , zk+1}. Moreover,

〈vk+1, zk+1〉 = 〈Tw�,w�〉
|Tw�| = |Tw�|2

|Tw�| = |Tw�| ≥
√
d − k

d
,

finishing the proof of Lemma 1.4.
Note that in this proof, we did not use the fact that, in a John’s decomposition of

the identity, the vectors are balanced, that is
∑m

i=1 ciwi = o.
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