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Abstract Any convex polytope whose combinatorial automorphism group has two
orbits on the flags is isomorphic to one whose group of Euclidean symmetries has two
orbits on the flags (equivalently, to one whose automorphism group and symmetry
group coincide). Hence, a combinatorially two-orbit convex polytope is isomorphic
to one of a known finite list, all of which are 3-dimensional: the cuboctahedron,
icosidodecahedron, rhombic dodecahedron, or rhombic triacontahedron. The same is
true of combinatorially two-orbit normal face-to-face tilings by convex polytopes.
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1 Introduction

Regular polytopes are those whose symmetry groups act transitively on their flags (see
Sect. 2 for definitions; throughout this article, “polytope”means convex polytope).We
say that a polytopewhose symmetry group has k orbits on theflags is a k-orbit polytope,
so the regular polytopes are the one-orbit polytopes. The one-orbit polytopes in the
plane (the regular polygons) and in 3-space (the Platonic solids) have been known for
millenia; the six one-orbit 4-polytopes and the three one-orbit d-polytopes for every
d ≥ 5 have been known since the 19th century. In [7], the author found all the two-
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orbit polytopes. These exist only in the plane and in 3-space. In the plane, there are
two infinite families, one consisting of the irregular isogonal polygons, and the other
consisting of the irregular isotoxal polygons. Here, isogonal means that the symmetry
group acts transitively on the vertices, and isotoxal means that the symmetry group
acts transitively on the edges. In 3-space, there are only four: the two quasiregular
polyhedra, namely the cuboctahedron and the icosidodecahedron, and their duals, the
rhombic dodecahedron and the rhombic triacontahedron.

A polytope is combinatorially m-orbit if its automorphism group has m orbits on
the flags. In general, a polytope has more combinatorial automorphisms of its face
lattice than it has Euclidean symmetries. Hence, if the symmetry group has k flag
orbits and the automorphism group has m flag orbits, then m ≤ k; in fact m | k.
Furthermore, not every polytope can be realized such that every automorphism is
realized as a Euclidean isometry; in [1] there is a construction of a combinatorially
84-orbit 4-polytope P which is not isomorphic to any polytope P ′ whose symmetry
group G(P ′) is the same as the automorphism group Γ (P ′). However, it is proved
in [9, Theorem 3A1] that a polytope is combinatorially one-orbit if and only if it
is isomorphic to a (geometrically) one-orbit polytope. In this paper, we show that
every combinatorially two-orbit polytope is isomorphic to a (geometrically) two-orbit
polytope. The converse is not quite true, since any 2n-gon is isomorphic to a two-orbit
polytope, yet is not combinatorially two-orbit.

In Sect. 5 we show, similarly, that combinatorially two-orbit normal face-to-face
tilings by convex polytopes are isomorphic to two-orbit tilings. It seems that the
corresponding question for one-orbit tilings remains open, with a finite list of possible
exceptions. We summarize the results in these theorems.

Theorem 1 Any combinatorially two-orbit convex polytope is isomorphic to a (geo-
metrically) two-orbit convex polytope. Hence, if P is a combinatorially two-orbit
convex d-polytope, then d = 3 and P is isomorphic to one of the cuboctahedron, the
icosidodecahedron, the rhombic dodecahedron, or the rhombic triacontahedron.

In light of the fact that, for d > 2, all two-orbit convex d-polytopes are com-
binatorially two-orbit, and that both conditions are vacuous for d ≤ 1, we can say
that a convex d-polytope with d �= 2 is combinatorially two-orbit if and only if it is
isomorphic to a two-orbit convex polytope.

Theorem 2 A locally finite, combinatorially two-orbit tiling by convex polytopes need
not be isomorphic to a two-orbit tiling by convex polytopes. However, locally finite,
combinatorially two-orbit tilings of Ed by convex polytopes only occur for d = 2 or
d = 3.

Terms related to tilings (such as “normal”) are defined at the beginning of Sect. 5.

Theorem 3 Any combinatorially two-orbit, normal tiling by convex polytopes is iso-
morphic to a two-orbit tiling by convex polytopes. Hence, if T is a combinatorially
two-orbit normal tiling of Ed by convex polytopes, then either

(i) d = 2 and T is isomorphic to one of the trihexagonal tiling or the rhombille
tiling, or
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(ii) d = 3 and T is isomorphic to one of the tetrahedral–octahedral honeycomb or
the rhombic dodecahedral honeycomb.

2 Preliminaries

We briefly review the terminology used. See [2,3,10] for details.

2.1 Basic Terminology for Polytopes

A convex polytope is the convex hull of finitelymany points inEd . Throughout this arti-
cle, “polytope,” unqualified, means “convex polytope.” The dimension of a polytope is
the dimension of its affine hull; a polytope P of dimension d is called a d-polytope, and
the faces of P with dimension i are its i -faces. The 0-faces are called vertices, 1-faces
are called edges, (d − 2)-faces are called ridges, and (d − 1)-faces are called facets.
In addition to these proper faces, we admit two improper faces, namely a (−1)-face
(the empty face) and a d-face (which is P itself). The proper and improper faces of P ,
ordered by inclusion, form a lattice denoted L(P), the face lattice of P . A flag of P
is a maximal chain (linearly ordered subset) in L(P). For any flag Φ, an adjacent flag
is one which differs from Φ in exactly one face. The flags are i -adjacent if they differ
in only the i-face. Every flag Φ has a unique i-adjacent flag for i = 0, . . . , d − 1,
denotedΦ i (this is due to the “diamond condition” on polytopes; see [10, p. 25]). Two
faces are said to be incident if one contains the other. A section of P , for incident faces
F ≤ G, is the portion of the face lattice L(P) consisting of all the faces containing
F and contained in G, and is denoted G/F . So G/F = { H ∈ L(P) | F ≤ H ≤ G },
inheriting the order. Every such section can be realized as the face lattice of a convex
polytope, obtainable by intersecting P with a suitable affine subspace of Ed . We will
often identify convex polytopes with their face lattices.

For a convex polytope P , the symmetries of P are the Euclidean isometries which
carry P onto itself, and form a group denoted G(P). The automorphisms of P are
inclusion-preserving bijections from the face lattice of P to itself, and form a group
denoted Γ (P). Each symmetry of P also acts on the faces of P in an inclusion-
preserving manner, so we can identify G(P) with a subgroup of Γ (P). A d-polytope
is said to be fully transitive if its symmetry group acts transitively on its i-faces for
every i = 0, . . . , d−1. It is combinatorially fully transitive if its automorphism group
acts transitively on the faces of each dimension. In this case we may instead say that
Γ (P) is fully transitive.

2.2 Class

Let I ⊂ {0, 1, . . . , d − 1} and Φ be a flag of a combinatorially two-orbit d-polytope
P . If the i-adjacent flag Φ i is in the same orbit as Φ if and only if i ∈ I , then we
say P is in class 2I [5,6]. It is not hard to see that this class is well-defined; see [5]
for proofs of this and the following remarks. The automorphism group Γ (P) is fully
transitive if and only if |I | ≤ d−2. We cannot have |I | = d, because then P would be
combinatorially regular. The only other case is that |I | = d − 1, and then Γ (P) acts
transitively on all i-faces with i ∈ I , but has two orbits on the j-faces for the unique
j not in I .

123



Discrete Comput Geom (2016) 55:662–680 665

Definition An (abstract) polytope P is j -intransitive if Γ (P) does not act transitively
on the j-faces, but acts transitively on the i-faces for all i �= j .

We shall see that all two-orbit polytopes are j-intransitive for some j .

2.3 Modified Schläfli Symbol

A d-polytope is called equivelar if there are numbers p1, . . . , pd−1 such that for every
incident pair of an (i − 2)-face Fi−2 and an (i + 1)-face Fi+1, the section Fi+1/Fi−2
is a pi -gon. Thus every 2-face has p1 sides, every 3-face has p2 edges at each vertex,
and so on. The list of these numbers, {p1, . . . , pd−1}, is the Schläfli symbol of the
polytope; see e.g. [10, p. 11], [8], or [2].

Regular polytopes are equivelar. We may generate the symmetry group of a regular
d-polytope by involutions ρk which carry a base flagΦ to its k-adjacent flagΦk . Then
pi is also the order of the automorphism (ρi−1ρi ).

For the purposes of the article, we will use a modified Schläfli symbol. It is like the
standard symbol {p1, . . . , pd−1} for a d-polytope P , but possibly with some positions
pi replaced by a stack of two distinct numbers, pi

qi
. Wherever a single number p j

appears, it means (as usual) that every section Fj+1/Fj−2 is a p j -gon. If two numbers
p j
q j

appear, itmeans that all such sections Fj+1/Fj−2 are either p j -gons orq j -gons. If P
is a two-orbit polytope with such a symbol, then the orbit of a flagΦ = {F−1, . . . , Fd}
is determined by whether Fj+1/Fj−2 is a p j -gon or a q j -gon. If it is a p j -gon, and P
is of class 2I , then the corresponding section of Φ i is a q j -gon precisely when i /∈ I .
In order for the section to have a different size, Φ i must differ from Φ in either the
( j + 1)-face or the ( j − 2)-face—but by definition it differs in exactly the i-face. We
conclude that only ( j + 1) or ( j − 2) (or both) are not in I .

Beware that you cannot read off the symbols for sections from the symbol for
P , as you can with a standard Schläfli symbol, without additional information. For
instance, in the type {4, 3

4 , 4} discussed below, the facets are of type {4, 3
4 } (the rhombic

dodecahedron) and the vertex figures are of type { 34 , 4} (the cuboctahedron). However,
in the tetrahedral–octahedral tiling of type {3, 3

4 , 4}, the vertex figures are cuboctahedra
{ 34 , 4}, but the facets alternate between two types, tetrahedra {3, 3} andoctahedra {3, 4}.

Equivelar convex polytopes are combinatorially regular [10, Thm. 1B9]. On the
other hand, in a combinatorially two-orbit polytope, obviously the sections Fj+1/Fj−2
for a given j can have at most two sizes. So every combinatorially two-orbit convex
polytope has a modified Schläfli symbol, with at least one stack of two numbers
appearing.

2.4 Results on Combinatorially Two-Orbit Polytopes

For a d-polytope P and I ⊆ {−1, 0, . . . , d}, a chain of type I is a chain of faces in
L(P) with an i-face for each i ∈ I , and no others. A chain of cotype I is a chain in
L(P) with an i-face for each i /∈ I , and no others.
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Lemma 1 If P is in class 2I and j /∈ I , then Γ (P) acts transitively on chains of
cotype { j}.
Proof LetΨ andΩ be two chains of cotype { j}. Each of these may be extended to two
flags of P which, being j-adjacent, are in different flag orbits. Thus, we extend Ψ to a
flag Ψ ′ andΩ to a flag Ω ′ such that both are in the same orbit; then the automorphism
γ ∈ Γ (P) carrying Ψ ′ to Ω ′ also takes Ψ to Ω . 	

Corollary 1 If P is in class 2I and j /∈ I , then P has a modified Schläfli symbol
whose entry pi is single-valued except possibly at i = j − 1 and i = j + 2.

Proof By Lemma 1, Γ (P) acts transitively on the set of sections Fi+1/Fi−2 for each
rank i unless i + 1 = j or i − 2 = j . 	


Recall that if all entries of the Schläfli symbol are single-valued, then P is combi-
natorially regular. But by the Corollary, if two distinct ranks i < j are missing from
I , then all the entries would be single-valued unless j = i + 3, so that j − 1 coincides
with i + 2. This also shows that no three ranks i < j < k can be missing from I .

Lemma 2 If a d-polytope P is in class 2I and j /∈ I , then the entries p j (if j ≥ 1)
and p j+1 (if j ≤ d − 2) are even.

Proof If 1 ≤ j ≤ d − 1, then consider any section Fj+1/Fj−2 with incident faces
of the indicated ranks. This is a polygon whose edges correspond to j-faces of P . A
walk along the edges of this polygon can be extended to a sequence of adjacent flags
of P , alternately j-adjacent and ( j − 1)-adjacent. The flags change orbits whenever
the j-face is changed. But changing ( j − 1)-faces (corresponding to vertices of the
polygon) will not change the orbit, since ( j − 1) and j do not differ by 3. Thus the
polygon has evenly many sides. Hence p j , the j th entry in the Schläfli symbol for P
(which is single-valued by Corollary 1) is even.

Similarly, if 0 ≤ j ≤ d−2, then any section Fj+2/Fj−1 is a polygonwhose vertices
correspond to j-faces of P . A walk along the edges of this polygon corresponds to a
sequence of adjacent flags of P , alternately j-adjacent or ( j + 1)-adjacent, with the
j-adjacent flags in different orbits. Hence the polygon again has evenly many sides,
so p j+1 is even. 	

Corollary 2 If a d-polytope P is in class 2I and j /∈ I , then j = 0 or j = d − 1.

Proof If j /∈ I and 0 < j < d − 1, then both the entries p j and p j+1 appear in the
Schläfli symbol. But this contradicts Euler’s theorem; a polyhedral section Fj+2/Fj−2
would have the symbol {p j , p j+1} with two even entries, which is impossible for
convex polytopes [3, Sect. 13.1]. 	


Continuing the preceding remarks, we conclude that the onlyway two distinct ranks
can be missing from I , where P is in class 2I , is if I omits both 0 and d − 1 and
d−1 = 0+3, i.e. P must be a 4-polytope in class 2{1,2}. Wewill postpone considering
this special case until Sect. 4. Otherwise, |I | = d − 1 and any two-orbit polytope of
type 2I must be either vertex-intransitive or facet-intransitive. Since vertex-intransitive
polytopes are the duals of the facet-intransitive polytopes, we need only deal with the
latter in Sect. 3.
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3 Combinatorially Facet-Intransitive Two-Orbit Polytopes

Suppose P is a combinatorially two-orbit d-polytope which is facet-intransitive, i.e.
it is in class 2I where I = {0, 1, . . . , d − 2}. It follows that P is what is called an
alternating semiregular polytope in [11]. Fix a flag Φ, the base flag. Then for each
i ∈ I , there is an automorphism ρi ∈ Γ (P) such that ρi (Φ) = Φ i . There is no
automorphism carrying Φ to Φd−1, which is in the other orbit. However, the flag
Φd−1,d−2,d−1, reached by changing the facet of Φ, then changing the ridge, then
flipping facets again, is in the same orbit as Φ, so there is an automorphism ρ′

d−2
carryingΦ toΦd−1,d−2,d−1. This automorphism is referred to as αd−1,d−2,d−1 in [5].

Lemma 3 The automorphisms ρi and ρ′
d−2 generate the whole automorphism group

of P, so Γ (P) = 〈ρ0, ρ1, . . . , ρd−2, ρ
′
d−2〉.

Proof Write Φ = {F−1, F0, . . . , Fd−1, P}, and say the facet-adjacent flag Φd−1 has
the facet F ′

d−1. First we show that the given generators suffice to carry the flag Φd−1

to each of its adjacent flags Φd−1,i for i ≤ d − 2.
Let i ≤ d − 3. Since ρi fixes Fd−2 and Fd−1, it must also fix F ′

d−1. Hence, it fixes
all faces of Φd−1 except for its i-face Fi ; so ρi (Φ

d−1) = Φd−1,i .
On the other hand, ρd−2 cannot fix F ′

d−1. Since ρd−2(Φ) = Φd−2, the image of
the (d − 1)-adjacent flag Φd−1 must be (d − 1)-adjacent to Φd−2, i.e. ρd−2(Φ

d−1) =
Φd−2,d−1. But the automorphism ρ′

d−2 which carries Φ to Φd−1,d−2,d−1 must carry
Φd−1 to Φd−1,d−2.

Thus, the given generators carry Φd−1 to each of its adjacent flags except for Φ.
Now let γ be any automorphism of P . The automorphism γ is the unique one

carrying Φ to γ (Φ). By exhibiting an automorphism in 〈ρ0, ρ1, . . . , ρd−2, ρ
′
d−2〉

carrying Φ to γ (Φ), we show that the arbitrary element γ lies in this subgroup.
By the flag-connectedness property of polytopes, there is a sequence of adjacent

flags Φ = Φ0, Φ1, . . . , Φn = γ (Φ). For each k ∈ {1, . . . , n} there is some ik ∈
{0, . . . , d−1} such that the flagΦk is ik-adjacent to the preceding flagΦk−1. Suppose
1 ≤ k ≤ n and we have written either Φk−1 = σ(Φ) or Φk−1 = σ(Φd−1) for some
σ ∈ 〈ρ0, ρ1, . . . , ρd−2, ρ

′
d−2〉.

If ik ≤ d − 3, then Φk is σ(ρik (Φ)) or σ(ρik (Φ
d−1)), respectively.

If ik = d − 2, then Φk is σ(ρd−2(Φ)) or σ(ρ′
d−2(Φ

d−1)), respectively.
If ik = d − 1, then Φk is σ(Φd−1) or σ(Φ), respectively.

Thus we continue until we have written Φn = σ(Φ) or σ(Φd−1) for some σ ∈
〈ρ0, ρ1, . . . , ρd−2, ρ

′
d−2〉. Since Φn = γ (Φ) is in the same orbit as Φ and Φd−1 is

not, we must in fact have Φn = σ(Φ) and γ = σ . 	

By Corollary 1 with j = d − 1, P will have a modified Schläfli symbol of the

form {p1, . . . , pd−3,
pd−2
qd−2

, pd−1}, where pd−2 �= qd−2, since P cannot be equivelar.
Fig. 1 shows the Coxeter-like diagram for these generators, modified by labeling the
nodes with the corresponding generator. Such a diagram is dubbed a “tail-triangle
diagram” in [11], making Γ (P) a “tail-triangle group.” Note that pd−1 must be even,
by Lemma 2.
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Fig. 1 The Coxeter diagram of
a facet-intransitive two-orbit
polytope

ρ0

p1
ρ1 ρd− 4

pd−3
ρd−3

pd−2
ρd−2

qd−2
ρd−2

pd−1
2

Since the generators of Γ (P) satisfy all the Coxeter relations implied by the dia-
gram, Γ (P) is a quotient of the Coxeter group associated with the diagram. However,
in principle the generators of Γ (P) might satisfy additional relations. We shall show
that, in fact, there are no additional relations in Γ (P), so that Γ (P) is exactly the
Coxeter group associated with the diagram in Fig. 1. Since Γ (P) is finite, we can then
have recourse to the classification of finite Coxeter groups.

Lemma 4 The automorphism group Γ (P) is a Coxeter group, with Coxeter diagram
as in Fig. 1.

The proof is a modification of that of [9, Thm. 3A1] (also [10, 1B3]), that a combi-
natorially regular convex polytope is isomorphic to a regular one. The method is also
in Coxeter’s proof [2, Sect. 5.3] that the Coxeter relations fully define the group gen-
erated by reflections in the walls of the fundamental region described by the diagram.
The essence is that any relation in the group (i.e. a word in the generators representing
the identity) can be represented as a loop in the boundary of the polytope P; contract-
ing this loop to a point gives a guide to reducing the word, using the given relations,
until it is empty. This shows that every relation in the group is a consequence of the
Coxeter relations. The following proof is modeled on, and sometimes verbatim from
[2, Sect. 5.3].

Proof We associate flags of P with chambers of a “barycentric subdivision” B of
the boundary of P . Each flag Ω = {G−1,G0, . . . ,Gd−1,Gd} is associated to the
(d − 1)-simplex whose vertices are “barycenters” of each proper face of Ω . So the
vertices of the simplex forΩ are the vertex G0, the midpoint (say) of the edge G1, and
so on up an interior point of the facet Gd−1. Each face of this simplex corresponds
to a subchain of Ω . A facet of the simplex is a (d − 2)-simplex involving the centers
of all but one of the proper faces in Ω . Say the missing face is Gi . Then the facet,
called the i th wall, forms the boundary between the simplex for Ω and the simplex
for the i-adjacent flag Ω i . We identify each flag with its corresponding chamber in
the boundary of P .

The union of the chambers Φ and Φd−1 constitute a “fundamental region” R for
Γ (P), since every flag is the image of one of these two chambers. For 0 ≤ i ≤ d − 3,
the i th wall of Φ and the i th wall of Φd−1 are contiguous, and we will call their union
the i th wall of R. The (d − 2)th wall of Φ is called the (d − 2)th wall of R, and the
(d − 2)th wall of Φd−1 is called the zth wall of R (z is just a symbol distinct from
0, . . . , d − 1.) The (d − 1)th walls of Φ and Φd−1 are in the interior of R and are not
walls of R. Thus, R has walls labeled 0, . . . , d − 2, z.

Say the vertex of B lying in the relative interior of a face Fi of Φ is Ci . Recall that
F ′
d−1 is the facet in Φd−1; say the vertex in relint(F ′

d−1) is C
′
d−1. Then R contains
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C0

1

C2

C1

C2

z

0

C0

C3

C1

C3 C2

Fig. 2 The region R composed of (d − 1)-adjacent chambers, in the case d = 3 (left) or d = 4 (right)

the d vertices Ci , plus C ′
d−1, but Cd−2 is on the “edge” from C ′

d−1 to Cd−1 and
is not a vertex of R, so that R has d vertices and is again a simplex, with vertices
C0, . . . ,Cd−3,Cd−1,C ′

d−1. See Fig. 2. (Some facets may be only piece-wise convex.)
In the left figure, where d = 3, the i th wall is labeled i . In the right figure, where
d = 4, the face C0C1C ′

3 is the zth wall; the face C0C1C3 is the 2nd wall; the face
C0C ′

3C3 is the 1st wall; and the face C1C ′
3C3 is the 0th wall.

Now for γ ∈ Γ (P), the chambers for γ (Φ) and γ (Φd−1) are adjacent, and their
union is called “region γ .”We pass through the i th wall of region γ into region γρi (for
i ∈ {0, . . . , d − 2, z}), where ρz denotes ρ′

d−2. Each automorphism γ carries i-faces
to other i-faces, and the two orbits of (d − 1)-faces are carried only to themselves.
Although γ does not actually map points to other points, if we consider a vertex of
B as representing the face in whose relative interior it lies, it makes sense to say that
each vertex of R is carried only to the unique vertex of the same type in each region
γ .

To a word w = ρi1 . . . ρik , where i j ∈ {0, . . . , d − 2, z}, we associate a path from
R to region ρi1 . . . ρik passing through the i1th wall of R, then the i2th wall of region
ρi1 , and so on. (By a path we mean a continuous curve which avoids any (d − 3)-face
of B.)

If the word w represents the identity, we must show that the relation w = 1 is a
consequence of theCoxeter relations inherent in Fig. 1. These relations are (ρiρ j )

mi j =
1, where mii = 1 for all i , and otherwise mi j is the label on the edge from ρi to ρ j ,
or 2 if there is no edge. If w = 1, the path associated to w is a closed path back to
R. Consider what happens to the expression ρi1 . . . ρik as the closed path is gradually
shrunk until it lies wholly within region R. Whenever the path goes from one region
to another and then immediately returns, this detour may be eliminated by canceling
a repeated ρi in the expression, in accordance with the relation (ρi )

2 = 1. The only
other kind of change that can occur during the shrinking process is when the path
momentarily crosses a (d − 3)-face F .

If F is the intersection of the i th and j th walls of one region, so that it does not
contains vertices of the types opposite the i th and j th walls, then F does not contain
vertices of those types in any region that contains it. So thewalls containing F alternate
between i th walls and j th walls, and F is contained in 2mi j regions.

This change will replace ρiρ jρi · · · by ρ jρiρ j · · · (or vice versa) in accordance
with the relation (ρiρ j )

mi j = 1. The shrinkage of the path thus corresponds to an
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Fig. 3 Potential Coxeter
diagrams for the automorphism
group of a two-orbit polytope

ρ0

ρ1

4
ρ1

B3 = C3

ρ0

ρ1

5
ρ1

H3

algebraic reduction of the expression w by means of the Coxeter relations. Since the
boundary of P is topologically a (d − 1)-sphere, and simply connected if d > 2,
we can shrink the path to a point. It follows that every relation in Γ (P) is a Coxeter
relation. 	


We can now complete the proof of

Theorem 4 Any combinatorially two-orbit facet-intransitive convex polytope is iso-
morphic to a two-orbit convex polytope.

Since P has finitely many flags, we know that Γ (P) is a finite Coxeter group.
Consulting the list of finite Coxeter groups, we see that pd−1/2 must be 2, since no
loops appear in diagrams of finite Coxeter groups. Furthermore, the only diagramwith
four or more nodes that branches as in Fig. 1 is Dn , where every edge has the label 3.
But we must have pd−2 �= qd−2, since P is not equivelar. Hence the diagrammust not
have a “tail”: we must have d = 3, and the only admissible diagrams of finite Coxeter
groups are those in Fig. 3.

We know that both of these Coxeter groups occur as the automorphism group of
a two-orbit facet-intransitive polyhedron: B3 for the cuboctahedron, and H3 for the
icosidodecahedron. The next lemma will show that the isomorphism type of a 2-orbit
facet-intransitive polytope is determined by its automorphism group (as a Coxeter
system), so these are the only possibilities.

For the purposes of the Lemma, we will fix a canonical form of the Coxeter
group presentation, as encoded in the diagram of Fig. 1 or the Schläfli symbol
{p1, . . . , pd−3,

pd−2
qd−2

, pd−1}, such that pd−2 < qd−2. A flag Φ will be said to be an
appropriate base flag if the generators ρi corresponding to Φ, defined as in Lemma 3,
satisfy (ρd−3ρd−2)

pd−2 = 1. We prove the Lemma generally, rather than restricting to
the two presentations in Fig. 3, so that it also applies to tilings, or indeed, any abstract
polytopes.

Lemma 5 Two combinatorially two-orbit facet-intransitive polytopes P1 and P2 are
isomorphic if and only if their automorphism groups have the same presentation (with
generators as in Lemma 3, and Coxeter relations as depicted in Fig. 1), if we require
pd−2 < qd−2.

Proof If h : L(P1) → L(P2) is an isomorphism, let Φ be an appropriate base flag for
P1. Then the generators of Γ (P2) corresponding to the base flag h(Φ)must satisfy the
same relations that the generators of Γ (P1) corresponding to Φ do, so that the groups
have the same presentation.
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Conversely, suppose P1 and P2 are combinatorially two-orbit facet-intransitive
polytopes with the same presentation. For i = 1, 2, let Φi be an appropriate base flag
of Pi and define the generators ρi

0, . . . , ρ
i
d−2, ρ

i ′
d−2 of Γ (Pi ) with respect to Φi as

in Lemma 3. Since Γ (P1) and Γ (P2) have the same presentation, the map carrying
ρ1
j �→ ρ2

j and ρ1′
d−2 �→ ρ2′

d−2 extends to a group isomorphism f . Then the bijection

of the sets of flags taking γ (Φ1) �→ f (γ )(Φ2) and γ (Φd−1
1 ) �→ f (γ )(Φd−1

2 ), for
all γ ∈ Γ (P1), determines the required isomorphism between the lattices L(P1) and
L(P2). 	


4 Exceptional Possibilities in E
4

We now return to the exceptional possibilities left open for combinatorially two-orbit
4-polytopes (see the end of Sect. 2). Recall that such a polytope P is in class 2{1,2},
so it is combinatorially fully transitive. For any flag Φ, the 1-adjacent flag Φ1 and
2-adjacent flag Φ2 are in the same orbit as Φ, while the 0-adjacent flag Φ0 and 3-
adjacent flag Φ3 are not. By 2-face-transitivity, all the 2-faces have the same number
of sides, p1. All the edges are in the same number of facets, p3. By Lemma 2 with
j = 0 and j = 3, p1 and p3 are even. Since P is not equivelar, the Schläfli symbol
has the form {p1, p2

q2
, p3} where p1 and p3 are even.

Each facet and vertex figure of P has at most two combinatorial flag orbits, by
the action of the automorphism group of P restricted to these sections. Since P is
facet-transitive, each facet must have both p2-gons and q2-gons as vertex figures.
Since P is vertex-transitive, each vertex figure must have both p2-gons and q2-gons
as faces. Thus the facets and vertex figures are not combinatorially regular: they are
combinatorially two-orbit 3-polytopes. By the preceding proof, the facets and vertex
figures are isomorphic to one of the four two-orbit polyhedra. Since all 2-faces are the
same, and by the necessary compatibility of the vertex figures with the facets, the two
possibilities are:

– A polytope whose facets are isomorphic to the rhombic dodecahedron, and whose
vertex figures are isomorphic to cuboctahedra; the modified Schläfli symbol is
{4, 3

4 , 4}, and
– Apolytopewhose facets are isomorphic to the rhombic triacontahedron, andwhose
vertex figures are isomorphic to icosidodecahedra; the modified Schläfli symbol
is {4, 3

5 , 4}.
However, we demonstrate that such polytopes cannot exist.

Suppose that P has the first combinatorial type above, {4, 3
4 , 4}. Consider the angle

at a vertex v in a 2-face F containing v. That is, in the affine hull aff(F), which is a
plane, we take the interior angle of the quadrilateral F at v. The sum of all these angles
at the 4 vertices of F is 2π . So, if we take the sum of all such angles in the whole
polytope P—i.e. the sum of the angle for every incident pair of vertex and 2-face in
P—the sum is 2π f2, where f2 is the number of 2-faces of P . Since every vertex is in
24 2-faces (the number of edges of the cuboctahedron), and each 2-face has 4 vertices,
f2 = 6 f0 (where f0 is the number of vertices of P).

123



672 Discrete Comput Geom (2016) 55:662–680

On the other hand, let v be any vertex of P and consider the sum of the angles in
each 2-face incident to v. Each 2-face lies in exactly two facets: one where v is in
4 edges, and one where v is in 3 edges. (Correspondingly, each edge of the vertex
figure, the cuboctahedron, is in one square and one triangle.) We may partition the 24
2-faces at v into 6 sets of 4, each set consisting of the 2-faces of a facet G containing
v wherein v has valence 4. The sum of the angles of v within these four 2-faces must
be less than 2π (the difference from 2π is the angular deficiency or defect.) Hence the
sum of the angles at v in all the 2-faces containing v is less than 6 · 2π , and the sum
of the angles of all incident pairs of vertices and 2-faces is therefore less than 6 f02π .

But this contradicts the earlier conclusion that the sum is exactly 6 f02π . Therefore,
no such polytope can exist.

The same argument rules out the possibility of a polytope of the second type,
{4, 3

5 , 4}. Each vertex is in 60 2-faces (the number of edges of the icosidodecahedron),
and each 2-face has 4 vertices, so we have f2 = 15 f0, and the sum of the angles over
all incident pairs of vertex and 2-face is 15 f02π .

On the other hand, the 2-faces at each vertex v can be partitioned into 12 sets of 5,
each set consisting of the 2-faces of a particular facet G containing v wherein v has
valence 5. The sum of the angles at v in all these 2-faces is less than 2π , so the sum
of all the angles of v in the 60 2-faces containing v is less than 12 · 2π .

Thus we have 15 f02π < 12 f02π , a contradiction, so no such polytope can exist.
With these possibilities disposed of, we have proved Theorem 1.

5 Tilings

In this section, we deal with combinatorially two-orbit tilings of Euclidean space Ed .
All the tilings we consider are by convex polytopes, and are face-to-face, which means
that the intersection of any two tiles is a face of each (possibly the empty face). A
tiling is locally finite if every bounded set meets only finitely many tiles.

Definition An LFC tiling is a face-to-face locally finite tiling of Ed by convex d-
polytopes.

An LFC tiling of Ed is an abstract polytope of rank d + 1. A tiling is normal if it
satisfies three conditions:

N.1 Every tile is a topological ball.
N.2 The intersection of every two tiles is connected (or empty).
N.3 The tiles are uniformly bounded. That is, there are positive numbers u and U

such that every tile contains a ball of radius u and is contained in a ball of radius
U .

Any convex tiling automatically satisfies properties N.1 and N.2. So when we require
a tiling to be normal, it is equivalent to require the tile sizes to be uniformly bounded.
Every normal tiling is locally finite.

In Sect. 2.4, Lemmas 1 and 2 and Corollary 1 apply also to combinatorially 2-orbit
LFC tilings. Furthermore, the proof in [10, 1B9] that equivelar convex polytopes are
combinatorially regular depends only on the boundary of the polytope being simply
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connected; so it is also true that an equivelar LFC tiling is combinatorially regular.
Our Corollary 2 also holds, but requires a modified proof:

Corollary 2′ If an LFC tiling T of Ed is in class 2I and j /∈ I , then j = 0 or j = d.

Proof Suppose 0 < j < d. Then there is an incident pair of faces Fj+2 and Fj−2.
If Fj+2/Fj−2 is a proper section, then it is isomorphic to a convex polytope, with
symbol {p j , p j+1} with two even entries (by Lemma 2). It is impossible for convex
polytopes to have such a symbol [3, Sect. 13.1].

On the other hand, if Fj+2/Fj−2 is all of T , then j−2 = −1 and j+2 = d+1, i.e.
j = 1 and d = 2, so we have an edge-intransitive planar tiling. By Corollary 1, T has
type {p1, p2} with single-valued entries. Hence T is a regular tiling, a contradiction.

	


Lemmas 3, 4, and 5 in Sect. 3 also apply to LFC tilings, but since the automorphism
group of a tiling is not finite, we get no corresponding short list of potential diagrams.
If we could conclude that the automorphism group was of so-called “affine type,” then
the analog to Theorem 4 would follow.

Theorem 4A4 of McMullen’s thesis [9] says, for d �= 3, a rank-d convex poly-
tope with combinatorially regular vertex figures and combinatorially regular facets is
combinatorially regular. The proof works equally well for LFC tilings; we sketch it
here.

Lemma 6 An LFC tiling T of Ed , d �= 2, whose vertex figures and facets are all
combinatorially regular is itself combinatorially regular.

Proof Each vertex figure T /v is combinatorially regular, hence equivelar, so for any
i ∈ {2, . . . , d}, every incident pair of (i+1)-faceGi+1 and (i−2)-faceGi−2 containing
v gives a polygonal section Gi+1/Gi−2 of the same size, say pi (v). Each edge figure,
being contained in a vertex figure, is also equivelar, so for any i ∈ {3, . . . , d}, the size
of each section Gi+1/Gi−2 of incident faces containing a given edge is also constant.
Since any two vertices of T may be linked by a chain of vertices and edges, the Schläfli
entries pi with i ≥ 3 are well-defined on all of T .

Similarly, face-chains of facets and ridges show that pi is well-defined for i ≤ d−2,
and face-chains of vertices and facets cover the remaining case when d = 3 and i = 2.

	


Theorem 5 All combinatorially 2-orbit LFC tilings are of E2 or E3.

Proof A combinatorially two-orbit tiling has facets and vertex figures which are either
combinatorially regular or combinatorially two-orbit. If we are tiling E

d , and d ≥ 4,
then by Theorem 1 the facets and vertex figures are actually combinatorially regular,
so the tiling is combinatorially regular. Thus d < 4.

Of course, LFC tilings of E0 and E
1 are trivial, and no combinatorially two-orbit

ones exist. The remaining cases are tilings of E2 or E3. 	
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5.1 Planar Tilings

Planar tilings are the only case, in light of Lemma 6, where a combinatorially two-
orbit tiling can have combinatorially regular tiles and vertex figures. Indeed, any
planar tiling has combinatorially regular tiles and vertex figures, since all polygons
are combinatorially regular.

Theorem 6 There are infinitely many (isomorphism classes of) combinatorially two-
orbit LFC tilings of the plane.

To see this, first we show that there are combinatorially regular tilings by con-
vex p-gons, with three tiles at each vertex, for every p ≥ 6. This is a consequence
of result 4.7.1 of Tilings and Patterns [4, p. 194]. We paraphrase the result, taking
advantage of result 4.1.1 [4] that homeomorphisms preserving a tiling are equivalent
to combinatorial automorphisms, and of convexification [4, p. 202].

Lemma 7 [4, 4.7.1] There exists a combinatorially regular LFC tiling of type { j, k},
for positive integers j, k, if and only if 1/j + 1/k ≤ 1/2. Such a tiling can be normal
only if equality holds.

Since 1/3 + 1/p ≤ 1/2 for every p ≥ 6, there is a combinatorially regular tiling
{p, 3} for every such p. From this tiling, we can form a combinatorially two-orbit tiling
by “truncating” at each vertex to the midpoints of its incident edges, analogously to
the formation of the cuboctahedron from the cube, of the icosidodecahedron from the
dodecahedron, or of the trihexagonal tiling from the regular hexagonal tiling. Each
edge of {p, 3} is reduced to its midpoint. The midpoints of the three edges incident
to a vertex become the vertices of a triangular tile. The midpoints of the p edges of
a p-gonal tile in {p, 3} become the vertices of a smaller p-gonal tile. For instance,
with p = 7, this is a “triheptagonal” tiling. Each vertex of this new tiling (formerly an
edge midpoint) is in four tiles: two triangles (the vertex figures of the endpoints of the
former edge), and two p-gons. Thus the tiling can be described (3.p.3.p), a notation
that gives, in cyclic order, the number of sides of each tile incident to a vertex of the
tiling.

However, none of these examples are normal for p ≥ 7. We proceed to show

Theorem 7 Every normal combinatorially two-orbit planar tiling is isomorphic to
one of the (geometrically) two-orbit planar tilings: either the trihexagonal tiling or
its dual, the rhombille tiling.

By Corollary 2′, a combinatorially two-orbit tiling T of E
2 is either facet-

intransitive, in which case Γ (T ) acts transitively on its vertices, or vertex-intransitive,
in which case Γ (T ) acts transitively on its facets (tiles).

In the former case, we apply the following result. Here, the adjacents of a tile are
the other tiles with which it shares an arc; for an LFC planar tiling, the number of
adjacents is the number of sides of the tile.
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Lemma 8 [4, 3.5.4] If every vertex of a normal tiling T has valence j , and is incident
with tiles which have k1, . . . , k j adjacents, then

j∑

i=1

ki − 2

ki
= 2.

Each vertex is incident to evenly many tiles (by Lemma 2 with I = {0, 1}), which
alternate orbits. With 6 tiles at each vertex, the only solution is when all tiles are
triangles, (36); but this is the regular tiling by triangles. So we consider 4 tiles at each
vertex. If none of the tiles are triangles, the only solution is four squares, (44); but
this is the regular tiling by squares. So we must have (3.k.3.k). The only solution is
k = 6, which is the trihexagonal tiling. This tiling has two triangles and two hexagons
alternating at each vertex.

On the other hand, if Γ (T ) acts transitively on facets, we apply

Lemma 9 [4, 3.5.1] If every tile of a normal tiling T has k vertices, and these vertices
have valences j1, . . . , jk , then

k∑

i=1

ji − 2

ji
= 2.

Every facet has evenly many sides (by Lemma 2 with I = {1, 2}), and the valence
of each vertex alternates. Clearly, this has the same solutions as before. In a notation
[ j1 . . . jk] giving, in cyclic order, the valence of each vertex adjacent to a tile, we have
[36], the regular tiling by hexagons; [44], the regular tiling by squares; and [3.6.3.6],
the rhombille tiling. The latter has rhombus tiles, with three tiles meeting at the obtuse
corners, and 6 tiles meeting at the acute corners.

5.2 Tilings of E3

By Lemma 6, if a tiling of E3 has combinatorially regular facets and vertex figures,
it must be combinatorially regular. So a combinatorially two-orbit tiling T of E3

must have some tiles or some vertex figures from the list of two-orbit polyhedra.
By Corollary 2′, the class of T must be 2{0,1,2} (tile-intransitive), 2{1,2,3} (vertex-
intransitive), or 2{1,2} (fully transitive). We consider these cases.

5.2.1 Tile-Intransitive

In this case, T is in class 2{0,1,2} and the automorphism group is transitive on the
vertices, edges, and 2-faces of the tiling. There are two different tile orbits, and each
tile must be combinatorially regular (since the orbit of a flag is determined entirely by
which type of tile it includes). Thus, all the vertices have isomorphic vertex figures,
which must be a two-orbit polyhedron; since there are two types of tile, the vertex
figure must be facet-intransitive, i.e. the cuboctahedron or the icosidodecahedron.
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With the cuboctahedron as vertex figure, each vertex is 3-valent in some tiles, and 4-
valent in others. The only regular polyhedron with 4-valent vertices is the octahedron;
the only regular polyhedron with 3-valent vertices and triangular faces (to match the
octahedron) is the tetrahedron. But the tiling built from tetrahedra and octahedra in this
manner is the tetrahedral–octahedral honeycomb, {3, 3

4 , 4}, one of the (geometrically)
two-orbit tilings.

With the icosidodecahedron as vertex figure, each vertex is 3-valent in some tiles,
and 5-valent in others. The only regular polyhedron with 5-valent vertices is the icosa-
hedron, and the other tiles must be tetrahedra. Such a tetrahedral–icosahedral tiling
has type {3, 3

5 , 4}. Indeed, a tiling can be built up in such a way, in hyperbolic space; it
is known as the alternated order-5 cubic honeycomb. It can be carved out of a regular
tiling of hyperbolic space by cubes, {4, 3, 5}, known as the order-5 cubic tiling since
5 cubes surround each edge. Inscribe a tetrahedron in each cube, so that tetrahedra in
adjacent cubes alternate direction. The shape left around a vertex which is not part of
the tetrahedron is an icosahedron (there are 20 cubes around each vertex in {4, 3, 5}.)

We show by contradiction that there is no normal tiling of E3 of this type. Suppose
T is a normal tetrahedral–icosahedral tiling. Divide each icosahedron of T into twenty
pyramids (over each of its 2-faces), and adjoin each of these pyramids to the tetrahedron
with which it shares the 2-face. Thus we have partitioned E

3 into tiles, one for each
tetrahedron in T , consisting of the tetrahedron with a pyramidal cap added to each of
its 2-faces. These tiles need not be convex, but are isomorphic to cubes: Each tile has
six neighboring tiles, with each of which it shares two triangular faces of its pyramidal
caps; we treat each such pair of triangular faces as a single “skew” 4-gonal face. Thus
we get a tiling C topologically isomorphic to the order-5 cubic tiling {4, 3, 5}.

If we start with a normal tiling, our tiling C will be, also. Indeed, suppose every tile
of T contains a ball of radius w and is contained in a ball of radius W . Then every
tile of C, containing a tetrahedral tile of T , also contains a ball of radius w. Being
composed of one tile of T along with pieces of tiles which meet that one, every tile
of C is contained in a ball of radius 3W .

Knowing that C is normal, say each tile contains a ball of radius u and is contained
in a ball of radius U . Then the number of tiles in a ball of radius r is at most r3/u3.

Next consider a growing sequence of patches of the tiling C. (For our purposes, a
patch can be defined as any finite set of tiles of C whose union is homeomorphic to a
ball.) Begin with a vertex of the tiling, designated A0. Let A1 consist of all the tiles
containing A0, A2 consist of all the tiles with nonempty intersection with the union
of A1, and so on, so An+1 consists of all the tiles with nonempty intersection with the
union of An .

Let us call a tile of An which has any 2-face on the boundary of An a k-tile if it has
k 2-faces on the boundary of An . By induction, we see that all tiles on the boundary
are 1-tiles, 2-tiles, or 3-tiles; that every edge on the boundary of An is contained in
either 1 or 2 tiles of An ; and that every vertex on the boundary of An is contained in
either 1, 2, or 5 tiles of An .

– A tile not in An which contains a 2-face in An becomes a 1-tile of An+1. Each of
its four exposed edges is in two tiles of An+1. See the leftmost example in Fig. 4.
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Fig. 4 Tiles of An+1 \ An . Vertices and edges on the boundary of An+1 are labeled by the number of tiles
of An+1 containing them. Elements belonging to An are darkened

– A tile not in An which contains only an edge in An becomes a 2-tile of An+1. Six
of its exposed edges are in two tiles of An+1, while one exposed edge is only in
this tile. See the middle example in Fig. 4.

– A tile not in An which contains only a vertex in An becomes a 3-tile of An+1. Six
of its exposed edges are in two tiles of An+1, while three exposed edges are only
in this tile. See the rightmost example in Fig. 4.

Let an be the number of 1-tiles in An , bn be the number of 2-tiles, and cn be the
number of 3-tiles. The 1-tiles in An+1 are those tiles which share a 2-face with some
k-tile of An , so we have

an+1 = an + 2bn + 3cn .

The 2-tiles in An+1 are added above edges on the boundary of An . One such 2-tile is
added above each edge contained in two tiles of An , and two such 2-tiles are added
above each edge contained in a unique tile of An . Counting the number of edges of
each type in the boundary of An yields

bn+1 = 4an + 6bn + 6cn
2

+ 2 (bn + 3cn)

= 2an + 5bn + 9cn .

The 3-tiles in An+1 are added above vertices on the boundary of An . A vertex contained
in five tiles of An is also contained in five 1-tiles of An+1, added above the five incident
2-faces in the boundary of An , and in five 2-tiles of An+1 added above the five incident
edges in the boundary of An , so we need to add five more 3-tiles to include all 20 of
the incident tiles. A vertex contained in two tiles of An is incident to eight 3-tiles of
An+1, and a vertex in a unique tile of An is incident to ten 3-tiles of An+1. Hence

cn+1 = 5
4an + 4bn + 3cn

5
+ 8

2bn + 3cn
2

+ 10cn

= 4an + 12bn + 25cn .
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Thus we have an equation for the number of k-tiles on the boundary of each patch
An , beginning with the patch A1 consisting of the 20 tiles incident to A0:

⎡

⎣
an
bn
cn

⎤

⎦ =
⎡

⎣
1 2 3
2 5 9
4 12 25

⎤

⎦
n−1 ⎡

⎣
0
0
20

⎤

⎦ .

This matrix is diagonalizable, making it straightforward to solve for the total number
of tiles in the patch An :

|An| = 5

7

( 9

2
√
14

(
(15 + 4

√
14)n − (15 − 4

√
14)n

) − 8n
)
.

This is exponential in n; the number of tiles increases by a factor of roughly 30 in
each successive patch. Now consider a ball centered at A0 with radius 2nU . This ball
contains the patch An , but the number of tiles in the ball is at most (2nU )3/u3. An
exponential function of n cannot remain bounded by a cubic function of n, so there
must be some n such that |An| > (2nU )3/u3, a contradiction.

Therefore, no normal tiling ofE3 has type {4, 3, 5}, even allowing non-convex tiles.
So no tetrahedral–icosahedral tiling of type {3, 3

5 , 4} can be normal either. On the other
hand, there seems to be no obstruction to constructing (non-normal) LFC tilings of
these types.

5.2.2 Vertex-Intransitive

In this case, the orbit of a flag is determined by the vertex it contains. So the vertex fig-
ures are combinatorially regular. The tiles are two-orbit vertex-intransitive polyhedra,
i.e. the rhombic dodecahedron or rhombic triacontahedron.

With the rhombic dodecahedron, a vertex which is incident to 4 edges in a given
tile has a vertex figure with a square face; hence the vertex figure is a cube. Hence
each edge incident to the vertex is in 3 tiles. A vertex which is incident to 3 edges in a
given tile has a vertex figure with triangular faces. Every edge of the tiling is incident
to one vertex of each type, hence is in 3 tiles, so the second type of vertex figure must
be a tetrahedron. Rhombic dodecahedra put together in this way form the rhombic
dodecahedral honeycomb {4, 3

4 , 3}, one of the (geometrically) two-orbit tilings.
With the rhombic triacontahedron as tile, any vertex which is incident to five edges

in a given tile has a pentagon in its vertex figure; hence its vertex figure is a combi-
natorially regular dodecahedron. Every edge is incident to one vertex of this type, so
every edge is in three tiles. Thus the other vertices, which are incident to three edges
in each tile, have tetrahedra for vertex figures. This potential tiling has type {4, 3

5 , 3}
and is dual to the tetrahedral–icosahedral tiling discussed above. Like that one, this
tiling can be realized in hyperbolic space, with a two-orbit symmetry group. For any
normal tiling there is a dual tiling which is also normal (but the tiles of which are not
necessarily convex). Hence, if a normal tiling of type {4, 3

5 , 3} existed, we could find

a normal tiling of type {3, 3
5 , 4}, which we know to be impossible.
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5.2.3 Class 2{1,2}

This is the same class discussed in Sect. 4, and the same considerations establish that
we have either a cuboctahedron vertex figure with rhombic dodecahedra as tiles, type
{4, 3

4 , 4}, or an icosidodecahedron vertex figure with rhombic triacontahedra as tiles,

type {4, 3
5 , 4}. (We note that the cuboctahedron and icosidodecahedron are non-tiles,

meaning there cannot be any tiling of E3 using only tiles isomorphic to these; see
[13].)

Perhaps these types can be realized as LFC tilings. However, there is no such normal
tiling. Essentially the sameproof as in Sect. 4 applies, alongwith theNormalityLemma
[12, p. 45], which says that in a normal tiling, the ratio of (the number of tiles that meet
the boundary of a spherical patch of the tiling) to (the number of tiles in the patch) goes
to zero as the radius of the patch grows. The two methods of counting internal angles
of 2-faces in Sect. 4 hold for all the faces in the interior of a given patch. Discrepancies
occur only at tiles on the boundary, where a vertex is not surrounded by all the 2-faces
incident to it in the tiling. Taking the limit as the patch grows, the discrepancies go to
zero and the inequality remains. The details are too tedious to include here.

With these ruled out, we have established

Theorem 8 Every normal combinatorially two-orbit tiling of E3 is isomorphic to one
of the (geometrically) two-orbit tilings: either the tetrahedral–octahedral honeycomb
or its dual, the rhombic dodecahedral honeycomb.

6 Open Questions

Question Is a combinatorially regularLFC tiling ofEd ,d ≥ 3, necessarily isomorphic
to a regular tiling of Ed? (Except for d = 4, this says that any combinatorially regular
tiling is isomorphic to the tiling by d-cubes.)

The answer is probably no, but the author does not know a counterexample.

Question Is a combinatorially regular normalLFC tiling ofEd necessarily isomorphic
to a regular tiling of Ed?

The answer is probably yes, but the author knows a proof only for the cases d ≤ 2.

Question Are there combinatorially two-orbit LFC tilings of E3 not isomorphic to
any two-orbit tiling?

Any such tilingwould have one of the previously discussed types {3, 3
5 , 4}, {4, 3

5 , 3},
{4, 3

4 , 4}, or {4, 3
5 , 4}. The author believes that non-normal tilings of these types prob-

ably do exist.
For results in these directions, as well as other open questions of this type, see [14].
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