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Abstract Let P be a finite set of points in general position in the plane. The structure
of the complete graph K (P) as a geometric graph includes, for any pair [a, b], [c, d] of
vertex-disjoint edges, the information whether they cross or not. The simple (i.e., non-
crossing) spanning trees (SSTs) of K (P) are the vertices of the so-called Geometric
Tree Graph of P , G(P). Two such vertices are adjacent in G(P) if they differ in
exactly two edges, i.e., if one can be obtained from the other by deleting an edge and
adding another edge. In this paper we show how to reconstruct from G(P) (regarded
as an abstract graph) the structure of K (P) as a geometric graph. We first identify
within G(P) the vertices that correspond to spanning stars. Then we regard each
star S(z) with center z as the representative in G(P) of the vertex z of K (P). (This
correspondence is determined only up to an automorphism of K (P) as a geometric
graph.) Finally we determine for any four distinct stars S(a), S(b), S(c), and S(d), by
looking at their relative positions inG(P), whether the corresponding segments cross.

Keywords Tree graphs · Geometric tree graphs · Reconstruction

1 Introduction

Graph reconstruction is an old and extensive research topic. It dates back to the Recon-
struction Conjecture raised by Kelly and Ulam in 1941 (see [8,12]), which asserts that
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every graph on at least three vertices is uniquely determined by its collection of vertex
deleted subgraphs.

As a natural extension of the Reconstruction Conjecture, numerous papers consid-
ered either reconstruction of structures other than graphs (a research topic proposed by
Ulam in 1960), or reconstructions of graphs from other information. In the first direc-
tion, reconstructed objects include colored graphs, hypergraphs, matroids, relations,
and other classes. In the second direction, the “information” may be k-vertex deleted
subgraphs, edge-deleted subgraphs, elementary contractions, spanning trees, etc. In
addition, various papers considered reconstruction of parameters of the graph instead
of its full structure. Such parameters include the order, the degree sequence, planarity,
the types of spanning trees, and many others (see the surveys [2,10] for references).

In this paper, we study the problem of reconstructing the geometric structure of a
set of points in the plane from its geometric tree graph.

Tree graphs were defined in 1966 by Cummins [3] in the context of listing all
spanning trees of a given connected graph effectively. The tree graph T (G) of a graph
G has the spanning trees ofG as its vertices, and two spanning trees are adjacent if one
can be obtained from the other by deleting an edge and adding another edge. These
graphs were studied in a number of papers and were shown to be Hamiltonian and to
have the maximal possible connectivity (see, e.g., [7,9]).

In 1996, Avis and Fukuda [1] defined the geometric tree graph, as the counterpart
of tree graphs in the geometric graph setting.

Definition 1.1 Let P be afinite point set in general position in the plane.Thegeometric
tree graph G(P) is defined as follows. The vertices of G(P) are the simple (i.e., non-
crossing) spanning trees (SSTs) of K (P). Two such vertices are adjacent in G(P) if
they differ in exactly two edges, i.e., if one can be obtained from the other by deleting
an edge and adding another edge.

Geometric tree graphs were shown to be connected [1], and upper and lower bounds
on their diameter were established [1,6].

We study a reconstruction problem for geometric graphs: Is the geometric tree
graph G(P) sufficient for “reconstructing” the structure of K (P)? In a sense, this
question is a geometric counterpart of the work of Sedláček [11], who studied the
question whether a graph can be reconstructed from its spanning trees. As we deal
with a geometric setting, we seek to reconstruct the geometric structure of the graph.

Definition 1.2 Let P be a finite set of points in general position in the plane. The
geometric structure of the complete graph K (P) as a geometric graph includes, for
any pair [a, b], [c, d] of vertex-disjoint edges, the information whether they cross or
not.

Our main result is the following:

Theorem 1.3 For any finite set P of points in general position in the plane, the
geometric structure of K (P) can be reconstructed from the geometric tree graph
G(P).

While the proof of the theorem is elementary, it is rather complex, and consists of
several stages:
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1. Maximal cliques in G(P). We study thoroughly the structure of maximal cliques
in G(P). We divide these cliques into two types, called “union max-cliques” and
“intersection max-cliques”, and show that given a maximal clique in G(P), one
can determine its type. This study spans Sect. 2.

2. Stars and brushes in G(P). We show how to identify the vertices of G(P) that
correspond to spanning stars and spanning brushes (i.e., spanning trees of diameter
3 with a single internal edge), by examining the max-cliques to which they belong.
The stars are determined only up to an automorphism of K (P) (obviously, one
cannot do better), and once they are fixed, the brushes are determined uniquely.
This part of the proof is presented in Sect. 3.

3. The geometric structure of K (P). We show how the geometric structure of K (P)

can be derived from information on the brushes in G(P). This part is presented in
Sect. 4.

In the last part of the paper, Sect. 5, we consider abstract (i.e., non-geometric)
graphs, and show that a variant of the argument developed in Sects. 2 and 3 can be
used to prove the following result:

Theorem 1.4 For any n ∈ N, the automorphism group of the tree graph of Kn is
isomorphic to Aut(Kn) ∼= Sn.

Our treatment of the geometric reconstruction problem (i.e., K (P) from G(P))
falls short of this. It leaves open the (quite implausible) possibility that the geometric
tree graph G(P) has an automorphism η, other than the identity, that fixes each star
and each brush. This leaves open, for further research, the following question.

Question 1.5 Is it true that for any finite set P of points in general position in the
plane, we have Aut(G(P)) ∼= Aut(K (P)), where G(P) is treated as an abstract
graph, whereas K (P) is treated as a geometric graph?

2 Maximal Cliques in G(P)

In this section we study the structure of maximal (with respect to inclusion) cliques in
the geometric tree graph G(P). We divide the maximal cliques into two types, called
U -cliques and I -cliques, and our ultimate goal is to determine, given a maximal clique
in G(P), what is its type.

We start in Sect. 2.1 with a few definitions and notations, to be used throughout the
paper. In Sects. 2.2 and 2.3 we describe a classification of themaximal cliques into two
types, presented originally in [13], and discuss basic properties of both types. In order
to distinguish between general combinatorial considerations and geometric arguments
specific to SSTs, we start in Sect. 2.2 with a general combinatorial framework, and
leave the geometric arguments to Sect. 2.3.

In Sects. 2.4 and 2.5 we study degenerate maximal cliques, i.e., maximal cliques
of size 2. In Sect. 2.4 we give a geometric characterization of the situation when a
maximal clique is degenerate, and in Sect. 2.5 we show how to identify whether a
given degenerate maximal clique is aU -clique or an I -clique. Finally, in Sect. 2.6 we
show how to determine whether a given non-degeneratemaximal clique is aU -clique
or an I -clique.
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2.1 Definitions and Notations

Notation 2.1 The following notations and conventions are used throughout the paper.
The straight line that passes through points x, y is denoted by �(x, y). The vertex and
edge sets of a graph G are denoted by V (G) and E(G), respectively. Since the set P
is fixed, we shall always identify a spanning subgraph of K (P) (and, in particular, a
spanning subtree) with its set of edges.

In our study we shall extensively use maximal cliques of G(P). These are defined
as follows:

Definition 2.2 A max-clique in a graph G is a maximal (with respect to inclusion)
clique included in G. Since any max-clique is a complete graph on its vertex set, we
shall identify a max-clique with its set of vertices.

We shall use the following observation on the structure of G(P), proved by Avis and
Fukuda [1].

Claim 2.3 ([1, Lem. 3.15]) For any set P of points in general position in the plane,
G(P) is connected and its diameter is ≤ 2|P| − 4.

2.2 Types of Max-Cliques in Tree Graphs

A generic combinatorial way to treat a tree graph is to consider a base set X and a
graph G whose vertices are q-subsets of X (not necessarily all the q-subsets), such
that two vertices A, B ∈ V (G) are adjacent if and only if |A�B| = 2. (In the case of
the (geometric) tree graph of a point set P , we have X = E(K (P)), q = |P| − 1, and
the vertices of G are the sets of edges of (simple) spanning trees of K (P).)

Let A, B be two adjacent vertices of G. Denote

I = A ∩ B, D = A�B and U = A ∪ B = I ∪ D.

A third vertex C ∈ V (G) is a common neighbor of A and B if and only if:

1. C ∩ D = ∅ and I ⊂ C . In this case, C is obtained from I by adding a single
element.

2. D ⊂ C and C ⊂ U . In this case, C is obtained from U by removing a single
element.

(It is easy to see that in any other case, either |A�C | 
= 2 or |B�C | 
= 2.)
If C,C ′ are both common neighbors of A and B, such that C satisfies (1) and C ′

satisfies (2), then clearly, |C�C ′| = 4. Hence, if two common neighbors of A and
B are themselves neighbors, then either both satisfy (1) or both satisfy (2). On the
other hand, it is clear that any two common neighbors satisfying (1) are themselves
neighbors, and the same holds for (2). Thus, any pair A, B of adjacent vertices of G
is included in at most two max-cliques:
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1. U (A, B) = {C ∈ V (G)|C ⊂ A ∪ B}, and
2. I (A, B) = {C ∈ V (G)|C ⊃ A ∩ B}.
For any two elementsC,C ′ ∈ U (A, B), the unionC∪C ′ is constant (and equal toU ).
Likewise, for any two elements C,C ′ ∈ I (A, B), the intersection C ∩ C ′ is constant
(and equal to I ). This is the motivation behind the following definition.

Definition 2.4 A max-clique of the first type will be called a Union max-clique, or a
U -clique, and amax-clique of the second typewill be called an Intersectionmax-clique
or an I -clique.

Remark 2.5 It is clear that given two vertices A, B of a max-clique C , we cannot
determine whether C is a U -clique or an I -clique. However, if we are given a third
vertex B ′ ∈ C , we can determine the type, according to which one of the equalities
A∩ B = A∩ B ′, A∪ B = A∪ B ′ holds. Moreover, once we determine that C is, say,
an I -clique, we know that C = I (A, B) as this is the unique I -clique that includes A
and B. Hence, three vertices of a max-clique determine it uniquely.

Definition 2.6 If U (A, B) = {A, B}, we say that {A, B} is a degenerate U-clique.
Similarly, if I (A, B) = {A, B}, we say that {A, B} is a degenerate I -clique.

For a pair of adjacent vertices A, B, there are four possible situations:

1. |U (A, B)| ≥ 3 and |I (A, B)| ≥ 3. In this case, there are exactly two max-cliques
that contain A and B.

2. |U (A, B)| ≥ 3 and |I (A, B)| = 2. In this case, there is a unique max-clique
that contains A and B, namely U (A, B). (The I -clique that contains A and B is
degenerate.)

3. The same as (2), with the roles of U (A, B) and I (A, B) interchanged.
4. U (A, B) = I (A, B) = {A, B}. In this case, the set {A, B} itself is a max-clique

(that is, both a U -clique and an I -clique). As we shall see in the sequel, this
situation cannot occur in our geometric setting.

2.3 Types of Max-Cliques in G(P)

Now we turn to the geometric tree graph G(P) and show additional properties of
max-cliques that follow from its geometric structure. In order to make our notation
suggestive, we denote now the two adjacent vertices of G(P) by T1, T2, and the edges
in their symmetric difference by e1 ∈ T1 \ T2 and e2 ∈ T2 \ T1.

In G(P), U -cliques and I -cliques have a geometric meaning.

1. U (T1, T2). Consider the graph T̄ = T1 ∪ T2 = T1 ∪ {e2}. Obviously, it is a
connected graph with a unique cycle. This cycle contains e1 and e2, and is simple
if and only if e1 and e2 do not cross. (Note that e2 cannot cross another edge of T1,
as both these edges belong to the SST T2.) As shown above, U (T1, T2) consists
of all vertices of G(P) that are obtained from T̄ by removing a single edge. Since
the vertices of G(P) are the edge sets of SSTs, we can say that removing an edge
(other than e1, e2) from T̄ results in an element of U (T1, T2) if and only if the
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unique cycle of T̄ is simple, and the removed edge belongs to that cycle. Note
that if e1, e2 cross, then removal of any edge other than e1, e2 from T̄ results in a
non-simple graph, and thus, the only elements of U (T1, T2) are T1 and T2.

2. I (T1, T2). Consider the graph T̃ = T1 ∩ T2 = T1 \ {e1}. Obviously, it is a simple
forest with two connected components. As shown above, I (T1, T2) consists of
all vertices of G(P) that are obtained from T̃ by adding a single edge. Since the
vertices of G(P) are the edge sets of SSTs, we can say that adding an edge to T̃
results in an element of I (A, B) if and only if that edge makes the forest T̃ into a
simple spanning tree of K (P).

2.4 Geometric Characterization of Degenerate Cliques

The geometric interpretation allows us to characterize the cases when U -cliques and
I -cliques are degenerate.

Claim 2.7 Let P be a finite set of points in the plane, no three on a line, |P| ≥ 4. Let
T1, T2 be SSTs of K (P) such that T1 \ T2 = {e1} and T2 \ T1 = {e2}. The U-clique
U (T1, T2) is degenerate if and only if e1 and e2 cross.

Proof By the geometric interpretation, if e1 and e2 cross then the only vertices of
U (T1, T2) are T1 and T2, and thus, it is degenerate. If e1 and e2 do not cross, then T̄
is a simple connected graph on n vertices with n edges. (Note that T̄ is simple since
as T1, T2 are SSTs, the only edges in T̄ that may cross each other are e1, e2.) Thus,
T̄ has a cycle of order at least 3. Removal of any edge from this cycle gives rise to a
vertex in U (T1, T2). Therefore, in this case U (T1, T2) is non-degenerate. ��
Proposition 2.8 Let P be a finite set of points in the plane, no three on a line, |P| ≥ 4.
Let T1, T2 be SSTs of K (P) such that T1 \ T2 = {e1} and T2 \ T1 = {e2}. The I -clique
I (T1, T2) is degenerate only in the following case:

The convex polygon conv(P) has three consecutive vertices x, v, y (i.e., [x, v] and
[v, y] are edges of conv(P)), such that:

1. The triangle conv(x, v, y) contains no other points of P.
2. e1 = [x, v] and e2 = [v, y].
3. [x, y] ∈ T1 ∩ T2.

Proof Assume that (1)–(3) hold, and let T0 ∈ I (T1, T2). T0 is connected, and thus,
has an edge e that emanates from v. Note that as x, v, y are consecutive vertices of
conv(P) and the triangle conv(x, v, y) contains no other points of P , any edge of
K (P) that emanates from v (other than e1 and e2) must cross [x, y]. Thus, either
e = e1, e = e2, or e crosses [x, y]. The latter is impossible, since [x, y] ∈ T1 ∩ T2,
and as shown above, T1 ∩ T2 is included in any element of I (T1, T2). If e = e1, then
T1 = ((T1 ∩ T2) ∪ {e1}) ⊂ T0, which implies T0 = T1 (as both have the same number
of edges). Similarly, if e = e2 then T0 = T2. Therefore, the only elements of I (T1, T2)
are T1 and T2, i.e., I (T1, T2) is degenerate.

In the other direction, assume that I (T1, T2) is degenerate. As mentioned above,
the graph T̃ = T1 ∩ T2 is a simple forest with two connected components. Color the
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vertices of one component white and the vertices of the other component black, and
call an edge colorful if its endpoints are of different colors.

Since T̃ is planar, it can be extended to a triangulation T of conv(P)with vertex set
P . As T is connected, it contains a colorful edge e. A triangle in T to which e belongs
clearly contains another colorful edge e′. Addition of either e or e′ to T̃ results in a
simple tree, and thus, gives rise to a vertex of I (T1, T2). (Note that e and e′ cannot
cross edges of T̃ since they belong to a triangulation that extends T̃ .) Since I (T1, T2)
is degenerate, this implies that all other edges of T are not colorful. We claim that this
can happen only in the case described in the statement of the proposition.

Consider the edges e, e′. If e is not a boundary edge of conv(P) then it belongs
to another triangle in T . The other triangle must contain an additional colorful edge,
contradicting the assumption that only e and e′ are colorful. The same holds for e′,
and thus, both e and e′ are boundary edges of conv(P). Denote their common vertex
by v and their other endpoints by x, y, respectively.

It is clear that Condition (1) above holds for x, v, y, since T is a triangulation of
P and conv(v, x, y) is one of its triangles. To see that Condition (2) holds, note that
T̃ ∪ {e} and T̃ ∪ {e′} are the only vertices of I (T1, T2), and thus, are equal to T1 and
T2. As Ti = T̃ ∪ {ei } for i = 1, 2, the edges e, e′ must coincide with e1 and e2.

Finally, since |P| ≥ 4, [x, y] is a diagonal of conv(P), and thus, in the trian-
gulation T it belongs to another triangle conv(x, y, w) (see Fig. 1). This triangle is
monochromatic (as otherwise, there are at least four colorful edges in T ), hence w, v

are of different colors. We apply a flip to the triangulation T , replacing the triangles
conv(x, y, v), conv(x, y, w) by conv(x, v, w), conv(y, v, w). The resulting triangu-
lation includes an additional colorful edge [v,w] that does not cross any edge of T̃ ,
except possibly for [x, y]. Since by assumption, there are only two colorful edges that
do not cross edges of T̃ , we must have [x, y] ∈ T̃ , which means that Condition (3)
holds. ��

Fig. 1 Illustration to the proof
of Proposition 2.8

x

υ

w

y
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Fig. 2 Illustration to Case 1 of
Lemma 2.10

a

d

b

c

Corollary 2.9 Each edge of G(P) is contained in at least one non-degenerate max-
clique.

Proof Let [T1, T2] ∈ G(P)1 and denote T1 \T2 = {e1} and T2 \T1 = {e2}. If e1, e2 do
not cross thenU (T1, T2) is non-degenerate by Claim 2.7. If e1, e2 cross then I (T1, T2)
is non-degenerate, since by the proof of Proposition 2.8, if I (T1, T2) is degenerate,
then the only edges that can be added to T1 ∩ T2 to form a simple tree share a vertex,
which is not the case for e1, e2 that cross in an interior point. ��

2.5 Identification of the Type of a Degenerate Clique in G(P)

Lemma 2.10 Let T be an SST of G(P), and let D be an I -clique that contains T .
Denote the common intersection of pairs of elements of D by T̃ , and let {e} = T \ T̃ .
If e is not a leaf edge of T , then |V (D)| ≥ 4.

Proof We begin the proof with the argument used in the proof of Proposition 2.8.
Namely, we consider the graph T̃ , which is a simple forest with two components. We
color its components black and white, and extend it to a triangulation T of P . The
triangulation contains a colorful edge [a, b], and consequently, another colorful edge
[a, b′] in the same triangle. Assume w.l.o.g. that a is black, b and b′ are white.

Now we would like to use the assumption that e is not a leaf edge of T . This
assumption implies that each connected component of T̃ has at least two vertices.
Consequently, any vertex v ∈ P is an endpoint of at least one monochromatic edge of
T (as otherwise, v would be isolated in T̃ ).

If both [a, b] and [a, b′] are boundary edges of conv(P), then (since �a, b, b′ is a
triangle in T ) these are the only edges of T that emanate from a. This is impossible,
as they are both colorful. Hence, we can assume w.l.o.g. that [a, b] is a diagonal edge
of conv(P), and thus, belongs to two triangles, �abc and �abd. (Note that either c
or d is equal to the vertex b′ mentioned above.) We consider several cases, according
to the colors of c and d:

1 For sake of clarity, we use here and in the sequel the notation [T, T ′] for edges ofG(P), like is commonly
used for geometric graphs, although G(P) is treated as an abstract graph.
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d k

b

c

a

d

a

c

b

Fig. 3 Illustrations to Case 3a of Lemma 2.10

1. Case 1: c and d arewhite. (This case is illustrated in Fig. 2.) Consider the neighbors
of a in T . Since T is a triangulation, all these vertices lie on a path in T . As stated
before, since a is black, at least one of its neighbors must be black. On the other
hand, some of its neighbors (including b, c, d) are white. Hence, at least one of the
edges in the path connecting the neighbors of a is colorful (see Fig. 2). In addition,
the edges [a, b], [a, c], [a, d] are colorful. Thus, T contains at least four colorful
edges, and each of them gives rise to a vertex of D. Therefore, |V (D)| ≥ 4.

2. Case 2: c and d are black. Since the black vertices a, c, d are all neighbors of the
white vertex b, the argument of Case 1 applies, with the roles of a with b, black
and white, interchanged.

3. Case 3: c and d have different colors.Assumew.l.o.g. that c is white and d is black.
In this case, the edges [a, b], [a, c], and [b, d] are colorful. We further divide this
case into three subcases, according to whether [a, c] and [b, d] are diagonal edges
of conv(P) or not, and show that in each case, T contains at least one additional
colorful edge.
(a) Case 3a: [b, d] is a diagonal edge of conv(P). In this case, [b, d] belongs to

an additional triangle of T (i.e., other than �abd). If this triangle is �bdc,
then the edge [c, d] is colorful, implying |V (D)| ≥ 4 (see left part of Fig. 3).
If this triangle is �bdk for some k 
= c, then, as b and d have different colors,
one of the edges [b, k] and [d, k] is colorful, again implying |V (D)| ≥ 4 (see
right part of Fig. 3).

(b) Case 3b: [a, c] is a diagonal edge of conv(P). The argument of Case 3a
applies, with the roles of a and b, c and d, black and white, interchanged.

(c) Case 3c: Both [a, c] and [b, d] are boundary edges of conv(P). In this case,
�acbd is a convex quadrilateral, and thus, its diagonal [c, d] lies inside it (see
Fig. 4). As both �abc and �abd are triangles in T , they do not contain points
of P , hence [c, d] does not cross any edge of T̃ . (Note that [a, b] is not an edge
of T̃ , since it is colorful.) Since [c, d] is colorful, the graph T̃ ∪ {[c, d]} is an
SST, hence belongs to D. Therefore, |V (D)| ≥ 4, which completes the proof
of the lemma. ��
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Fig. 4 Illustration to Case 3c of
Lemma 2.10 d

b

a

c

Using the lemma, we can identify whether a given degenerate clique is a U -clique
or an I -clique.

Proposition 2.11 Let [S, T ] be an edge in G(P) that constitutes a degenerate clique.
(This actually means that there is only one max-clique that includes {S, T }.) If [S, T ]
is included in a max-clique of 3 vertices, then the degenerate clique [S, T ] is an I -
clique. If [S, T ] is included in a max-clique of at least 4 vertices, then the degenerate
clique [S, T ] is a U-clique.

Proof By Corollary 2.9, each edge is included in at least one non-degenerate max-
clique. Hence, [S, T ] is included in a max-clique of size at least 3.

If the degenerate clique [S, T ] is an I -clique, then, by Proposition 2.8, S ∩ T is a
forest with two connected components. One of them is an isolated vertex v that lies
on the boundary of conv(P), and the two neighbors of v on the boundary of conv(P),
x, y, are adjacent in S ∩ T . In such a case, the unique cycle in the graph S ∪ T is the
triangle �(x, v, y). By the geometric characterization of Sect. 2.3, this implies that
the size of the U -clique that includes [S, T ] is 3.

If the degenerate clique [S, T ] is a U -clique, then, by Claim 2.7, the unique cycle
of S ∪ T includes the edges s ∈ S \ T and t ∈ T \ S, and these edges cross. This
implies that s is not a leaf edge of S, and thus, by Lemma 2.10, the size of the I -clique
that includes [S, T ] is at least 4. ��

2.6 Identification of the Type of a Non-degenerate Max-Clique in G(P)

Our next goal is to identify whether a given non-degenerate max-clique is a U -clique
or an I -clique. This identification is somewhat more complex, and requires some
preparations.

Definition 2.12 For any SST T ∈ G(P), define a graph DT as follows: V (T ) is the
set of max-cliques that contain T (including degenerate cliques). Twomax-cliques are
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adjacent in DT if and only if their intersection is a single edge (that obviously has T
as one of its endpoints).

Note that by Remark 2.5, two non-identical max-cliques may intersect in at most two
vertices (since three mutually adjacent vertices determine a max-clique uniquely). As
all vertices of DT include T , it follows that any two non-adjacent vertices of DT

intersect in T only.

Theorem 2.13 Assume that |P| ≥ 5. For any T ∈ G(P), the graph DT is connected.

Before we present the proof of the theorem, we show how it can be used (along
with several of the previous lemmas) to identify the types of max-cliques in G(P).

By the discussion in Sect. 2.2, each edge of G(P) belongs to exactly oneU -clique
and exactly one I -clique (one of them possibly degenerate). This implies that DT is
2-colorable. Indeed, we can color all its vertices that are U -cliques white and all its
vertices that are I -cliques black. If two vertices are adjacent, both include the same
edge [S, T ] ∈ G(P), and thus, one is a U -clique and the other is an I -clique, so they
have different colors. Using Theorem 2.13, we can conclude that DT is connected and
2-colorable, which implies that the 2-coloring is unique, in the sense that fixing the
color of any vertex determines the colors of all other vertices. This will allow us to
determine the types of all max-cliques, by the following four-step process:

1. Pick an SST T that belongs to a degenerate clique {S, T }. (It is easy to show
that such a T always exists. We show this in Lemma 2.14 below.) Using Proposi-
tion 2.11, identify whether {S, T } is a U -clique or an I -clique.

2. Consider the vertices of DT and determine for each of them whether it is a U -
clique or an I -clique. (This is possible by the explanation above. Since we know
the “color” of the vertex {S, T } of DT , we can determine the colors of all other
vertices.)

3. Consider a neighbor T ′ of T . Note that the edge [T, T ′] ∈ G(P) belongs to a
max-clique C that is a vertex of both DT and DT ′ . Determine whether C is a U -
clique or an I -clique. (This is possible, as by the previous step we can determine
the type for all max-cliques that are vertices of DT .) Using this information about
C ∈ V (DT ′), determine for each vertex of DT ′ whether it is a U -clique or an
I -clique.

4. Repeat Step 3 with a “new” vertex of G(P) every time until the types of all max-
cliques are determined. (Since G(P) is connected by Claim 2.3, we indeed reach
all vertices of G(P) in this way.)

Therefore, in order to determine the types of all max-cliques we have to prove a
simple lemma on the existence of degenerate max-cliques, and to prove Theorem 2.13.
We provide these two items now.

Lemma 2.14 For any set P, |P| ≥ 5, of points in general position in the plane, there
exists an SST that belongs to a degenerate U-clique in G(P).

Proof By the Erdős–Szekeres theorem [4], there exist four points in P in convex
position. Denote these points a, b, c, d, such that [a, b, c, d] is a convex quadrilateral
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(in this order). Consider the tree T that includes the edges [a, b], [b, d], [d, c], all
edges that connect a to each p ∈ P that lies above the straight line �(b, d) and
all edges that connect c to each p ∈ P that lies below �(b, d), as shown in Fig. 5.
Clearly, T is an SST of K (P). Addition of the edge [a, c] to T creates a self-crossing
cycle, and thus, by the discussion in Sect. 2.3, T ∈ V (G) belongs to a degenerate
U -clique. ��

Proof of Theorem 2.13 SupposeC,C ′ ∈ V (DT ). Choose edges [T, S] ∈ C , [T, S′] ∈
C ′. In order to prove that C is connected to C ′ by a path in DT , it suffices to find a
sequence S0, S1, . . . , S� of SST’s, such that S0 = S, S� = S′, and for each 0 ≤ i < �,
there is a max-clique Ci of G(P) that includes both [T, Si ] and [T, Si+1]. This will
be done in four steps.

1. Step 1 Extend the SST T to a triangulation T of conv(P). Recall that T is a
2-connected graph.

2. Step 2 If S ⊂ T , leave S as it is. If not, T contains the graph T̃ = T ∩ S =
T \ {e}. Since T is 2-connected, there is another edge e∗ in T that connects the
two components of T̃ . Define S∗ = T̃ ∪ {e∗}. S∗ is an SST of K (P). Note that S∗
is included in the I -clique I (T, S) (since T ∩ S∗ = T ∩ S = T̃ ). Do the same for
S′: leave it, if S′ ⊂ T , or replace it by some S

′∗ ⊂ T , such that S
′∗ ∈ I (T, S′).

Step 2 allows us to restrict our attention to the casewhere both S and S′ are included
in T (and all intermediate SST’s will be included in T , as well).

3. Step 3 Assume T ∩ S = T \ {e}, T ∩ S′ = T \ {e′}. If e = e′, then [T, S] and
[T, S′] belong to the same I -clique. Suppose e 
= e′. Since T is a simple tree,
there is a unique simple path in T whose edges are (in this order) e1, e2, . . . , em ,
with e1 = e and em = e′. For 1 < i < m, choose an edge e∗

i of T other than ei
that connects the two components of T \ {ei }, and define Si = T \ {ei } ∪ {e∗

i }.
In addition, let S1 = S and Sm = S′. Now we only have to connect Si−1 with Si
for i = 2, 3, . . . ,m. (Note that the desired sequence S0, S1, . . . , S� will be the
concatenation of the sequences connecting S1 to S2, S2 to S3 etc., and � will be
the sum of their lengths.)

a

b c

d

Fig. 5 An illustration for the proof of Lemma 2.14
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4. Step 4 Suppose T is a triangulation of conv(P) with vertex set P . Let T, S, S′ be
SST’s of K (P) that are included in T . Assume that both S and S′ are adjacent to
T in G(P), S ∩ T = T \ {e}, S′ ∩ T = T \ {e′}, e 
= e′, and e, e′ share a vertex.
Suppose e = [x, y], e′ = [x ′, y], and let k = deg(y) − 2. Denote the edges of T
that emanate from y by e, e′, f1, f2, . . . , fk . Removal of all edges that emanate
from y divides T into k + 3 connected components: D that includes x , D′ that
includes x ′, Fs (1 ≤ s ≤ k) that includes the second endpoint of fs , and Fk+1 that
consists of the isolated vertex y. Since T is 2-connected, we can extend the forest
B = D ∪ D′ ∪ F1 ∪ · · · ∪ Fk into an SST of K (P \ {y}) by adding k + 1 edges of
T .
Let S̄ be such an extension. S̄ includes a unique simple path π from x to x ′.
This path starts in the component D of B, and ends in D′. It visits some of the
intermediate components Fi in a particular order (see Fig. 6). By appropriately
labelling these components, we may assume that π visits D, F1, F2, . . . , Fl , D′
in this order (0 ≤ l ≤ k). Let g0 be the edge of π that passes from D to F1, gi
(1 ≤ i ≤ l−1) the edge that passes from Fi to Fi+1, and gl be the edge that passes
from Fl to D′. (If l = 0, then there is only one edge g = g0 that passes directly
from D to D′.)
Nowwe can describe the passage from [T, S] to [T, S′]. Let us start with the simple
case l = 0. Put S1 = T \ {e} ∪ {g}, S2 = T \ {e′} ∪ {g}. Then T ∩ S = T ∩ S1,
T ∪S1 = T ∪S2, and T ∩S2 = T ∩S′. Thus, {T, S, S1} and {T, S2, S′} are included
in I -cliques, while {T, S1, S2} is included in a U -clique. Hence, (S, S1, S2, S′) is
the required sequence.
When l > 0, define

S1 = T \ {e} ∪ {g0}, S2 = T \ { f1} ∪ {g0},
S3 = T \ { f1} ∪ {g1}, S4 = T \ { f2} ∪ {g1},
. . .

S2l−1 = T \ { fl−1} ∪ {gl−1}, S2l = T \ { fl} ∪ {gl−1},
S2l+1 = T \ { fl} ∪ {gl}, S2l+2 = T \ {e′} ∪ {gl}.

Then each of the triples {T, S, S1}, {T, S2i , S2i+1} (for 1 ≤ i ≤ l), and
{T, S2l+2, S′} is included in an I -clique, and each of the triples {T, S2i−1, S2i } (for
1 ≤ i ≤ l+1) is included in aU -clique.Therefore, (S, S1, S2, . . . , S2l+1, S2l+2, S′)
is the required sequence. This completes the proof of the theorem. ��
As explained after the statement of Theorem 2.13, the theorem and Lemma 2.14

imply the following corollary.

Corollary 2.15 Assume |P| ≥ 5. Given G(P), we can determine for each max-clique
in it whether it is a U-clique or an I -clique.

3 Identification of Stars and Brushes

In this section we use the results of Sect. 2 to identify the vertices of G(P) that
represent stars (i.e., SSTs of diameter 2) and brushes (i.e., SSTs of diameter 3).

123



Discrete Comput Geom (2016) 55:610–637 623

D

y

e

F1
F3

F2

f 1
f 3

f 2

e

D

g0

g1

g2

Fig. 6 An illustration for the proof of Theorem 2.13

The stars, considered in Sect. 3.1, are determined only up to an automorphism of
K (P) as a geometric graph. The brushes, considered in Sect. 3.2, are determined
uniquely given a determination of the stars.

3.1 Identification of Stars

Definition 3.1 A star is a tree of diameter 2.

Notation 3.2 For x ∈ P, we call the spanning star whose center is x an x-star, and
denote it by S(x).

Theorem 3.3 A vertex T ∈ G(P) is a star if and only if all U-cliques that include T
are of size 3.

Proof Recall that by the geometric interpretation ofmax-cliques presented in Sect. 2.3,
if U (S, T ) is a non-degenerate U -clique then all its elements are obtained from the
graph S ∪ T by removing an edge from its unique cycle. In particular, |U (S, T )| is
the length of the unique cycle of S ∪ T . If the unique cycle of S ∪ T is self-crossing
(which can occur only if its length is ≥ 4) then U (S, T ) is degenerate.

Assume that T ∈ G(P) is an x-star, and letU (S, T ) be aU -clique that includes T .
Since T is a star, S∪T is obtained from T by adding an edge that connects two leaves
v,w of T . Hence, the unique cycle of S ∪ T , ([x, v], [v,w], [w, x]), is of length 3.
Thus, |U (S, T )| = 3, as asserted.

On the other hand, we show that if T ∈ G(P) is an SST of diameter ≥ 3, then T
belongs to a U -clique of size 
= 3. Since diam(T ) ≥ 3, T contains an internal edge
[a, b] (i.e., both a and b are not leaves of T ). Consider the graph T \ {[a, b]}, that is
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e

e
a

b

Fig. 7 An illustration for the proof of Theorem 3.3—beginning

obviously a forest with two connected components. Color the vertices of the connected
component that includes a black and the vertices of the component that includes b
white.

We would like to show that there exists a colorful edge e that uses neither a nor
b and does not cross any edge of T \ {[a, b]} (see Fig. 7). This will conclude the
proof, since in such a case, denoting S = T ∪ {e} \ {[a, b]}, we find that S is an
SST, [S, T ] ∈ G(P), and the unique cycle of the graph S ∪ T = T ∪ {e} is of length
≥ 4. Then, by the geometric interpretation above, if e crosses [a, b] then U (S, T ) is
a degenerate U -clique, and otherwise, |U (S, T )| is equal to the length of the unique
cycle of S ∪ T , that is ≥ 4. Hence, in any case, T lies in a U -clique of size 
= 3.

We extend T to a triangulation T of conv(P), and consider three cases:

1. Case 1: [a, b] is a boundary edge of conv(P) The edge [a, b], being colorful, is
contained in a colorful triangle �abc ∈ T . The other colorful edge of �abc is not
a boundary edge of conv(P), as otherwise, one of the two connected components
of T \ {[a, b]} consists of a single vertex, which contradicts the assumption that
[a, b] is an internal edge of T . Denote that colorful edge [a, c]. The neighbors of
a in T constitute a path [b, c, d1, d2, . . .]. Since the connected component of a in
the graph T \ {[a, b]} (i.e., the “black” component) includes more than one vertex,
at least one of the di ’s is black. Thus, the path contains a colorful edge e that uses
neither a nor b (see Fig. 8). Furthermore, as e belongs to T , it does not cross any
edge of T . Hence, e is the edge whose existence was claimed.

2. Case 2: b is an internal vertex of conv(P) In this case, [a, b] is an internal edge of
T , and thus, it is contained in two triangles �abc,�abd ∈ T . We further divide
this case into two sub-cases:
(a) Case 2a: Either c or d (or both) are black Assume w.l.o.g. that c is black.

Since b is an internal vertex of conv(P), the neighbors of b in T constitute a
cycle [d, a, c, d1, d2, . . . , dk, d]. Since the connected component of b in the
graph T \ {[a, b]} contains more than one vertex, at least one of the di ’s or d
is white. Since a, c are black, this implies that the cycle includes at least two
colorful edges, and at least one of them uses neither a nor b (see left part of
Fig. 9). As in Case 1, this is the desired edge e.

(b) Case 2b: Both c and d are white By the same argument as above, a has a black
neighbor in T . As the neighbors of a in T form a (possibly closed) path, at
least one edge of this path is colorful (see right part of Fig. 9). This edge uses
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Fig. 8 An illustration for the
proof of Theorem 3.3—Case 1 b
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Fig. 9 An illustration for the proof of Theorem 3.3—Case 2

neither a nor b (as both edges that use b in this path, [b, c] and [b, d], are not
colorful). As in the previous cases, this is the desired edge e.

3. Case 3: Both a and b are boundary vertices of conv(P), and [a, b] is a diagonal
edge of conv(P). As in Case 2, [a, b] lies in two triangles �abc,�abd ∈ T . We
further divide this case to two sub-cases:
(a) Case 3a: c and d are of the same color W.l.o.g., c and d are white. By the

same arguments as above, a has a black neighbor, and thus, the path of a’s
neighbors includes a colorful edge (see left part of Fig. 10). This edge does
not use b, as both edges that use b (that are [b, c], [b, d]) are not colorful, and
it clearly does not use a.

(b) Case 3b: c and d are of different colors. In this case, the edge [c, d] is as
desired, since it is colorful, does not use a, b, and does not cross edges of
T \ {[a, b]} (see right part of Fig. 10). Note that since [c, d] crosses [a, b], the
U -clique that includes T in this case is degenerate. This completes the proof
of the theorem. ��
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Fig. 10 An illustration for the proof of Theorem 3.3—Case 3

Fig. 11 A pq-brush

qp

Remark 3.4 It may happen that T ∈ G(P) is not a star, but all U -cliques that contain
T are either degenerate or of size 3.

3.2 Identification of Brushes in G(P)

Definition 3.5 Let P be a set of points in general position in the plane, and let
p, q ∈ P . A pq-brush is an SST of diameter 3 whose only internal edge is [p, q].

Figure 11 shows an example of a pq-brush.
In this subsection we aim at identifying the vertices ofG(P) that represent brushes.

The identification uses distances in the graph G(P), defined (as usual) as the length
of the shortest path between two vertices, and denoted by dG(P)(S, T ). Note that by
the structure of G(P), it is clear that for any pair of vertices S, T ∈ G(P), we have

dG(P)(S, T ) ≥ 1
2 |�(S, T )|,

where �(S, T ) is the symmetric difference between the edge sets of the graphs S
and T .
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Theorem 3.6 An SST T ∈ G(P) is a pq-brush if and only if it is not a star and

dG(P)(T, S(p)) + dG(P)(T, S(q)) = n − 2. (1)

For sake of convenience, we divide the theorem into two propositions.

Proposition 3.7 Assume that T ∈ G(P) satisfies

dG(P)(T, S(p)) + dG(P)(T, S(q)) = n − 2.

Then T is a pq-brush, or T = S(p), or T = S(q).

Proof First, we note that

dG(P)(S(p), S(q)) ≥ 1
2 |�(S(p), S(q))| = n − 2,

and thus, by the triangle inequality,

dG(P)(T, S(p)) + dG(P)(T, S(q)) ≥ n − 2

for any T ∈ G(P).
Assume that T satisfies (1). Let k, � be the numbers of edges of T that emanate

from q, p (respectively), and let r be the number of edges of T that use neither p nor
q. We consider two cases:

1. [p, q] /∈ T . In this case, we have

k + � + r = n − 1, dG(P)(T, S(p)) ≥ 1
2 |�(T, S(p))| = k + r, and

dG(P)(T, S(q)) ≥ 1
2 |�(T, S(q))| = � + r.

Hence,

dG(P)(T, S(p)) + dG(P)(T, S(q)) ≥ k + � + 2r = (n − 1) + r > n − 2.

2. [p, q] ∈ T . In this case,

k + � + r = n, dG(P)(T, S(p)) ≥ 1
2 |�(T, S(p))| = k + r − 1, and

DG(P)(T, S(q))| ≥ 1
2 |�(T, S(q)) = � + r − 1.

Hence,

dG(P)(T, S(p)) + dG(P)(T, S(q)) ≥ k + � + 2r − 2 = n + r − 2 ≥ n − 2,

and equality can hold only if r = 0, which means that all edges of T emanate
either from p or from q and [p, q] ∈ T , i.e., T is a pq-brush, or T = S(p) or
T = S(q). ��
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Fig. 12 An illustration to the
proof of Lemma 3.10

qp
α
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Proposition 3.8 Let T ∈ G(P) be a pq-brush. Then

dG(P)(T, S(p)) + dG(P)(T, S(q)) = n − 2.

In order to prove Proposition 3.8, we need a lemma.

Definition 3.9 Let T be a pq-brush (or T = S(p) or T = S(q)). We say that T is of
type (k, �) if val(T, p) = k + 1 and val(T, q) = � + 1 (i.e., the numbers of edges of
T that emanate from p, q are k + 1, � + 1, respectively).

Lemma 3.10 If T is a pq-brush (or a star) of type (k, �), k < n−2, then it is adjacent
in G(P) to some pq-brush (or star) T ′ of type (k+1, �−1). (By symmetry, if � < n−2
then T is adjacent in G(P) to some pq-brush (or star) T ′′ of type (k − 1, � + 1).)

Proof of Lemma 3.10 Assume w.l.o.g. that [p, q] is placed horizontally, and consider
the half-plane above it. Let [p, x] be an edge such that the angle α between [p, q]
and [p, x] is minimal amongst all edges of T that emanate from p (see Fig. 12). Let
T ′ = (T \ {[p, x]}) ∪ {[q, x]}. Due to the minimality of the angle α, [q, x] does not
cross any of the edges of T that emanate from p. Thus, T ′ is a pq-brush of type
(k + 1, � − 1) (or T ′ = S(q), if � = 1), and [T, T ′] ∈ G(P) since |�(T, T ′)| = 2. ��
Proof of Proposition 3.8 Let T ∈ G(P) be a pq-brush. Assume w.l.o.g. that T
is of type (k, �). Repeated use of Lemma 3.10 enables us to construct a path
〈T0, T1, . . . , Tn−2〉 in G(P) such that T0 = S(q), Tk = T , and Tn−2 = S(p).
This implies dG(P)(T, S(p)) ≤ � and dG(P)(T, S(q)) ≤ k, hence, dG(P)(T, S(p)) +
dG(P)(T, S(q)) ≤ � + k = n − 2. Since we have shown above that dG(P)(T, S(p)) +
dG(P)(T, S(q)) ≥ n − 2 for any T , this completes the proof. ��

4 Identification of the Geometric Structure of K (P)

In this section we achieve a complete reconstruction of the geometric structure of
K (P), based on the identification of stars and brushes presented in Sect. 3. Most of
the effort is devoted to obtaining a complete identification of the brushes, in the sense
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that given a pq-brush T and a vertex x 
= p, q, we determine whether [x, p] ∈ T
or [x, q] ∈ T . This step is presented in Sect. 4.1. The finalization of the proof of
Theorem 1.3, presented in Sect. 4.2, is easy.

4.1 Further Information on Brushes in G(P)

So far, we know which vertices of G(P) are brushes. Furthermore, if we identify the
points of P with the stars in G(P) (an identification that is determined only up to an
automorphism of K (P)), we can say for each brush T , what are the vertices p, q that
are its “centers”, and how many edges of T emanate from each of the central vertices
p, q.

Our goal now is to gain full information on the brushes. Namely, for a pq-brush T
and a vertex x 
= p, q, we would like to determine whether [p, x] ∈ T or [q, x] ∈ T .

As an intermediate step, wewould like to determine, for given x, y 
= p, q, whether
both x and y are connected in T to the same vertex (either p or q), or one of them is
connected to p and the other to q.

Proposition 4.1 Let T be a pq-brush, and let x, y ∈ P be different from each other
and from p and q. The leaf edges of T whose endpoints are x and y emanate from the
same internal vertex of T if and only if for any xy-brush S, we have dG(P)(T, S) ≥
n − 2.

One direction of the proposition is immediate. If the leaf edges emanate from the
same vertex, e.g., [p, x], [p, y], then at most one (and actually, exactly one) of these
edges can belong to an xy-brush (as ([x, y], [y, p], [p, x]) form a cycle). Since every
edge of an xy-brush S emanates from either x or y, we have 1

2 |�(S, T )| ≥ n − 2 (as
these trees have exactly one edge in common). Hence,

dG(P)(T, S) ≥ 1
2 |�(S, T )| = n − 2

for any xy-brush S.
On the other hand, if the leaf edges emanate from different vertices, e.g.,

[p, x], [q, y], it is possible that an xy-brush S include both these edges, and then
1
2 |�(S, T )| = n − 3. We will construct an xy-brush that satisfies this condition, and
furthermore, satisfies the stronger condition dG(P)(S, T ) = n − 3. Before we show
this construction, we need a few preparations.

Definition 4.2 Let G be a geometric graph, and let O be a point in the plane. We say
that O sees a point P if the open segment (O, P) does not meet any edge or vertex of
G. We say that O sees an edge e ∈ E(G) if it sees every point X ∈ e, including the
endpoints.

Lemma 4.3 Let G = (V, E) be a crossing-free geometric graph, with no isolated
vertices. Suppose V is a disjoint union V = V0 ∪ W, where |V0| = 2 (say, V0 =
{p, q}), and each edge of G connects a vertex of V0 with a vertex of W. Suppose
O ∈ R

2 \ ∪{aff(e) : e ∈ E(G)}. Then O sees some vertex w ∈ W.
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We note that a similar lemma was proved in [5]. The assumption on O in [5] is
O /∈ conv(V (G)), and the assertion is the same as in our lemma.

Proof Draw a ray R that emanates from O , crosses some edge of G, and does not
meet any vertex of G. (It is clear that such rays exist.) Denote by C the first crossing
point of R with an edge of G. Then C is an interior point of an edge, say [p, w], of
G, and O sees C . Now rotate R around O towards w, until it hits w. If the triangle
�OCw does not contain any vertex of G, except w, then O sees w. Otherwise, there
is a first position R′ of the rotated ray that meets V . Let v be the point of R′ ∩V closest
to O . Then O sees v. If v ∈ W , we are done. Assume, therefore, that v ∈ V0. Clearly,
v 
= p since 0 < 
 vOp < 
 wOp < π . Hence, v = q.

Among the edges that emanate from q, let [q, w′] be the edge such that 
 Oqw′
is minimal. As before, rotate R′ around O towards w′, until it hits w′. If the triangle
�Oqw′ does not contain any vertex ofG, except q andw′, then O seesw′. Otherwise,
there is a first position R′′ of the rotated ray that meets V . Let v′ be the point of R′′ ∩V
closest to O . Then O sees v′. Now, we observe that v′ /∈ V0. Indeed, v′ 
= q since
0 < 
 v′Oq < 
 qOw′ < π , and v′ 
= p since 0 < 
 v′Op = 
 v′Oq + 
 qOp <

 w′Oq + 
 wOp < 2π . Therefore, v′ ∈ W , which completes the proof. ��

Now we are ready to prove Proposition 4.1.

Proof of Proposition 4.1 We already proved above that if the two leaf edges of T
whose endpoints are x, y emanate from the same vertex, then for any xy-brush S,
dG(P)(T, S) ≥ n − 2. Assume now that these leaf edges emanate from different
vertices. W.l.o.g., these edges are [p, x], [q, y]. We consider two cases, according
to the placement of p, q, x, y in the plane. In each case, we show that we can pass
from T to a suitable xy-brush S in n − 3 steps, where in each step we remove one
edge and add another edge, while maintaining the simplicity. This will show that
dG(P)(T, S) = n − 3, and thus complete the proof of the proposition. Note that in all
the steps of the path connecting T to S, the edges [p, x], [q, y] remain untouched.
Case 1: x, y are on the same side of �(p, q).

In this case, at least one of the edges [p, x], [q, y] is included in a line that supports
the set {p, x, q, y} (which means that all points in the set are on the same side of the
line). We assume w.l.o.g. that [p, x] has this property.

The passage from T to an appropriate S is performed by a 4-phase procedure,
illustrated in Fig. 13. In each phase (except for phase 3 that will be described below),
we consider one of the regions of the plane denoted in the figure: 1, 2, 4, and deal with
all points of P that belong to that region.

1. Region 1 (Reg1) This region is the open half-plane to the left of the line �(p, x).
Assume that |P ∩ Reg1| = k1. We are going to perform k1 steps: in each step, we
take one of these points, remove the edge that connects it to either p or q, and add
an edge that connects it to x . Of course, we must maintain the simplicity during
all steps, and this is achieved using Lemma 4.3.
Let G0 be the geometric graph whose edges are all edges of T of the form [p, w]
or [q, w], where w lies in Reg1. The graph G0 and the point O = x satisfy the
assumptions of Lemma 4.3, and thus, by the Lemma, x sees one of its vertices
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Fig. 13 An illustration to the
proof of Proposition 4.1: Case 1.
The regions are numbered by the
order of their consideration,
where the missing number 3
corresponds to Phase 3 in which
[p, q] is replaced by [x, y]. The
notation (i)–(v) where
i ∈ {1, 2, 4} and v ∈ {x, y}
means that we are going to
connect all points in Region i
to v

q

yx

p

4 − y

2 − y
1 − x

w ∈ Reg1, say w1. Assume, for example, that [q, w1] ∈ E(G0). Define T1 =
T \{[q, w1]}∪{[x, w1]}. Since x seesw1, the edge [x, w1] does not cross any other
edge of T . Thus, T1 is an SST and |T�T1| = 2,which implies that [T, T1] ∈ G(P).
Now, we repeat the first step with the SST T1 in place of T . That is, we define G1
whose edges are all edges of T of the form [p, w] or [q, w] where w lies in Reg1,
except for [q, w1]. As before, we apply Lemma 4.3 withG1 and O = x and obtain
a vertex w2 that is seen from x . Then, we define T2 by removing from T1 the edge
that connects w2 to either p or q and adding the edge [x, w2]. Note that the edge
[x, w1] that was not included in G2 cannot cross [x, w2], as they both emanate
from x .
By continuing in the same fashion, we obtain a sequence T0, T1, . . . , Tk1 such
that T0 = T , [Ti , Ti+1] ∈ G(P) for all i , and in Tk1 , all points in P ∩ Reg1 are
connected to x .
It should be noted that the parts of Ti that are not included in the auxiliary graph
Gi , i.e., the edge [p, q] and the edges [p, w], [q, w], w ∈ R

2 \ Reg1, are all
disjoint from the convex set Reg1, and thus cannot cross the new edge [x, wi+1]
(as x ∈ bdry(Reg1)).

2. Region 2 (Reg2) This region contains all points that lie above �(p, q) and on
the right side of �(p, x). Assume that |P ∩ Reg2| = k2. We start with Tk1 and
perform k2 steps: in each step, we consider one of these points, remove the edge
that connects it to either p or q, and add an edge that connects it to y. As before,
the simplicity is maintained during all steps, by using Lemma 4.3.
LetGk1 be the geometric graph whose edges are all edges of Tk1 of the form [p, w]
or [q, w], where w lies in Reg2. The graph Gk1 and the point O = y satisfy the
assumptions of Lemma 4.3, and thus, by the Lemma, y sees one of the vertices
w ∈ Reg2, call it wk1+1. Without loss of generality, [p, wk1+1] ∈ Gk1 . Define
Tk1+1 = Tk1 \{[p, wk1+1]}∪{[y, wk1+1]}. Since y seeswk1+1, the edge [y, wk1+1]
does not cross any other edge of Tk1 . Thus, [Tk1 , Tk1+1] ∈ G(P).
By continuing in the same fashion, we obtain a sequence Tk1+1, Tk1+2, . . . , Tk1+k2
such that [Ti , Ti+1] ∈ G(P) for all i , and in Tk1+k2 , all points in P ∩ Reg1 are
connected to x and all points in P ∩ Reg2 are connected to y.
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3. Phase 3 In this phase, we add the edge [x, y] and remove the edge [p, q]
(that otherwise closes a cycle ([x, y], [y, q], [q, p], [p, x])). Formally, we define
Tk1+k2+1 = Tk1+k2 \ {[p, q]} ∪ {[x, y]}. Note that the edge [x, y] does not cross
any edge of Tk1+k2 , as in Tk1+k2 , all points of P ∩ Reg2 are connected to y.

4. Region 4 (Reg4) This region contains all points that lie below �(p, q) and on the
right of �(p, x). Assume |P ∩ Reg4| = k3. As all points of P except for p, q, x, y
belong to one of the regions: Reg1, Reg2, Reg4, we have k1+k2+k3 = n−4.We
construct a sequence of SSTs Tk1+k2+2, . . . , Tk1+k2+k3+1 such that in Tk1+k2+k3+1,
all points in P ∩ Reg1 are connected to x and all points in P ∩ (Reg2 ∪ Reg4)
are connected to y. Hence, Tk1+k2+k3+1 = Tn−3 is an xy-brush that satisfies
dG(P)(T, Tn−3) = n − 3, as desired.
Let Gk1+k2+1 be the geometric graph whose edges are all edges of Tk1+k2+1 of
the form [p, w] or [q, w], where w lies in Reg4. The graph Gk1+k2+1 and the
point O = y satisfy the assumptions of Lemma 4.3, and thus, by the Lemma, y
sees one of the vertices w ∈ Reg4, say wk1+k2+1. Without loss of generality,
[p, wk1+k2+1] ∈ Gk1+k2+1. Define Tk1+k2+2 = Tk1+k2+1 \ {[p, wk1+k2+1]} ∪
{[y, wk1+k2+1]}. Since y seeswk1+k2+1, the edge [y, wk1+k2+1] does not cross any
other edge of Tk1 . (It should be noted that the fact that y lies outside Reg4 does not
disturb us, as all points in Region 2 (that is the region y sees Reg4 through) are
already connected to y, and P is in general position.) Thus, [Tk1+k2+1, Tk1+k2+2] ∈
G(P).
By continuing in the same fashion, we obtain a sequence Tk1+k2+2, Tk1+k2+3, . . . ,

Tk1+k2+k3+1 such that [Ti , Ti+1] ∈ G(P) and Tk1+k2+k3+1 = Tn−3 is the desired
xy-brush.

Case 2: x, y are on different sides of �(p, q).
This case is treated in a fashion similar to Case 1. We divide all points of P \ {p, q}

into two regions, where Region 1 (Reg1) consists of the points above �(p, q) and
Region 2 (Reg2) consists of the points below �(p, q) (see Fig. 14). In the first phase,
we consider the points of Reg1 (excluding x), disconnect them from p or q and
connect them to x instead. The procedure is identical to the procedure of the first
phase of Case 1. In the second phase, we consider the points of Reg2 (excluding
y), disconnect them from p or q and connect them to y instead. The procedure is,
again, similar. Finally, in the third phase we remove the edge [p, q] and insert the
edge [x, y] instead. (As at this stage, all points in P \ {p, q, x, y} are connected to
either x or y, this step does not create crossings.) As a result, we obtain a sequence
T = T0, T1, T2, . . . , Tn−3, such that [Ti , Ti+1] ∈ G(P) for all i and Tn−3 is an xy-
brush, as desired.

As cases 1, 2 include all possible placements of x, y, p, q, the proof is complete. ��
Now we are ready to identify every brush completely.

Corollary 4.4 Let T ∈ V (G(P)) be a pq-brush and let x ∈ P, x 
= p, q. Given
G(P), we can determine whether [p, x] ∈ T or [q, x] ∈ T .

Proof It follows from the proof of Proposition 3.8 that T belongs to a path

〈S(p) = T0, T1, T2, . . . , Tn−3, Tn−2 = S(q)〉
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Fig. 14 An illustration to the
proof of Proposition 4.1: Case 2.
The notation (i) − (v) where
i ∈ {1, 2} and v ∈ {x, y} means
that the points in Region i are
connected to v

q

y

x

p

2 − y

1 − x

in G(P) such that in Ti , deg(p) = n − 1− i and deg(q) = i + 1. Consider T1. Since
it has only one vertex x1 
= p, q that is connected to q, we can use Proposition 4.1
to determine it. (Here we use the assumption that n ≥ 5.) We can then move to T2
and use Proposition 4.1 again to determine the additional vertex x2 connected to q in
T2. (Note that [x1, q] ∈ E(T2), and thus, x2 is identified as the unique vertex x such
that the leaf edge of T2 that emanates from it has the same second endpoint as the leaf
edge that emanates from x1.) We can continue in the same fashion and get a complete
identification of T1, T2, . . . , Tn−3, including T . ��

4.2 Completing the Proof of Theorem 1.3

Our last step toward the identification of the geometric structure of K (P) is the fol-
lowing easy proposition.

Proposition 4.5 Let p, q, x, y be four different points in P. The segments [p, x] and
[q, y] do not cross if and only if there exists a pq-brush that includes the edges [p, x]
and [q, y].
Proof It is clear that if [p, x] and [q, y] cross then no pq-brush can contain both edges
[p, x] and [q, y], as a brush is a simple tree. If [p, x] and [q, y] do not cross, then they
are strictly separated by some line �. In such a case, we can define a pq-brush in which
all vertices that lie on the same side of � as p are connected to p, and all other vertices
are connected to q (see Fig. 15). This pq-brush includes both [p, x] and [q, y]. ��

Now we are ready to prove our main theorem.

Proof of the main theorem Consider the geometric tree graph G(P). The vertices
x, y, p, q are identified with the stars S(x), S(y), S(p), S(q) ∈ G(P). By Theo-
rem 3.6, we can identify all pq-brushes in G(P). By Corollary 4.4, we can check for
each of them whether it includes both [p, x] and [q, y] or not. By Proposition 4.5,
if none of the pq-brushes contains both [p, x] and [q, y], then these segments cross,
and otherwise, they do not cross. This completes the proof of the theorem. ��

5 The Automorphism Group of the Tree Graph of Kn

In this section we consider the abstract (i.e., non-geometric) graph Kn . Recall that, as
defined in the introduction, the vertices of the tree graph G(Kn) are all the spanning
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Fig. 15 An illustration to the
proof of Proposition 4.5 l

p
q

x y

trees of Kn , and two spanning trees are adjacent if they differ in exactly two edges.
We prove Theorem 1.4, stating that the automorphism group of G(Kn) is isomorphic
to Aut(Kn) = Sn .

It turns out that the theorem can be proved by roughly the same methodology as
the proof of Theorem 1.3, as shown below. Altogether, the proof in the abstract setting
turns out considerably simpler than its geometric counterpart.
Identification of stars in G(Kn). Denote G = G(Kn), and let V (Kn) = {v1, . . . , vn}.
As in the geometric case, our first step is identification of the vertices ofG that represent
stars. Unlike the geometric case, here the identification is immediate.

Claim 5.1 Let T ∈ V (G). Then T represents a star if and only if for any T ′ ∈ V (G),
dG(T, T ′) ≤ n − 2.

Proof We observe that in the abstract case, dG(S1, S2) = 1
2 |�(S1, S2)| for any

S1, S2 ∈ V (G). (In the geometric case, we could only say that dG(P)(S1, S2) ≥
1
2 |�(S1, S2)|.)

Assume that T is a star. Since any spanning tree T ′ of Kn shares at least one edge
with T , we have dG(T, T ′) = 1

2 |�(T, T ′)| ≤ n − 2.
On the other hand, if T is not a star then it is easy to see that the graph T c = Kn \T

is connected, and thus, there exists T ′ ∈ V (G) that does not share an edge with T .
Hence, dG(T, T ′) = 1

2 |�(T, T ′)| = n − 1. ��

We note that since the distance in G between any pair of stars in n − 2, it follows
that the quantity max{T ′∈V (G):T ′ 
=T } dG(T, T ′) equals n − 2 if T represents a star and
n − 1 otherwise. Consequently, the set of vertices that represent stars is exactly the
center of the graph G.

These vertices can be identified with the vertices of Kn in an arbitrary way (as any
automorphism of Kn clearly induces an automorphism ofG). So, we call the n vertices
in G that represent stars S(v1), . . . , S(vn) (in some arbitrary order).
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Valences of vertices in G(Kn). The next simple step is identifying, for any T ∈ V (G)

and any vertex v, what is the valence of v in T . Note that we were not able to obtain
such an identification in the geometric setting.

Claim 5.2 Let T ∈ V (G) and v ∈ V (Kn). The valence δT (v) of v in T is
n − 1 − dG(T, S(v)).

Proof Since all edges in S(v) emanate from v, it is clear that 1
2 |�(T, S(v))| =

n − 1 − δT (v). As dG(T, S(v)) = 1
2 |�(T, S(v))|, the assertion follows. ��

Max-cliques in G(Kn). Our next step is examination of max-cliques in G. As in the
geometric case, we would like to determine whether a given max-clique is aU -clique
or an I -clique.

Proposition 5.3 Given amax-clique C of G, we can determinewhether it is aU-clique
or an I -clique.

Proof As the discussion in Sect. 2.2 is purely combinatorial, it applies without change
to the abstract setting. In particular, all vertices in a U -clique U (S, T ) are obtained
from S ∪ T by removing an edge from its unique cycle, and all vertices in an I -
clique I (S, T ) are obtained from the two-component forest S ∩ T by adding an edge
that connects its two components. As there are no geometric restrictions in our case,
it follows that |U (S, T )| is equal to the size of the unique cycle in S ∪ T (and, in
particular, is between 3 and n), and |I (S, T )| = k(n − k), where k is the number of
vertices in one of the connected components of S ∩ T . Hence, determination whether
C is a U -clique or an I -clique is non-trivial only if |C| = n − 1.

AU -cliqueU (S, T ) is of size n − 1 if the unique cycle C of S ∪ T is of size n − 1,
which means that S ∪ T consists of C plus a single additional edge. Each element of
U (S, T ) is obtained from S ∪ T by removing one edge from C . Assume w.l.o.g. that
C = 〈v1, v2, . . . , vn−1, v1〉, and the additional edge is [vn, v1]. It is clear that v1 is
never a leaf in a tree ofU (S, T ), vn is a leaf in all n − 1 trees ofU (S, T ), and each of
the vertices v2, . . . , vn−1 is a leaf in exactly two trees ofU (S, T ). In addition,U (S, T )

has two trees that are paths. (These are the trees obtained by removing [v1, v2] and
[vn−1, v1].) These two trees can be recognized by checking that their sequence of
valences is 1, 2, 2, . . . , 2, 1.

An I -clique I (S, T ) is of size n − 1 if in the two-component forest S ∩ T , one
component consists of a single vertex x . Assume, in addition, that I (S, T ) has two
elements that are paths. (Otherwise, we can determine that I (S, T ) is an I -clique by
the previous paragraph.) This is possible only if the second component of S ∩ T is
a path P . In such a case, each endpoint of P is a leaf in n − 2 (of the n − 1) trees
of I (S, T ). As in U (S, T ), all vertices except one are leaves in at most two trees of
U (S, T ), this property allows to determine that I (S, T ) is indeed an I -clique. ��
The automorphism group of G(Kn). Our last step is to show that the information on
G obtained so far is sufficient for determining uniquely the spanning tree represented
by each vertex of G. Namely, given T ∈ V (G) and two vertices p, q ∈ V (Kn), we
would like to determine whether [p, q] ∈ E(T ) or not. If this is possible, it implies
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that Aut(G) ∼= Aut(Kn) ∼= Sn , since our determination is unique up to the arbitrary
identification of the vertices of G that represent stars with the vertices of Kn . Hence,
this will complete the proof of Theorem 1.4.

First, we consider the case when neither p nor q is a leaf in T .

Claim 5.4 Let T ∈ V (G) and suppose p, q ∈ V (Kn), p 
= q, δT (p), δT (q) ≥ 2.
Then [p, q] ∈ E(T ) if and only if T has a neighbor T ′ in G in which the valences of
both p and q are smaller by 1 than in T .

Proof If [p, q] /∈ E(T ) then no removal of an edge from E(T ) can reduce the valences
of both p and q, and thus, T ′ as described in the claim does not exist. On the other hand,
if [p, q] ∈ E(T ) then the graph T̃ = T \ {[p, q]} is a two-component forest in which
both components are of size≥ 2. Hence, there exists an edge [p′, q ′] that connects the
two components of T̃ and uses neither p nor q. The tree T ′ = T \ {[p, q]} ∪ {[p′, q ′]}
is a neighbor of T as described in the claim. ��
Now we can assume w.l.o.g. that p is a leaf in T . We perform a four-step procedure:

1. Find a leaf p′ of T such that dT (p, p′) > 2.
2. Find a neighbor T ′ of T in G(Kn) such that δT ′(p), δT ′(p′) ≥ 2.
3. Consider theU -cliqueU (T, T ′), and find a tree S ∈ U (T, T ′) such that δS(p) = 1

and δS(p′) = 2.
4. We find a vertex p′′ such that δS(p′′) = δT (p′′) − 1. We claim that if p′′ = q then

[p, q] ∈ E(T ), and otherwise, [p, q] /∈ E(T ).
We show below that the four steps can indeed be performed, and that they allow to

determine whether [p, q] ∈ E(T ) or not, as claimed.
Step 1 First, we note that if dT (p, p′) = 2 for all leaves p′ of T , then T is a star,
and thus, [p, q] ∈ E(T ) for the unique q whose valence in T is greater than 1 and
[p, q] /∈ E(T ) for any other q. Hence, we may assume that there exists a leaf p′ such
that dT (p, p′) > 2, and we only have to detect it.

Consider the set of leaves of T other than p: A = {pi ∈ V (Kn) : pi 
= p, δT (pi ) =
1}. (Note that we can recognize this set, as we are able to determine valences of
vertices.) We claim that dT (p, p′) > 2 if and only if there exists a neighbor T ′ of T in
G(Kn) such that δT ′(p) = δT ′(p′) = 2. This allows to detect the desired p′ by going
over the elements of A, and for each of them, going over the neighbors of T in G(Kn)

and checking whether the claimed neighbor exists.
To see that the claimholds, note that a neighbor T ′ of T satisfies δT ′(p) = δT ′(p′) =

2, if and only if it is of the form T ′ = T \ ∪{[p, p′]} \ {e}, for an edge e that belongs
to the unique cycle C of T ∪ {[p, p′]} and uses neither p nor p′. If d(p, p′) = 2, then
C is of length 3, and thus, it has no edges that use neither p nor p′. Thus, no such
neighbor T ′ exists. If d(p, p′) > 2, then C is of length > 3, and thus, it includes an
edge e that uses neither p nor p′. The tree T ′ = T \ {e} ∪ {[p, p′]} is the desired
neighbor of T .
Step 2 This step is immediate, as the required neighbor T ′ was already found in Step 1.
Step 3 The required neighbor S is the tree obtained from T ∪ {[p, p′]} by removing
the unique edge of the cycle C that uses p but not p′ (call it [p, p′′]). The U -clique
U (T, T ′) can be recognized using Proposition 5.3, since there exist only two max-
cliques of G(Kn) that include both T and T ′—a U -clique and an I -clique—and
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Proposition 5.3 allows us to determine, which of them is the U -clique. Then, S can
be recognized as the unique element of U (T, T ′) in which the valences of p, p′ are 1
and 2, respectively.
Step 4 It is clear that the unique vertex whose valence in S is smaller by one than
its valence in T is p′′, as defined in Step 3. By the construction of C , [p, p′′] is the
unique edge of E(T ) that emanates from p, i.e., p′′ is the unique neighbor of p in T .
Hence, [p, q] ∈ E(T ) if and only if q = p”, as asserted. The vertex p” is detected by
comparing the valences of the vertices in S with their respective valences in T .

This completes the proof of Theorem 1.4.
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